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Abstract 16 

We integrate the refactored community Noah-MP version 5.0 model with the NASA Land 17 

Information System (LIS) version 7.5.2 to streamline the synchronization, development, and 18 

maintenance of Noah-MP within LIS and to enhance their interoperability and applicability. We 19 

evaluate and compare 5-year (2018-2022) global and regional benchmark simulations of 20 

LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 for a set of key land surface variables. Both models 21 

capture the spatial and seasonal distributions of observed soil moisture, latent heat (LH), snow 22 

water equivalent (SWE), snow depth, snow cover, and surface albedo, with similar bias patterns. 23 

Both models tend to underestimate soil moisture over wet soil regimes and overestimate over dry 24 

soil regimes, with slightly higher (£ ~0.01 m3/m3 for global mean) soil moisture in LIS/Noah-25 

MPv5.0 than LIS/Noah-MPv4.0.1 across most regions. The model bias patterns of LH overall 26 

follow those of soil moisture, while LIS/Noah-MPv5.0 has a lower LH across many non-polar 27 

regions than LIS/Noah-MPv4.0.1, which reduces the global mean LH bias from 0.99 W/m2 to -28 

0.39 W/m2. The model SWE bias patterns are dominated by the precipitation and temperature 29 

forcing uncertainties, with slightly lower SWE values in LIS/Noah-MPv5.0 (global mean bias of 30 

-13.2 mm) than LIS/Noah-MPv4.0.1 (global mean bias of -10.1 mm). The model bias patterns of 31 
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snow depth generally follow those of SWE. LIS/Noah-MPv4.0.1 consistently overestimates snow 36 

cover globally with a mean bias of 0.11, while LIS/Noah-MPv5.0 effectively reduces the 37 

overestimates across the global snowpacks with a mean bias of 0.07 because of updated snow 38 

cover parameters. Both models show widespread overestimates of surface albedo over mid-latitude 39 

and high-latitude regions but significant underestimates in the Sahara Desert and Antarctica. 40 

Overall, LIS/Noah-MPv5.0 outperforms or is similar to LIS/Noah-MPv4.0.1 in the evaluated land 41 

surface variables, except for slight degradation in simulated surface soil moisture and SWE. This 42 

study reveals possible model deficiencies, motivates future improvements in coupled canopy-43 

snowpack-soil processes and input soil data, and points to the importance of considering 44 

observational and forcing data uncertainties in model evaluation. 45 

 46 

 47 

1. Introduction 48 

 Land processes play a profound role in the Earth and climate systems through altering 49 

surface water and energy balances and feedback to the atmosphere (Fisher and Koven, 2020; Blyth 50 

et al., 2021). Earth’s land surface provides important boundary conditions for atmospheric 51 

processes and climate/weather predictions particularly at the subseasonal-to-seasonal (S2S) time 52 

scale (Koster and Walker, 2015; Benson and Dirmeyer, 2023). Furthermore, as climate changes, 53 

increasing climate/weather extremes (e.g., drought, flood, heatwave, and fire) and food-water 54 

security issues (e.g., agricultural production and irrigation management) are happening at the land 55 

surface, triggering key crises for the society (Sillmann et al., 2017; AghaKouchak et al., 2020). To 56 

tackle these critical land-related environmental issues, accurate land modeling systems are needed. 57 

 There have been substantial efforts in the past decades to develop and improve various land 58 

modeling systems (e.g., Dickinson et al., 1993; Liang et al., 1994; Chen et al., 1997; Ek et al., 59 

2003; Oleson et al., 2010; Best et al., 2011; Niu et al., 2011; Haverd et al., 2018). Among them, 60 

the NASA Land Information System (LIS) is a widely used, established open-source framework 61 

for high performance land surface and terrestrial hydrology modeling as well as data assimilation 62 

(DA) of satellite and ground-based observations (Kumar et al., 2006; Peters-Lidard et al., 2007; 63 

Kumar et al., 2008a). The LIS system integrates different land surface models (LSMs), satellite 64 

and ground observations, and advanced computing and data management tools, to enable an 65 

interoperable environment that is applicable across different spatial and temporal scales. Various 66 
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model developments and applications using LIS have been conducted in the past decade, such as 67 

coupling with atmospheric models to improve weather predictions (Kumar et al., 2008b; Wu et al., 68 

2016), DA of observed vegetation, snow, terrestrial water storage, albedo, and soil conditions to 69 

improve land surface modeling (Liu et al., 2015; Santanello et al., 2016; Kumar et al., 2016; Kumar 70 

et al., 2019; Kumar et al., 2020), and applications for hydrological predictions (Arsenault et al., 71 

2020), food security (Hazra et al., 2023), and land analysis (Nie et al., 2024).  72 

LIS allows the use of an ensemble of LSMs, such as Noah (Chen et al., 1997; Ek et al., 73 

2003), Noah-MP (Niu et al., 2011), CLM (Oleson et al., 2010), VIC (Liang et al., 1994), JULES 74 

(Best et al., 2011), and CABLE (Haverd et al., 2018). Among them, Noah-MP is one of the most 75 

commonly used state-of-the-art LSMs in the world (He et al., 2023a). Built upon the Noah LSM, 76 

Noah-MP has significant enhancements in representations of canopy-snow-soil-hydrology 77 

processes and interactions as well as capabilities of modeling human activity impacts (e.g., crop 78 

dynamics, irrigation dynamics, tile drainage, and urbanization). The multi-parameterization 79 

options of Noah-MP further allow for uncertainty analysis and model performance 80 

optimization/calibration based on multi-physics model ensembles (Li et al., 2020). Noah-MP has 81 

been serving as a key land component of various research and operational weather and 82 

hydroclimate models, such as the NOAA Unified Forecast System (UFS), the Weather Research 83 

and Forecasting (WRF) model, the U.S. National Water Model (NWM), the Model for Prediction 84 

Across Scales (MPAS), the Korean Integrated Model (KIM), and the Chinese Global-to-Regional 85 

Integrated Forecast System (GRIST). Because of its advantages, Noah-MP has been applied in 86 

numerous applications, including high-resolution climate modeling (Liu et al., 2017; Rasmussen 87 

et al., 2023), vegetation and soil DA (Kumar et al., 2019; Xu et al., 2021), climate extremes 88 

(Arsenault et al., 2020; Kumar et al., 2021; Abolafia-Rosenzweig et al., 2022a, 2023, 2024a), 89 

snowpack and hydrology (He et al., 2019; Jiang et al., 2020; Hazra et al., 2023), agriculture and 90 

groundwater (Barlage et al., 2021; Zhang et al., 2023, 2025), and urban climate (Xue et al., 2024, 91 

2025).  92 

Recently, the community Noah-MP has undergone a substantial code modernization effort 93 

(version 5.0) to improve its modularity and interoperability (He et al., 2023b), with many physics 94 

updates and bug fixes compared to the versions 3.6 and 4.0.1 in LIS. These two earlier Noah-MP 95 

versions in the current LIS (version 7.5.2) were implemented by manually replicating the Noah-96 

MP source code and updating LIS/Noah-MP interface and drivers, which does not allow easy 97 
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model upgrades and hence leads to a long-delayed version update compared to the community 98 

Noah-MP. Thus, in this effort, we describe the streamlining of the development and maintenance 99 

of Noah-MP in LIS to enable the seamless integration between LIS and the community Noah-MP 100 

version to further enhance the interoperability and applicability of both models. Specifically, we 101 

couple the refactored community Noah-MPv5.0 with the LIS framework through the GitHub 102 

submodule mechanism accompanied by developing a new LIS/Noah-MP interface, which 103 

provides a direct, automatic link between the two models’ source codes. This integration will allow 104 

easy code updates, synchronization, and maintenance for the coupled LIS/Noah-MP framework. 105 

The second goal of this study is to evaluate and compare global and regional benchmark 106 

simulations between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 for key land surface conditions. 107 

Such systematic benchmarking is needed to examine the realism of LIS/Noah-MP model 108 

simulations, quantify the gaps between modeling and observations, and identify key processes for 109 

future model enhancements. This study is a step toward establishing a “scorecard” type of practice 110 

for LSMs. 111 

 112 

2. Model descriptions and simulations 113 

2.1 NASA LIS 114 

 The LIS system is a land surface hydrology digital twin environment, with the development 115 

led by the Hydrological Sciences Laboratory at NASA's Goddard Space Flight Center. Because of 116 

its extensible and flexible software infrastructure, LIS allows customized land DA systems and 117 

multiple LSMs to be integrated, assembled, and reconfigured easily using shared plugins and 118 

standard interfaces. Currently, LIS is the land component for several Earth system models, such 119 

as the NASA Unified WRF (NU-WRF) model, and the key component of several land DA system 120 

(LDAS) such as Global LDAS (GLDAS), North American LDAS (NLDAS), the Famine Early 121 

Warning Systems Network (FEWS NET) LDAS (FLDAS), and the operational land DA analysis 122 

environment at the U.S. Air Force Weather (Eylander et al., 2022). 123 

 Specifically, the LIS software suite consists of three main components: (1) Land Data 124 

Toolkit (LDT; Arsenault et al., 2018), which handles the data-related requirements of LIS 125 

including land surface parameter processing, geospatial transformations, consistency checks, data 126 

assimilation preprocessing, and forcing bias correction; (2) Land Information System (LIS), which 127 

is the modeling system that encapsulates land and hydrological models, DA algorithms, 128 
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optimization and uncertainty estimation algorithms, and high performance computing (HPC) 130 

support; and (3) Land Verification Toolkit (LVT; Kumar et al., 2012), which is a model 131 

verification and benchmarking environment that can be used for enabling rapid prototyping and 132 

evaluation of model simulations by comparing against a large suite of in-situ, remote sensing, and 133 

model and reanalysis data products. More details can be found at the LIS website: 134 

https://lis.gsfc.nasa.gov/ (last access: November 25, 2024). In this study, we use the LIS version 135 

7.5.2 (latest version at the time of this work) coupled with Noah-MP in benchmark simulations 136 

and the LVT for model evaluation. 137 

 138 

2.2 Integration of refactored Noah-MPv5.0 with LIS  139 

 In this study, we couple the LIS system with the refactored community Noah-MPv5.0 140 

model through the GitHub submodule mechanism to streamline the synchronization of Noah-MP 141 

between the community version and the LIS version, which will simplify future code updates and 142 

maintenance of Noah-MP within LIS. The GitHub submodule mechanism 143 

(https://gist.github.com/gitaarik/8735255) allows (1) separated source code maintenance and 144 

updates for Noah-MP (by the Noah-MP team) and LIS (by the NASA/LIS team), and (2) 145 

convenient updates of Noah-MP inside LIS by updating the submodule link to a newer Noah-MP 146 

GitHub tag/branch version. Compared to the Noah-MPv4.0.1 model in LIS, the community Noah-147 

MPv5.0 model includes several important updates and new features: (1) improved modularization 148 

with modern Fortran code structures, (2) new hierarchical model data types and structures, (3) 149 

enhanced subroutine interface and calling workflow based on the modularization and new data 150 

types, (4) new self-explanatory model variable and module names, and (5) model bug fixes and 151 

new physics schemes. The key bug fixes include updates in vegetation properties (e.g., bug fixes 152 

in vegetation fraction scaling treatments) and processes (e.g., bug fixes in canopy wind absorption 153 

parameters) as well as snowpack processes. The new physics schemes include improved 154 

parameters related to various snowpack processes, a new wet-bulb temperature-based snow-rain 155 

partitioning scheme, a new snow meltwater retention process, a new dynamic irrigation scheme, 156 

updated crop growth parameters, a new tile drainage scheme, a new canopy heat storage treatment, 157 

additional runoff schemes, and new capabilities to control the soil process timestep. More details 158 

of Noah-MPv5.0 features can be found in He et al. (2023b). The detailed Noah-MP physics and 159 

formulations are described in He et al. (2023c). The major code changes from Noah-MPv4.0.1 to 160 
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Noah-MPv5.0 are described in the model release notes available at: 161 

https://github.com/NCAR/noahmp/blob/master/RELEASE_NOTES.md (last access: November 162 

25, 2024). The key components we modify to couple LIS and Noah-MPv5.0 are the LIS/Noah-MP 163 

land model driver interface to create new input/output variable mapping, and the LIS initialization 164 

and master driver parts to leverage new modularized Noah-MP code modules. By taking advantage 165 

of the plugin and standard interfaces in LIS, the Noah-MPv5.0 model is also connected to other 166 

components of LIS, such as data assimilation, river routing, etc. 167 

 168 

2.3 LIS/Noah-MP benchmark simulations 169 

 We conduct and evaluate two sets of benchmark simulations with LIS coupled with Noah-170 

MP, including one set of regional simulations over the contiguous U.S. (CONUS) and one set of 171 

global simulations. Each set of the simulations includes one LIS/Noah-MPv4.0.1 simulation and 172 

one LIS/Noah-MPv5.0 simulation to compare their performance and quantify differences between 173 

versions. The regional simulations are conducted for 10 years (2013-2022) with a 5-year spin-up, 174 

which are driven by the hourly 0.125° North American Land Data Assimilation System (NLDAS-175 

2) atmospheric forcing data (i.e., precipitation, surface temperature, surface pressure, surface 176 

specific humidity, wind speed, downward surface shortwave and longwave radiation). More 177 

details of NLDAS-2 data are described in Xia et al. (2012). The global simulations are conducted 178 

for 5 years (2018-2022) with a 5-year spin-up, and are driven by the global hourly ~10-km U.S. 179 

Air Force (USAF) atmospheric forcing reanalysis data (Kemp et al., 2022). More details of the 180 

forcing data (formerly known as AGRMET, AGRiculture METeorology) are described in 181 

Eylander et al. (2022). For all the simulations, the static land type map is from the Moderate 182 

Resolution Imaging Spectroradiometer (MODIS) satellite data (Figure 1), while the MODIS 183 

monthly climatological (2000-2008) leaf area index (LAI) and stem area index (SAI) are used 184 

(Yang et al., 2011). The static soil type map is from the State Soil Geographic (STATSGO)/Food 185 

and Agriculture Organization (FAO) soil database (FAO, 1991). For both LIS/Noah-MPv4.0.1 and 186 

LIS/Noah-MPv5.0 simulations, we adopt the same default Noah-MP physics options (see 187 

Appendix Table A1), which have been commonly used in previous Noah-MP applications to 188 

produce skilled model performance (He et al., 2023b). Model evaluations for both the regional and 189 

global simulations are focused on the 5-year period of 2018-2022. 190 

Deleted: coupled LIS/Noah-MP 191 



 7 

 192 

Figure 1. MODIS land cover maps used for LIS/Noah-MP (a) global and (b) CONUS benchmark 193 

simulations.  194 

 195 

3. Reference data for model evaluation 196 

 We use a suite of reference datasets to evaluate the LIS/Noah-MP simulations of key land 197 

surface variables over the globe and CONUS, including soil moisture, latent heat flux (LH), snow 198 

water equivalent (SWE), snow depth, snow cover fraction, and surface albedo. Specifically, for 199 

surface soil moisture, we use the global daily 36-km Soil Moisture Active Passive (SMAP) version 200 

8 Level 3 satellite data (O'Neill et al., 2021; https://nsidc.org/data/spl3smp/versions/8, last access: 201 

November 25, 2024). We also use the surface and root-zone soil moisture from the International 202 

Soil Moisture Network (ISMN) ground station hourly measurements (Dorigo et al., 2021; 203 

https://ismn.earth/en/, last access: November 25, 2024). The data quality control is done via LVT. 204 

For LH, we use the global 0.25° daily Global Land Evaporation Amsterdam Model (GLEAMv3.8a) 205 

reanalysis data (Miralles et al., 2011; https://www.gleam.eu/, last access: November 25, 2024) and 206 

the global 0.05° hourly FLUXCOM-X-BASE observation-based data (Nelson et al., 2024; 207 

https://gitlab.gwdg.de/fluxcom/fluxcomxdata, last access: July 6, 2025). For SWE and snow depth, 208 
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we use the daily 1-km NOAA National Weather Service's National Operational Hydrologic 210 

Remote Sensing Center (NOHRSC) Snow Data Assimilation System (SNODAS) data (Barrett, 211 

2003; https://nsidc.org/data/g02158/, last access: November 25, 2024) and the global 0.1° ERA-5 212 

land (ERA5-Land) reanalysis data (Muñoz-Sabater et al., 2021; https://www.ecmwf.int/en/era5-213 

land, last access: November 25, 2024). For snow cover fraction, we use the global daily 500-m 214 

MODIS Terra Snow Cover version 6 data (Hall and Riggs, 2016; 215 

https://nsidc.org/data/mod10a1/versions/6, last access: November 25, 2024). For surface albedo, 216 

we use the global daily 0.05° MODIS Terra/Aqua merged data (Schaaf and Wang, 2021; 217 

https://lpdaac.usgs.gov/products/mcd43c3v061/, last access: November 25, 2024). For model 218 

evaluation, we re-map the reference gridded datasets to the LIS/Noah-MP model grids or bilinearly 219 

interpolate model values to in-situ measurement locations via LVT, which will likely introduce 220 

uncertainties to model evaluations. We also note that those reference datasets have their own 221 

uncertainties, which may impact model evaluation results. 222 

 223 

4. Results and discussions 224 

4.1 Soil moisture 225 

 Figure 2 shows the global 5-year (2018-2022) mean surface soil moisture comparison 226 

between SMAP retrievals and LIS/Noah-MP simulations driven by the USAF forcing. Both 227 

LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations capture the spatial and seasonal 228 

distributions of surface soil moisture globally (Figures 2 and S1), with similar bias patterns. Both 229 

simulations tend to underestimate in wet soil regimes (e.g., northern and eastern Canada, Amazon 230 

forests, northern Europe, tropical Africa, and southeast Asia) and overestimate in dry soil regimes 231 

(e.g., western US, west and east coasts of South America, southern and northern Africa, mid-232 

latitudinal Eurasia, and Australia), partially caused by the USAF precipitation forcing bias (Figure 233 

S2), except for northern Canada and southern Brazil which requires further investigation. We note 234 

that SMAP data quality is less reliable over regions with thick vegetation (e.g., Southeast US, 235 

Amazon rainforest, Congo Basin). The evapotranspiration (ET) biases caused by model 236 

deficiencies in plant hydraulics and root water uptake processes may also contribute to the soil 237 

moisture bias, as revealed by previous Noah-MP studies (Niu et al., 2020; Li et al., 2021). These 238 

global model bias patterns are consistent across all seasons (Figure S1). Due to the offset of model 239 

overestimates and underestimates across different regions, the global annual mean model bias is 240 
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small (0.003 m3/m3 for LIS/Noah-MPv4.0.1 and 0.008 m3/m3 for LIS/Noah-MPv5.0). Overall, 249 

LIS/Noah-MPv5.0 shows consistently higher surface soil moisture than LIS/Noah-MPv4.0.1 but 250 

the difference is small (Figure 2f), which is expected since there is no direct soil physics update 251 

but changes in snowpack (e.g., snow cover parameter updates) and vegetation processes (e.g., 252 

vegetation fraction scaling treatments) from Noah-MPv4.0.1 to Noah-MPv5.0. 253 

 254 

 255 

Figure 2. Surface soil moisture (m3/m3) comparison between SMAP retrievals and LIS/Noah-MP 256 

simulations driven by USAF forcing globally averaged during 2018-2022: (a) SMAP data, (b) 257 

LIS/Noah-MPv4.0.1 simulation, (c) LIS/Noah-MPv5.0 simulation, (d) LIS/Noah-MPv4.0.1 biases 258 

(model minus SMAP), (e) LIS/Noah-MPv5.0 biases (model minus SMAP), and (f) differences 259 

between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations. Grids with statistically 260 

significant differences (p < 0.05) are shown with gray dots in panels (d)-(f). The statistical 261 

significance over each grid is computed using daily time series and the t-test method. The global 262 

mean value is also provided in the lower right of each panel. See Figure S1 for seasonal plots. 263 

 264 

 Further model evaluation with the ISMN global in-situ measurements indicates systematic 265 

model overestimates of surface soil moisture at most sites (Figure 3), particularly over the CONUS 266 

and Europe that have very dense measurement networks, with global mean biases of 0.062 m3/m3 267 

and 0.067 m3/m3 for LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0, respectively. This bias pattern 268 

is consistent with the SMAP comparisons (Figure 2). LIS/Noah-MPv5.0 shows slightly (0.005 269 

m3/m3) higher mean surface soil moisture than LIS/Noah-MPv4.0.1 across all sites (Figure 3f). 270 

We further compute the soil moisture anomaly correlation between the model simulations and 271 
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ISMN observations following Navari et al. (2024), where the anomaly is computed as daily 273 

anomaly by subtracting monthly mean values. Both models show similar anomaly correlation 274 

spatial patterns (Figure 3g-h), with a mean value of ~0.53 and higher values in North America and 275 

Europe than in Asia and Africa. Compared to the surface soil moisture, the root-zone soil moisture 276 

shows similar spatial distributions (Figure 4a-c), model bias patterns (Figure 4d-e), and anomaly 277 

correlation patterns (Figure 4g-i) across most ISMN sites, with global annual mean biases of 0.039 278 

m3/m3 and 0.050 m3/m3 for LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0, respectively. 279 

 280 

 281 

Figure 3. Surface soil moisture (m3/m3) comparison between ISMN station measurements and 282 

LIS/Noah-MP simulations driven by USAF forcing globally averaged during 2018-2022: (a) 283 

ISMN data, (b) LIS/Noah-MPv4.0.1 simulation, (c) LIS/Noah-MPv5.0 simulation, (d) LIS/Noah-284 

MPv4.0.1 biases (model minus ISMN), (e) LIS/Noah-MPv5.0 biases (model minus ISMN), (f) 285 

differences between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations, (g) LIS/Noah-286 

MPv4.0.1 anomaly correlation, (h) LIS/Noah-MPv5.0 anomaly correlation, and (i) differences 287 

between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 anomaly correlation. The global mean value 288 

is also provided in the lower right of each panel. 289 

 290 
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 292 

Figure 4. Same as Figure 3, but for root-zone soil moisture (m3/m3) evaluation. 293 

 294 

Over the CONUS, both LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations driven by 295 

the NLDAS-2 forcing capture the spatial distribution of SMAP surface soil moisture with similar 296 

spatial bias patterns (Figure 5), which show model underestimates over wet soil regimes (e.g., the 297 

northwest coast and southeast and northeast U.S.) and overestimates over dry soil regimes (e.g., 298 

western and central U.S.). This is consistent with the global evaluation albeit using a different 299 

forcing dataset. LIS/Noah-MPv5.0 also produces consistently but slightly (0.007 m3/m3) higher 300 

soil moisture than LIS/Noah-MPv4.0.1 using the NLDAS-2 forcing (Figure 5f), similar to the 301 

results using the USAF forcing, revealing a robust difference pattern between the two model 302 

versions. The comparison with ISMN surface soil moisture data over the CONUS shows similar 303 

model bias patterns with those evaluated against SMAP (Figure 6), except for the northwest coast 304 

and Florida, where ISMN indicates dry soil regimes that are opposite to SMAP. This points to the 305 

importance of considering observational data uncertainty in model evaluation. The CONUS mean 306 

biases across all ISMN sites are 0.041 m3/m3 and 0.047 m3/m3 for LIS/Noah-MPv4.0.1 and 307 

LIS/Noah-MPv5.0, respectively. The CONUS mean anomaly correlation is about 0.6 for both 308 

models (Figure 6g-h), with slightly lower values particularly over many western U.S. sites for 309 

LIS/Noah-MPv5.0 than LIS/Noah-MPv4.0.1 (Figure 6i). The model bias pattern of root-zone soil 310 

moisture is similar to that of surface soil moisture but with larger underestimates at some central 311 

U.S. sites (Figure 7). 312 
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 314 

 315 

Figure 5. Same as Figure 2, but for evaluation of LIS/Noah-MP simulations driven by the 316 

NLDAS-2 forcing over the CONUS averaged during 2018-2022. 317 

 318 

 319 

Figure 6. Same as Figure 3, but for evaluation of LIS/Noah-MP simulated surface soil moisture 320 

(m3/m3) driven by the NLDAS-2 forcing over the CONUS averaged during 2018-2022. 321 

 322 
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 325 

Figure 7. Same as Figure 4, but for evaluation of LIS/Noah-MP simulated root-zone soil moisture 326 

(m3/m3) driven by the NLDAS-2 forcing over the CONUS averaged during 2018-2022. 327 

 328 

4.2 Latent heat flux 329 

 Figure 8 shows the global 5-year (2018-2022) mean latent heat (LH) flux comparison 330 

between the GLEAM data and LIS/Noah-MP simulations driven by the USAF forcing. Both 331 

LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations capture the spatial and seasonal LH 332 

distributions with similar bias patterns (Figures 8 and S3). The model LH biases are generally 333 

consistent with the surface soil moisture bias patterns (Figure 2), with the underestimated 334 

(overestimated) LH over regions with the underestimated (overestimated) soil moisture, except for 335 

northern Eurasia and northwest North America (Alaska and west Canada). Although LIS/Noah-336 

MPv5.0 has a slightly higher soil moisture than LIS/Noah-MPv4.0.1 (Figures 2-4), it shows a 337 

lower LH (by up to ~15 W/m2) over some tropical and mid-latitude regions with the largest 338 

difference in the tropics, which reduces the global mean LH bias from 0.99 W/m2 (LIS/Noah-339 

MPv4.0.1) to -0.39 W/m2 (LIS/Noah-MPv5.0). This difference in the two Noah-MP versions is 340 

mainly due to the code updates related to vegetation properties (e.g., bug fixes in vegetation 341 

fraction scaling treatments) and processes (e.g., added canopy heat storage treatment) which alters 342 

ET and LH (see Section 5 for discussion). The minor LH difference (up to ~5 W/m2) between the 343 

two model versions over the Antarctica and Greenland is mainly caused by updates in the glacier 344 

scheme that uses snowpack physics consistent with other land snowpacks in LIS/Noah-MPv5.0. 345 
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We note that the LH (or ET) reference data product also has nontrivial uncertainties which may 358 

confound model evaluations here (see Section 5 for detail). 359 

 360 

 361 

Figure 8. Latent heat flux (W/m2) comparison between the GLEAM data and LIS/Noah-MP 362 

simulations driven by USAF forcing globally averaged during 2018-2022: (a) GLEAM3.8a data, 363 

(b) LIS/Noah-MPv4.0.1 simulation, (c) LIS/Noah-MPv5.0 simulation, (d) LIS/Noah-MPv4.0.1 364 

biases (model minus GLEAM), (e) LIS/Noah-MPv5.0 biases (model minus GLEAM), and (f) 365 

differences between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations. Grids with 366 

statistically significant differences (p < 0.05) are shown with gray dots in panels (d)-(f). The 367 

statistical significance over each grid is computed using daily time series and the t-test method. 368 

The global mean value is also provided in the lower right of each panel. See Figure S3 for seasonal 369 

plots. 370 

 371 

Further CONUS evaluation of model simulations driven by the NLDAS-2 forcing also 372 

reveals that model LH bias patterns (Figure 9) generally follow the soil moisture bias patterns 373 

(Figure 5) except for many western U.S. mountainous regions, where both model simulations have 374 

very small LH biases despite the overestimation of soil moisture (Figures 5-7). Compared to 375 

LIS/Noah-MPv4.0.1, LIS/Noah-MPv5.0 shows a lower LH over southwest U.S. and eastern U.S. 376 

by up to about 10 W/m2, which degrades the CONUS-mean model bias from -0.21 W/m2 to -2.30 377 

W/m2. We note that GLEAM is a model-based reanalysis data that has its own uncertainty. 378 
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 382 

 383 

Figure 9. Same as Figure 8 but for evaluation of LIS/Noah-MP simulations driven by the NLDAS-384 

2 forcing over the CONUS averaged during 2018-2022. 385 

 386 

4.3 Snow water equivalent (SWE) 387 

 Figure 10 shows the global 5-year (2018-2022) mean SWE comparison for seasonal 388 

snowpack between ERA5-Land data and LIS/Noah-MP simulations driven by the USAF forcing. 389 

Both LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations capture the spatial and seasonal 390 

SWE distributions with similar bias patterns (Figures 10 and S4). Both simulations tend to have 391 

much lower SWE (by up to 50 mm) in the Himalayas and west Canada than ERA5-Land, with 392 

slightly less SWE in eastern Russia, partially driven by overestimated surface temperature (Section 393 

4.7). Both simulations have higher SWE than ERA5-Land in most other mid-latitude and high-394 

latitude snowpacks, mainly driven by overestimated precipitation (Figure S2) and underestimated 395 

surface temperature (Figure S8). The global annual mean SWE biases are -10.1 mm and -13.2 mm 396 

for LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0, respectively. Overall, LIS/Noah-MPv5.0 shows 397 

lower SWE than LIS/Noah-MPv4.0.1, particularly in spring when differences reach up to 25 mm 398 

(Figures 10f and S4) due to the updated snow cover parameters (He et al., 2021) that reduces snow 399 

cover fraction (Section 4.5) and enhances snow ablation particularly in spring through the positive 400 

surface albedo feedback. We note that the ERA5-Land SWE data also has uncertainties, which 401 

tends to overestimate SWE over mountainous areas (Monteiro and Morin, 2023). 402 

 403 

Deleted: 404 

Deleted: and compaction 405 



 16 

 406 

Figure 10. SWE (mm) comparison between ERA5-Land and LIS/Noah-MP simulations driven by 407 

USAF forcing globally averaged during 2018-2022: (a) ERA5-Land data, (b) LIS/Noah-MPv4.0.1 408 

simulation, (c) LIS/Noah-MPv5.0 simulation, (d) LIS/Noah-MPv4.0.1 biases (model minus 409 

ERA5-Land), (e) LIS/Noah-MPv5.0 biases (model minus ERA5-Land), and (f) differences 410 

between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations. Grids with statistically 411 

significant differences (p < 0.05) are shown with gray dots in panels (d)-(f). The statistical 412 

significance over each grid is computed using daily time series and the t-test method. The global 413 

mean value is also provided in the lower right of each panel. See Figure S4 for seasonal plots. 414 

 415 

 The CONUS-wide regional evaluation between SNODAS and LIS/Noah-MP simulations 416 

driven by the NLDAS-2 forcing indicates large SWE underestimates by up to 50 mm or more in 417 

high-elevation mountains in the western U.S. and very small biases across other CONUS regions 418 

(Figure 11), mainly due to the underestimated mountain precipitation in NLDAS-2 (He et al., 419 

2019). The CONUS mean SWE biases are -4.2 mm and -5.0 mm for LIS/Noah-MPv4.0.1 and 420 

LIS/Noah-MPv5.0, respectively, with slightly lower SWE in LIS/Noah-MPv5.0 than LIS/Noah-421 

MPv4.0.1 over most CONUS snowpacks (Figure 11f). 422 

 423 
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 425 

Figure 11. Same as Figure 10 but for SWE (mm) comparison between SNODAS and LIS/Noah-426 

MP simulations driven by the NLDAS-2 forcing over the CONUS averaged during 2018-2022. 427 

 428 

4.4 Snow depth 429 

Figure 12 shows the global 5-year (2018-2022) mean snow depth comparison for seasonal 430 

snowpack between ERA5-Land data and LIS/Noah-MP simulations driven by the USAF forcing. 431 

Both LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations reproduce the spatial and seasonal 432 

snow depth distributions with similar bias patterns (Figures 12 and S5). The snow depth bias 433 

pattern generally follows the SWE bias pattern (Figure 10) with global annual mean biases of 434 

~0.06 m for both simulations, except for the lower snow depth over some regions with higher SWE 435 

in northern Canada and northern Russia compared to ERA5-Land. The snow depth difference 436 

(global mean of 0.003 m) between LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 is small (Figure 437 

12f).  438 

 439 
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 441 

Figure 12. Snow depth (m) comparison between ERA5-Land and LIS/Noah-MP simulations 442 

driven by USAF forcing globally averaged during 2018-2022: (a) ERA5-Land data, (b) LIS/Noah-443 

MPv4.0.1 simulation, (c) LIS/Noah-MPv5.0 simulation, (d) LIS/Noah-MPv4.0.1 biases (model 444 

minus ERA5-Land), (e) LIS/Noah-MPv5.0 biases (model minus ERA5-Land), and (f) differences 445 

between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations. Grids with statistically 446 

significant differences (p < 0.05) are shown with gray dots in panels (d)-(f). The statistical 447 

significance over each grid is computed using daily time series and the t-test method. The global 448 

mean value is also provided in the lower right of each panel. See Figure S5 for seasonal plots. 449 

 450 

 The CONUS-wide regional snow depth evaluation between SNODAS and LIS/Noah-MP 451 

simulations driven by the NLDAS-2 forcing also reveals a similar bias pattern (Figure 13) as the 452 

SWE evaluation, with largely underestimated snow depth over most western U.S. high mountains 453 

due to the underestimated SWE. The CONUS mean snow depth biases are -0.013 m and -0.015 m 454 

for LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0, respectively, with very minor differences 455 

between the two simulations (Figure 13f). 456 
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 459 

Figure 13. Same as Figure 12, but for snow depth (m) comparison between SNODAS and 460 

LIS/Noah-MP simulations driven by the NLDAS-2 forcing over the CONUS averaged during 461 

2018-2022. 462 

 463 

4.5 Snow cover fraction 464 

Although LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations capture the spatial and 465 

seasonal snow cover distributions, they systematically overestimate snow cover globally relative 466 

to MODIS observations (Figures 14 and S6). This high bias in snow cover is particularly 467 

outstanding considering the underestimated SWE and snow depth (Figures 10 and 12), which has 468 

been a long-standing problem in Noah-MP (He et al., 2019; Jiang et al., 2020; Zhou et al., 2023). 469 

Specifically, LIS/Noah-MPv4.0.1 tends to overestimate snow cover across the global snowpack 470 

by up to 0.3 with a global mean bias of 0.11, while LIS/Noah-MPv5.0 reduces the snow cover 471 

overestimate particularly in northern high-latitudes and the Tibetan Plateau, which effectively 472 

reduces the global mean bias to 0.07. This bias reduction is attributable to the updated snow cover 473 

parameters in LIS/Noah-MPv5.0 (He et al., 2021). However, LIS/Noah-MPv5.0 still 474 

systematically overestimates snow cover over most mid-latitude and high-latitude snowpacks, 475 

which suggests the need for improved snowpack physics in Noah-MP (see Section 6 for 476 

discussion). The spatial heterogeneity of the snow cover change magnitude caused by the snow 477 

cover parameter updates may be due to several reasons: (1) The snow cover parameter updates are 478 

more effective for regions with snow depth less than about 0.3 m, since this is the most sensitive 479 

snow depth regime for snow cover calculations based on the parameterization used in Noah-MP 480 

(He et al., 2019); (2) The snow cover parameter updates are vegetation type dependent, so the 481 
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effectiveness of this change also depends on vegetation types; (3) Due to the positive surface 485 

albedo feedback, the snow cover change is more effective over ablation regions and periods; (4) 486 

The snow cover impact is further complicated by the spatial heterogeneity of SWE biases 487 

(Abolafia-Rosenzweig et al., 2025). 488 

 489 

 490 

Figure 14. Snow cover fraction comparison between MODIS and LIS/Noah-MP simulations 491 

driven by the USAF forcing globally averaged during 2018-2022: (a) MODIS data, (b) LIS/Noah-492 

MPv4.0.1 simulation, (c) LIS/Noah-MPv5.0 simulation, (d) LIS/Noah-MPv4.0.1 biases (model 493 

minus MODIS), (e) LIS/Noah-MPv5.0 biases (model minus MODIS), and (f) differences between 494 

LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations. Grids with statistically significant 495 

differences (p < 0.05) are shown with gray dots in panels (d)-(f). The statistical significance over 496 

each grid is computed using daily time series and the t-test method. The global mean value is also 497 

provided in the lower right of each panel. See Figure S6 for seasonal plots. 498 

 499 

The CONUS-wide regional evaluation between MODIS and LIS/Noah-MP simulations 500 

driven by the NLDAS-2 forcing also reveals a consistently high bias in snow cover in LIS/Noah-501 

MPv4.0.1, particularly over western U.S. mountains, with a CONUS mean bias of 0.055 (Figure 502 

15). LIS/Noah-MPv5.0 effectively removes the snow cover overestimates in snowpacks outside 503 

high-elevation mountains in the western U.S., which halves the CONUS mean bias. The remaining 504 

snow cover overestimate in western U.S. high mountains, which notably correspond to the regions 505 

with underestimated SWE and snow depth (Figures 11 and 13), needs further investigation. 506 

 507 
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 509 

Figure 15.  Same as Figure 14, but for evaluation of LIS/Noah-MP simulations driven by the 510 

NLDAS-2 forcing over the CONUS averaged during 2018-2022. 511 

 512 

4.6 Surface albedo 513 

Figure 16 shows the global 5-year (2018-2022) mean surface albedo comparison between 514 

MODIS and LIS/Noah-MP simulations driven by the USAF forcing. Both LIS/Noah-MPv4.0.1 515 

and LIS/Noah-MPv5.0 simulations capture the spatial and seasonal surface albedo distributions 516 

with similar bias patterns (Figures 16 and S7). LIS/Noah-MPv4.0.1 shows consistently 517 

overestimated surface albedo over most global regions by up to 0.05 or more, except for significant 518 

underestimates in the Sahara Desert and Antarctica which dominate the global mean bias (-0.02). 519 

This bias pattern is consistent across different seasons (Figure S7). Compared to LIS/Noah-520 

MPv4.0.1, LIS/Noah-MPv5.0 shows an overall reduction of surface albedo across mid-latitudes 521 

and high-latitudes due to lower snow cover (Section 4.5), which reduces the high bias of surface 522 

albedo particularly in the midlatitudes (Figure 16). The remaining albedo overestimates in 523 

LIS/Noah-MPv5.0 in the mid-latitude and high-latitude snowpacks are partially caused by the 524 

overestimated snow cover (Figure 14e) and also likely by the soil and vegetation albedo 525 

uncertainties. The systematic surface albedo underestimates in the Sahara Desert, Antarctica, and 526 

Greenland further indicate model biases in the background albedo for desert soil and glacier 527 

ice/snow albedo. 528 
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 531 

Figure 16. Surface albedo comparison between MODIS and LIS/Noah-MP simulations driven by 532 

USAF forcing globally averaged during 2018-2022: (a) MODIS data, (b) LIS/Noah-MPv4.0.1 533 

simulation, (c) LIS/Noah-MPv5.0 simulation, (d) LIS/Noah-MPv4.0.1 biases (model minus 534 

MODIS), (e) LIS/Noah-MPv5.0 biases (model minus MODIS), and (f) differences between 535 

LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations. Grids with statistically significant 536 

differences (p < 0.05) are shown with gray dots in panels (d)-(f). The statistical significance over 537 

each grid is computed using daily time series and the t-test method. The global mean value is also 538 

provided in the lower right of each panel. See Figure S7 for seasonal plots. 539 

 540 

The CONUS-wide regional evaluation between MODIS and LIS/Noah-MP simulations 541 

driven by the NLDAS-2 forcing also reveals a consistently high bias in surface albedo in 542 

LIS/Noah-MPv4.0.1 across the CONUS, except in some parts of southwest US (Figure 17), with 543 

a CONUS mean bias of 0.031. LIS/Noah-MPv5.0 effectively reduces the mean albedo bias to 544 

0.023 due to improved snow cover simulations (Figures 15f and 17f). The remaining albedo 545 

overestimates in the western U.S. is partially due to the snow cover bias (Figure 15e) and snow 546 

albedo bias (He et al., 2019; Abolafia-Rosenzweig et al., 2022b). The albedo overestimates in the 547 

rest of CONUS may be related to the model uncertainty in background soil and vegetation albedo 548 

(see Section 5 for discussion).  549 
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 552 

Figure 17. Same as Figure 16, but for evaluation of LIS/Noah-MP simulations driven by the 553 

NLDAS-2 forcing over the CONUS averaged during 2018-2022. 554 

 555 

5. Discussion on resulting differences in two LIS/Noah-MP model versions   556 

To summarize the evaluation metrics for all the investigated variables from both model 557 

simulations in this study, we adopted the International Land Model Benchmarking (ILAMBv2.7.2; 558 

Collier et al., 2018) package and applied it to our model simulations and reference datasets. Overall, 559 

the result (Figure 18) shows that LIS/Noah-MPv5.0 outperforms or is similar to LIS/Noah-560 

MPv4.0.1 globally in the key land surface variables evaluated in this study, except for slight 561 

degradation in simulated surface soil moisture and SWE. In addition, we summarized all the bias 562 

values for different seasons and regions for both model simulations in Tables 1 and 2. The slightly 563 

degraded surface soil moisture simulation in LIS/Noah-MPv5.0 mainly comes from the degraded 564 

performance over northern and southern mid-latitudes, while the slightly degraded SWE in 565 

LIS/Noah-MPv5.0 is mainly caused by the degraded performance in the northern high-latitudes 566 

(Table 1). The soil moisture and SWE differences between the two model simulations are primarily 567 

caused by the model updates in vegetation processes (added canopy heat storage and bug fix of 568 

vegetation fraction scaling) and improved snow cover parameters. 569 

 570 
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 573 

Figure 18. Scorecard-type comparison for LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 model 574 

performance in simulating key surface variables evaluated against the reference datasets used in 575 

this study based on the ILAMB tool. 576 

 577 

 578 

Table 1. Model evaluation metrics for LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations 579 
driven by the USAF forcing averaged during 2018-2022 on the global and regional scale. The 580 
values are the annual mean model bias (LIS/Noah-MP simulations minus reference datasets). The 581 
statistically significant difference between LIS/Noah-MP v4.0.1 and LIS/Noah-MPv5.0 582 
simulations (p < 0.05 using a t-test for daily time series) are marked as bold font. The values in the 583 
parentheses are the annual mean absolute model biases. The seasonal biases are shown in Tables 584 
S1-S4. 585 
 586 

 Global low latitude 
(30°S - 30°N) 

northern mid-
latitudes 

(30 - 60°N) 

northern high-
latitudes 
(>60°N) 

southern mid-
latitudes 

(30 - 60°S) 

southern high-
latitudes 
(>60°S) 

LIS/Noah-MP v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0 
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Surface soil 
moisture (m3/m3 

compared to SMAP) 

0.003 
(0.076) 

0.008 
(0.078) 

-0.009 
(0.065) 

-0.002 
(0.066) 

0.020 
(0.079) 

0.025 
(0.082) 

-0.013 
(0.093) 

-0.009 
(0.094) 

0.028 
(0.081) 

0.036 
(0.086) 

- - 

Surface Soil 
moisture (m3/m3 

compared to ISMN) 

0.062 
(0.078) 

0.067 
(0.082) 

0.027 
(0.061) 

0.036 
(0.067) 

0.062 
(0.079) 

0.068 
(0.082) 

0.119 
(0.121) 

0.121 
(0.123) 

0.049 
(0.062) 

0.051 
(0.062) 

- - 

Latent heat flux 
(W/m2 compared to 

GLEAM3.8a) 

0.992 
(6.802) 

-0.386 
(7.273) 

2.105 
(10.740) 

-2.759 
(11.601) 

0.752 
(7.994) 

-0.608 
(8.127) 

-4.122 
(5.541) 

-3.784 
(5.731) 

1.469 
(9.369) 

-0.271 
(9.627) 

2.992 
(3.105) 

3.668 
(3.692) 

Snow water 
equivalent (mm 

compared to ERA5-
Land) 

-10.123 
(22.444) 

-13.237 
(22.328) 

-0.845 
(0.951) 

-0.878 
(0.966) 

0.715 
(16.267) 

-1.349 
(15.898) 

-45.177 
(71.928) 

-56.181 
(72.276) 

-10.804 
(16.494) 

-10.471 
(16.311) 

- - 

Snow depth (m 
compared to ERA5-

Land) 

-0.059 
(0.076) 

-0.061 
(0.079) 

-0.003 
(0.003) 

-0.003 
(0.003) 

-0.019 
(0.051) 

-0.019 
(0.052) 

-0.231 
(0.255) 

-0.245 
(0.268) 

-0.040 
(0.050) 

-0.037 
(0.050) 

- - 

Snow cover fraction 
(compared to 

MODIS) 

0.112 
(0.113) 

0.069 
(0.090) 

0.001 
(0.003) 

0.000 
(0.002) 

0.149 
(0.151) 

0.118 
(0.122) 

0.234 
(0.235) 

0.108 
(0.183) 

0.020 
(0.027) 

0.015 
(0.023) 

- - 

Surface albedo 
(compared to 

MODIS) 

-0.018 
(0.061) 

-0.033 
(0.067) 

-0.016 
(0.047) 

-0.017 
(0.046) 

0.032 
(0.052) 

0.021 
(0.045) 

0.016 
(0.052) 

-0.024 
(0.072) 

0.017 
(0.034) 

0.013 
(0.032) 

-0.084 
(0.089) 

-0.100 
(0.102) 

 587 
 588 
Table 2. Model evaluation metrics for LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations 589 
driven by the NLDAS-2 forcing averaged over the CONUS during 2018-2022. The values are the 590 
mean model bias (LIS/Noah-MP simulations minus reference datasets). The statistically 591 
significant difference between LIS/Noah-MP v4.0.1 and LIS/Noah-MPv5.0 simulations (p < 0.05 592 
using a t-test for daily time series) are marked as bold font. The values in the parentheses are the 593 
mean absolute model biases. 594 
 595 

 Annual DJF MAM JJA SON 

LIS/Noah-MP v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0 

Surface soil 
moisture (m3/m3 

compared to SMAP) 

0.000 
(0.062) 

0.008 
(0.065)  

0.025 
(0.077) 

0.035 
(0.085) 

 

0.003 
(0.067) 

0.008 
(0.069) 

 

0.006 
(0.062) 

0.013 
(0.065) 

 

-0.010 
(0.058) 

-0.001 
(0.062) 

 

Surface Soil 
moisture (m3/m3 

compared to ISMN) 

0.041 
(0.065) 

0.047 
(0.068) 

0.041 
(0.075) 

0.051 
(0.080) 

0.024 
(0.066) 

0.029 
(0.067) 

0.043 
(0.069) 

0.049 
(0.072) 

0.047 
(0.069) 

0.054 
(0.074) 

Latent heat flux 
(W/m2 compared to 

GLEAM3.8a) 

-0.207 
(9.135) 

-2.302 
(9.286) 

-5.864 
(7.014) 

-5.126 
(6.385) 

-0.575 
(14.912) 

-3.498 
(14.413) 

9.476 
(17.752) 

3.209 
(14.815) 

-4.017 
(7.147) 

-3.865 
(7.904) 

Snow water 
equivalent (mm 

-4.173 
(6.422) 

-4.959 
(6.369) 

-5.083 
(10.148) 

-6.715 
(9.961) 

-10.246 
(13.924) 

-11.309 
(14.061) 

-0.700 
(1.221) 

-0.961 
(1.051) 

-0.643 
(1.018) 

-0.843 
(0.930) 
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compared to 
SNODAS) 

Snow depth (m 
compared to 
SNODAS) 

-0.013 
(0.020) 

-0.015 
(0.020) 

-0.016 
(0.036) 

-0.020 
(0.035) 

-0.032 
(0.040) 

-0.033 
(0.040) 

-0.002 
(0.003) 

-0.002 
(0.002) 

-0.004 
(0.005) 

-0.004 
(0.005) 

Snow cover fraction 
(compared to 

MODIS) 

0.055 
(0.058) 

0.028 
(0.037) 

0.221 
(0.227) 

0.117 
(0.137) 

0.045 
(0.049) 

0.026 
(0.046) 

-0.003 
(0.003) 

-0.003 
(0.003) 

0.018 
(0.026) 

0.004 
(0.018) 

Surface albedo 
(compared to 

MODIS) 

0.031 
(0.038) 

0.023 
(0.033) 

0.072 
(0.083) 

0.030 
(0.056) 

0.022 
(0.032) 

0.016 
(0.029) 

0.024 
(0.033) 

0.023 
(0.033) 

0.031 
(0.041) 

0.026 
(0.037) 

 596 

 597 

The modeled LH and soil moisture assessments in Section 4 indicate a slightly higher soil 598 

moisture but lower LH over some mid-latitude (e.g., the eastern U.S.) and the tropics in LIS/Noah-599 

MPv5.0 compared to LIS/Noah-MPv4.0.1. To further understand this seemingly conflicting model 600 

differences, we conducted a series of additional analyses. 601 

First, to quantify the uncertainty of reference ET data products, we conducted additional 602 

model evaluations using the FLUXCOM-X-BASE (Nelson et al., 2024) data. The results indicate 603 

large inconsistency between the FLUXCOM-X-BASE and GLEAM data, where the model biases 604 

reverse the signs across many global regions particularly in the low-latitudes (Figure S9). For the 605 

CONUS, the bias sign also reverses in the northeastern U.S. and many parts of the western U.S. 606 

(Figure S10). Previous studies (Nelson et al., 2024) showed that FLUXCOM-X-BASE has 607 

consistently lower ET in evergreen tropics as well as the temperate and high latitudes of the 608 

Northern Hemisphere than GLEAM, whereas FLUXCOM-X-BASE has higher ET in the semiarid 609 

and arid ecosystems of the lower and middle latitudes. This is consistent with previous studies 610 

(e.g., Abolafia-Rosenzweig et al., 2021) finding large disagreements across ET reference datasets 611 

in general. These results suggest that the modeled ET in this study falls into the range of 612 

observational uncertainty over many global regions and the uncertainty in ET reference data 613 

products can confound model assessments which should be accounted for in future studies. 614 

Then, to assess the role of soil temperature change, we further analyzed the soil temperature 615 

differences between the two model simulations, which indicates a consistently higher soil 616 

temperature in LIS/Noah-MPv5.0 than LIS/Noah-MPv4.0 across all soil layers over the majority 617 
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of the globe except for polar regions (Figures S11-12), which hence is not a driver but rather a 618 

result of the decrease in LH. 619 

 Furthermore, our additional analyses indicate that the bug fix of vegetation fraction scaling 620 

in LIS/Noah-MPv5.0 dominates the impact on the ET (and LH) reduction, with minor opposite 621 

effects from the added canopy heat storage term which generally increases sensible and latent heat 622 

fluxes (Figure S19). Furthermore, the LH changes tend to be larger over regions with higher 623 

vegetation fraction (Figure S20), which underlines potentially large and heterogeneous impacts in 624 

response to this. 625 

In addition, we quantified the differences in each of the modeled ET components between 626 

the two model versions and their biases by comparing with the GLEAM data. Using the CONUS 627 

region as an example, the results show that the lower LH in LIS/Noah-MPv5.0 over the eastern 628 

U.S. is mainly caused by the lower plant transpiration and soil evaporation compared to LIS/Noah-629 

MPv4.0.1, which outweigh the higher canopy-intercepted water evaporation (Figures S13-S15). 630 

The slightly lower LH in LIS/Noah-MPv5.0 over the western U.S. is dominated by the lower plant 631 

transpiration and canopy-intercepted water evaporation, which outweigh the higher soil 632 

evaporation. Overall, the generally opposite patterns in the western and eastern U.S. in these model 633 

differences in each ET component likely reflect the spatially heterogeneous impacts across water 634 

limited vs. non-water limited regimes, which needs further investigation. These patterns are 635 

generally consistent throughout the seasons (Figures S16-18), with stronger signals for plant 636 

transpiration and soil evaporation in spring and summer due to warmer temperature and higher 637 

solar radiation. Thus, the slightly higher soil moisture appears to be a result of the lower total ET 638 

in LIS/Noah-MPv5.0 compared to LIS/Noah-MPv4.0.1. Besides, the slightly higher soil moisture 639 

in LIS/Noah-MPv5.0 is also partially contributed by the updated snow cover parameters in 640 

LIS/Noah-MPv5.0 that lead to enhanced snow melting and hence increased soil moisture in winter, 641 

spring, and early summer. 642 

For snowpack and surface albedo, LIS/Noah-MPv5.0 generally shows a lower SWE than 643 

LIS/Noah-MPv4.0.1 particularly during ablation periods, mainly due to the updated snow cover 644 

parameters in LIS/Noah-MPv5.0 resulting in lower snow cover and hence reduced surface albedo 645 

and subsequently enhanced melting. This triggers positive surface albedo feedback. 646 

 647 

 648 
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6. Implications for future model improvements 649 

 The evaluation of global and regional benchmark simulations (Section 4) reveals several 650 

important Noah-MP model uncertainties and deficiencies, which calls for future model 651 

improvements.  652 

First, the model biases in soil moisture and LH (Sections 4.1 and 4.2) partially reflect the 653 

inadequate representation of plant hydraulics and root schemes and/or too shallow soil column 654 

configuration (e.g., in the Amazon), which have also been highlighted by a few previous studies 655 

(e.g., Niu et al., 2020; Li et al., 2021; Bieri et al., 2025). Recently, Li et al. (2021) developed a new 656 

whole-plant hydraulics scheme for Noah-MP with observation-constrained parameters (Sun et al., 657 

2024), which largely improves simulations of ET and terrestrial water storage (TWS) compared to 658 

the default soil hydraulics scheme in Noah-MP. Other studies (e.g., Niu et al., 2020; Bieri et al., 659 

2025) developed dynamic root uptake schemes in Noah-MP that improve modeled soil moisture, 660 

ET, and TWS. These model updates have not been included in the community Noah-MPv5.0, 661 

which needs to be done in the future. Another possible model deficiency that could result in the 662 

LH bias is the canopy turbulence scheme. Noah-MP uses the Monin–Obukhov (M–O) similarity 663 

theory to compute momentum and heat exchange coefficients above and through the canopy, 664 

which however does not account for the canopy-induced turbulence in the roughness sublayer 665 

(RSL) and hence fails above and within dense forests (Bonan et al., 2018). Abolafia-Rosenzweig 666 

et al. (2021) implemented and evaluated a unified RSL turbulence scheme throughout the canopy 667 

in an earlier Noah-MP version, which demonstrates the potential of improving modeled surface 668 

heat fluxes. We are currently working on a comprehensive assessment of this RSL canopy 669 

turbulence scheme in Noah-MPv5.0 across global FLUXNET sites. However, we note that the 670 

satellite soil moisture data has large uncertainties over dense forests. In addition, the input soil 671 

texture data could also impact the modeled soil moisture and hence ET. Li et al. (2024) recently 672 

developed a global 1-km high-quality datasets for key land surface parameters (including soil 673 

texture), and we plan to test the effect of using this new dataset in Noah-MP simulations in our 674 

next step. 675 

 Second, the model biases in snowpack, including SWE, snow depth, and snow cover, 676 

reveal inadequate treatments of snow physics. For example, the SWE underestimates over 677 

midlatitude mountains (e.g., the Himalayas and western U.S. high mountains) could be caused by 678 

the snow ablation bias in the model, in addition to the precipitation and temperature forcing 679 
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uncertainty (Section 4.3). He et al. (2021) found that Noah-MP tends to melt snow faster than 682 

observations in some western US mountain areas, likely due to wind and solar radiation forcing 683 

biases and/or model deficiencies in above-snowpack turbulence, canopy radiative transfer, and 684 

snow albedo. Recently, Lin et al. (2025) coupled Noah-MPv5.0 with a widely used physical snow 685 

albedo scheme, SNICAR-ADv3 (Flanner et al., 2021; He et al., 2024a), and found improved snow 686 

albedo relative to the default semi-empirical snow albedo scheme in Noah-MP. This snow albedo 687 

physics update will be included in the next Noah-MP major version release. The snow depth bias 688 

is not only driven by the SWE bias but also by uncertainty in snow compaction processes. A recent 689 

study (Abolafia-Rosenzweig et al., 2024b) enhanced the Noah-MP snow compaction 690 

parameterization constrained by in-situ measurements across ~800 SNOTEL sites in the western 691 

U.S., which is currently being transferred to the Noah-MPv5.0 692 

(https://github.com/NCAR/noahmp/pull/148; last access: November 24, 2024). In addition, a new 693 

flexible framework was recently developed to couple the LSMs (including Noah-MPv4.0.1) in LIS 694 

with a physical snow model, Crocus, which shows promising improvements in modeling snow 695 

depth and SWE (Navari et al., 2024). The systematically overestimated snow cover fraction in 696 

Noah-MP is a long-standing model problem, which has been investigated by several studies over 697 

different mountain regions (He et al., 2019; Jiang et al., 2020; Zhou et al., 2023). A number of 698 

improvements in the model snow cover parameterization have been proposed for the Tibetan 699 

Plateau (Jiang et al., 2020; Zhou et al., 2023) and the western U.S. (Abolafia-Rosenzweig et al., 700 

2025). These solutions, however, need to be tested for global applications. 701 

 Third, the model biases in surface albedo, particularly over the Sahara Desert and glaciers, 702 

suggest possible deficiencies in background desert soil albedo and glacier albedo. Currently, Noah-703 

MPv5.0 assumes a uniform medium soil color everywhere, whereas using a spatially-varying soil 704 

color map (Lawrence and Chase, 2007) tends to reduce Noah-MP surface albedo particularly over 705 

the desert (Michael Barlage, personal communication), which will be tested in NoahMPv5.0 706 

together with the aforementioned Li et al. (2024) global 1-km input datasets. To improve glacier 707 

modeling, Eidhammer et al. (2021) coupled the Crocus snow/ice model with Noah-MP within the 708 

WRF-Hydro framework, which reproduces the observed glacier surface albedo and mass balance 709 

in Norwegian glaciers. Future Noah-MP model improvements need to also focus on glacier regions, 710 

which were less studied in previous Noah-MP applications. In addition, vegetation albedo (and 711 
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canopy radiative transfer) may also contribute to the surface albedo biases in Noah-MP, which 713 

however lacks systematic assessments in the literature and hence needs more future investigations. 714 

 715 

7. Conclusions 716 

 In this study, we integrated the refactored community Noah-MPv5.0 model with the NASA 717 

LIS system (version 7.5.2) through the GitHub submodule mechanism to streamline the 718 

synchronization, development, and maintenance of Noah-MP within LIS and to enhance the 719 

interoperability and applicability of both models. The GitHub submodule mechanism also allows 720 

for more rapid implementation of bug fixes as well as new versions of Noah-MP (such as including 721 

the new physics detailed in Section 5) into the LIS software framework. We systematically 722 

evaluated multi-year (2018-2022) global and regional (CONUS) LIS/Noah-MP benchmark 723 

simulations driven by the USAF and NLDAS-2 atmospheric forcing, respectively, for a set of key 724 

land surface variables. Overall, LIS/Noah-MPv5.0 outperforms or is similar to LIS/Noah-725 

MPv4.0.1 globally in simulating the key land surface variables evaluated in this study, except for 726 

slight degradation in simulated surface soil moisture and SWE. 727 

 Specifically, both LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations capture the 728 

spatial and seasonal distributions of observed surface and root-zone soil moisture, LH, SWE, snow 729 

depth, snow cover, and surface albedo, with similar bias patterns. For surface and root-zone soil 730 

moisture, model simulations tend to underestimate over wet soil regimes and overestimate over 731 

dry soil regimes, with slightly higher soil moisture in LIS/Noah-MPv5.0 than LIS/Noah-MPv4.0.1 732 

across most regions. Due to the offset of model overestimates and underestimates across different 733 

regions, the global mean soil moisture biases of both models are relatively small.  734 

For LH, the model bias patterns generally follow those of soil moisture, with the 735 

underestimated (overestimated) LH over areas with the underestimated (overestimated) soil 736 

moisture across most global regions. Although LIS/Noah-MPv5.0 has a slightly higher soil 737 

moisture than LIS/Noah-MPv4.0.1, it shows a lower LH across most non-polar regions, which 738 

reduces the global mean LH bias from 0.99 W/m2 (LIS/Noah-MPv4.0.1) to -0.39 W/m2 739 

(LIS/Noah-MPv5.0). 740 

For snowpack conditions, the model SWE bias patterns are dominated by the precipitation 741 

and temperature forcing uncertainties, with large SWE underestimates in the Himalayas, west 742 

Canada, and western U.S. mountains and overestimates in most other mid-latitude and high-743 
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latitude snowpacks. The SWE biases are similar for both models, with slightly larger 754 

underestimates in LIS/Noah-MPv5.0 (global mean bias of -13.2 mm) than LIS/Noah-MPv4.0.1 755 

(global mean bias of -10.1 mm). The model bias patterns of snow depth generally follow those of 756 

SWE, with a global mean bias of ~0.06 m for both simulations. For snow cover, LIS/Noah-757 

MPv4.0.1 has a systematic large overestimate across the globe, even over regions with 758 

underestimated SWE, which is a long-standing Noah-MP problem. LIS/Noah-MPv5.0 with 759 

updated snow cover parameters effectively reduces the snow cover overestimates globally, 760 

decreasing the global mean bias from 0.11 to 0.07.  761 

For surface albedo, both models show widespread overestimates over most mid-latitude 762 

and high-latitude regions partially due to the snow cover overestimate, and significant 763 

underestimates in the Sahara Desert, Greenland, and Antarctica, which dominate the global mean 764 

bias. Because of the reduced snow cover, LIS/Noah-MPv5.0 shows consistently lower surface 765 

albedo than LIS/Noah-MPv4.0.1, which degrades the global mean bias from -0.018 to -0.033. 766 

 The model evaluation in this study reveals several important Noah-MP uncertainties and 767 

deficiencies and motivates future improvements in model processes/components including plant 768 

hydraulics and dynamic root uptake, canopy turbulence and interaction with snowpack, input soil 769 

texture and color data, snow cover and albedo, glacier ice, and vegetation albedo (canopy radiative 770 

transfer). 771 

 772 

 773 

 774 

Appendix A. 775 

Table A1. Default Noah-MP physics options used in this study 776 

Noah-MP Physics Option Description 
dynamic vegetation option 4 use table LAI and maximum vegetation fraction 
rain-snow partition option 1 Jordan (1991) scheme 

soil moisture factor for stomatal 
resistance option 1 Noah (soil moisture) (Ek et al., 2003) 

ground resistance option 1 Sakaguchi and Zeng (2009) scheme 

surface drag coefficient option 1 Monin-Obukhov (M-O) Similarity Theory 
(Brutsaert, 1982) 

canopy stomatal resistance option 1 Ball-Berry scheme (Bonan, 1996) 
snow surface albedo option 1 BATS snow albedo (Dickinson et al., 1993) 

canopy radiation transfer option 3 two-stream applied to vegetated fraction (Niu 
and Yang, 2004) 

Deleted: ¶777 ... [1]



 32 

snow/soil temperature time 
scheme option 1 semi-implicit; flux top boundary condition (Niu 

et al., 2011) 
snow thermal conductivity option 1 Stieglitz scheme (Yen,1965) 

lower boundary of soil 
temperature option 2 Deep soil boundary temperature read from input 

file (Niu et al., 2011) 
soil supercooled liquid water 

option 1 No iteration (Niu and Yang, 2006) 

runoff option 3 Schaake scheme (Schaake et al., 1996) 

frozen soil permeability option 1 linear effects, more permeable (Niu and Yang, 
2006) 

soil configuration option 1 use input dominant soil texture 
glacier treatment option 1 include phase change of glacier ice 

tile drainage option 0 No tile drainage 
irrigation option 0 No irrigation 

dynamic crop model option 0 No dynamic crop model 
 782 

 783 

Code and data availability 784 

1. The data and scripts produced in this study is available at 785 

https://doi.org/10.5281/zenodo.14567219  (He et al., 2025). 786 

2. The LIS/Noah-MPv5.0 model code produced and used in this study is available at 787 

https://doi.org/10.5281/zenodo.14567646 (He et al., 2024b). 788 
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Figure S1. Surface soil moisture (m3/m3) comparison between SMAP observations and LIS/Noah-
MP simulations driven by the USAF forcing globally averaged during 2018-2022: (a,e,i,m) SMAP 
data, (b,f,j,n) LIS/Noah-MPv5.0 simulation, (c,g,k,o) LIS/Noah-MPv5.0 biases (model minus 
SMAP), and (d,h,l,p) differences between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 
simulations, during four seasons including (a-d) DJF, (e-h) MAM, (i-l) JJA, and (m-p) SON. Grids 
with statistically significant differences (p < 0.05) are shown with gray dots in the third and fourth 
columns. The statistical significance over each grid is computed using daily time series and the t-
test method. The global mean value is also provided in the lower right of each panel. 
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 2 

 
 
Figure S2. Precipitation (mm/year) comparison between the GPM/IMERG data and the USAF 
forcing data globally averaged during 2018-2022: (a) USAF data, (b) GPM/IMERG data, (c) 
difference between USAF and GPM/IMERG. The color scale for (a) and (b) is plotted in power 
law (y = xc, where power c = 0.5). 
 
 
 
 

 
 
Figure S3. Latent heat flux (W/m2) comparison between the GLEAM data and LIS/Noah-MP 
simulations driven by the USAF forcing globally averaged during 2018-2022: (a,e,i,m) 
GLEAMv3.8a data, (b,f,j,n) LIS/Noah-MPv5.0 simulation, (c,g,k,o) LIS/Noah-MPv5.0 biases 
(model minus GLEAM), and (d,h,l,p) differences between LIS/Noah-MPv5.0 and LIS/Noah-
MPv4.0.1 simulations, during four seasons including (a-d) DJF, (e-h) MAM, (i-l) JJA, and (m-p) 
SON. Grids with statistically significant differences (p < 0.05) are shown with gray dots in the 
third and fourth columns. The statistical significance over each grid is computed using daily time 
series and the t-test method. The global mean value is also provided in the lower right of each 
panel. 
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 3 

 
Figure S4. SWE (mm) comparison between ERA5-Land and LIS/Noah-MP simulations driven by 
the USAF forcing globally averaged during 2018-2022: (a,e,i,m) ERA5-Land data, (b,f,j,n) 
LIS/Noah-MPv5.0 simulation, (c,g,k,o) LIS/Noah-MPv5.0 biases (model minus ERA5-Land), and 
(d,h,l,p) differences between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations, during four 
seasons including (a-d) DJF, (e-h) MAM, (i-l) JJA, and (m-p) SON. Grids with statistically 
significant differences (p < 0.05) are shown with gray dots in the third and fourth columns. The 
statistical significance over each grid is computed using daily time series and the t-test method. 
The global mean value is also provided in the lower right of each panel. 
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 4 

 
 
Figure S5. Snow depth (m) comparison between ERA5-Land and LIS/Noah-MP simulations 
driven by the USAF forcing globally averaged during 2018-2022: (a,e,i,m) ERA5-Land data, 
(b,f,j,n) LIS/Noah-MPv5.0 simulation, (c,g,k,o) LIS/Noah-MPv5.0 biases (model minus ERA5-
Land), and (d,h,l,p) differences between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations, 
during four seasons including (a-d) DJF, (e-h) MAM, (i-l) JJA, and (m-p) SON. Grids with 
statistically significant differences (p < 0.05) are shown with gray dots in the third and fourth 
columns. The statistical significance over each grid is computed using daily time series and the t-
test method. The global mean value is also provided in the lower right of each panel. 
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Figure S6. Snow cover fraction comparison between MODIS and LIS/Noah-MP simulations 
driven by the USAF forcing globally averaged during 2018-2022: (a,e,i,m) MODIS data, (b,f,j,n) 
LIS/Noah-MPv5.0 simulation, (c,g,k,o) LIS/Noah-MPv5.0 biases (model minus MODIS), and 
(d,h,l,p) differences between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations, during four 
seasons including (a-d) DJF, (e-h) MAM, (i-l) JJA, and (m-p) SON. Grids with statistically 
significant differences (p < 0.05) are shown with gray dots in the third and fourth columns. The 
statistical significance over each grid is computed using daily time series and the t-test method. 
The global mean value is also provided in the lower right of each panel. 
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 6 

 
 
Figure S7. Surface albedo comparison between MODIS and LIS/Noah-MP simulations driven by 
the USAF forcing globally averaged during 2018-2022: (a,e,i,m) MODIS data, (b,f,j,n) LIS/Noah-
MPv5.0 simulation, (c,g,k,o) LIS/Noah-MPv5.0 biases (model minus MODIS), and (d,h,l,p) 
differences between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations, during four seasons 
including (a-d) DJF, (e-h) MAM, (i-l) JJA, and (m-p) SON. Grids with statistically significant 
differences (p < 0.05) are shown with gray dots in the third and fourth columns. The statistical 
significance over each grid is computed using daily time series and the t-test method. The global 
mean value is also provided in the lower right of each panel. 
 
 
 
 
 
 
 
 

 
 
Figure S8. Atmospheric temperature forcing (°C) comparison between the ERA5-Land data and 
the USAF data globally averaged during 2018-2022: (a) USAF data, (b) ERA5-Land data, (c) 
difference between USAF and ERA5-Land. 
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 7 

 

 
 
Figure S9. Latent heat flux (W/m2) comparison between the GLEAM data, FLUXCOM-X-BASE 
data, and LIS/Noah-MP simulations driven by the USAF forcing globally averaged during 2018-
2021: (a) GLEAM3.8a data, (b) LIS/Noah-MPv4.0.1 simulation, (c) LIS/Noah-MPv5.0 
simulation, (d) LIS/Noah-MPv4.0.1 biases (model minus GLEAM), (e) LIS/Noah-MPv5.0 biases 
(model minus GLEAM), (f) differences between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 
simulations, (g) FLUXCOM-X-BASE data, (h) LIS/Noah-MPv4.0.1 biases (model minus 
FLUXCOM-X-BASE), and (i) LIS/Noah-MPv5.0 biases (model minus FLUXCOM-X-BASE). 
Grids with statistically significant differences (p < 0.05) are shown with gray dots in panels (d)-
(f). The statistical significance over each grid is computed using daily time series and the t-test 
method. The global mean value is also provided in the lower right of each panel. 
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 8 

 
 
Figure S10. Same as Figure S9 but for evaluation of LIS/Noah-MP simulations driven by the 
NLDAS-2 forcing over the CONUS. 
 
 

 
 
Figure S11. Simulated multi-year (2018-2022) annual mean soil temperature from LIS/Noah-
MPv4.0.1 (left column), LIS/Noah-MPv5.0 (middle column), and their differences (right column) 
across four soil layers from the top (layer 1; first row) to the bottom (layer 4; fourth row). The 
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LIS/Noah-MP simulations are driven by the USAF forcing globally. For glacier regions, the 
temperature is for glacier ice. 
 
 
 

 
 
Figure S12. Same as Figure S11 but for LIS/Noah-MP simulations driven by the NLDAS-2 
forcing over the CONUS. 
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Figure S13. Comparison of latent heat flux (W/m2) due to soil evaporation between the GLEAM 
data and LIS/Noah-MP simulations driven by the NLDAS-2 forcing over the CONUS averaged 
during 2018-2021: (a) GLEAM3.8a data, (b) LIS/Noah-MPv4.0.1 simulation, (c) LIS/Noah-
MPv5.0 simulation, (d) LIS/Noah-MPv4.0.1 biases (model minus GLEAM), (e) LIS/Noah-
MPv5.0 biases (model minus GLEAM), and (f) differences between LIS/Noah-MPv5.0 and 
LIS/Noah-MPv4.0.1 simulations. Grids with statistically significant differences (p < 0.05) are 
shown with gray dots in panels (d)-(f). The statistical significance over each grid is computed using 
daily time series and the t-test method. The global mean value is also provided in the lower right 
of each panel. See Figure S16 for seasonal plots. 
 
 
 
 
 

 
 
Figure S14. Same as Figure S13 but for plant transpiration. See Figure S17 for seasonal plots. 
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Figure S15. Same as Figure S13 but for canopy-intercepted water evaporation. See Figure S18 for 
seasonal plots. 
 
 
 

 
 
Figure S16. Same as Figure S13 but for seasonal results: (a-d) DJF, (e-h) MAM, (i-l) JJA, and (m-
p) SON. 
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Figure S17. Same as Figure S14 but for seasonal results: (a-d) DJF, (e-h) MAM, (i-l) JJA, and (m-
p) SON. 
 
 
 

 
 
Figure S18. Same as Figure S15 but for seasonal results: (a-d) DJF, (e-h) MAM, (i-l) JJA, and (m-
p) SON. 
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Figure S19. Latent heat (LH) and sensible heat (SH) flux changes from LIS/Noah-MPv4.0.1 to 
LIS/Noah-MPv5.0 due to the added canopy heat storage treatment (first row) and all model updates 
(second row) in 2018 August. 
 

 
 
Figure S20. Global and CONUS vegetation fraction (a-b) used in the model simulations, and the 
multi-year (2018-2022) annual mean latent heat (LH) differences (c-d) between LIS/Noah-MPv5.0 
and LIS/Noah-MPv4.0.1. 
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Table S1. Model evaluation metrics for LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations 
driven by the USAF forcing averaged over December-January-February (DJF) during 2018-2022 
on the global and regional scale. The values are the mean model bias (LIS/Noah-MP simulations 
minus reference datasets). The statistically significant difference between LIS/Noah-MP v4.0.1 
and LIS/Noah-MPv5.0 simulations (p < 0.05 using a t-test for daily time series) are marked as 
bold font. The values in the parentheses are the mean absolute model biases. 
 
 Global Low latitude Northern 

midlatitude 
Northern high 

latitude 
Southern 

midlatitude 
Southern high 

latitude 

LIS/Noah-MP v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0 

Surface soil moisture 
(m3/m3 compared to 

SMAP) 

0.020 
(0.080) 

0.027 
(0.083) 

-0.004 
(0.070) 

0.004 
(0.072) 

0.059 
(0.095) 

0.066 
(0.100) 

-0.063 
(0.158) 

-0.062 
(0.157) 

0.035 
(0.082) 

0.043 
(0.087) 

- - 

Surface Soil moisture 
(m3/m3 compared to 

ISMN) 

0.052 
(0.078) 

0.059 
(0.084) 

0.013 
(0.053) 

0.022 
(0.059) 

0.055 
(0.081) 

0.062 
(0.086) 

0.096 
(0.099) 

0.096 
(0.099) 

0.065 
(0.068) 

0.068 
(0.070) 

- - 

Latent heat flux 
(W/m2 compared to 

GLEAM3.8a) 

2.414 
(8.184) 

1.466 
(8.297) 

2.141 
(16.165) 

-3.752 
(14.870) 

-2.962 
(4.229) 

-2.449 
(4.016) 

-0.113 
(0.894) 

-0.190 
(0.916) 

12.486 
(21.025) 

6.452 
(18.489) 

7.447 
(7.659) 

9.338 
(9.442) 

Snow water 
equivalent (mm 

compared to ERA5-
Land) 

-6.051 
(26.573) 

-7.823 
(26.321) 

-0.853 
(0.984) 

-0.883 
(1.000) 

7.218 
(23.983) 

5.418 
(23.245) 

-37.503 
(78.639) 

-42.473 
(79.038) 

-8.938 
(12.807) 

-8.728 
(12.370) 

- - 

Snow depth (m 
compared to ERA5-

Land) 

-0.073 
(0.102) 

-0.066 
(0.100) 

-0.003 
(0.004) 

-0.004 
(0.004) 

-0.023 
(0.083) 

-0.015 
(0.083) 

-0.293 
(0.324) 

-0.272 
(0.315) 

-0.031 
(0.039) 

-0.030 
(0.037) 

- - 

Snow cover fraction 
(compared to 

MODIS) 

0.266 
(0.267) 

0.202 
(0.206) 

0.004 
(0.006) 

0.003 
(0.004) 

0.386 
(0.389) 

0.311 
(0.317) 

0.516 
(0.516) 

0.366 
(0.373) 

0.005 
(0.009) 

0.004 
(0.009) 

- - 

Surface albedo 
(compared to 

MODIS) 

-0.009 
(0.091) 

-0.031 
(0.093) 

-0.018 
(0.051) 

-0.020 
(0.051) 

0.094 
(0.130) 

0.056 
(0.102) 

0.005 
(0.121) 

-0.053 
(0.172) 

0.011 
(0.033) 

0.009 
(0.032) 

-0.086 
(0.090) 

-0.101 
(0.103) 
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Table S2. Same as Table S1 but for March-April-May (MAM) averages. 
 
 Global Low latitude Northern 

midlatitude 
Northern high 

latitude 
Southern 

midlatitude 
Southern high 

latitude 

LIS/Noah-MP v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0 

Surface soil moisture 
(m3/m3 compared to 

SMAP) 

0.013 
(0.077) 

0.016 
(0.078) 

-0.006 
(0.069) 

0.000 
(0.070) 

0.033 
(0.082) 

0.036 
(0.084) 

0.009 
(0.081)) 

0.008 
(0.081) 

0.021 
(0.077) 

0.030 
(0.083) 

- - 

Surface Soil moisture 
(m3/m3 compared to 

ISMN) 

0.048 
(0.075) 

0.051 
(0.077) 

0.032 
(0.063) 

0.040 
(0.066) 

0.048 
(0.075) 

0.051 
(0.077) 

0.106 
(0.116) 

0.107 
(0.117) 

0.054 
(0.060) 

0.057 
(0.058) 

- - 

Latent heat flux 
(W/m2 compared to 

GLEAM3.8a) 

-1.614 
(8.272) 

-2.609 
(8.499) 

-0.028 
(13.243) 

-4.268 
(14.196) 

-2.284 
(12.144) 

-3.301 
(12.521) 

-6.919 
(8.214) 

-5.205 
(7.419) 

-1.425 
(6.665) 

-0.836 
(7.569) 

0.448 
(1.295) 

0.557 
(1.306) 

Snow water 
equivalent (mm 

compared to ERA5-
Land) 

-8.642 
(29.319) 

-15.069 
(30.461) 

-1.064 
(1.272) 

-1.116 
(1.291) 

2.464 
(26.332) 

-1.265 
(27.002) 

-41.038 
(87.507) 

-65.033 
(92.067) 

-9.468 
(11.037) 

-9.000 
(10.882) 

- - 

Snow depth (m 
compared to ERA5-

Land) 

-0.068 
(0.096) 

-0.078 
(0.107) 

-0.004 
(0.004) 

-0.004 
(0.004) 

-0.026 
(0.075) 

-0.027 
(0.080) 

-0.265 
(0.308) 

-0.313 
(0.354) 

-0.032 
(0.035) 

-0.031 
(0.035) 

- - 

Snow cover fraction 
(compared to 

MODIS) 

0.129 
(0.131) 

0.064 
(0.121) 

0.001 
(0.003) 

0.000 
(0.002) 

0.160 
(0.162) 

0.126 
(0.146) 

0.291 
(0.291) 

0.075 
(0.274) 

0.005 
(0.016) 

0.002 
(0.014) 

- - 

Surface albedo 
(compared to 

MODIS) 

-0.023 
(0.064) 

-0.048 
(0.081) 

-0.020 
(0.048) 

-0.021 
(0.048) 

0.029 
(0.059) 

0.014 
(0.056) 

-0.054 
(0.092) 

-0.152 
(0.180) 

0.018 
(0.036) 

0.015 
(0.035) 

-0.063 
(0.069) 

-0.072 
(0.075) 
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Table S3. Same as Table S1 but for June-July-August (JJA) averages. 
 
 Global Low latitude Northern 

midlatitude 
Northern high 

latitude 
Southern 

midlatitude 
Southern high 

latitude 

Noah-MP v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0 

Surface soil moisture 
(m3/m3 compared to 

SMAP) 

-0.005 
(0.078) 

0.000 
(0.079) 

-0.016 
(0.071) 

-0.010 
(0.071) 

0.012 
(0.078) 

0.017 
(0.081) 

-0.023 
(0.091) 

-0.019 
(0.091) 

0.022 
(0.090) 

0.031 
(0.096) 

- - 

Surface Soil moisture 
(m3/m3 compared to 

ISMN) 

0.067 
(0.085) 

0.072 
(0.088) 

0.024 
(0.070) 

0.034 
(0.075) 

0.069 
(0.084) 

0.074 
(0.088) 

0.127 
(0.131) 

0.129 
(0.132) 

0.039 
(0.071) 

0.039 
(0.070) 

- - 

Latent heat flux 
(W/m2 compared to 

GLEAM3.8a) 

2.927 
(11.336) 

0.472 
(10.599) 

4.066 
(17.233) 

-0.412 
(16.601) 

10.697 
(17.801) 

5.522 
(14.889) 

-5.468 
(12.165) 

-6.020 
(12.962) 

-4.440 
(7.092) 

-3.425 
(6.825) 

0.959 
(1.286) 

1.012 
(1.313) 

Snow water 
equivalent (mm 

compared to ERA5-
Land) 

-13.131 
(17.021) 

-15.966 
(17.519) 

-0.740 
(0.813) 

-0.772 
(0.821) 

-3.316 
(8.360) 

-5.265 
(7.901) 

-52.729 
(59.916) 

-62.524 
(63.347) 

-10.688 
(18.101) 

-10.761 
(18.218) 

- - 

Snow depth (m 
compared to ERA5-

Land) 

-0.047 
(0.054) 

-0.053 
(0.056) 

-0.003 
(0.003) 

-0.003 
(0.003) 

-0.014 
(0.024) 

-0.018 
(0.023) 

-0.184 
(0.197) 

-0.206 
(0.208) 

-0.043 
(0.061) 

-0.041 
(0.062) 

- - 

Snow cover fraction 
(compared to 

MODIS) 

0.017 
(0.030) 

0.006 
(0.034) 

0.000 
(0.002) 

-0.001 
(0.002) 

0.001 
(0.012) 

-0.003 
(0.011) 

0.060 
(0.093) 

0.024 
(0.112) 

0.057 
(0.071) 

0.039 
(0.055) 

- - 

Surface albedo 
(compared to 

MODIS) 

0.005 
(0.045) 

-0.001 
(0.045) 

-0.018 
(0.049) 

-0.019 
(0.049) 

0.011 
(0.037) 

0.010 
(0.036) 

0.027 
(0.050) 

0.009 
(0.051) 

0.032 
(0.044) 

0.023 
(0.038) 

-0.036 
(0.045) 

-0.053 
(0.059) 
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Table S4. Same as Table S1 but for September-October-November (SON) averages. 
 
 Global Low latitude Northern 

midlatitude 
Northern high 

latitude 
Southern 

midlatitude 
Southern high 

latitude 

Noah-MP v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0 

Surface soil moisture 
(m3/m3 compared to 

SMAP) 

0.008 
(0.080) 

0.014 
(0.082) 

-0.010 
(0.065) 

-0.004 
(0.065) 

0.020 
(0.080) 

0.027 
(0.084) 

0.014 
(0.108) 

0.019 
(0.110) 

0.036 
(0.090) 

0.042 
(0.093) 

- - 

Surface Soil moisture 
(m3/m3 compared to 

ISMN) 

0.066 
(0.083) 

0.073 
(0.088) 

0.026 
(0.071) 

0.034 
(0.074) 

0.067 
(0.083) 

0.074 
(0.088) 

0.120 
(0.120) 

0.121 
(0.121) 

0.061 
(0.082) 

0.061 
(0.079) 

- - 

Latent heat flux 
(W/m2 compared to 

GLEAM3.8a) 

0.301 
(6.785) 

-0.681 
(7.228) 

2.243 
(12.533) 

-2.624 
(13.228) 

-2.550 
(6.536) 

-2.259 
(6.910 

-3.766 
(4.360) 

-3.522 
(4.166) 

-0.550 
(10.947) 

-3.173 
(11.249) 

3.204 
(3.237) 

3.879 
(3.883) 

Snow water 
equivalent (mm 

compared to ERA5-
Land) 

-12.029 
(17.559) 

-13.400 
(17.511) 

-0.698 
(0.729) 

-0.718 
(0.743) 

-3.228 
(7.672) 

-3.980 
(7.407) 

-47.344 
(63.135) 

-52.270 
(63.555) 

-12.553 
(22.812) 

-12.550 
(22.978) 

- - 

Snow depth (m 
compared to ERA5-

Land) 

-0.045 
(0.060) 

-0.046 
(0.061) 

-0.002 
(0.003) 

-0.003 
(0.003) 

-0.014 
(0.028) 

-0.014 
(0.028) 

-0.175 
(0.215) 

-0.180 
(0.221) 

-0.044 
(0.065) 

-0.043 
(0.065) 

- - 

Snow cover fraction 
(compared to 

MODIS) 

0.114 
(0.116) 

0.077 
(0.082) 

0.000 
(0.001) 

-0.001 
(0.001) 

0.111 
(0.116) 

0.084 
(0.090) 

0.297 
(0.298) 

0.189 
(0.195) 

0.023 
(0.029) 

0.020 
(0.027) 

- - 

Surface albedo 
(compared to 

MODIS) 

-0.012 
(0.065) 

-0.025 
(0.063) 

-0.018 
(0.046) 

-0.019 
(0.046) 

0.034 
(0.056) 

0.025 
(0.048) 

0.057 
(0.066) 

0.022 
(0.047) 

0.013 
(0.031) 

0.010 
(0.029) 

-0.088 
(0.091) 

-0.102 
(0.103) 
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