
 1 

Benchmarking and evaluating the NASA Land Information System (version 7.5.2) coupled 1 

with the refactored Noah-MP land surface model (version 5.0) 2 

 3 

Cenlin He1, Tzu-Shun Lin1, David M. Mocko2,3, Ronnie Abolafia-Rosenzweig1, Jerry W. Wegiel2,3, 4 

Sujay V. Kumar2 5 

 6 
1NSF National Center for Atmospheric Research (NCAR), Boulder, Colorado, USA 7 
2NASA Goddard Space Flight Center, Greenbelt, Maryland, USA  8 
3Science Applications International Corporation, Greenbelt, Maryland, USA 9 

 10 

 11 

Correspondence to: Cenlin He (cenlinhe@ucar.edu) 12 

 13 

 14 

 15 

Abstract 16 

We integrate the refactored community Noah-MP version 5.0 model with the NASA Land 17 

Information System (LIS) version 7.5.2 to streamline the synchronization, development, and 18 

maintenance of Noah-MP within LIS and to enhance their interoperability and applicability. We 19 

evaluate and compare 5-year (2018-2022) global and regional benchmark simulations of 20 

LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 for a set of key land surface variables. Both models 21 

capture the spatial and seasonal distributions of observed soil moisture, latent heat (LH), snow 22 

water equivalent (SWE), snow depth, snow cover, and surface albedo, with similar bias patterns. 23 

Both models tend to underestimate soil moisture over wet soil regimes and overestimate over dry 24 

soil regimes, with slightly higher (£ ~0.01 m3/m3 for global mean) soil moisture in LIS/Noah-25 

MPv5.0 than LIS/Noah-MPv4.0.1 across most regions. The model bias patterns of LH overall 26 

follow those of soil moisture, while LIS/Noah-MPv5.0 has a lower LH across many non-polar 27 

regions than LIS/Noah-MPv4.0.1, which reduces the global mean LH bias from 0.99 W/m2 to -28 

0.39 W/m2. The model SWE bias patterns are dominated by the precipitation and temperature 29 

forcing uncertainties, with slightly lower SWE values in LIS/Noah-MPv5.0 (global mean bias of 30 

-13.2 mm) than LIS/Noah-MPv4.0.1 (global mean bias of -10.1 mm). The model bias patterns of 31 



 2 

snow depth generally follow those of SWE. LIS/Noah-MPv4.0.1 consistently overestimates snow 32 

cover globally with a mean bias of 0.11, while LIS/Noah-MPv5.0 effectively reduces the 33 

overestimates across the global snowpacks with a mean bias of 0.07 because of updated snow 34 

cover parameters. Both models show widespread overestimates of surface albedo over mid-latitude 35 

and high-latitude regions but significant underestimates in the Sahara Desert and Antarctica. 36 

Overall, LIS/Noah-MPv5.0 outperforms or is similar to LIS/Noah-MPv4.0.1 in the evaluated land 37 

surface variables, except for slight degradation in simulated surface soil moisture and SWE. This 38 

study reveals possible model deficiencies, motivates future improvements in coupled canopy-39 

snowpack-soil processes and input soil data, and points to the importance of considering 40 

observational and forcing data uncertainties in model evaluation. 41 

 42 

 43 

1. Introduction 44 

 Land processes play a profound role in the Earth and climate systems through altering 45 

surface water and energy balances and feedback to the atmosphere (Fisher and Koven, 2020; Blyth 46 

et al., 2021). Earth’s land surface provides important boundary conditions for atmospheric 47 

processes and climate/weather predictions particularly at the subseasonal-to-seasonal (S2S) time 48 

scale (Koster and Walker, 2015; Benson and Dirmeyer, 2023). Furthermore, as climate changes, 49 

increasing climate/weather extremes (e.g., drought, flood, heatwave, and fire) and food-water 50 

security issues (e.g., agricultural production and irrigation management) are happening at the land 51 

surface, triggering key crises for the society (Sillmann et al., 2017; AghaKouchak et al., 2020). To 52 

tackle these critical land-related environmental issues, accurate land modeling systems are needed. 53 

 There have been substantial efforts in the past decades to develop and improve various land 54 

modeling systems (e.g., Dickinson et al., 1993; Liang et al., 1994; Chen et al., 1997; Ek et al., 55 

2003; Oleson et al., 2010; Best et al., 2011; Niu et al., 2011; Haverd et al., 2018). Among them, 56 

the NASA Land Information System (LIS) is a widely used, established open-source framework 57 

for high performance land surface and terrestrial hydrology modeling as well as data assimilation 58 

(DA) of satellite and ground-based observations (Kumar et al., 2006; Peters-Lidard et al., 2007; 59 

Kumar et al., 2008a). The LIS system integrates different land surface models (LSMs), satellite 60 

and ground observations, and advanced computing and data management tools, to enable an 61 

interoperable environment that is applicable across different spatial and temporal scales. Various 62 
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model developments and applications using LIS have been conducted in the past decade, such as 63 

coupling with atmospheric models to improve weather predictions (Kumar et al., 2008b; Wu et al., 64 

2016), DA of observed vegetation, snow, terrestrial water storage, albedo, and soil conditions to 65 

improve land surface modeling (Liu et al., 2015; Santanello et al., 2016; Kumar et al., 2016; Kumar 66 

et al., 2019; Kumar et al., 2020), and applications for hydrological predictions (Arsenault et al., 67 

2020), food security (Hazra et al., 2023), and land analysis (Nie et al., 2024).  68 

LIS allows the use of an ensemble of LSMs, such as Noah (Chen et al., 1997; Ek et al., 69 

2003), Noah-MP (Niu et al., 2011), CLM (Oleson et al., 2010), VIC (Liang et al., 1994), JULES 70 

(Best et al., 2011), and CABLE (Haverd et al., 2018). Among them, Noah-MP is one of the most 71 

commonly used state-of-the-art LSMs in the world (He et al., 2023a). Built upon the Noah LSM, 72 

Noah-MP has significant enhancements in representations of canopy-snow-soil-hydrology 73 

processes and interactions as well as capabilities of modeling human activity impacts (e.g., crop 74 

dynamics, irrigation dynamics, tile drainage, and urbanization). The multi-parameterization 75 

options of Noah-MP further allow for uncertainty analysis and model performance 76 

optimization/calibration based on multi-physics model ensembles (Li et al., 2020). Noah-MP has 77 

been serving as a key land component of various research and operational weather and 78 

hydroclimate models, such as the NOAA Unified Forecast System (UFS), the Weather Research 79 

and Forecasting (WRF) model, the U.S. National Water Model (NWM), the Model for Prediction 80 

Across Scales (MPAS), the Korean Integrated Model (KIM), and the Chinese Global-to-Regional 81 

Integrated Forecast System (GRIST). Because of its advantages, Noah-MP has been applied in 82 

numerous applications, including high-resolution climate modeling (Liu et al., 2017; Rasmussen 83 

et al., 2023), vegetation and soil DA (Kumar et al., 2019; Xu et al., 2021), climate extremes 84 

(Arsenault et al., 2020; Kumar et al., 2021; Abolafia-Rosenzweig et al., 2022a, 2023, 2024a), 85 

snowpack and hydrology (He et al., 2019; Jiang et al., 2020; Hazra et al., 2023), agriculture and 86 

groundwater (Barlage et al., 2021; Zhang et al., 2023, 2025), and urban climate (Xue et al., 2024, 87 

2025).  88 

Recently, the community Noah-MP has undergone a substantial code modernization effort 89 

(version 5.0) to improve its modularity and interoperability (He et al., 2023b), with many physics 90 

updates and bug fixes compared to the versions 3.6 and 4.0.1 in LIS. These two earlier Noah-MP 91 

versions in the current LIS (version 7.5.2) were implemented by manually replicating the Noah-92 

MP source code and updating LIS/Noah-MP interface and drivers, which does not allow easy 93 
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model upgrades and hence leads to a long-delayed version update compared to the community 94 

Noah-MP. Thus, in this effort, we describe the streamlining of the development and maintenance 95 

of Noah-MP in LIS to enable the seamless integration between LIS and the community Noah-MP 96 

version to further enhance the interoperability and applicability of both models. Specifically, we 97 

couple the refactored community Noah-MPv5.0 with the LIS framework through the GitHub 98 

submodule mechanism accompanied by developing a new LIS/Noah-MP interface, which 99 

provides a direct, automatic link between the two models’ source codes. This integration will allow 100 

easy code updates, synchronization, and maintenance for the coupled LIS/Noah-MP framework. 101 

The second goal of this study is to evaluate and compare global and regional benchmark 102 

simulations between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 for key land surface conditions. 103 

Such systematic benchmarking is needed to examine the realism of LIS/Noah-MP model 104 

simulations, quantify the gaps between modeling and observations, and identify key processes for 105 

future model enhancements. This study is a step toward establishing a “scorecard” type of practice 106 

for LSMs. 107 

 108 

2. Model descriptions and simulations 109 

2.1 NASA LIS 110 

 The LIS system is a land surface hydrology digital twin environment, with the development 111 

led by the Hydrological Sciences Laboratory at NASA's Goddard Space Flight Center. Because of 112 

its extensible and flexible software infrastructure, LIS allows customized land DA systems and 113 

multiple LSMs to be integrated, assembled, and reconfigured easily using shared plugins and 114 

standard interfaces. Currently, LIS is the land component for several Earth system models, such 115 

as the NASA Unified WRF (NU-WRF) model, and the key component of several land DA system 116 

(LDAS) such as Global LDAS (GLDAS), North American LDAS (NLDAS), the Famine Early 117 

Warning Systems Network (FEWS NET) LDAS (FLDAS), and the operational land DA analysis 118 

environment at the U.S. Air Force Weather (Eylander et al., 2022). 119 

 Specifically, the LIS software suite consists of three main components: (1) Land Data 120 

Toolkit (LDT; Arsenault et al., 2018), which handles the data-related requirements of LIS 121 

including land surface parameter processing, geospatial transformations, consistency checks, data 122 

assimilation preprocessing, and forcing bias correction; (2) Land Information System (LIS), which 123 

is the modeling system that encapsulates land and hydrological models, DA algorithms, 124 
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optimization and uncertainty estimation algorithms, and high performance computing (HPC) 125 

support; and (3) Land Verification Toolkit (LVT; Kumar et al., 2012), which is a model 126 

verification and benchmarking environment that can be used for enabling rapid prototyping and 127 

evaluation of model simulations by comparing against a large suite of in-situ, remote sensing, and 128 

model and reanalysis data products. More details can be found at the LIS website: 129 

https://lis.gsfc.nasa.gov/ (last access: November 25, 2024). In this study, we use the LIS version 130 

7.5.2 (latest version at the time of this work) coupled with Noah-MP in benchmark simulations 131 

and the LVT for model evaluation. 132 

 133 

2.2 Integration of refactored Noah-MPv5.0 with LIS  134 

 In this study, we couple the LIS system with the refactored community Noah-MPv5.0 135 

model through the GitHub submodule mechanism to streamline the synchronization of Noah-MP 136 

between the community version and the LIS version, which will simplify future code updates and 137 

maintenance of Noah-MP within LIS. The GitHub submodule mechanism 138 

(https://gist.github.com/gitaarik/8735255) allows (1) separated source code maintenance and 139 

updates for Noah-MP (by the Noah-MP team) and LIS (by the NASA/LIS team), and (2) 140 

convenient updates of Noah-MP inside LIS by updating the submodule link to a newer Noah-MP 141 

GitHub tag/branch version. Compared to the Noah-MPv4.0.1 model in LIS, the community Noah-142 

MPv5.0 model includes several important updates and new features: (1) improved modularization 143 

with modern Fortran code structures, (2) new hierarchical model data types and structures, (3) 144 

enhanced subroutine interface and calling workflow based on the modularization and new data 145 

types, (4) new self-explanatory model variable and module names, and (5) model bug fixes and 146 

new physics schemes. The key bug fixes include updates in vegetation properties (e.g., bug fixes 147 

in vegetation fraction scaling treatments) and processes (e.g., bug fixes in canopy wind absorption 148 

parameters) as well as snowpack processes. The new physics schemes include improved 149 

parameters related to various snowpack processes, a new wet-bulb temperature-based snow-rain 150 

partitioning scheme, a new snow meltwater retention process, a new dynamic irrigation scheme, 151 

updated crop growth parameters, a new tile drainage scheme, a new canopy heat storage treatment, 152 

additional runoff schemes, and new capabilities to control the soil process timestep. More details 153 

of Noah-MPv5.0 features can be found in He et al. (2023b). The detailed Noah-MP physics and 154 

formulations are described in He et al. (2023c). The major code changes from Noah-MPv4.0.1 to 155 
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Noah-MPv5.0 are described in the model release notes available at: 156 

https://github.com/NCAR/noahmp/blob/master/RELEASE_NOTES.md (last access: November 157 

25, 2024). The key components we modify to couple LIS and Noah-MPv5.0 are the LIS/Noah-MP 158 

land model driver interface to create new input/output variable mapping, and the LIS initialization 159 

and master driver parts to leverage new modularized Noah-MP code modules. By taking advantage 160 

of the plugin and standard interfaces in LIS, the Noah-MPv5.0 model is also connected to other 161 

components of LIS, such as data assimilation, river routing, etc. 162 

 163 

2.3 LIS/Noah-MP benchmark simulations 164 

 We conduct and evaluate two sets of benchmark simulations with LIS coupled with Noah-165 

MP, including one set of regional simulations over the contiguous U.S. (CONUS) and one set of 166 

global simulations. Each set of the simulations includes one LIS/Noah-MPv4.0.1 simulation and 167 

one LIS/Noah-MPv5.0 simulation to compare their performance and quantify differences between 168 

versions. The regional simulations are conducted for 10 years (2013-2022) with a 5-year spin-up, 169 

which are driven by the hourly 0.125° North American Land Data Assimilation System (NLDAS-170 

2) atmospheric forcing data (i.e., precipitation, surface temperature, surface pressure, surface 171 

specific humidity, wind speed, downward surface shortwave and longwave radiation). More 172 

details of NLDAS-2 data are described in Xia et al. (2012). The global simulations are conducted 173 

for 5 years (2018-2022) with a 5-year spin-up, and are driven by the global hourly ~10-km U.S. 174 

Air Force (USAF) atmospheric forcing reanalysis data (Kemp et al., 2022). More details of the 175 

forcing data (formerly known as AGRMET, AGRiculture METeorology) are described in 176 

Eylander et al. (2022). For all the simulations, the static land type map is from the Moderate 177 

Resolution Imaging Spectroradiometer (MODIS) satellite data (Figure 1), while the MODIS 178 

monthly climatological (2000-2008) leaf area index (LAI) and stem area index (SAI) are used 179 

(Yang et al., 2011). The static soil type map is from the State Soil Geographic (STATSGO)/Food 180 

and Agriculture Organization (FAO) soil database (FAO, 1991). For both LIS/Noah-MPv4.0.1 and 181 

LIS/Noah-MPv5.0 simulations, we adopt the same default Noah-MP physics options (see 182 

Appendix Table A1), which have been commonly used in previous Noah-MP applications to 183 

produce skilled model performance (He et al., 2023b). Model evaluations for both the regional and 184 

global simulations are focused on the 5-year period of 2018-2022. 185 
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 186 

Figure 1. MODIS land cover maps used for LIS/Noah-MP (a) global and (b) CONUS benchmark 187 

simulations.  188 

 189 

3. Reference data for model evaluation 190 

 We use a suite of reference datasets to evaluate the LIS/Noah-MP simulations of key land 191 

surface variables over the globe and CONUS, including soil moisture, latent heat flux (LH), snow 192 

water equivalent (SWE), snow depth, snow cover fraction, and surface albedo. Specifically, for 193 

surface soil moisture, we use the global daily 36-km Soil Moisture Active Passive (SMAP) version 194 

8 Level 3 satellite data (O'Neill et al., 2021; https://nsidc.org/data/spl3smp/versions/8, last access: 195 

November 25, 2024). We also use the surface and root-zone soil moisture from the International 196 

Soil Moisture Network (ISMN) ground station hourly measurements (Dorigo et al., 2021; 197 

https://ismn.earth/en/, last access: November 25, 2024). The data quality control is done via LVT. 198 

For LH, we use the global 0.25° daily Global Land Evaporation Amsterdam Model (GLEAMv3.8a) 199 

reanalysis data (Miralles et al., 2011; https://www.gleam.eu/, last access: November 25, 2024) and 200 

the global 0.05° hourly FLUXCOM-X-BASE observation-based data (Nelson et al., 2024; 201 

https://gitlab.gwdg.de/fluxcom/fluxcomxdata, last access: July 6, 2025). For SWE and snow depth, 202 

https://gitlab.gwdg.de/fluxcom/fluxcomxdata
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we use the daily 1-km NOAA National Weather Service's National Operational Hydrologic 203 

Remote Sensing Center (NOHRSC) Snow Data Assimilation System (SNODAS) data (Barrett, 204 

2003; https://nsidc.org/data/g02158/, last access: November 25, 2024) and the global 0.1° ERA-5 205 

land (ERA5-Land) reanalysis data (Muñoz-Sabater et al., 2021; https://www.ecmwf.int/en/era5-206 

land, last access: November 25, 2024). For snow cover fraction, we use the global daily 500-m 207 

MODIS Terra Snow Cover version 6 data (Hall and Riggs, 2016; 208 

https://nsidc.org/data/mod10a1/versions/6, last access: November 25, 2024). For surface albedo, 209 

we use the global daily 0.05° MODIS Terra/Aqua merged data (Schaaf and Wang, 2021; 210 

https://lpdaac.usgs.gov/products/mcd43c3v061/, last access: November 25, 2024). For model 211 

evaluation, we re-map the reference gridded datasets to the LIS/Noah-MP model grids or bilinearly 212 

interpolate model values to in-situ measurement locations via LVT, which will likely introduce 213 

uncertainties to model evaluations. We also note that those reference datasets have their own 214 

uncertainties, which may impact model evaluation results. 215 

 216 

4. Results and discussions 217 

4.1 Soil moisture 218 

 Figure 2 shows the global 5-year (2018-2022) mean surface soil moisture comparison 219 

between SMAP retrievals and LIS/Noah-MP simulations driven by the USAF forcing. Both 220 

LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations capture the spatial and seasonal 221 

distributions of surface soil moisture globally (Figures 2 and S1), with similar bias patterns. Both 222 

simulations tend to underestimate in wet soil regimes (e.g., northern and eastern Canada, Amazon 223 

forests, northern Europe, tropical Africa, and southeast Asia) and overestimate in dry soil regimes 224 

(e.g., western US, west and east coasts of South America, southern and northern Africa, mid-225 

latitudinal Eurasia, and Australia), partially caused by the USAF precipitation forcing bias (Figure 226 

S2), except for northern Canada and southern Brazil which requires further investigation. We note 227 

that SMAP data quality is less reliable over regions with thick vegetation (e.g., Southeast US, 228 

Amazon rainforest, Congo Basin). The evapotranspiration (ET) biases caused by model 229 

deficiencies in plant hydraulics and root water uptake processes may also contribute to the soil 230 

moisture bias, as revealed by previous Noah-MP studies (Niu et al., 2020; Li et al., 2021). These 231 

global model bias patterns are consistent across all seasons (Figure S1). Due to the offset of model 232 

overestimates and underestimates across different regions, the global annual mean model bias is 233 
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small (0.003 m3/m3 for LIS/Noah-MPv4.0.1 and 0.008 m3/m3 for LIS/Noah-MPv5.0). Overall, 234 

LIS/Noah-MPv5.0 shows consistently higher surface soil moisture than LIS/Noah-MPv4.0.1 but 235 

the difference is small (Figure 2f), which is expected since there is no direct soil physics update 236 

but changes in snowpack (e.g., snow cover parameter updates) and vegetation processes (e.g., 237 

vegetation fraction scaling treatments) from Noah-MPv4.0.1 to Noah-MPv5.0. 238 

 239 

 240 

Figure 2. Surface soil moisture (m3/m3) comparison between SMAP retrievals and LIS/Noah-MP 241 

simulations driven by USAF forcing globally averaged during 2018-2022: (a) SMAP data, (b) 242 

LIS/Noah-MPv4.0.1 simulation, (c) LIS/Noah-MPv5.0 simulation, (d) LIS/Noah-MPv4.0.1 biases 243 

(model minus SMAP), (e) LIS/Noah-MPv5.0 biases (model minus SMAP), and (f) differences 244 

between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations. Grids with statistically 245 

significant differences (p < 0.05) are shown with gray dots in panels (d)-(f). The statistical 246 

significance over each grid is computed using daily time series and the t-test method. The global 247 

mean value is also provided in the lower right of each panel. See Figure S1 for seasonal plots. 248 

 249 

 Further model evaluation with the ISMN global in-situ measurements indicates systematic 250 

model overestimates of surface soil moisture at most sites (Figure 3), particularly over the CONUS 251 

and Europe that have very dense measurement networks, with global mean biases of 0.062 m3/m3 252 

and 0.067 m3/m3 for LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0, respectively. This bias pattern 253 

is consistent with the SMAP comparisons (Figure 2). LIS/Noah-MPv5.0 shows slightly (0.005 254 

m3/m3) higher mean surface soil moisture than LIS/Noah-MPv4.0.1 across all sites (Figure 3f). 255 

We further compute the soil moisture anomaly correlation between the model simulations and 256 



 10 

ISMN observations following Navari et al. (2024), where the anomaly is computed as daily 257 

anomaly by subtracting monthly mean values. Both models show similar anomaly correlation 258 

spatial patterns (Figure 3g-h), with a mean value of ~0.53 and higher values in North America and 259 

Europe than in Asia and Africa. Compared to the surface soil moisture, the root-zone soil moisture 260 

shows similar spatial distributions (Figure 4a-c), model bias patterns (Figure 4d-e), and anomaly 261 

correlation patterns (Figure 4g-i) across most ISMN sites, with global annual mean biases of 0.039 262 

m3/m3 and 0.050 m3/m3 for LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0, respectively. 263 

 264 

 265 

Figure 3. Surface soil moisture (m3/m3) comparison between ISMN station measurements and 266 

LIS/Noah-MP simulations driven by USAF forcing globally averaged during 2018-2022: (a) 267 

ISMN data, (b) LIS/Noah-MPv4.0.1 simulation, (c) LIS/Noah-MPv5.0 simulation, (d) LIS/Noah-268 

MPv4.0.1 biases (model minus ISMN), (e) LIS/Noah-MPv5.0 biases (model minus ISMN), (f) 269 

differences between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations, (g) LIS/Noah-270 

MPv4.0.1 anomaly correlation, (h) LIS/Noah-MPv5.0 anomaly correlation, and (i) differences 271 

between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 anomaly correlation. The global mean value 272 

is also provided in the lower right of each panel. 273 

 274 
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 275 

Figure 4. Same as Figure 3, but for root-zone soil moisture (m3/m3) evaluation. 276 

 277 

Over the CONUS, both LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations driven by 278 

the NLDAS-2 forcing capture the spatial distribution of SMAP surface soil moisture with similar 279 

spatial bias patterns (Figure 5), which show model underestimates over wet soil regimes (e.g., the 280 

northwest coast and southeast and northeast U.S.) and overestimates over dry soil regimes (e.g., 281 

western and central U.S.). This is consistent with the global evaluation albeit using a different 282 

forcing dataset. LIS/Noah-MPv5.0 also produces consistently but slightly (0.007 m3/m3) higher 283 

soil moisture than LIS/Noah-MPv4.0.1 using the NLDAS-2 forcing (Figure 5f), similar to the 284 

results using the USAF forcing, revealing a robust difference pattern between the two model 285 

versions. The comparison with ISMN surface soil moisture data over the CONUS shows similar 286 

model bias patterns with those evaluated against SMAP (Figure 6), except for the northwest coast 287 

and Florida, where ISMN indicates dry soil regimes that are opposite to SMAP. This points to the 288 

importance of considering observational data uncertainty in model evaluation. The CONUS mean 289 

biases across all ISMN sites are 0.041 m3/m3 and 0.047 m3/m3 for LIS/Noah-MPv4.0.1 and 290 

LIS/Noah-MPv5.0, respectively. The CONUS mean anomaly correlation is about 0.6 for both 291 

models (Figure 6g-h), with slightly lower values particularly over many western U.S. sites for 292 

LIS/Noah-MPv5.0 than LIS/Noah-MPv4.0.1 (Figure 6i). The model bias pattern of root-zone soil 293 

moisture is similar to that of surface soil moisture but with larger underestimates at some central 294 

U.S. sites (Figure 7). 295 
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 296 

 297 

Figure 5. Same as Figure 2, but for evaluation of LIS/Noah-MP simulations driven by the 298 

NLDAS-2 forcing over the CONUS averaged during 2018-2022. 299 

 300 

 301 

Figure 6. Same as Figure 3, but for evaluation of LIS/Noah-MP simulated surface soil moisture 302 

(m3/m3) driven by the NLDAS-2 forcing over the CONUS averaged during 2018-2022. 303 

 304 
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 305 

Figure 7. Same as Figure 4, but for evaluation of LIS/Noah-MP simulated root-zone soil moisture 306 

(m3/m3) driven by the NLDAS-2 forcing over the CONUS averaged during 2018-2022. 307 

 308 

4.2 Latent heat flux 309 

 Figure 8 shows the global 5-year (2018-2022) mean latent heat (LH) flux comparison 310 

between the GLEAM data and LIS/Noah-MP simulations driven by the USAF forcing. Both 311 

LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations capture the spatial and seasonal LH 312 

distributions with similar bias patterns (Figures 8 and S3). The model LH biases are generally 313 

consistent with the surface soil moisture bias patterns (Figure 2), with the underestimated 314 

(overestimated) LH over regions with the underestimated (overestimated) soil moisture, except for 315 

northern Eurasia and northwest North America (Alaska and west Canada). Although LIS/Noah-316 

MPv5.0 has a slightly higher soil moisture than LIS/Noah-MPv4.0.1 (Figures 2-4), it shows a 317 

lower LH (by up to ~15 W/m2) over some tropical and mid-latitude regions with the largest 318 

difference in the tropics, which reduces the global mean LH bias from 0.99 W/m2 (LIS/Noah-319 

MPv4.0.1) to -0.39 W/m2 (LIS/Noah-MPv5.0). This difference in the two Noah-MP versions is 320 

mainly due to the code updates related to vegetation properties (e.g., bug fixes in vegetation 321 

fraction scaling treatments) and processes (e.g., added canopy heat storage treatment) which alters 322 

ET and LH (see Section 5 for discussion). The minor LH difference (up to ~5 W/m2) between the 323 

two model versions over the Antarctica and Greenland is mainly caused by updates in the glacier 324 

scheme that uses snowpack physics consistent with other land snowpacks in LIS/Noah-MPv5.0. 325 
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We note that the LH (or ET) reference data product also has nontrivial uncertainties which may 326 

confound model evaluations here (see Section 5 for detail). 327 

 328 

 329 

Figure 8. Latent heat flux (W/m2) comparison between the GLEAM data and LIS/Noah-MP 330 

simulations driven by USAF forcing globally averaged during 2018-2022: (a) GLEAM3.8a data, 331 

(b) LIS/Noah-MPv4.0.1 simulation, (c) LIS/Noah-MPv5.0 simulation, (d) LIS/Noah-MPv4.0.1 332 

biases (model minus GLEAM), (e) LIS/Noah-MPv5.0 biases (model minus GLEAM), and (f) 333 

differences between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations. Grids with 334 

statistically significant differences (p < 0.05) are shown with gray dots in panels (d)-(f). The 335 

statistical significance over each grid is computed using daily time series and the t-test method. 336 

The global mean value is also provided in the lower right of each panel. See Figure S3 for seasonal 337 

plots. 338 

 339 

Further CONUS evaluation of model simulations driven by the NLDAS-2 forcing also 340 

reveals that model LH bias patterns (Figure 9) generally follow the soil moisture bias patterns 341 

(Figure 5) except for many western U.S. mountainous regions, where both model simulations have 342 

very small LH biases despite the overestimation of soil moisture (Figures 5-7). Compared to 343 

LIS/Noah-MPv4.0.1, LIS/Noah-MPv5.0 shows a lower LH over southwest U.S. and eastern U.S. 344 

by up to about 10 W/m2, which degrades the CONUS-mean model bias from -0.21 W/m2 to -2.30 345 

W/m2. We note that GLEAM is a model-based reanalysis data that has its own uncertainty. 346 

 347 
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 348 

Figure 9. Same as Figure 8 but for evaluation of LIS/Noah-MP simulations driven by the NLDAS-349 

2 forcing over the CONUS averaged during 2018-2022. 350 

 351 

4.3 Snow water equivalent (SWE) 352 

 Figure 10 shows the global 5-year (2018-2022) mean SWE comparison for seasonal 353 

snowpack between ERA5-Land data and LIS/Noah-MP simulations driven by the USAF forcing. 354 

Both LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations capture the spatial and seasonal 355 

SWE distributions with similar bias patterns (Figures 10 and S4). Both simulations tend to have 356 

much lower SWE (by up to 50 mm) in the Himalayas and west Canada than ERA5-Land, with 357 

slightly less SWE in eastern Russia, partially driven by overestimated surface temperature (Section 358 

4.7). Both simulations have higher SWE than ERA5-Land in most other mid-latitude and high-359 

latitude snowpacks, mainly driven by overestimated precipitation (Figure S2) and underestimated 360 

surface temperature (Figure S8). The global annual mean SWE biases are -10.1 mm and -13.2 mm 361 

for LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0, respectively. Overall, LIS/Noah-MPv5.0 shows 362 

lower SWE than LIS/Noah-MPv4.0.1, particularly in spring when differences reach up to 25 mm 363 

(Figures 10f and S4) due to the updated snow cover parameters (He et al., 2021) that reduces snow 364 

cover fraction (Section 4.5) and enhances snow ablation particularly in spring through the positive 365 

surface albedo feedback. We note that the ERA5-Land SWE data also has uncertainties, which 366 

tends to overestimate SWE over mountainous areas (Monteiro and Morin, 2023). 367 

 368 
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 369 

Figure 10. SWE (mm) comparison between ERA5-Land and LIS/Noah-MP simulations driven by 370 

USAF forcing globally averaged during 2018-2022: (a) ERA5-Land data, (b) LIS/Noah-MPv4.0.1 371 

simulation, (c) LIS/Noah-MPv5.0 simulation, (d) LIS/Noah-MPv4.0.1 biases (model minus 372 

ERA5-Land), (e) LIS/Noah-MPv5.0 biases (model minus ERA5-Land), and (f) differences 373 

between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations. Grids with statistically 374 

significant differences (p < 0.05) are shown with gray dots in panels (d)-(f). The statistical 375 

significance over each grid is computed using daily time series and the t-test method. The global 376 

mean value is also provided in the lower right of each panel. See Figure S4 for seasonal plots. 377 

 378 

 The CONUS-wide regional evaluation between SNODAS and LIS/Noah-MP simulations 379 

driven by the NLDAS-2 forcing indicates large SWE underestimates by up to 50 mm or more in 380 

high-elevation mountains in the western U.S. and very small biases across other CONUS regions 381 

(Figure 11), mainly due to the underestimated mountain precipitation in NLDAS-2 (He et al., 382 

2019). The CONUS mean SWE biases are -4.2 mm and -5.0 mm for LIS/Noah-MPv4.0.1 and 383 

LIS/Noah-MPv5.0, respectively, with slightly lower SWE in LIS/Noah-MPv5.0 than LIS/Noah-384 

MPv4.0.1 over most CONUS snowpacks (Figure 11f). 385 

 386 
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 387 

Figure 11. Same as Figure 10 but for SWE (mm) comparison between SNODAS and LIS/Noah-388 

MP simulations driven by the NLDAS-2 forcing over the CONUS averaged during 2018-2022. 389 

 390 

4.4 Snow depth 391 

Figure 12 shows the global 5-year (2018-2022) mean snow depth comparison for seasonal 392 

snowpack between ERA5-Land data and LIS/Noah-MP simulations driven by the USAF forcing. 393 

Both LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations reproduce the spatial and seasonal 394 

snow depth distributions with similar bias patterns (Figures 12 and S5). The snow depth bias 395 

pattern generally follows the SWE bias pattern (Figure 10) with global annual mean biases of 396 

~0.06 m for both simulations, except for the lower snow depth over some regions with higher SWE 397 

in northern Canada and northern Russia compared to ERA5-Land. The snow depth difference 398 

(global mean of 0.003 m) between LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 is small (Figure 399 

12f).  400 

 401 
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 402 

Figure 12. Snow depth (m) comparison between ERA5-Land and LIS/Noah-MP simulations 403 

driven by USAF forcing globally averaged during 2018-2022: (a) ERA5-Land data, (b) LIS/Noah-404 

MPv4.0.1 simulation, (c) LIS/Noah-MPv5.0 simulation, (d) LIS/Noah-MPv4.0.1 biases (model 405 

minus ERA5-Land), (e) LIS/Noah-MPv5.0 biases (model minus ERA5-Land), and (f) differences 406 

between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations. Grids with statistically 407 

significant differences (p < 0.05) are shown with gray dots in panels (d)-(f). The statistical 408 

significance over each grid is computed using daily time series and the t-test method. The global 409 

mean value is also provided in the lower right of each panel. See Figure S5 for seasonal plots. 410 

 411 

 The CONUS-wide regional snow depth evaluation between SNODAS and LIS/Noah-MP 412 

simulations driven by the NLDAS-2 forcing also reveals a similar bias pattern (Figure 13) as the 413 

SWE evaluation, with largely underestimated snow depth over most western U.S. high mountains 414 

due to the underestimated SWE. The CONUS mean snow depth biases are -0.013 m and -0.015 m 415 

for LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0, respectively, with very minor differences 416 

between the two simulations (Figure 13f). 417 

 418 



 19 

 419 

Figure 13. Same as Figure 12, but for snow depth (m) comparison between SNODAS and 420 

LIS/Noah-MP simulations driven by the NLDAS-2 forcing over the CONUS averaged during 421 

2018-2022. 422 

 423 

4.5 Snow cover fraction 424 

Although LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations capture the spatial and 425 

seasonal snow cover distributions, they systematically overestimate snow cover globally relative 426 

to MODIS observations (Figures 14 and S6). This high bias in snow cover is particularly 427 

outstanding considering the underestimated SWE and snow depth (Figures 10 and 12), which has 428 

been a long-standing problem in Noah-MP (He et al., 2019; Jiang et al., 2020; Zhou et al., 2023). 429 

Specifically, LIS/Noah-MPv4.0.1 tends to overestimate snow cover across the global snowpack 430 

by up to 0.3 with a global mean bias of 0.11, while LIS/Noah-MPv5.0 reduces the snow cover 431 

overestimate particularly in northern high-latitudes and the Tibetan Plateau, which effectively 432 

reduces the global mean bias to 0.07. This bias reduction is attributable to the updated snow cover 433 

parameters in LIS/Noah-MPv5.0 (He et al., 2021). However, LIS/Noah-MPv5.0 still 434 

systematically overestimates snow cover over most mid-latitude and high-latitude snowpacks, 435 

which suggests the need for improved snowpack physics in Noah-MP (see Section 6 for 436 

discussion). The spatial heterogeneity of the snow cover change magnitude caused by the snow 437 

cover parameter updates may be due to several reasons: (1) The snow cover parameter updates are 438 

more effective for regions with snow depth less than about 0.3 m, since this is the most sensitive 439 

snow depth regime for snow cover calculations based on the parameterization used in Noah-MP 440 

(He et al., 2019); (2) The snow cover parameter updates are vegetation type dependent, so the 441 
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effectiveness of this change also depends on vegetation types; (3) Due to the positive surface 442 

albedo feedback, the snow cover change is more effective over ablation regions and periods; (4) 443 

The snow cover impact is further complicated by the spatial heterogeneity of SWE biases 444 

(Abolafia-Rosenzweig et al., 2025). 445 

 446 

 447 

Figure 14. Snow cover fraction comparison between MODIS and LIS/Noah-MP simulations 448 

driven by the USAF forcing globally averaged during 2018-2022: (a) MODIS data, (b) LIS/Noah-449 

MPv4.0.1 simulation, (c) LIS/Noah-MPv5.0 simulation, (d) LIS/Noah-MPv4.0.1 biases (model 450 

minus MODIS), (e) LIS/Noah-MPv5.0 biases (model minus MODIS), and (f) differences between 451 

LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations. Grids with statistically significant 452 

differences (p < 0.05) are shown with gray dots in panels (d)-(f). The statistical significance over 453 

each grid is computed using daily time series and the t-test method. The global mean value is also 454 

provided in the lower right of each panel. See Figure S6 for seasonal plots. 455 

 456 

The CONUS-wide regional evaluation between MODIS and LIS/Noah-MP simulations 457 

driven by the NLDAS-2 forcing also reveals a consistently high bias in snow cover in LIS/Noah-458 

MPv4.0.1, particularly over western U.S. mountains, with a CONUS mean bias of 0.055 (Figure 459 

15). LIS/Noah-MPv5.0 effectively removes the snow cover overestimates in snowpacks outside 460 

high-elevation mountains in the western U.S., which halves the CONUS mean bias. The remaining 461 

snow cover overestimate in western U.S. high mountains, which notably correspond to the regions 462 

with underestimated SWE and snow depth (Figures 11 and 13), needs further investigation. 463 

 464 
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 465 

Figure 15.  Same as Figure 14, but for evaluation of LIS/Noah-MP simulations driven by the 466 

NLDAS-2 forcing over the CONUS averaged during 2018-2022. 467 

 468 

4.6 Surface albedo 469 

Figure 16 shows the global 5-year (2018-2022) mean surface albedo comparison between 470 

MODIS and LIS/Noah-MP simulations driven by the USAF forcing. Both LIS/Noah-MPv4.0.1 471 

and LIS/Noah-MPv5.0 simulations capture the spatial and seasonal surface albedo distributions 472 

with similar bias patterns (Figures 16 and S7). LIS/Noah-MPv4.0.1 shows consistently 473 

overestimated surface albedo over most global regions by up to 0.05 or more, except for significant 474 

underestimates in the Sahara Desert and Antarctica which dominate the global mean bias (-0.02). 475 

This bias pattern is consistent across different seasons (Figure S7). Compared to LIS/Noah-476 

MPv4.0.1, LIS/Noah-MPv5.0 shows an overall reduction of surface albedo across mid-latitudes 477 

and high-latitudes due to lower snow cover (Section 4.5), which reduces the high bias of surface 478 

albedo particularly in the midlatitudes (Figure 16). The remaining albedo overestimates in 479 

LIS/Noah-MPv5.0 in the mid-latitude and high-latitude snowpacks are partially caused by the 480 

overestimated snow cover (Figure 14e) and also likely by the soil and vegetation albedo 481 

uncertainties. The systematic surface albedo underestimates in the Sahara Desert, Antarctica, and 482 

Greenland further indicate model biases in the background albedo for desert soil and glacier 483 

ice/snow albedo. 484 

 485 
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 486 

Figure 16. Surface albedo comparison between MODIS and LIS/Noah-MP simulations driven by 487 

USAF forcing globally averaged during 2018-2022: (a) MODIS data, (b) LIS/Noah-MPv4.0.1 488 

simulation, (c) LIS/Noah-MPv5.0 simulation, (d) LIS/Noah-MPv4.0.1 biases (model minus 489 

MODIS), (e) LIS/Noah-MPv5.0 biases (model minus MODIS), and (f) differences between 490 

LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations. Grids with statistically significant 491 

differences (p < 0.05) are shown with gray dots in panels (d)-(f). The statistical significance over 492 

each grid is computed using daily time series and the t-test method. The global mean value is also 493 

provided in the lower right of each panel. See Figure S7 for seasonal plots. 494 

 495 

The CONUS-wide regional evaluation between MODIS and LIS/Noah-MP simulations 496 

driven by the NLDAS-2 forcing also reveals a consistently high bias in surface albedo in 497 

LIS/Noah-MPv4.0.1 across the CONUS, except in some parts of southwest US (Figure 17), with 498 

a CONUS mean bias of 0.031. LIS/Noah-MPv5.0 effectively reduces the mean albedo bias to 499 

0.023 due to improved snow cover simulations (Figures 15f and 17f). The remaining albedo 500 

overestimates in the western U.S. is partially due to the snow cover bias (Figure 15e) and snow 501 

albedo bias (He et al., 2019; Abolafia-Rosenzweig et al., 2022b). The albedo overestimates in the 502 

rest of CONUS may be related to the model uncertainty in background soil and vegetation albedo 503 

(see Section 5 for discussion).  504 

 505 
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 506 

Figure 17. Same as Figure 16, but for evaluation of LIS/Noah-MP simulations driven by the 507 

NLDAS-2 forcing over the CONUS averaged during 2018-2022. 508 

 509 

5. Discussion on resulting differences in two LIS/Noah-MP model versions   510 

To summarize the evaluation metrics for all the investigated variables from both model 511 

simulations in this study, we adopted the International Land Model Benchmarking (ILAMBv2.7.2; 512 

Collier et al., 2018) package and applied it to our model simulations and reference datasets. Overall, 513 

the result (Figure 18) shows that LIS/Noah-MPv5.0 outperforms or is similar to LIS/Noah-514 

MPv4.0.1 globally in the key land surface variables evaluated in this study, except for slight 515 

degradation in simulated surface soil moisture and SWE. In addition, we summarized all the bias 516 

values for different seasons and regions for both model simulations in Tables 1 and 2. The slightly 517 

degraded surface soil moisture simulation in LIS/Noah-MPv5.0 mainly comes from the degraded 518 

performance over northern and southern mid-latitudes, while the slightly degraded SWE in 519 

LIS/Noah-MPv5.0 is mainly caused by the degraded performance in the northern high-latitudes 520 

(Table 1). The soil moisture and SWE differences between the two model simulations are primarily 521 

caused by the model updates in vegetation processes (added canopy heat storage and bug fix of 522 

vegetation fraction scaling) and improved snow cover parameters. 523 

 524 
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 525 

Figure 18. Scorecard-type comparison for LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 model 526 

performance in simulating key surface variables evaluated against the reference datasets used in 527 

this study based on the ILAMB tool. 528 

 529 

 530 

Table 1. Model evaluation metrics for LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations 531 
driven by the USAF forcing averaged during 2018-2022 on the global and regional scale. The 532 
values are the annual mean model bias (LIS/Noah-MP simulations minus reference datasets). The 533 
statistically significant difference between LIS/Noah-MP v4.0.1 and LIS/Noah-MPv5.0 534 
simulations (p < 0.05 using a t-test for daily time series) are marked as bold font. The values in the 535 
parentheses are the annual mean absolute model biases. The seasonal biases are shown in Tables 536 
S1-S4. 537 
 538 

 Global low latitude 
(30°S - 30°N) 

northern mid-
latitudes 

(30 - 60°N) 

northern high-
latitudes 
(>60°N) 

southern mid-
latitudes 

(30 - 60°S) 

southern high-
latitudes 
(>60°S) 

LIS/Noah-MP v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0 
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Surface soil 
moisture (m3/m3 

compared to SMAP) 

0.003 
(0.076) 

0.008 
(0.078) 

-0.009 
(0.065) 

-0.002 
(0.066) 

0.020 
(0.079) 

0.025 
(0.082) 

-0.013 
(0.093) 

-0.009 
(0.094) 

0.028 
(0.081) 

0.036 
(0.086) 

- - 

Surface Soil 
moisture (m3/m3 

compared to ISMN) 

0.062 
(0.078) 

0.067 
(0.082) 

0.027 
(0.061) 

0.036 
(0.067) 

0.062 
(0.079) 

0.068 
(0.082) 

0.119 
(0.121) 

0.121 
(0.123) 

0.049 
(0.062) 

0.051 
(0.062) 

- - 

Latent heat flux 
(W/m2 compared to 

GLEAM3.8a) 

0.992 
(6.802) 

-0.386 
(7.273) 

2.105 
(10.740) 

-2.759 
(11.601) 

0.752 
(7.994) 

-0.608 
(8.127) 

-4.122 
(5.541) 

-3.784 
(5.731) 

1.469 
(9.369) 

-0.271 
(9.627) 

2.992 
(3.105) 

3.668 
(3.692) 

Snow water 
equivalent (mm 

compared to ERA5-
Land) 

-10.123 
(22.444) 

-13.237 
(22.328) 

-0.845 
(0.951) 

-0.878 
(0.966) 

0.715 
(16.267) 

-1.349 
(15.898) 

-45.177 
(71.928) 

-56.181 
(72.276) 

-10.804 
(16.494) 

-10.471 
(16.311) 

- - 

Snow depth (m 
compared to ERA5-

Land) 

-0.059 
(0.076) 

-0.061 
(0.079) 

-0.003 
(0.003) 

-0.003 
(0.003) 

-0.019 
(0.051) 

-0.019 
(0.052) 

-0.231 
(0.255) 

-0.245 
(0.268) 

-0.040 
(0.050) 

-0.037 
(0.050) 

- - 

Snow cover fraction 
(compared to 

MODIS) 

0.112 
(0.113) 

0.069 
(0.090) 

0.001 
(0.003) 

0.000 
(0.002) 

0.149 
(0.151) 

0.118 
(0.122) 

0.234 
(0.235) 

0.108 
(0.183) 

0.020 
(0.027) 

0.015 
(0.023) 

- - 

Surface albedo 
(compared to 

MODIS) 

-0.018 
(0.061) 

-0.033 
(0.067) 

-0.016 
(0.047) 

-0.017 
(0.046) 

0.032 
(0.052) 

0.021 
(0.045) 

0.016 
(0.052) 

-0.024 
(0.072) 

0.017 
(0.034) 

0.013 
(0.032) 

-0.084 
(0.089) 

-0.100 
(0.102) 

 539 
 540 
Table 2. Model evaluation metrics for LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations 541 
driven by the NLDAS-2 forcing averaged over the CONUS during 2018-2022. The values are the 542 
mean model bias (LIS/Noah-MP simulations minus reference datasets). The statistically 543 
significant difference between LIS/Noah-MP v4.0.1 and LIS/Noah-MPv5.0 simulations (p < 0.05 544 
using a t-test for daily time series) are marked as bold font. The values in the parentheses are the 545 
mean absolute model biases. 546 
 547 

 Annual DJF MAM JJA SON 

LIS/Noah-MP v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0 

Surface soil 
moisture (m3/m3 

compared to SMAP) 

0.000 
(0.062) 

0.008 
(0.065)  

0.025 
(0.077) 

0.035 
(0.085) 

 

0.003 
(0.067) 

0.008 
(0.069) 

 

0.006 
(0.062) 

0.013 
(0.065) 

 

-0.010 
(0.058) 

-0.001 
(0.062) 

 

Surface Soil 
moisture (m3/m3 

compared to ISMN) 

0.041 
(0.065) 

0.047 
(0.068) 

0.041 
(0.075) 

0.051 
(0.080) 

0.024 
(0.066) 

0.029 
(0.067) 

0.043 
(0.069) 

0.049 
(0.072) 

0.047 
(0.069) 

0.054 
(0.074) 

Latent heat flux 
(W/m2 compared to 

GLEAM3.8a) 

-0.207 
(9.135) 

-2.302 
(9.286) 

-5.864 
(7.014) 

-5.126 
(6.385) 

-0.575 
(14.912) 

-3.498 
(14.413) 

9.476 
(17.752) 

3.209 
(14.815) 

-4.017 
(7.147) 

-3.865 
(7.904) 

Snow water 
equivalent (mm 

-4.173 
(6.422) 

-4.959 
(6.369) 

-5.083 
(10.148) 

-6.715 
(9.961) 

-10.246 
(13.924) 

-11.309 
(14.061) 

-0.700 
(1.221) 

-0.961 
(1.051) 

-0.643 
(1.018) 

-0.843 
(0.930) 
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compared to 
SNODAS) 

Snow depth (m 
compared to 
SNODAS) 

-0.013 
(0.020) 

-0.015 
(0.020) 

-0.016 
(0.036) 

-0.020 
(0.035) 

-0.032 
(0.040) 

-0.033 
(0.040) 

-0.002 
(0.003) 

-0.002 
(0.002) 

-0.004 
(0.005) 

-0.004 
(0.005) 

Snow cover fraction 
(compared to 

MODIS) 

0.055 
(0.058) 

0.028 
(0.037) 

0.221 
(0.227) 

0.117 
(0.137) 

0.045 
(0.049) 

0.026 
(0.046) 

-0.003 
(0.003) 

-0.003 
(0.003) 

0.018 
(0.026) 

0.004 
(0.018) 

Surface albedo 
(compared to 

MODIS) 

0.031 
(0.038) 

0.023 
(0.033) 

0.072 
(0.083) 

0.030 
(0.056) 

0.022 
(0.032) 

0.016 
(0.029) 

0.024 
(0.033) 

0.023 
(0.033) 

0.031 
(0.041) 

0.026 
(0.037) 

 548 

 549 

The modeled LH and soil moisture assessments in Section 4 indicate a slightly higher soil 550 

moisture but lower LH over some mid-latitude (e.g., the eastern U.S.) and the tropics in LIS/Noah-551 

MPv5.0 compared to LIS/Noah-MPv4.0.1. To further understand this seemingly conflicting model 552 

differences, we conducted a series of additional analyses. 553 

First, to quantify the uncertainty of reference ET data products, we conducted additional 554 

model evaluations using the FLUXCOM-X-BASE (Nelson et al., 2024) data. The results indicate 555 

large inconsistency between the FLUXCOM-X-BASE and GLEAM data, where the model biases 556 

reverse the signs across many global regions particularly in the low-latitudes (Figure S9). For the 557 

CONUS, the bias sign also reverses in the northeastern U.S. and many parts of the western U.S. 558 

(Figure S10). Previous studies (Nelson et al., 2024) showed that FLUXCOM-X-BASE has 559 

consistently lower ET in evergreen tropics as well as the temperate and high latitudes of the 560 

Northern Hemisphere than GLEAM, whereas FLUXCOM-X-BASE has higher ET in the semiarid 561 

and arid ecosystems of the lower and middle latitudes. This is consistent with previous studies 562 

(e.g., Abolafia-Rosenzweig et al., 2021a) finding large disagreements across ET reference datasets 563 

in general. These results suggest that the modeled ET in this study falls into the range of 564 

observational uncertainty over many global regions and the uncertainty in ET reference data 565 

products can confound model assessments which should be accounted for in future studies. 566 

Then, to assess the role of soil temperature change, we further analyzed the soil temperature 567 

differences between the two model simulations, which indicates a consistently higher soil 568 

temperature in LIS/Noah-MPv5.0 than LIS/Noah-MPv4.0 across all soil layers over the majority 569 
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of the globe except for polar regions (Figures S11-12), which hence is not a driver but rather a 570 

result of the decrease in LH. 571 

 Furthermore, our additional analyses indicate that the bug fix of vegetation fraction scaling 572 

in LIS/Noah-MPv5.0 dominates the impact on the ET (and LH) reduction, with minor opposite 573 

effects from the added canopy heat storage term which generally increases sensible and latent heat 574 

fluxes (Figure S19). Furthermore, the LH changes tend to be larger over regions with higher 575 

vegetation fraction (Figure S20), which underlines potentially large and heterogeneous impacts in 576 

response to this. 577 

In addition, we quantified the differences in each of the modeled ET components between 578 

the two model versions and their biases by comparing with the GLEAM data. Using the CONUS 579 

region as an example, the results show that the lower LH in LIS/Noah-MPv5.0 over the eastern 580 

U.S. is mainly caused by the lower plant transpiration and soil evaporation compared to LIS/Noah-581 

MPv4.0.1, which outweigh the higher canopy-intercepted water evaporation (Figures S13-S15). 582 

The slightly lower LH in LIS/Noah-MPv5.0 over the western U.S. is dominated by the lower plant 583 

transpiration and canopy-intercepted water evaporation, which outweigh the higher soil 584 

evaporation. Overall, the generally opposite patterns in the western and eastern U.S. in these model 585 

differences in each ET component likely reflect the spatially heterogeneous impacts across water 586 

limited vs. non-water limited regimes, which needs further investigation. These patterns are 587 

generally consistent throughout the seasons (Figures S16-18), with stronger signals for plant 588 

transpiration and soil evaporation in spring and summer due to warmer temperature and higher 589 

solar radiation. Thus, the slightly higher soil moisture appears to be a result of the lower total ET 590 

in LIS/Noah-MPv5.0 compared to LIS/Noah-MPv4.0.1. Besides, the slightly higher soil moisture 591 

in LIS/Noah-MPv5.0 is also partially contributed by the updated snow cover parameters in 592 

LIS/Noah-MPv5.0 that lead to enhanced snow melting and hence increased soil moisture in winter, 593 

spring, and early summer. 594 

For snowpack and surface albedo, LIS/Noah-MPv5.0 generally shows a lower SWE than 595 

LIS/Noah-MPv4.0.1 particularly during ablation periods, mainly due to the updated snow cover 596 

parameters in LIS/Noah-MPv5.0 resulting in lower snow cover and hence reduced surface albedo 597 

and subsequently enhanced melting. This triggers positive surface albedo feedback. 598 

 599 

 600 
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6. Implications for future model improvements 601 

 The evaluation of global and regional benchmark simulations (Section 4) reveals several 602 

important Noah-MP model uncertainties and deficiencies, which calls for future model 603 

improvements.  604 

First, the model biases in soil moisture and LH (Sections 4.1 and 4.2) partially reflect the 605 

inadequate representation of plant hydraulics and root schemes and/or too shallow soil column 606 

configuration (e.g., in the Amazon), which have also been highlighted by a few previous studies 607 

(e.g., Niu et al., 2020; Li et al., 2021; Bieri et al., 2025). Recently, Li et al. (2021) developed a new 608 

whole-plant hydraulics scheme for Noah-MP with observation-constrained parameters (Sun et al., 609 

2024), which largely improves simulations of ET and terrestrial water storage (TWS) compared to 610 

the default soil hydraulics scheme in Noah-MP. Other studies (e.g., Niu et al., 2020; Bieri et al., 611 

2025) developed dynamic root uptake schemes in Noah-MP that improve modeled soil moisture, 612 

ET, and TWS. These model updates have not been included in the community Noah-MPv5.0, 613 

which needs to be done in the future. Another possible model deficiency that could result in the 614 

LH bias is the canopy turbulence scheme. Noah-MP uses the Monin–Obukhov (M–O) similarity 615 

theory to compute momentum and heat exchange coefficients above and through the canopy, 616 

which however does not account for the canopy-induced turbulence in the roughness sublayer 617 

(RSL) and hence fails above and within dense forests (Bonan et al., 2018). Abolafia-Rosenzweig 618 

et al. (2021b) implemented and evaluated a unified RSL turbulence scheme throughout the canopy 619 

in an earlier Noah-MP version, which demonstrates the potential of improving modeled surface 620 

heat fluxes. We are currently working on a comprehensive assessment of this RSL canopy 621 

turbulence scheme in Noah-MPv5.0 across global FLUXNET sites. However, we note that the 622 

satellite soil moisture data has large uncertainties over dense forests. In addition, the input soil 623 

texture data could also impact the modeled soil moisture and hence ET. Li et al. (2024) recently 624 

developed a global 1-km high-quality datasets for key land surface parameters (including soil 625 

texture), and we plan to test the effect of using this new dataset in Noah-MP simulations in our 626 

next step. 627 

 Second, the model biases in snowpack, including SWE, snow depth, and snow cover, 628 

reveal inadequate treatments of snow physics. For example, the SWE underestimates over 629 

midlatitude mountains (e.g., the Himalayas and western U.S. high mountains) could be caused by 630 

the snow ablation bias in the model, in addition to the precipitation and temperature forcing 631 
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uncertainty (Section 4.3). He et al. (2021) found that Noah-MP tends to melt snow faster than 632 

observations in some western US mountain areas, likely due to wind and solar radiation forcing 633 

biases and/or model deficiencies in above-snowpack turbulence, canopy radiative transfer, and 634 

snow albedo. Recently, Lin et al. (2025) coupled Noah-MPv5.0 with a widely used physical snow 635 

albedo scheme, SNICAR-ADv3 (Flanner et al., 2021; He et al., 2024a), and found improved snow 636 

albedo relative to the default semi-empirical snow albedo scheme in Noah-MP. This snow albedo 637 

physics update will be included in the next Noah-MP major version release. The snow depth bias 638 

is not only driven by the SWE bias but also by uncertainty in snow compaction processes. A recent 639 

study (Abolafia-Rosenzweig et al., 2024b) enhanced the Noah-MP snow compaction 640 

parameterization constrained by in-situ measurements across ~800 SNOTEL sites in the western 641 

U.S., which is currently being transferred to the Noah-MPv5.0 642 

(https://github.com/NCAR/noahmp/pull/148; last access: November 24, 2024). In addition, a new 643 

flexible framework was recently developed to couple the LSMs (including Noah-MPv4.0.1) in LIS 644 

with a physical snow model, Crocus, which shows promising improvements in modeling snow 645 

depth and SWE (Navari et al., 2024). The systematically overestimated snow cover fraction in 646 

Noah-MP is a long-standing model problem, which has been investigated by several studies over 647 

different mountain regions (He et al., 2019; Jiang et al., 2020; Zhou et al., 2023). A number of 648 

improvements in the model snow cover parameterization have been proposed for the Tibetan 649 

Plateau (Jiang et al., 2020; Zhou et al., 2023) and the western U.S. (Abolafia-Rosenzweig et al., 650 

2025). These solutions, however, need to be tested for global applications. 651 

 Third, the model biases in surface albedo, particularly over the Sahara Desert and glaciers, 652 

suggest possible deficiencies in background desert soil albedo and glacier albedo. Currently, Noah-653 

MPv5.0 assumes a uniform medium soil color everywhere, whereas using a spatially-varying soil 654 

color map (Lawrence and Chase, 2007) tends to reduce Noah-MP surface albedo particularly over 655 

the desert (Michael Barlage, personal communication), which will be tested in NoahMPv5.0 656 

together with the aforementioned Li et al. (2024) global 1-km input datasets. To improve glacier 657 

modeling, Eidhammer et al. (2021) coupled the Crocus snow/ice model with Noah-MP within the 658 

WRF-Hydro framework, which reproduces the observed glacier surface albedo and mass balance 659 

in Norwegian glaciers. Future Noah-MP model improvements need to also focus on glacier regions, 660 

which were less studied in previous Noah-MP applications. In addition, vegetation albedo (and 661 
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canopy radiative transfer) may also contribute to the surface albedo biases in Noah-MP, which 662 

however lacks systematic assessments in the literature and hence needs more future investigations. 663 

 664 

7. Conclusions 665 

 In this study, we integrated the refactored community Noah-MPv5.0 model with the NASA 666 

LIS system (version 7.5.2) through the GitHub submodule mechanism to streamline the 667 

synchronization, development, and maintenance of Noah-MP within LIS and to enhance the 668 

interoperability and applicability of both models. The GitHub submodule mechanism also allows 669 

for more rapid implementation of bug fixes as well as new versions of Noah-MP (such as including 670 

the new physics detailed in Section 5) into the LIS software framework. We systematically 671 

evaluated multi-year (2018-2022) global and regional (CONUS) LIS/Noah-MP benchmark 672 

simulations driven by the USAF and NLDAS-2 atmospheric forcing, respectively, for a set of key 673 

land surface variables. Overall, LIS/Noah-MPv5.0 outperforms or is similar to LIS/Noah-674 

MPv4.0.1 globally in simulating the key land surface variables evaluated in this study, except for 675 

slight degradation in simulated surface soil moisture and SWE. 676 

 Specifically, both LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations capture the 677 

spatial and seasonal distributions of observed surface and root-zone soil moisture, LH, SWE, snow 678 

depth, snow cover, and surface albedo, with similar bias patterns. For surface and root-zone soil 679 

moisture, model simulations tend to underestimate over wet soil regimes and overestimate over 680 

dry soil regimes, with slightly higher soil moisture in LIS/Noah-MPv5.0 than LIS/Noah-MPv4.0.1 681 

across most regions. Due to the offset of model overestimates and underestimates across different 682 

regions, the global mean soil moisture biases of both models are relatively small.  683 

For LH, the model bias patterns generally follow those of soil moisture, with the 684 

underestimated (overestimated) LH over areas with the underestimated (overestimated) soil 685 

moisture across most global regions. Although LIS/Noah-MPv5.0 has a slightly higher soil 686 

moisture than LIS/Noah-MPv4.0.1, it shows a lower LH across most non-polar regions, which 687 

reduces the global mean LH bias from 0.99 W/m2 (LIS/Noah-MPv4.0.1) to -0.39 W/m2 688 

(LIS/Noah-MPv5.0). 689 

For snowpack conditions, the model SWE bias patterns are dominated by the precipitation 690 

and temperature forcing uncertainties, with large SWE underestimates in the Himalayas, west 691 

Canada, and western U.S. mountains and overestimates in most other mid-latitude and high-692 
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latitude snowpacks. The SWE biases are similar for both models, with slightly larger 693 

underestimates in LIS/Noah-MPv5.0 (global mean bias of -13.2 mm) than LIS/Noah-MPv4.0.1 694 

(global mean bias of -10.1 mm). The model bias patterns of snow depth generally follow those of 695 

SWE, with a global mean bias of ~0.06 m for both simulations. For snow cover, LIS/Noah-696 

MPv4.0.1 has a systematic large overestimate across the globe, even over regions with 697 

underestimated SWE, which is a long-standing Noah-MP problem. LIS/Noah-MPv5.0 with 698 

updated snow cover parameters effectively reduces the snow cover overestimates globally, 699 

decreasing the global mean bias from 0.11 to 0.07.  700 

For surface albedo, both models show widespread overestimates over most mid-latitude 701 

and high-latitude regions partially due to the snow cover overestimate, and significant 702 

underestimates in the Sahara Desert, Greenland, and Antarctica, which dominate the global mean 703 

bias. Because of the reduced snow cover, LIS/Noah-MPv5.0 shows consistently lower surface 704 

albedo than LIS/Noah-MPv4.0.1, which degrades the global mean bias from -0.018 to -0.033. 705 

 The model evaluation in this study reveals several important Noah-MP uncertainties and 706 

deficiencies and motivates future improvements in model processes/components including plant 707 

hydraulics and dynamic root uptake, canopy turbulence and interaction with snowpack, input soil 708 

texture and color data, snow cover and albedo, glacier ice, and vegetation albedo (canopy radiative 709 

transfer). 710 

 711 

 712 

 713 

Appendix A. 714 

Table A1. Default Noah-MP physics options used in this study 715 

Noah-MP Physics Option Description 
dynamic vegetation option 4 use table LAI and maximum vegetation fraction 
rain-snow partition option 1 Jordan (1991) scheme 

soil moisture factor for stomatal 
resistance option 1 Noah (soil moisture) (Ek et al., 2003) 

ground resistance option 1 Sakaguchi and Zeng (2009) scheme 

surface drag coefficient option 1 Monin-Obukhov (M-O) Similarity Theory 
(Brutsaert, 1982) 

canopy stomatal resistance option 1 Ball-Berry scheme (Bonan, 1996) 
snow surface albedo option 1 BATS snow albedo (Dickinson et al., 1993) 

canopy radiation transfer option 3 two-stream applied to vegetated fraction (Niu 
and Yang, 2004) 
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snow/soil temperature time 
scheme option 1 semi-implicit; flux top boundary condition (Niu 

et al., 2011) 
snow thermal conductivity option 1 Stieglitz scheme (Yen,1965) 

lower boundary of soil 
temperature option 2 Deep soil boundary temperature read from input 

file (Niu et al., 2011) 
soil supercooled liquid water 

option 1 No iteration (Niu and Yang, 2006) 

runoff option 3 Schaake scheme (Schaake et al., 1996) 

frozen soil permeability option 1 linear effects, more permeable (Niu and Yang, 
2006) 

soil configuration option 1 use input dominant soil texture 
glacier treatment option 1 include phase change of glacier ice 

tile drainage option 0 No tile drainage 
irrigation option 0 No irrigation 

dynamic crop model option 0 No dynamic crop model 
 716 
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