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Abstract

We integrate the refactored community Noah-MP version 5.0 model with the NASA Land
Information System (LIS) version 7.5.2 to streamline the synchronization, development, and
maintenance of Noah-MP within LIS and to enhance their interoperability and applicability. We
evaluate and compare S5-year (2018-2022) global and regional benchmark simulations of
LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 for a set of key land surface variables. Both models
capture the spatial and seasonal distributions of observed soil moisture, latent heat (LH), snow

water equivalent (SWE), snow depth, snow cover, and surface albedo, with similar bias patterns.

Both models tend to underestimate soil moisture over wet soil regimes and pverestimate over dry

soil regimes, with slightly higher (< ~0.01 m*m? for global mean) soil moisture in LIS/Noah-
MPv5.0 than LIS/Noah-MPv4.0.1 across most regions. The model bias patterns of LH overall

follow those of soil moisture, while LIS/Noah-MPv5.0 has a lower LH across jnany non-polar
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regions than LIS/Noah-MPv4.0.1, which reduces the global mean LH bias from 0.99 W/m? to -
0.39 W/m?. The model SWE bias patterns are dominated by the precipitation and temperature
forcing uncertainties, with slightly lower SWE values in LIS/Noah-MPv5.0 (global mean bias of
-13.2 mm) than LIS/Noah-MPv4.0.1 (global mean bias of -10.1 mm). The model bias patterns of
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snow depth generally follow those of SWE. LIS/Noah-MPv4.0.1 consistently overestimates snow
cover globally with a mean bias of 0.11, while LIS/Noah-MPv5.0 effectively reduces the
overestimates across the global snowpacks with a mean bias of 0.07 because of updated snow
cover parameters. Both models show widespread overestimates of surface albedo over mid-latitude
and high-latitude regions but significant underestimates in the Sahara Desert and Antarctica.

Overall, LIS/Noah-MPv5.0 outperforms or is similar to LIS/Noah-MPv4.0.1 in the evaluated land

surface variables, except for slight degradation in simulated surface soil moisture and SWE. This

study reveals possible model deficiencies, motivates future improvements in coupled canopy-
snowpack-soil processes and input soil data, and points to the importance of considering

observational and forcing data uncertainties in model evaluation.

1. Introduction

Land processes play a profound role in the Earth and climate systems through altering
surface water and energy balances and feedback to the atmosphere (Fisher and Koven, 2020; Blyth
et al.,, 2021). Earth’s land surface provides important boundary conditions for atmospheric
processes and climate/weather predictions particularly at the subseasonal-to-seasonal (S2S) time
scale (Koster and Walker, 2015; Benson and Dirmeyer, 2023). Furthermore, as climate changes,
increasing climate/weather extremes (e.g., drought, flood, heatwave, and fire) and food-water
security issues (e.g., agricultural production and irrigation management) are happening at the land
surface, triggering key crises for the society (Sillmann et al., 2017; AghaKouchak et al., 2020). To
tackle these critical land-related environmental issues, accurate land modeling systems are needed.

There have been substantial efforts in the past decades to develop and improve various land
modeling systems (e.g., Dickinson et al., 1993; Liang et al., 1994; Chen et al., 1997; Ek et al.,
2003; Oleson et al., 2010; Best et al., 2011; Niu et al., 2011; Haverd et al., 2018). Among them,
the NASA Land Information System (LIS) is a widely used, established open-source framework
for high performance land surface and terrestrial hydrology modeling as well as data assimilation
(DA) of satellite and ground-based observations (Kumar et al., 2006; Peters-Lidard et al., 2007;
Kumar et al., 2008a). The LIS system integrates different land surface models (LSMs), satellite
and ground observations, and advanced computing and data management tools, to enable an

interoperable environment that is applicable across different spatial and temporal scales. Various
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model developments and applications using LIS have been conducted in the past decade, such as
coupling with atmospheric models to improve weather predictions (Kumar et al., 2008b; Wu et al.,
2016), DA of observed vegetation, snow, terrestrial water storage, albedo, and soil conditions to
improve land surface modeling (Liu et al., 2015; Santanello et al., 2016; Kumar et al., 2016; Kumar
et al., 2019; Kumar et al., 2020), and applications for hydrological predictions (Arsenault et al.,
2020), food security (Hazra et al., 2023), and land analysis (Nie et al., 2024).

LIS allows the use of an ensemble of LSMs, such as Noah (Chen et al., 1997; Ek et al.,
2003), Noah-MP (Niu et al., 2011), CLM (Oleson et al., 2010), VIC (Liang et al., 1994), JULES
(Best et al., 2011), and CABLE (Haverd et al., 2018). Among them, Noah-MP is one of the most
commonly used state-of-the-art LSMs in the world (He et al., 2023a). Built upon the Noah LSM,
Noah-MP has significant enhancements in representations of canopy-snow-soil-hydrology
processes and interactions as well as capabilities of modeling human activity impacts (e.g., crop
dynamics, irrigation dynamics, tile drainage, and urbanization). The multi-parameterization
options of Noah-MP further allow for uncertainty analysis and model performance
optimization/calibration based on multi-physics model ensembles (Li et al., 2020). Noah-MP has
been serving as a key land component of various research and operational weather and
hydroclimate models, such as the NOAA Unified Forecast System (UFS), the Weather Research
and Forecasting (WRF) model, the U.S. National Water Model (NWM), the Model for Prediction
Across Scales (MPAS), the Korean Integrated Model (KIM), and the Chinese Global-to-Regional
Integrated Forecast System (GRIST). Because of its advantages, Noah-MP has been applied in
numerous applications, including high-resolution climate modeling (Liu et al., 2017; Rasmussen
et al., 2023), vegetation and soil DA (Kumar et al., 2019; Xu et al., 2021), climate extremes
(Arsenault et al., 2020; Kumar et al., 2021; Abolafia-Rosenzweig et al., 2022a, 2023, 2024a),
snowpack and hydrology (He et al., 2019; Jiang et al., 2020; Hazra et al., 2023), agriculture and
groundwater (Barlage et al., 2021; Zhang et al., 2023, 2025), and urban climate (Xue et al., 2024,
2025).

Recently, the community Noah-MP has undergone a substantial code modernization effort
(version 5.0) to improve its modularity and interoperability (He et al., 2023b), with many physics
updates and bug fixes compared to the versions 3.6 and 4.0.1 in LIS. These two earlier Noah-MP
versions in the current LIS (version 7.5.2) were implemented by manually replicating the Noah-

MP source code and updating LIS/Noah-MP interface and drivers, which does not allow easy
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model upgrades and hence leads to a long-delayed version update compared to the community
Noah-MP. Thus, in this effort, we describe the streamlining of the development and maintenance
of Noah-MP in LIS to enable the seamless integration between LIS and the community Noah-MP
version to further enhance the interoperability and applicability of both models. Specifically, we
couple the refactored community Noah-MPv5.0 with the LIS framework through the GitHub
submodule mechanism accompanied by developing a new LIS/Noah-MP interface, which
provides a direct, automatic link between the two models’ source codes. This integration will allow
easy code updates, synchronization, and maintenance for the coupled LIS/Noah-MP framework.
The second goal of this study is to evaluate and compare global and regional benchmark
simulations between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 for key land surface conditions.
Such systematic benchmarking is needed to examine the realism of LIS/Noah-MP model
simulations, quantify the gaps between modeling and observations, and identify key processes for

future model enhancements. This study is a step toward establishing a “scorecard” type of practice

for LSMs.

2. Model descriptions and simulations
2.1 NASA LIS

The LIS system is a land surface hydrology digital twin environment, with the development
led by the Hydrological Sciences Laboratory at NASA's Goddard Space Flight Center. Because of
its extensible and flexible software infrastructure, LIS allows customized land DA systems and
multiple LSMs to be integrated, assembled, and reconfigured easily using shared plugins and
standard interfaces. Currently, LIS is the land component for several Earth system models, such
as the NASA Unified WRF (NU-WRF) model, and the key component of several land DA system
(LDAS) such as Global LDAS (GLDAS), North American LDAS (NLDAS), the Famine Early
Warning Systems Network (FEWS NET) LDAS (FLDAS), and the operational land DA analysis
environment at the U.S. Air Force Weather (Eylander et al., 2022).

Specifically, the LIS software suite consists of three main components: (1) Land Data
Toolkit (LDT; Arsenault et al., 2018), which handles the data-related requirements of LIS
including land surface parameter processing, geospatial transformations, consistency checks, data
assimilation preprocessing, and forcing bias correction; (2) Land Information System (LIS), which

is the modeling system that encapsulates land and hydrological models, DA algorithms,
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optimization and uncertainty estimation algorithms, and high performance computing (HPC)
support; and (3) Land Verification Toolkit (LVT; Kumar et al., 2012), which is a model
verification and benchmarking environment that can be used for enabling rapid prototyping and
evaluation of model simulations by comparing against a large suite of in-situ, remote sensing, and
model and reanalysis data products. More details can be found at the LIS website:
https://lis.gsfc.nasa.gov/ (last access: November 25, 2024). In this study, we use the LIS version
7.5.2 (latest version at the time of this work) coupled with Noah-MP in benchmark simulations

and the LVT for model evaluation.

2.2 Integration of refactored Noah-MPvS5.0 with LIS

In this study, we couple the LIS system with the refactored community Noah-MPv5.0
model through the GitHub submodule mechanism to streamline the synchronization of Noah-MP
between the community version and the LIS version, which will simplify future code updates and

maintenance  of Noah-MP  within LIS. The GitHub  submodule  mechanism

(https://gist.github.com/gitaarik/8735255) allows (1) separated source code maintenance and

updates for Noah-MP (by the Noah-MP team) and LIS (by the NASA/LIS team), and (2)

convenient updates of Noah-MP inside LIS by updating the submodule link to a newer Noah-MP

GitHub tag/branch version. Compared to the Noah-MPv4.0.1 model in LIS, the community Noah-

MPv5.0 model includes several important updates and new features: (1) improved modularization
with modern Fortran code structures, (2) new hierarchical model data types and structures, (3)
enhanced subroutine interface and calling workflow based on the modularization and new data
types, (4) new self-explanatory model variable and module names, and (5) model bug fixes and
new physics schemes. The key bug fixes include updates in vegetation properties (e.g., bug fixes
in vegetation fraction scaling treatments) and processes (e.g., bug fixes in canopy wind absorption
parameters) as well as snowpack processes. The new physics schemes include improved
parameters related to various snowpack processes, a new wet-bulb temperature-based snow-rain
partitioning scheme, a new snow meltwater retention process, a new dynamic irrigation scheme,
updated crop growth parameters, a new tile drainage scheme, a new canopy heat storage treatment,
additional runoff schemes, and new capabilities to control the soil process timestep. More details
of Noah-MPv5.0 features can be found in He et al. (2023b). The detailed Noah-MP physics and
formulations are described in He et al. (2023c). The major code changes from Noah-MPv4.0.1 to
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Noah-MPv5.0 are described in the model release notes available at:
https://github.com/NCAR/noahmp/blob/master/RELEASE NOTES.md (last access: November
25, 2024). The key components we modify to couple LIS and Noah-MPv5.0 are the LIS/Noah-MP
land model driver interface to create new input/output variable mapping, and the LIS initialization
and master driver parts to leverage new modularized Noah-MP code modules. By taking advantage
of the plugin and standard interfaces in LIS, the Noah-MPv5.0 model is also connected to other

components of LIS, such as data assimilation, river routing, etc.

2.3 LIS/Noah-MP benchmark simulations

We conduct and evaluate two sets of benchmark simulations with LIS coupled with Noah-

(Deleted: coupled LIS/Noah-MP

MP, including one set of regional simulations over the contiguous U.S. (CONUS) and one set of
global simulations. Each set of the simulations includes one LIS/Noah-MPv4.0.1 simulation and
one LIS/Noah-MPv5.0 simulation to compare their performance and quantify differences between
versions. The regional simulations are conducted for 10 years (2013-2022) with a 5-year spin-up,
which are driven by the hourly 0.125° North American Land Data Assimilation System (NLDAS-
2) atmospheric forcing data (i.e., precipitation, surface temperature, surface pressure, surface
specific humidity, wind speed, downward surface shortwave and longwave radiation). More
details of NLDAS-2 data are described in Xia et al. (2012). The global simulations are conducted
for 5 years (2018-2022) with a S-year spin-up, and are driven by the global hourly ~10-km U.S.
Air Force (USAF) atmospheric forcing reanalysis data (Kemp et al., 2022). More details of the
forcing data (formerly known as AGRMET, AGRiculture METeorology) are described in
Eylander et al. (2022). For all the simulations, the static land type map is from the Moderate
Resolution Imaging Spectroradiometer (MODIS) satellite data (Figure 1), while the MODIS
monthly climatological (2000-2008) leaf area index (LAI) and stem area index (SAI) are used
(Yang et al., 2011). The static soil type map is from the State Soil Geographic (STATSGO)/Food
and Agriculture Organization (FAO) soil database (FAO, 1991). For both LIS/Noah-MPv4.0.1 and
LIS/Noah-MPv5.0 simulations, we adopt the same default Noah-MP physics options (see
Appendix Table Al), which have been commonly used in previous Noah-MP applications to
produce skilled model performance (He et al., 2023b). Model evaluations for both the regional and
global simulations are focused on the 5-year period of 2018-2022.
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Figure 1. MODIS land cover maps used for LIS/Noah-MP (a) global and (b) CONUS benchmark

simulations.

3. Reference data for model evaluation

We use a suite of reference datasets to evaluate the LIS/Noah-MP simulations of key land
surface variables over the globe and CONUS, including soil moisture, latent heat flux (LH), snow
water equivalent (SWE), snow depth, snow cover fraction, and surface albedo. Specifically, for
surface soil moisture, we use the global daily 36-km Soil Moisture Active Passive (SMAP) version
8 Level 3 satellite data (O'Neill et al., 2021; https://nsidc.org/data/spl3smp/versions/8, last access:
November 25, 2024). We also use the surface and root-zone soil moisture from the International
Soil Moisture Network (ISMN) ground station hourly measurements (Dorigo et al., 2021;
https://ismn.earth/en/, last access: November 25, 2024). The data quality control is done via LVT.
For LH, we use the global 0.25° daily Global Land Evaporation Amsterdam Model (GLEAMv3.8a)
reanalysis data (Miralles et al., 2011; https://www.gleam.eu/, last access: November 25, 2024) and
the global 0.05° hourly FLUXCOM-X-BASE observation-based data (Nelson et al., 2024;

https://gitlab.gwdg.de/fluxcom/fluxcomxdata, last access: July 6. 2025). For SWE and snow depth,
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we use the daily 1-km NOAA National Weather Service's National Operational Hydrologic
Remote Sensing Center (NOHRSC) Snow Data Assimilation System (SNODAS) data (Barrett,
2003; https://nsidc.org/data/g02158/, last access: November 25, 2024) and the global 0.1° ERA-5
land (ERAS5-Land) reanalysis data (Muiloz-Sabater et al., 2021; https:/www.ecmwf.int/en/era5-
land, last access: November 25, 2024). For snow cover fraction, we use the global daily 500-m
MODIS Terra Snow Cover version 6 data (Hall and Riggs, 2016;
https://nsidc.org/data/mod10al/versions/6, last access: November 25, 2024). For surface albedo,
we use the global daily 0.05° MODIS Terra/Aqua merged data (Schaaf and Wang, 2021;
https://lpdaac.usgs.gov/products/mcd43c3v061/, last access: November 25, 2024). For model
evaluation, we re-map the reference gridded datasets to the LIS/Noah-MP model grids or bilinearly
interpolate model values to in-situ measurement locations via LVT, which will likely introduce
uncertainties to model evaluations. We also note that those reference datasets have their own

uncertainties, which may impact model evaluation results.

4. Results and discussions
4.1 Soil moisture

Figure 2 shows the global 5-year (2018-2022) mean surface soil moisture comparison
between SMAP retrievals and LIS/Noah-MP simulations driven by the USAF forcing. Both
LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations capture the spatial and seasonal

distributions of surface soil moisture globally (Figures 2 and S1), with similar bias patterns. Both
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latitudinal Eurasia, and Australia), partially caused by the USAF precipitation forcing bias (Figure
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Amazon rainforest, Congo Basin). The evapotranspiration (ET) biases caused by model
deficiencies in plant hydraulics and root water uptake processes may also contribute to the soil
moisture bias, as revealed by previous Noah-MP studies (Niu et al., 2020; Li et al., 2021). These
global model bias patterns are consistent across all seasons (Figure S1). Due to the offset of model (Deleted: positive
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small (0.003 m*m? for LIS/Noah-MPv4.0.1 and 0.008 m3/m* for LIS/Noah-MPv5.0). Overall,
LIS/Noah-MPv5.0 shows consistently higher surface soil moisture than LIS/Noah-MPv4.0.1 but
the difference is small (Figure 2f), which is expected since there is no direct soil physics update

but changes in snowpack (e.g.. snow cover parameter updates) and vegetation processes (e.g.,

vegetation fraction scaling treatments) from Noah-MPv4.0.1 to Noah-MPv5.0.

(a) SMAP (b) Model (v4.0.1) (c) Model (v5.0)

-0.2

Figure 2. Surface soil moisture (m*/m?®) comparison between SMAP retrievals and LIS/Noah-MP
simulations driven by USAF forcing globally averaged during 2018-2022: (a) SMAP data, (b)
LIS/Noah-MPv4.0.1 simulation, (c) LIS/Noah-MPv5.0 simulation, (d) LIS/Noah-MPv4.0.1 biases
(model minus SMAP), (e) LIS/Noah-MPv5.0 biases (model minus SMAP), and (f) differences
between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations. Grids with statistically
significant differences (p < 0.05) are shown with gray dots in panels (d)-(f). The statistical

significance over each grid is computed using daily time series and the t-test method. The global

mean value is also provided in the lower right of each panel. See Figure S1 for seasonal plots.

Further model evaluation with the ISMN global in-situ measurements indicates systematic
model overestimates of surface soil moisture at most sites (Figure 3), particularly over the CONUS
and Europe that have very dense measurement networks, with global mean biases of 0.062 m3/m?
and 0.067 m3/m? for LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0, respectively. This bias pattern
is consistent with the SMAP comparisons (Figure 2). LIS/Noah-MPv5.0 shows slightly (0.005
m?/m?) higher mean surface soil moisture than LIS/Noah-MPv4.0.1 across all sites (Figure 3f).

We further compute the soil moisture anomaly correlation between the model simulations and
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ISMN observations following Navari et al. (2024), where the anomaly is computed as daily
anomaly by subtracting monthly mean values. Both models show similar anomaly correlation
spatial patterns (Figure 3g-h), with a mean value of ~0.53 and higher values in North America and
Europe than in Asia and Africa. Compared to the surface soil moisture, the root-zone soil moisture
shows similar spatial distributions (Figure 4a-c), model bias patterns (Figure 4d-¢), and anomaly
correlation patterns (Figure 4g-i) across most ISMN sites, with global annual mean biases of 0.039

m?/m? and 0.050 m?*/m? for LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0, respectively.

(a) ISMN 2 (b) Model (v4.0.1)
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Figure 3. Surface soil moisture (m?*/m?) comparison between ISMN station measurements and
LIS/Noah-MP simulations driven by USAF forcing globally averaged during 2018-2022: (a)
ISMN data, (b) LIS/Noah-MPv4.0.1 simulation, (c) LIS/Noah-MPv5.0 simulation, (d) LIS/Noah-
MPv4.0.1 biases (model minus ISMN), (e) LIS/Noah-MPv5.0 biases (model minus ISMN), (f)
differences between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations, (g) LIS/Noah-
MPv4.0.1 anomaly correlation, (h) LIS/Noah-MPv5.0 anomaly correlation, and (i) differences
between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 anomaly correlation. The global mean value

is also provided in the lower right of each panel.
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Figure 4. Same as Figure 3, but for root-zone soil moisture (m*/m?) evaluation.

Over the CONUS, both LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations driven by
the NLDAS-2 forcing capture the spatial distribution of SMAP surface soil moisture with similar
spatial bias patterns (Figure 5), which show model underestimates over wet soil regimes (e.g., the
northwest coast and southeast and northeast U.S.) and overestimates over dry soil regimes (e.g.,
western and central U.S.). This is consistent with the global evaluation albeit using a different
forcing dataset. LIS/Noah-MPv5.0 also produces consistently but slightly (0.007 m?/m?) higher
soil moisture than LIS/Noah-MPv4.0.1 using the NLDAS-2 forcing (Figure 5f), similar to the
results using the USAF forcing, revealing a robust difference pattern between the two model
versions. The comparison with ISMN surface soil moisture data over the CONUS shows similar
model bias patterns with those evaluated against SMAP (Figure 6), except for the northwest coast
and Florida, where ISMN indicates dry soil regimes that are opposite to SMAP. This points to the
importance of considering observational data uncertainty in model evaluation. The CONUS mean
biases across all ISMN sites are 0.041 m3/m® and 0.047 m?*m3 for LIS/Noah-MPv4.0.1 and
LIS/Noah-MPv5.0, respectively. The CONUS mean anomaly correlation is about 0.6 for both
models (Figure 6g-h), with slightly lower values particularly over many western U.S. sites for
LIS/Noah-MPv5.0 than LIS/Noah-MPv4.0.1 (Figure 6i). The model bias pattern of root-zone soil
moisture is similar to that of surface soil moisture but with larger underestimates at some central

U.S. sites (Figure 7).
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Figure 5. Same as Figure 2, but for evaluation of LIS/Noah-MP simulations driven by the
NLDAS-2 forcing over the CONUS averaged during 2018-2022.
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Figure 6. Same as Figure 3, but for evaluation of LIS/Noah-MP simulated surface soil moisture

(m*/m?) driven by the NLDAS-2 forcing over the CONUS averaged during 2018-2022.
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Figure 7. Same as Figure 4, but for evaluation of LIS/Noah-MP simulated root-zone soil moisture

(m*/m?) driven by the NLDAS-2 forcing over the CONUS averaged during 2018-2022.

4.2 Latent heat flux

Figure 8 shows the global 5-year (2018-2022) mean latent heat (LH) flux comparison
between the GLEAM data and LIS/Noah-MP simulations driven by the USAF forcing. Both
LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations capture the spatial and seasonal LH
distributions with similar bias patterns (Figures 8 and S3). The model LH biases are generally

consistent with the surface soil moisture bias patterns (Figure 2), with the underestimated
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northern Eurasia and northwest North America (Alaska and west Canada). Although LIS/Noah-

MPv5.0 has a slightly higher soil moisture than LIS/Noah-MPv4.0.1 (Figures 2-4), it shows a

lower LH (by up to ~15 W/m?) over some tropical and mid-latitude regions with the largest
difference in the tropics, which reduces the global mean LH bias from 0.99 W/m? (LIS/Noah-
MPv4.0.1) to -0.39 W/m? (LIS/Noah-MPv5.0). This difference in the two Noah-MP versions is
mainly due to the code updates related to vegetation properties (e.g., bug fixes in vegetation

fraction scaling treatments) and processes (e.g., added canopy heat storage treatment) which alters

ET and LH (see Section 5 for discussion). The minor LH difference (up to ~5 W/m?) between the

two model versions over the Antarctica and Greenland is mainly caused by updates in the glacier

scheme that uses snowpack physics consistent with other land snowpacks in LIS/Noah-MPv5.0. .
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We note that the LH (or ET) reference data product also has nontrivial uncertainties which may

confound model evaluations here (see Section 5 for detail).

50

0

Figure 8. Latent heat flux (W/m?) comparison between the GLEAM data and LIS/Noah-MP
simulations driven by USAF forcing globally averaged during 2018-2022: (a) GLEAM3.8a data,
(b) LIS/Noah-MPv4.0.1 simulation, (c¢) LIS/Noah-MPv5.0 simulation, (d) LIS/Noah-MPv4.0.1
biases (model minus GLEAM), (e) LIS/Noah-MPv5.0 biases (model minus GLEAM), and (f)
differences between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations. Grids with
statistically significant differences (p < 0.05) are shown with gray dots in panels (d)-(f). The

statistical significance over each grid is computed using daily time series and the t-test method.

The global mean value is also provided in the lower right of each panel. See Figure S3 for seasonal

plots.

Further CONUS evaluation of model simulations driven by the NLDAS-2 forcing also
reveals that model LH bias patterns (Figure 9) generally follow the soil moisture bias patterns
(Figure 5) except for many western U.S. mountainous regions, where both model simulations have

very small LH biases despite the overestimation of, soil moisture (Figures 5-7). Compared to

LIS/Noah-MPv4.0.1, LIS/Noah-MPv5.0 shows a lower LH over southwest U.S. and eastern U.S.
by up to about 10 W/m?, which degrades the CONUS-mean model bias from -0.21 W/m? to -2.30
W/m?. We note that GLEAM is a model-based reanalysis data that has its own uncertainty.
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Figure 9. Same as Figure 8 but for evaluation of LIS/Noah-MP simulations driven by the NLDAS-
2 forcing over the CONUS averaged during 2018-2022.

4.3 Snow water equivalent (SWE)

Figure 10 shows the global 5-year (2018-2022) mean SWE comparison for seasonal
snowpack between ERAS5-Land data and LIS/Noah-MP simulations driven by the USAF forcing.
Both LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations capture the spatial and seasonal
SWE distributions with similar bias patterns (Figures 10 and S4). Both simulations tend to have
much lower SWE (by up to 50 mm) in the Himalayas and west Canada than ERA5-Land, with
slightly less SWE in eastern Russia, partially driven by overestimated surface temperature (Section
4.7). Both simulations have higher SWE than ERAS-Land in most other mid-latitude and high-
latitude snowpacks, mainly driven by overestimated precipitation (Figure S2) and underestimated
surface temperature (Figure S8). The global annual mean SWE biases are -10.1 mm and -13.2 mm
for LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0, respectively. Overall, LIS/Noah-MPv5.0 shows
lower SWE than LIS/Noah-MPv4.0.1, particularly in spring when differences reach up to 25 mm
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(Figures 10f and S4) due to the updated snow cover parameters (He et al., 2021) that reduces snow .- (Deleted: and compaction

cover fraction (Section 4.5) and enhances snow ablation particularly in spring through the positive
surface albedo feedback. We note that the ERAS5-Land SWE data also has uncertainties, which

tends to overestimate SWE over mountainous areas (Monteiro and Morin, 2023).
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Figure 10. SWE (mm) comparison between ERAS5-Land and LIS/Noah-MP simulations driven by
USAF forcing globally averaged during 2018-2022: (a) ERAS-Land data, (b) LIS/Noah-MPv4.0.1
simulation, (¢) LIS/Noah-MPv5.0 simulation, (d) LIS/Noah-MPv4.0.1 biases (model minus
ERAS5-Land), (e) LIS/Noah-MPv5.0 biases (model minus ERA5-Land), and (f) differences
between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations. Grids with statistically
significant differences (p < 0.05) are shown with gray dots in panels (d)-(f). The statistical

significance over each grid is computed using daily time series and the t-test method. The global

mean value is also provided in the lower right of each panel. See Figure S4 for seasonal plots.

The CONUS-wide regional evaluation between SNODAS and LIS/Noah-MP simulations
driven by the NLDAS-2 forcing indicates large SWE underestimates by up to 50 mm or more in
high-elevation mountains in the western U.S. and very small biases across other CONUS regions
(Figure 11), mainly due to the underestimated mountain precipitation in NLDAS-2 (He et al.,
2019). The CONUS mean SWE biases are -4.2 mm and -5.0 mm for LIS/Noah-MPv4.0.1 and
LIS/Noah-MPv5.0, respectively, with slightly lower SWE in LIS/Noah-MPv5.0 than LIS/Noah-
MPv4.0.1 over most CONUS snowpacks (Figure 11f).
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Figure 11. Same as Figure 10 but for SWE (mm) comparison between SNODAS and LIS/Noah-
MP simulations driven by the NLDAS-2 forcing over the CONUS averaged during 2018-2022.

4.4 Snow depth

Figure 12 shows the global 5-year (2018-2022) mean snow depth comparison for seasonal
snowpack between ERA5-Land data and LIS/Noah-MP simulations driven by the USAF forcing.
Both LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations reproduce the spatial and seasonal
snow depth distributions with similar bias patterns (Figures 12 and S5). The snow depth bias
pattern generally follows the SWE bias pattern (Figure 10) with global annual mean biases of
~0.06 m for both simulations, except for the lower snow depth over some regions with higher SWE
in northern Canada and northern Russia compared to ERAS5-Land. The snow depth difference
(global mean of 0.003 m) between LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 is small (Figure

121).
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441

442  Figure 12. Snow depth (m) comparison between ERAS-Land and LIS/Noah-MP simulations
443 driven by USAF forcing globally averaged during 2018-2022: (a) ERAS-Land data, (b) LIS/Noah-
444  MPv4.0.1 simulation, (¢) LIS/Noah-MPv5.0 simulation, (d) LIS/Noah-MPv4.0.1 biases (model
445  minus ERAS-Land), (e) LIS/Noah-MPv5.0 biases (model minus ERAS5-Land), and (f) differences
446 between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations. Grids with statistically
447  significant differences (p < 0.05) are shown with gray dots in panels (d)-(f). The statistical

448  significance over each grid is computed using daily time series and the t-test method. The global
449  mean value is also provided in the lower right of each panel. See Figure S5 for seasonal plots.
450

451 The CONUS-wide regional snow depth evaluation between SNODAS and LIS/Noah-MP
452  simulations driven by the NLDAS-2 forcing also reveals a similar bias pattern (Figure 13) as the
453  SWE evaluation, with largely underestimated snow depth over most western U.S. high mountains
454  due to the underestimated SWE. The CONUS mean snow depth biases are -0.013 m and -0.015 m
455  for LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0, respectively, with very minor differences
456  between the two simulations (Figure 13f).

457
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Figure 13. Same as Figure 12, but for snow depth (m) comparison between SNODAS and
LIS/Noah-MP simulations driven by the NLDAS-2 forcing over the CONUS averaged during
2018-2022.

4.5 Snow cover fraction

Although LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations capture the spatial and+
seasonal snow cover distributions, they systematically overestimate snow cover globally relative
to MODIS observations (Figures 14 and S6). This high bias in snow cover is particularly
outstanding considering the underestimated SWE and snow depth (Figures 10 and 12), which has
been a long-standing problem in Noah-MP (He et al., 2019; Jiang et al., 2020; Zhou et al., 2023).
Specifically, LIS/Noah-MPv4.0.1 tends to overestimate snow cover across the global snowpack
by up to 0.3 with a global mean bias of 0.11, while LIS/Noah-MPv5.0 reduces the snow cover
overestimate particularly in northern high-latitudes and the Tibetan Plateau, which effectively
reduces the global mean bias to 0.07. This bias reduction is attributable to the updated snow cover
parameters in LIS/Noah-MPv5.0 (He et al., 2021). However, LIS/Noah-MPv5.0 still
systematically overestimates snow cover over most mid-latitude and high-latitude snowpacks,

which suggests the need for improved snowpack physics in Noah-MP (see Section 6 for
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more effective for regions with snow depth less than about 0.3 m, since this is the most sensitive

snow depth regime for snow cover calculations based on the parameterization used in Noah-MP

(He et al., 2019): (2) The snow cover parameter updates are vegetation type dependent, so the
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The snow cover impact is further complicated by the spatial heterogeneity of SWE biases

(Abolafia-Rosenzweig et al., 2025),
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Figure 14. Snow cover fraction comparison between MODIS and LIS/Noah-MP simulations
driven by the USAF forcing globally averaged during 2018-2022: (a) MODIS data, (b) LIS/Noah-
MPv4.0.1 simulation, (c) LIS/Noah-MPv5.0 simulation, (d) LIS/Noah-MPv4.0.1 biases (model
minus MODIS), (e) LIS/Noah-MPv5.0 biases (model minus MODIS), and (f) differences between
LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations. Grids with statistically significant
differences (p < 0.05) are shown with gray dots in panels (d)-(f). The statistical significance over

each grid is computed using daily time series and the t-test method. The global mean value is also

provided in the lower right of each panel. See Figure S6 for seasonal plots.

The CONUS-wide regional evaluation between MODIS and LIS/Noah-MP simulations
driven by the NLDAS-2 forcing also reveals a consistently high bias in snow cover in LIS/Noah-
MPv4.0.1, particularly over western U.S. mountains, with a CONUS mean bias of 0.055 (Figure
15). LIS/Noah-MPv5.0 effectively removes the snow cover overestimates in snowpacks outside
high-elevation mountains in the western U.S., which halves the CONUS mean bias. The remaining
snow cover overestimate in western U.S. high mountains, which notably correspond to the regions

with underestimated SWE and snow depth (Figures 11 and 13), needs further investigation.
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Figure 15. Same as Figure 14, but for evaluation of LIS/Noah-MP simulations driven by the
NLDAS-2 forcing over the CONUS averaged during 2018-2022.

4.6 Surface albedo

Figure 16 shows the global 5-year (2018-2022) mean surface albedo comparison between
MODIS and LIS/Noah-MP simulations driven by the USAF forcing. Both LIS/Noah-MPv4.0.1
and LIS/Noah-MPv5.0 simulations capture the spatial and seasonal surface albedo distributions
with similar bias patterns (Figures 16 and S7). LIS/Noah-MPv4.0.1 shows consistently
overestimated surface albedo over most global regions by up to 0.05 or more, except for significant
underestimates in the Sahara Desert and Antarctica which dominate the global mean bias (-0.02).
This bias pattern is consistent across different seasons (Figure S7). Compared to LIS/Noah-
MPv4.0.1, LIS/Noah-MPv5.0 shows an overall reduction of surface albedo across mid-latitudes
and high-latitudes due to lower snow cover (Section 4.5), which reduces the high bias of surface
albedo particularly in the midlatitudes (Figure 16). The remaining albedo overestimates in
LIS/Noah-MPv5.0 in the mid-latitude and high-latitude snowpacks are partially caused by the
overestimated snow cover (Figure 14e) and also likely by the soil and vegetation albedo
uncertainties. The systematic surface albedo underestimates in the Sahara Desert, Antarctica, and
Greenland further indicate model biases in the background albedo for desert soil and glacier

ice/snow albedo.
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Figure 16. Surface albedo comparison between MODIS and LIS/Noah-MP simulations driven by
USAF forcing globally averaged during 2018-2022: (a) MODIS data, (b) LIS/Noah-MPv4.0.1
simulation, (¢) LIS/Noah-MPv5.0 simulation, (d) LIS/Noah-MPv4.0.1 biases (model minus
MODIS), (e) LIS/Noah-MPv5.0 biases (model minus MODIS), and (f) differences between
LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations. Grids with statistically significant

differences (p < 0.05) are shown with gray dots in panels (d)-(f). The statistical significance over

each grid is computed using daily time series and the t-test method. The global mean value is also

provided in the lower right of each panel. See Figure S7 for seasonal plots.

The CONUS-wide regional evaluation between MODIS and LIS/Noah-MP simulations
driven by the NLDAS-2 forcing also reveals a consistently high bias in surface albedo in
LIS/Noah-MPv4.0.1 across the CONUS, except in some parts of southwest US (Figure 17), with
a CONUS mean bias of 0.031. LIS/Noah-MPv5.0 effectively reduces the mean albedo bias to
0.023 due to improved snow cover simulations (Figures 15f and 17f). The remaining albedo
overestimates in the western U.S. is partially due to the snow cover bias (Figure 15¢) and snow
albedo bias (He et al., 2019; Abolafia-Rosenzweig et al., 2022b). The albedo overestimates in the
rest of CONUS may be related to the model uncertainty in background soil and vegetation albedo

(see Section 5 for discussion).
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Figure 17. Same as Figure 16, but for evaluation of LIS/Noah-MP simulations driven by the
NLDAS-2 forcing over the CONUS averaged during 2018-2022.
5. Discussion, on resulting differences in two LIS/Noah-MP model versions - '(Deleted: s
To summarize the evaluation metrics for all the investigated, variables from both model+ ! v"CFormatted: Font: Not Italic, Font color: Text 1
simulations in this study, we adopted the International Land Model Benchmarking (ILAMBv2.7.2; ‘ <F0matted: Font: Not ltalc, Font color: Text |
(Formatted: Justified, Indent: First line: 0.5"

Collier et al., 2018) package and applied it to our model simulations and reference datasets. Overall,
the result (Figure 18) shows that LIS/Noah-MPv5.0 outperforms or is similar to LIS/Noah- v(Formatted: Font: Not Italic, Font color: Text 1
MPv4.0.1 globally in the key land surface variables evaluated in this study, except for slight
degradation in simulated surface soil moisture and SWE. In addition, we summarized, all the bias v(Formatted: Font: Not Italic, Font color: Text |
values for different seasons and regions for both model simulations in Tables 1 and 2. The slightly F(Fomatted: Font: Not Italic, Font color: Text 1
degraded surface soil moisture simulation in LIS/Noah-MPv5.0 mainly comes from the degraded

erformance, over northern and southern mid-latitudes, while the slightly degraded SWE in .- ‘(Formatted: Font: Not Italic, Font color: Text 1
LIS/Noah-MPv5.0 is mainly caused by the degraded performance in the northern high-latitudes
(Table 1). The soil moisture and SWE differences between the two model simulations are primarily
caused by the model updates in vegetation processes, (added canopy heat storage and bug fix of v(Formatted: Font: Not Italic, Font color: Text |
vegetation fraction scaling) and improved snow cover parameters. - '(Formatted: Font color: Text 1

23



(Formatted: Font color: Text 1

(Formatted: Font color: Text 1

N AN N

i(Formatted: Centered

Water and Energy Variables
Latent heat flux
GLEAM3.8a
FLUXCOM-X-BASE
Snow cover fraction
MODIS
Surface soil moisture
SMAP
Albedo <
MODIS ‘
Snow depth i
ERA5-Land
Snow water equivalent
ERAS5-Land ]
Relationships ;
|
|
|
|

Surfacesoilmoisture/SMAP
Latentheatflux/GLEAM3.8a
Latentheatflux/FLUXCOM-X-BASE

|

Relative Scale

Worse Value  Better Value

o CFormatted: Justified

573
574  Figure 18. Scorecard-type comparison for LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 model«

575  performance in simulating key surface variables evaluated against the reference datasets used in

this study based on the ILAMB tool.
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579  Table 1. Model evaluation metrics for LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations

580 driven by the USAF forcing averaged during 2018-2022 on the global and regional scale. The
values are the annual mean model bias (LIS/Noah-MP simulations minus reference datasets). The

581
582  statistically significant difference between LIS/Noah-MP v4.0.1 and LIS/Noah-MPv5.0
simulations (p < 0.05 using a t-test for daily time series) are marked as bold font. The values in the

583
584  parentheses are the annual mean absolute model biases. The seasonal biases are shown in Tables

585 S1-S4.
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588
589  Table 2. Model evaluation metrics for LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations
590 driven by the NLDAS-2 forcing averaged over the CONUS during 2018-2022. The values are the
591 mean model bias (LIS/Noah-MP simulations minus reference datasets). The statistically
592  significant difference between LIS/Noah-MP v4.0.1 and LIS/Noah-MPv5.0 simulations (p < 0.05
593  using a t-test for daily time series) are marked as bold font. The values in the parentheses are the
594  mean absolute model biases.
595
Annual DIE MAM TJA SON
LIS/Noah-MP v4.0.1 v5.0 v4.0.1 v3.0 v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v3.0. LFormatted: Font color: Text 1
Surface soil 0.000 0.008 0.025 0.035 0.003 0.008 0.006 0.013 -0.010 -0.001 %Formatted: Font color: Text 1
moisture (m*/m? (0.062) | (0.065) | (0.077) | (0.085) | (0.067) | (0.069) | (0.062) | (0.065) | (0.058) [ (0.062)
compared to SMAP)
Surface Soil 0.041 0.047 0.041 0.051 0.024 0.029 0.043 0.049 0.047 0.054.( Formatted: Font color: Text 1
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598 The modeled LH and soil moisture assessments in Section 4 indicate a slightly higher soil - (Formatted: Font: Not Italic, Font color: Text |
599  moisture but lower LH over some mid-latitude (e.g., the eastern U.S.) and the tropics in LIS/Noah-
600 MPv5.0 compared to LIS/Noah-MPv4.0.1. To further understand this seemingly conflicting model
601  differences, we conducted a series of additional analyses. : 'CFormatted: Font: Not Italic, Font color: Text 1
602 First, to quantify the uncertainty of reference ET data products, we conducted additional : '(Formatted: Font color: Text 1
603  model evaluations using the FLUXCOM-X-BASE (Nelson et al., 2024) data. The results indicate h ‘CFomatted: Font: Not Italic, Font color: Text 1
604 large inconsistency between the FLUXCOM-X-BASE and GLEAM data, where the model biases
605  reverse the signs across many global regions particularly in the low-latitudes (Figure S9). For the
606 CONUS, the bias sign also reverses in the northeastern U.S. and many parts of the western U.S.
607  (Figure S10). Previous studies (Nelson et al., 2024) showed that FLUXCOM-X-BASE has
608  consistently lower ET in evergreen tropics as well as the temperate and high latitudes of the
609  Northern Hemisphere than GLEAM, whereas FLUXCOM-X-BASE has higher ET in the semiarid
610  and arid ecosystems of the lower and middle latitudes. This is consistent with previous studies ~( Formatted: Font color: Text |
611  (e.g., Abolafia-Rosenzweig et al., 2021) finding large disagreements across ET reference datasets
612 in general. These results suggest that the modeled ET in this study falls into the range of .- '(Formatted: Font: Not Italic, Font color: Text 1
613  observational uncertainty over many global regions and the uncertainty in ET reference data
614  products can confound model assessments which should be accounted for in future studies.
615 Then, to assess the role of soil temperature change, we further analyzed the soil temperature+- (Formatted: Justified, Indent: First line: 0.5"
616  differences between the two model simulations, which indicates a consistently higher soil
617 temperature in LIS/Noah-MPv5.0 than LIS/Noah-MPv4.0 across all soil layers over the majority
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of the globe except for polar regions (Figures S11-12), which hence is not a driver but rather a

result of the decrease in LH,
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Furthermore, our additional analyses indicate that the bug fix of vegetation fraction scaling+-.._.-
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in LIS/Noah-MPv5.0 dominates the impact on the ET (and LH) reduction, with minor opposite

effects from the added canopy heat storage term which generally increases sensible and latent heat

fluxes (Figure S19). Furthermore, the LH changes tend to be larger over regions with higher

vegetation fraction (Figure S20), which underlines potentially large and heterogeneous impacts in

response to this.,
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In addition, we quantified the differences in each of the modeled ET components between
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the two model versions and their biases by comparing with the GLEAM data. Using the CONUS

region as an example, the results show that the lower LH in LIS/Noah-MPv5.0 over the eastern

U.S. is mainly caused by the lower plant transpiration and soil evaporation compared to LIS/Noah-
MPv4.0.1. which outweigh the higher canopy-intercepted water evaporation (Figures S13-S15).

The slightly lower LH in LIS/Noah-MPv5.0 over the western U.S. is dominated by the lower plant

transpiration and canopy-intercepted water evaporation, which outweigh the higher soil

evaporation. Overall, the generally opposite patterns in the western and eastern U.S. in these model

differences in each ET component likely reflect the spatially, heterogeneous impacts across water

limited vs. non-water limited regimes, which needs further investigation, These patterns are

enerally consistent throughout the seasons (Figures S16-18), with stronger signals for plant

transpiration and soil evaporation in spring and summer due to warmer temperature and higher

solar radiation. Thus, the slightly higher soil moisture appears to be a result of the lower total ET
in LIS/Noah-MPv5.0 compared to LIS/Noah-MPv4.0.1. Besides, the slightly higher soil moisture

in LIS/Noah-MPv5.0 is also partially contributed by the updated snow cover parameters in

LIS/Noah-MPv5.0 that lead to enhanced snow melting and hence increased, soil moisture in winter

spring, and early summer.

For snowpack and surface albedo, LIS/Noah-MPv5.0 generally shows a lower SWE than<-

LIS/Noah-MPv4.0.1 particularly during ablation periods, mainly due to the updated snow cover

parameters in LIS/Noah-MPv5.0 resulting in lower snow cover and hence reduced surface albedo

and subsequently enhanced melting. This triggers positive surface albedo feedback.,,
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6. Implications for future model improvements

The evaluation of global and regional benchmark simulations (Section 4) reveals several
important Noah-MP model uncertainties and deficiencies, which calls for future model
improvements.

First, the model biases in soil moisture and LH (Sections 4.1 and 4.2) partially reflect the
inadequate representation of plant hydraulics and root schemes and/or too shallow soil column
configuration (e.g., in the Amazon), which have also been highlighted by a few previous studies

(e.g., Niu et al., 2020; Li et al., 2021; Bieri et al., 2025). Recently, Li et al. (2021) developed a new

whole-plant hydraulics scheme for Noah-MP with observation-constrained parameters (Sun et al.,
2024), which largely improves simulations of ET and terrestrial water storage (TWS) compared to
the default soil hydraulics scheme in Noah-MP. Other studies (e.g., Niu et al., 2020; Bieri et al.,

2025) developed dynamic root uptake schemes in Noah-MP that improve modeled soil moisture,

(Deleted: 2024
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ET, and TWS. These model updates have not been included in the community Noah-MPv5.0,
which needs to be done in the future. Another possible model deficiency that could result in the
LH bias is the canopy turbulence scheme. Noah-MP uses the Monin—Obukhov (M—0O) similarity
theory to compute momentum and heat exchange coefficients above and through the canopy,
which however does not account for the canopy-induced turbulence in the roughness sublayer
(RSL) and hence fails above and within dense forests (Bonan et al., 2018). Abolafia-Rosenzweig
et al. (2021) implemented and evaluated a unified RSL turbulence scheme throughout the canopy
in an earlier Noah-MP version, which demonstrates the potential of improving modeled surface
heat fluxes. We are currently working on a comprehensive assessment of this RSL canopy
turbulence scheme in Noah-MPv5.0 across global FLUXNET sites. However, we note that the
satellite soil moisture data has large uncertainties over dense forests. In addition, the input soil
texture data could also impact the modeled soil moisture and hence ET. Li et al. (2024) recently
developed a global 1-km high-quality datasets for key land surface parameters (including soil
texture), and we plan to test the effect of using this new dataset in Noah-MP simulations in our
next step.

Second, the model biases in snowpack, including SWE, snow depth, and snow cover,
reveal inadequate treatments of snow physics. For example, the SWE underestimates over
midlatitude mountains (e.g., the Himalayas and western U.S. high mountains) could be caused by

the snow ablation bias in the model, in addition to the precipitation and temperature forcing
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uncertainty (Section 4.3). He et al. (2021) found that Noah-MP tends to melt snow faster than
observations in some western US mountain areas, likely due to wind and solar radiation forcing
biases and/or model deficiencies in above-snowpack turbulence, canopy radiative transfer, and
snow albedo. Recently, Lin et al. (2025) coupled Noah-MPv5.0 with a widely used physical snow
albedo scheme, SNICAR-ADv3 (Flanner et al., 2021; He et al., 2024a), and found improved snow
albedo relative to the default semi-empirical snow albedo scheme in Noah-MP. This snow albedo
physics update will be included in the next Noah-MP major version release. The snow depth bias
is not only driven by the SWE bias but also by uncertainty in snow compaction processes. A recent
study (Abolafia-Rosenzweig et al., 2024b) enhanced the Noah-MP snow compaction
parameterization constrained by in-situ measurements across ~800 SNOTEL sites in the western
JOA which is currently being transferred to the Noah-MPv5.0
(https://github.com/NCAR/noahmp/pull/148; last access: November 24, 2024). In addition, a new
flexible framework was recently developed to couple the LSMs (including Noah-MPv4.0.1) in LIS
with a physical snow model, Crocus, which shows promising improvements in modeling snow
depth and SWE (Navari et al., 2024). The systematically overestimated snow cover fraction in
Noah-MP is a long-standing model problem, which has been investigated by several studies over
different mountain regions (He et al., 2019; Jiang et al., 2020; Zhou et al., 2023). A number of
improvements in the model snow cover parameterization have been proposed for the Tibetan
Plateau (Jiang et al., 2020; Zhou et al., 2023) and the western U.S. (Abolafia-Rosenzweig et al.,

2025). These solutions, however, need to be tested for global applications.

(Deleted: 2024c¢

Third, the model biases in surface albedo, particularly over the Sahara Desert and glaciers,
suggest possible deficiencies in background desert soil albedo and glacier albedo. Currently, Noah-
MPv5.0 assumes a uniform medium soil color everywhere, whereas using a spatially-varying soil
color map (Lawrence and Chase, 2007) tends to reduce Noah-MP surface albedo particularly over
the desert (Michael Barlage, personal communication), which will be tested in NoahMPv5.0
together with the aforementioned Li et al. (2024) global 1-km input datasets. To improve glacier
modeling, Eidhammer et al. (2021) coupled the Crocus snow/ice model with Noah-MP within the
WRF-Hydro framework, which reproduces the observed glacier surface albedo and mass balance
in Norwegian glaciers. Future Noah-MP model improvements need to also focus on glacier regions,

which were less studied in previous Noah-MP applications. In addition, vegetation albedo (and
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canopy radiative transfer) may also contribute to the surface albedo biases in Noah-MP, which

however lacks systematic assessments in the literature and hence needs more future investigations.

7. Conclusions
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In this study, we integrated the refactored community Noah-MPv5.0 model with the NASA
LIS system (version 7.5.2) through the GitHub submodule mechanism to streamline the
synchronization, development, and maintenance of Noah-MP within LIS and to enhance the
interoperability and applicability of both models. The GitHub submodule mechanism also allows
for more rapid implementation of bug fixes as well as new versions of Noah-MP (such as including
the new physics detailed in Section 5) into the LIS software framework. We systematically
evaluated multi-year (2018-2022) global and regional (CONUS) LIS/Noah-MP benchmark
simulations driven by the USAF and NLDAS-2 atmospheric forcing, respectively, for a set of key

land surface variables. Overall, LIS/Noah-MPv5.0 outperforms or is similar to LIS/Noah-

MPv4.0.1 globally in simulating the key land surface variables evaluated in this study, except for

slight degradation in simulated surface soil moisture and SWE.

Specifically, both LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations capture the

spatial and seasonal distributions of observed surface and root-zone soil moisture, LH, SWE, snow
depth, snow cover, and surface albedo, with similar bias patterns. For surface and root-zone soil

moisture, model simulations tend to underestimate over wet soil regimes and overestimate over

dry soil regimes, with slightly higher soil moisture in LIS/Noah-MPv5.0 than LIS/Noah-MPv4.0.1

across most regions. Due to the offset of model overestimates and underestimates across different

regions, the global mean soil moisture biases of both models are relatively small.

For LH, the model bias patterns generally follow those of soil moisture, with the

underestimated (overestimated) LH over areas with the underestimated (overestimated) soil

moisture across most global regions. Although LIS/Noah-MPv5.0 has a slightly higher soil :

moisture than LIS/Noah-MPv4.0.1, it shows a lower LH across most non-polar regions, which
reduces the global mean LH bias from 0.99 W/m? (LIS/Noah-MPv4.0.1) to -0.39 W/m?
(LIS/Noah-MPv5.0).

For snowpack conditions, the model SWE bias patterns are dominated by the precipitation
and temperature forcing uncertainties, with large SWE underestimates in the Himalayas, west

Canada, and western U.S. mountains and overestimates in most other mid-latitude and high-
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latitude snowpacks. The SWE biases are similar for both models, with slightly larger
underestimates in LIS/Noah-MPv5.0 (global mean bias of -13.2 mm) than LIS/Noah-MPv4.0.1
(global mean bias of -10.1 mm). The model bias patterns of snow depth generally follow those of
SWE, with a global mean bias of ~0.06 m for both simulations. For snow cover, LIS/Noah-
MPv4.0.1 has a systematic large overestimate across the globe, even over regions with
underestimated SWE, which is a long-standing Noah-MP problem. LIS/Noah-MPv5.0 with
updated snow cover parameters effectively reduces the snow cover overestimates globally,
decreasing the global mean bias from 0.11 to 0.07.

For surface albedo, both models show widespread overestimates over most mid-latitude
and high-latitude regions partially due to the snow cover overestimate, and significant
underestimates in the Sahara Desert, Greenland, and Antarctica, which dominate the global mean
bias. Because of the reduced snow cover, LIS/Noah-MPv5.0 shows consistently lower surface
albedo than LIS/Noah-MPv4.0.1, which degrades the global mean bias from -0.018 to -0.033.

The model evaluation in this study reveals several important Noah-MP uncertainties and
deficiencies and motivates future improvements in model processes/components including plant
hydraulics and dynamic root uptake, canopy turbulence and interaction with snowpack, input soil

texture and color data, snow cover and albedo, glacier ice, and vegetation albedo (canopy radiative

transfer).
(Deleted: L [1]
Appendix A.
Table Al. Default Noah-MP physics options used in this study
Noah-MP Physics Option Description
dynamic vegetation option 4 use table LAI and maximum vegetation fraction
rain-snow partition option 1 Jordan (1991) scheme

soil moisture factor for stomatal
resistance option
ground resistance option 1 Sakaguchi and Zeng (2009) scheme
Monin-Obukhov (M-O) Similarity Theory

1 Noah (soil moisture) (Ek et al., 2003)

surface drag coefficient option 1 (Brutsaert, 1982)
canopy stomatal resistance option 1 Ball-Berry scheme (Bonan, 1996)
snow surface albedo option 1 BATS snow albedo (Dickinson et al., 1993)
canopy radiation transfer option 3 two-stream applied to vegetated fraction (Niu

and Yang, 2004)
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snow/soil temperature time semi-implicit; flux top boundary condition (Niu

scheme option etal.,, 2011)
snow thermal conductivity option 1 Stieglitz scheme (Yen,1965)
lower boundary of soil 2 Deep soil boundary temperature read from input
temperature option file (Niu et al., 2011)

soil supercooled liquid water 1 No iteration (Niu and Yang, 2006)

option
runoff option 3 Schaake scheme (Schaake et al., 1996)
frozen soil permeability option 1 121382; effects, more permeable (Niu and Yang,

soil configuration option
glacier treatment option
tile drainage option
irrigation option
dynamic crop model option

use input dominant soil texture
include phase change of glacier ice
No tile drainage

No irrigation

No dynamic crop model

oo ||

Code and data availability

1. The data and scripts produced in this study is available at
https://doi.org/10.5281/zenodo.14567219 (He et al., 2025).

2. The LIS/Noah-MPv5.0 model code produced and used in this study is available at
https://doi.org/10.5281/zenodo.14567646 (He et al., 2024b).
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Figure S1. Surface soil moisture (m*/m?) comparison between SMAP observations and LIS/Noah-
MP simulations driven by the USAF forcing globally averaged during 2018-2022: (a,e,i,m) SMAP
data, (b,f,j,n) LIS/Noah-MPv5.0 simulation, (c,g,k,0) LIS/Noah-MPv5.0 biases (model minus
SMAP), and (d,hl,p) differences between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1
simulations, during four seasons including (a-d) DJF, (e-h) MAM, (i-1) JJA, and (m-p) SON. Grids
with statistically significant differences (p < 0.05) are shown with gray dots in the third and fourth
columns. The statistical significance over each grid is computed using daily time series and the t-
test method. The global mean value is also provided in the lower right of each panel,,

'(Formatted: Font: Not Bold, Font color: Text 1

: ‘(Formatted: Font color: Text 1

n‘(Formatted: Font: Not Bold, Font color: Text 1

‘ (Formatted: Font color: Text 1

(Formatted: Font color: Text 1

(Formatted: Font color: Text 1

NI AN AN AN AN

(Deleted: |




(a) USAF

(c) USAF minus GPM_IMERG (mm/year)
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Figure S2. Precipitation (mm/year) comparison between the GPM/IMERG data and the USAF
forcing data globally averaged during 2018-2022: (a) USAF data, (b) GPM/IMERG data, (c)
difference between USAF and GPM/IMERG. The color scale for (a) and (b) is plotted in power
law (y = x°, where power ¢ = 0.5),

(a) GLEAM3.8a (b) Model (v5.0)
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Figure S3. Latent heat flux (W/m?) comparison between the GLEAM data and LIS/Noah-MP
simulations driven by the USAF forcing globally averaged during 2018-2022: (a,e,i,m)
GLEAMVv3.8a data, (b,f,j,n) LIS/Noah-MPv5.0 simulation, (c,g,k,0) LIS/Noah-MPv5.0 biases
(model minus GLEAM), and (d,h,l,p) differences between LIS/Noah-MPv5.0 and LIS/Noah-
MPv4.0.1 simulations, during four seasons including (a-d) DJF, (e-h) MAM, (i-1) JJA, and (m-p)
SON. Grids with statistically significant differences (p < 0.05) are shown with gray dots in the
third and fourth columns. The statistical significance over each grid is computed using daily time
series and the t-test method. The global mean value is also provided in the lower right of each
panel.
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Figure S4. SWE (mm) comparison between ERAS5-Land and LIS/Noah-MP simulations driven by
the USAF forcing globally averaged during 2018-2022: (a,e,i,m) ERA5-Land data, (b,f,j,n)
LIS/Noah-MPv5.0 simulation, (c,g,k,0) LIS/Noah-MPv5.0 biases (model minus ERA5-Land), and
(d,h,Lp) differences between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations, during four
seasons including (a-d) DJF, (e-h) MAM, (i-1) JJA, and (m-p) SON. Grids with statistically
significant differences (p < 0.05) are shown with gray dots in the third and fourth columns. The
statistical significance over each grid is computed using daily time series and the t-test method.
The global mean value is also provided in the lower right of each panel.
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Figure S5. Snow depth (m) comparison between ERA5-Land and LIS/Noah-MP simulations
driven by the USAF forcing globally averaged during 2018-2022: (a,e,i,m) ERAS-Land data,
(b,f,j,n) LIS/Noah-MPv5.0 simulation, (c,g,k,0) LIS/Noah-MPv5.0 biases (model minus ERAS-
Land), and (d,h,l,p) differences between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations,
during four seasons including (a-d) DJF, (e-h) MAM, (i-l) JJA, and (m-p) SON. Grids with
statistically significant differences (p < 0.05) are shown with gray dots in the third and fourth
columns. The statistical significance over each grid is computed using daily time series and the t-
test method. The global mean value is also provided in the lower right of each panel.

(a) ERAS-Land

b) Model (v5.0;
(m)l,l) (b) Model (v5.0)

Deleted:

(Formatted: Font color: Text 1

) ‘(Formatted: Font color: Text 1




A

(c) Model (v5.0) - MODIS

(d) Model (v5.0) - Model (v4.0.1)
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Figure S6. Snow cover fraction comparison between MODIS and LIS/Noah-MP simulations
driven by the USAF forcing globally averaged during 2018-2022: (a,e,i,m) MODIS data, (b,f,j,n)
LIS/Noah-MPv5.0 simulation, (c,g,k,0) LIS/Noah-MPv5.0 biases (model minus MODIS), and
(d,h,1,p) differences between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations, during four
seasons including (a-d) DJF, (e-h) MAM, (i-1) JJA, and (m-p) SON. Grids with statistically
significant differences (p < 0.05) are shown with gray dots in the third and fourth columns. The
statistical significance over each grid is computed using daily time series and the t-test method.

The global mean value is also provided in the lower right of each panel.
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Figure S7. Surface albedo comparison between MODIS and LIS/Noah-MP simulations driven by
the USAF forcing globally averaged during 2018-2022: (a,e,i,m) MODIS data, (b,f,j,n) LIS/Noah-
MPv5.0 simulation, (c,g.k,0) LIS/Noah-MPv5.0 biases (model minus MODIS), and (d,h,Lp)
differences between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations, during four seasons
including (a-d) DJF, (e-h) MAM, (i-l) JJA, and (m-p) SON. Grids with statistically significant
differences (p < 0.05) are shown with gray dots in the third and fourth columns. The statistical
significance over each grid is computed using daily time series and the t-test method. The global
mean value is also provided in the lower right of each panel.
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Figure S8. Atmospheric temperature forcing (°C) comparison between the ERA5-Land data and
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the USAF data globally averaged during 2018-2022: (a) USAF data, (b) ERAS-Land data, (c)
difference between USAF and ERAS-Land.
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Figure S9. Latent heat flux (W/m?) comparison between the GLEAM data, FLUXCOM-X-BASE
data, and LIS/Noah-MP simulations driven by the USAF forcing globally averaged during 2018-
2021: (a) GLEAM3.8a data, (b) LIS/Noah-MPv4.0.1 simulation, (¢) LIS/Noah-MPv5.0
simulation, (d) LIS/Noah-MPv4.0.1 biases (model minus GLEAM), (e) LIS/Noah-MPv5.0 biases
(model minus GLEAM), (f) differences between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1
simulations, (g) FLUXCOM-X-BASE data, (h) LIS/Noah-MPv4.0.1 biases (model minus
FLUXCOM-X-BASE), and (i) LIS/Noah-MPv5.0 biases (model minus FLUXCOM-X-BASE).

Grids with statistically significant differences (p < 0.05) are shown with gray dots in panels (d)-

(). The statistical significance over each grid is computed using daily time series and the t-test

method. The global mean value is also provided in the lower right of each panel.
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Figure S10. Same as Figure S9 but for evaluation of LIS/Noah-MP simulations driven by the
NLDAS-2 forcing over the CONUS.
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Figure S11. Simulated multi-year (2018-2022) annual mean soil temperature from LIS/Noah-
MPv4.0.1 (left column), LIS/Noah-MPv5.0 (middle column), and their differences (right column)
across four soil layers from the top (layer 1; first row) to the bottom (layer 4: fourth row). The
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LIS/Noah-MP simulations are driven by the USAF forcing globally. For glacier regions, the

temperature is for glacier ice.
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Figure S12. Same as Figure S11 but for LIS/Noah-MP simulations driven by the NLDAS-2

forcing over the CONUS.

(Formatted: Font color: Text 1

.(Formatted: Font color: Text 1

NI NI AN

‘(Formatted: Centered
i



(a) GLEAM3.8a (W/m?) (b) Model (v4.0.1) (W/m?) (c) Model (v5.0) (W/m?)

Figure S13. Comparison of latent heat flux (W/m?) due to soil evaporation between the GLEAM
data and LIS/Noah-MP simulations driven by the NLDAS-2 forcing over the CONUS averaged
during 2018-2021: (a) GLEAM3.8a data, (b) LIS/Noah-MPv4.0.1 simulation, (¢) LIS/Noah-
MPv5.0 simulation, (d) LIS/Noah-MPv4.0.1 biases (model minus GLEAM), (e) LIS/Noah-
MPv5.0 biases (model minus GLEAM), and (f) differences between LIS/Noah-MPv5.0 and
LIS/Noah-MPv4.0.1 simulations. Grids with statistically significant differences

shown with gray dots in panels (d)-(f). The statistical significance over each grid is computed using

daily time series and the t-test method. The global mean value is also provided in the lower right
of each panel. See Figure S16 for seasonal plots.

(a) GLEAM3.8a (W/m?)  (b) Model (v4.0.1) (W/m?)  (c) Model (v5.0) (W/m?)

Figure S14. Same as Figure S13 but for plant transpiration. See Figure S17 for seasonal plots.
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(a) GLEAM3.8a (W/mzz)o (b) Model (v4.0.‘1) : (W/mzz)0 (c) Model (v5.0)‘ : (W/mzz)o

Figure S15. Same as Figure S13 but for canopy-intercepted water evaporation. See Figure S18 for
seasonal plots.

(d) Model (v5.0) - Model (v4.0.1)
A5

)

Figure S16. Same as Figure S13 but for seasonal results: (a-d) DJF, (e-h) MAM, (i-1) JJA, and (m-
p) SON.
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Figure S17. Same as Figure S14 but for seasonal results: (a-d) DJF, (e-h) MAM., (i-1) JJA, and (m-
p) SON.
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Figure S18. Same as Figure S15 but for seasonal results: (a-d) DJF, (e-h) MAM, (i-1) JJA, and (m-
p) SON.
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Figure S19. Latent heat (LH) and sensible heat (SH) flux changes from LIS/Noah-MPv4.0.1 to<
LIS/Noah-MPv5.0 due to the added canopy heat storage treatment (first row) and all model updates
(second row) in 2018 August.
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Figure S20. Global and CONUS vegetation fraction (a-b) used in the model simulations, and the
multi-year (2018-2022) annual mean latent heat (LH) differences (c-d) between LIS/Noah-MPv5.0
and LIS/Noah-MPv4.0.1.
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Table S1. Model evaluation metrics for LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations

o (Deleted: |

driven by the USAF forcing averaged over December-January-February (DJF) during 2018-2022

on the global and regional scale. The values are the mean model bias (LIS/Noah-MP simulations

minus reference datasets). The statistically significant difference between LIS/Noah-MP v4.0.1

and LIS/Noah-MPv5.0 simulations (p < 0.05 using a t-test for daily time series) are marked as

bold font. The values in the parentheses are the mean absolute model biases.

Global Low latitude Northern Northern high Southern Southern high
midlatitude latitude midlatitude latitude
LIS/Noah-MP v4.0.1 v5.0 v4.0.1 v5.0 | v4.0.1 v5.0 | v4.0.1 v5.0 | v4.0.1 v5.0 | v4.0.1 VS.O(Formatted: Font color: Text 1
i
|Surface soil moisture |  0.020 0.027 | -0.004 | 0.004 | 0.059 | 0.066 | -0.063 | -0.062 | 0.035 | 0.043 - = (Fommed: Font color: Text 1
m’/m? compared to (0.080) | (0.083) | (0.070) | (0.072) | (0.095) | (0.100) | (0.158) | (0.157) | (0.082) | (0.087)
SMAP)
urface Soil moisture 0.052 0.059 0.013 0.022 0.055 0.062 0.096 0.096 0.065 0.068 - = (Formatted: Font color: Text 1
'm’/m’ compared to (0.078) (0.084) | (0.053) | (0.059) | (0.081) | (0.086) | (0.099) | (0.099) | (0.068) | (0.070)
ISMN
atent heat flux 2414 1.466 2.141 | -3.752 | -2.962 | -2.449 | -0.113 | -0.190 | 12.486 | 6.452 7.447 | 9.33§ Formatted: Font color: Text 1
W/m? compared to (8.184) (8.297) | (16.165) | (14.870) | (4.229) | (4.016) | (0.894) | (0.916) |(21.025)|(18.489)| (7.659) | (9.442)
GLEAMS3.8a
Snow water -6.051 -7.823 -0.853 | -0.883 7.218 5418 | -37.503 | -42.473 | -8.938 | -8.728 - = CFormatted: Font color: Text 1
equivalent (mm (26.573) | (26.321) | (0.984) | (1.000) |(23.983)](23.245) | (78.639) ] (79.038) | (12.807) | (12.370)
compared to ERAS-
Land
Snow depth (m -0.073 -0.066 -0.003 | -0.004 | -0.023 | -0.015 | -0.293 | -0.272 | -0.031 -0.030 - = (Formatted: Font color: Text 1
compared to ERAS- (0.102) (0.100) | (0.004) | (0.004) | (0.083) | (0.083) | (0.324) | (0.315) | (0.039) | (0.037)
Land
Snow cover fraction 0.266 0.202 0.004 0.003 0.386 | 0.311 0.516 0.366 0.005 0.004 - = (Formatted: Font color: Text 1
(compared to (0.267) | (0.206) | (0.006) | (0.004) | (0.389) | (0.317) | (0.516) | (0.373) | (0.009) | (0.009)
MODIS)
Surface albedo -0.009 -0.031 -0.018 | -0.020 0.094 0.056 0.005 -0.053 0.011 0.009 -0.086 | -0.101 Formatted: Font color: Text 1
(compared to (0.091) (0.093) | (0.051) | (0.051) [ (0.130) | (0.102) | (0.121) | (0.172) | (0.033) | (0.032) | (0.090) | (0.103
MODIS |
N - '(Formatted: Font color: Text 1

14



Table S2. Same as Table S1 but for March-April-May (MAM) averages.

Global Low latitude Northern Northern high Southern Southern high
midlatitude latitude midlatitude latitude
LIS/Noah-MP v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 ,VS.O(Formatted: Font color: Text 1
1
| Surface soil moisture 0.013 0.016 -0.006 | 0.000 0.033 0.036 0.009 0.008 0.021 0.030 - = CFormatted: Font color: Text 1
'm’/m’ compared to 0.077) (0.078) | (0.069) | (0.070) | (0.082) | (0.084) | (0.081)) | (0.081) | (0.077) | (0.083)
SMAP)
urface Soil moisture 0.048 0.051 0.032 0.040 0.048 0.051 0.106 0.107 0.054 0.057 - = (Formatted: Font color: Text 1
m’/m’ compared to (0.075) (0.077) | (0.063) | (0.066) | (0.075) | (0.077) | (0.116) | (0.117) | (0.060) | (0.058)
ISMN
Latent heat flux -1.614 -2.609 | -0.028 | -4.268 | -2.284 | -3.301 | -6.919 | -5.205 | -1.425 | -0.836 | 0.448 0.557 Formatted: Font color: Text 1
(W/m? compared to (8.272) (8.499) | (13.243) | (14.196) | (12.144) | (12.521) | (8.214) | (7.419) | (6.665) | (7.569) | (1.295) | (1.306
GLEAMS3.8a
Snow water -8.642 -15.069 | -1.064 | -1.116 | 2.464 | -1.265 | -41.038 | -65.033 | -9.468 | -9.000 - = (Formatted: Font color: Text 1
equivalent (mm (29.319) | (30.461) | (1.272) | (1.291) | (26.332) | (27.002) | (87.507) | (92.067) | (11.037) | (10.882)
compared to ERAS-
Land
Snow depth (m -0.068 -0.078 | -0.004 | -0.004 | -0.026 | -0.027 | -0.265 | -0.313 | -0.032 | -0.031 - = CFormatted: Font color: Text 1
compared to ERAS- (0.096) (0.107) | (0.004) | (0.004) | (0.075) | (0.080) | (0.308) | (0.354) | (0.035) | (0.035)
Land
Snow cover fraction 0.129 0.064 0.001 0.000 0.160 0.126 0.291 0.075 0.005 0.002 - = CFormatted: Font color: Text 1
(compared to (0.131) (0.121) | (0.003) | (0.002) | (0.162) | (0.146) | (0.291) | (0.274) | (0.016) | (0.014)
MODIS)
Surface albedo -0.023 -0.048 | -0.020 | -0.021 | 0.029 0.014 | -0.054 | -0.152 | 0.018 0.015 | -0.063 | -0.077 Formatted: Font color: Text 1
(compared to (0.064) (0.081) | (0.048) | (0.048) | (0.059) | (0.056) | (0.092) | (0.180) | (0.036) | (0.035) | (0.069) | (0.075)
MODIS) |
R - '(Formatted: Font color: Text 1
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Table S3. Same as Table S1 but for June-July-August (JJA) averages.

Global Low latitude Northern Northern high Southern Southern high
midlatitude latitude midlatitude latitude
Noah-MP v4.0.1 v5.0 v4.0.1 v5.0 | v4.0.1 v5.0 | v4.0.1 v5.0 | v4.0.1 v5.0 | v4.0.1 ,vS.()(Formatted: Font color: Text 1
1
[ Surface soil moisture -0.005 0.000 -0.016 | -0.010 0.012 0.017 -0.023 | -0.019 0.022 0.031 - = CFormatted: Font color: Text 1
'm’/m’ compared to (0.078) (0.079) | (0.071) | (0.071) | (0.078) | (0.081) | (0.091) | (0.091) | (0.090) | (0.096)
SMAP)
urface Soil moisture 0.067 0.072 0.024 0.034 0.069 0.074 0.127 0.129 0.039 0.039 - = (Formatted: Font color: Text 1
m’/m’ compared to (0.085) (0.088) | (0.070) | (0.075) | (0.084) | (0.088) | (0.131) | (0.132) | (0.071) | (0.070)
ISMN
Latent heat flux 2.927 0.472 4.066 -0.412 | 10.697 5.522 -5.468 | -6.020 | -4.440 | -3.425 0.959 1.012( Formatted: Font color: Text 1
(W/m? compared to (11.336) | (10.599) | (17.233) | (16.601) | (17.801) | (14.889) | (12.165) | (12.962) | (7.092) | (6.825) | (1.286) | (1.313
GLEAMS3.8a
Snow water -13.131 -15.966 | -0.740 | -0.772 | -3.316 | -5.265 | -52.729 | -62.524 | -10.688 | -10.761 - = (Formatted: Font color: Text 1
equivalent (mm (17.021) | (17.519) | (0.813) | (0.821) | (8.360) | (7.901) | (59.916) ] (63.347)| (18.101) | (18.218)
compared to ERAS-
Land
Snow depth (m -0.047 -0.053 -0.003 | -0.003 | -0.014 | -0.018 | -0.184 | -0.206 | -0.043 -0.041 = = CFormatted: Font color: Text 1
compared to ERAS- (0.054) (0.056) | (0.003) | (0.003) | (0.024) | (0.023) | (0.197) | (0.208) | (0.061) | (0.062)
Land
Snow cover fraction 0.017 0.006 0.000 -0.001 0.001 -0.003 0.060 0.024 0.057 0.039 - = CFormatted: Font color: Text 1
(compared to (0.030) (0.034) | (0.002) | (0.002) | (0.012) | (0.011) | (0.093) | (0.112) | (0.071) | (0.055)
MODIS)
Surface albedo 0.005 -0.001 -0.018 | -0.019 0.011 0.010 0.027 0.009 0.032 0.023 -0.036 | -0.053 Formatted: Font color: Text 1
(compared to (0.045) (0.045) | (0.049) | (0.049) | (0.037) | (0.036) | (0.050) | (0.051) | (0.044) | (0.038) | (0.045) | (0.059)
MODIS)
R - '(Formatted: Font color: Text 1
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Table S4. Same as Table S1 but for September-October-November (SON) averages.

Global Low latitude Northern Northern high Southern Southern high
midlatitude latitude midlatitude latitude
Noah-MP v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 ,VS.O(Formatted: Font color: Text 1
1
| Surface soil moisture 0.008 0.014 -0.010 | -0.004 [ 0.020 0.027 0.014 0.019 0.036 0.042 - = CFormatted: Font color: Text 1
'm’/m’ compared to (0.080) (0.082) | (0.065) | (0.065) | (0.080) | (0.084) | (0.108) | (0.110) | (0.090) | (0.093)
SMAP)
urface Soil moisture 0.066 0.073 0.026 0.034 0.067 0.074 0.120 0.121 0.061 0.061 - = (Formatted: Font color: Text 1
m’/m’ compared to (0.083) (0.088) | (0.071) | (0.074) | (0.083) | (0.088) | (0.120) | (0.121) | (0.082) | (0.079)
ISMN
Latent heat flux 0.301 -0.681 2.243 | -2.624 | -2.550 | -2.259 | -3.766 | -3.522 | -0.550 | -3.173 | 3.204 3.87% Formatted: Font color: Text 1
(W/m? compared to (6.785) (7.228) | (12.533) | (13.228) | (6.536) | (6.910 | (4.360) | (4.166) |(10.947) | (11.249)| (3.237) | (3.883
GLEAMS3.8a
Snow water -12.029 | -13.400 | -0.698 | -0.718 | -3.228 | -3.980 | -47.344 | -52.270 | -12.553 | -12.550 - = (Formatted: Font color: Text 1
equivalent (mm (17.559) | (17.511) | (0.729) | (0.743) | (7.672) | (7.407) | (63.135) | (63.555) | (22.812) | (22.978)
compared to ERAS-
Land
Snow depth (m -0.045 -0.046 | -0.002 | -0.003 | -0.014 | -0.014 | -0.175 | -0.180 | -0.044 | -0.043 - = CFormatted: Font color: Text 1
compared to ERAS- (0.060) (0.061) | (0.003) | (0.003) | (0.028) | (0.028) | (0.215) | (0.221) | (0.065) | (0.065)
Land
Snow cover fraction 0.114 0.077 0.000 | -0.001 0.111 0.084 0.297 0.189 0.023 0.020 - = CFormatted: Font color: Text 1
(compared to (0.116) (0.082) | (0.001) | (0.001) | (0.116) | (0.090) | (0.298) | (0.195) | (0.029) | (0.027)
MODIS)
Surface albedo -0.012 -0.025 | -0.018 | -0.019 | 0.034 0.025 0.057 0.022 0.013 0.010 | -0.088 | -0.107 Formatted: Font color: Text 1
(compared to (0.065) (0.063) | (0.046) | (0.046) | (0.056) | (0.048) | (0.066) | (0.047) | (0.031) | (0.029) | (0.091) | (0.103)
MODIS) |
N . '(Formatted: Font color: Text 1
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