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Abstract. A major challenge in assessing debris-flow susceptibility at the scale of large mountainous river basins lies in the 

excessive reliance on simplified topographic metrics. Existing approaches often fail to account for the cascading and 

dynamically coupled interactions among channel gradient, discharge, and sediment supply. This oversight limits the 

accuracy and robustness of spatial predictions. To address this gap, we present a novel framework for debris-flow 15 

susceptibility assessment grounded in a process-based indicator system derived from geomorphic dynamics, using the Jinsha 

River Basin as a case study. Our method integrates key parameters that characterize landscape evolution—including stream 

power, extreme rainfall events, surface erodibility, and sediment connectivity—into a Naïve Bayes probabilistic 

classification model. By employing kernel functions, we accommodate both continuous and discrete variables, enabling the 

probabilistic estimation of debris-flow occurrence across small, medium, and large magnitude classes. Model validation 20 

across the Jinsha River Basin yields a prediction accuracy of 63%. Notably, empirical testing against the "8·21" Jinyang 

debris-flow event in 2023 reveals a high degree of spatial agreement between predicted high-risk zones and observed 

disaster footprints. Feature importance analysis indicates that surface erodibility is the dominant contributor to susceptibility, 

followed by connectivity, stream power, and extreme precipitation. Approximately 32,000 high-risk gullies (>200 m in 

length) exhibit a power-law distribution, clustering within a 30 km buffer on both sides of the main stem of the Jinsha and 25 

Yalong Rivers in their middle and lower reaches. These regions are shown to be strongly associated with infrequent but 

high-probability events, which tend to drive large-scale debris-flow disasters. Amid intensifying climate change and the 

rapid expansion of infrastructure in alpine canyon regions, the dynamic datasets we construct—such as stream power and 

sediment connectivity—offer a quantitative basis for risk-informed planning and mitigation. This modeling approach 

represents a scalable and physically grounded paradigm for debris-flow hazard assessment, offering broad applicability to 30 

other high-relief mountainous environments worldwide. 
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1 Instroduction 

Debris flows in mountainous regions are characterized by active runoff erosion, significant topographic relief, and the 

interplay of tectonic uplift and river incision (Qiu et al., 2021; Ciccarese et al., 2020; Ye et al., 2023). These flows are 35 

triggered by various processes, including shallow landslides, runoff infiltration, channel mobilization, dam failure, and rapid 

snowmelt  (Qiu et al., 2021; Ciccarese et al., 2020; Ye et al., 2023). Due to their high kinetic energy, debris flows pose 

significant risks to infrastructure, including roads, bridges, and buildings. Globally, debris flow-prone areas are concentrated 

in the Pacific Rim fold belt, the Alpine-Himalayan fold belt, and mountainous regions in Eurasia(Ye et al., 2023). In China, 

regions such as the Gongga Mountains, the western Loess Plateau, and the Jinsha River Basin are particularly vulnerable, 40 

with the latter contributing significantly to debris flow disasters in the country (Hu et al., 2020). 

In recent decades, the ongoing global and regional climate warming has exacerbated the risks associated with debris flows 

by increasing the frequency of extreme weather events (Lu et al., 2021; Zhao et al., 2021). This highlights the urgent need 

for research on debris flows. Such research has informed the development of quantitative models, including the power-law 

relationship between mean intensity and rainfall duration (Coe et al., 2008; Badoux et al., 2009; Oorthuis et al., 2021; 45 

Hürlimann et al., 2019; Nikolopoulos et al., 2014), and the linear relationship between surge front velocities and flow depth 

(Mccoy et al., 2011). These advancements aim to enhance the working principles of monitoring and early warning stations to 

achieve more accurate debris flow forecasting. However, despite these efforts, debris flow disasters continue to occur, and 

the role of monitoring stations in regional safety remains limited. From 1999 to 2019, debris flows in China resulted in 4,742 

deaths, with an average of 226 deaths per year. In 2010 alone, 2,073 people lost their lives. Notably, on August 7, 2010, a 50 

large debris flow in Zhouqu, Gansu, destroyed over 390 buildings (Zhang et al., 2018b); on June 28, 2012, debris flows 

occurred in ten gullies upstream of the Baihetan hydropower station, including the Aizi gully, resulting in the death or 

disappearance of 41 people (Hu et al., 2017); and on August 17, 2020, a debris flow occurred in Dayi, Sichuan, blocking a 

river and causing flooding (An et al., 2022). The uncertainty in the spatiotemporal distribution of extreme precipitation 

events, combined with insufficient understanding of regional debris flow risk assessment and patterns, has led to the absence 55 

of monitoring stations or improper site selection in some high-risk areas, thus limiting the effectiveness of early warning 

systems (Li et al., 2024). 

Currently, numerical simulations based on momentum conservation, mass conservation, and rheological equations are 

commonly used to model the kinematic characteristics of material flow in debris-flow-prone gullies. These simulations 

provide key parameters, such as flow velocity and transport volume. However, accurately identifying potential debris flow 60 

locations in large-scale areas remains a significant challenge. In the past, there has been a heavy reliance on the direct 

interpretation of remote sensing images (Yi and Qu, 2018; Lyu et al., 2022; Hu et al., 2017), using abnormal reflectance 

from surface damage areas after debris flows, such as vegetation, bare soil, and gravel, as indicators. More recently, the 

accuracy and efficiency of debris flow susceptibility assessments have significantly improved with the development and 

application of machine learning models. These models are trained using quantitative surface characteristics of debris flow-65 
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prone areas, including slope, aspect, topographic relief and roughness, lithology, and NDVI (Li et al., 2024). However, the 

development of debris-flow channels is an intense "source-sink" process, where debris and surface water flow along specific 

slopes, with the valley bottom being the most destructive area. The current assessment systems based on indicators such as 

slope, lithology, and NDVI mainly reflect the characteristics of the valley slopes on both sides, which do not fully 

correspond to the dynamic nature of the valley bottom. Therefore, it is necessary to reconstruct the indicator framework and 70 

establish a parameter system that better aligns with the physical characteristics of the valley bottom to improve the accuracy 

of debris flow susceptibility assessments. To address these challenges, we propose an assessment framework based on a 

Naïve Bayesian model to improve the identification of debris flow locations, timing, and likelihood. Focusing on the Jinsha 

River Basin, this framework incorporates parameters such as stream power, surface erosion susceptibility, sediment transport 

connectivity, and the frequency and intensity of extreme precipitation events. The dataset generated by this approach 75 

describes the dynamic quantitative characteristics of debris flow gullies and the probability of occurrence, helping us identify 

many potential debris flow locations previously overlooked. This framework provides practical reference points for site 

selection in major infrastructure projects and disaster prevention engineering. 

2 Study Area 

The Jinsha River, a crucial tributary of the Yangtze River, originates in the Tanggula Mountains of China. It traverses 80 

several distinct natural regions, including the eastern Qinghai-Tibet Plateau, the northwestern Yunnan-Guizhou Plateau, and 

the southwestern Sichuan Basin (Fig. 1). The mainstream flows for approximately 2,316 km, with an average gradient of 

2.16 ‰, and an annual average discharge of 4,750 m³/s, draining a catchment area of about 5×10⁵ km² (Li et al., 2018). In its 

upper reaches, the terrain is relatively flat, underlain by continental crust that was formed and recycled during the Paleozoic 

era. The landscape is characterized by desert meadows, and the valley is wide and shallow, resulting in slow river flow. As 85 

the river progresses into the middle reaches, it enters the Indosinian fold belt, where the continental crust formed during the 

Meso-Cenozoic era. The lower basement consists of ancient Precambrian continental crust (Ma, 2002). The entire river basin 

lies within a seismically active zone due to ongoing neotectonic activity, characterized by numerous faults and generally 

fractured rock masses. Precipitation in the region is concentrated between May and October, driven by both southwest and 

southeast monsoons, with extreme rainfall typically occurring from June to August. The annual average precipitation is 632 90 

mm, increasing gradually from northwest to southeast. However, in areas above 4,000 m, the average annual rainfall drops to 

just 344 mm, making it the driest region in the Yangtze River basin (Cao et al., 2011). Over the past six decades, river 

discharge has increased, driven by global warming and the accelerated melting of ice and snow (Liu et al., 2016). The rapid 

tectonic uplift and river erosion in the region have shaped deep canyon-type landforms, with valley depths exceeding 1,000 

m. The dynamic interaction between internal tectonic forces and external erosional processes has contributed to the 95 

development of a highly active river system, prone to frequent landslides and debris flows (Liu et al., 2018). 
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Figure 1: The Jinsha River Basin and Its Adjacent River Systems. 

 

3 Methodology 

3.1 Data and Preprocessing 

This study utilizes a comprehensive set of data sourced from various repositories, including debris-flow surveys, stream 100 

discharge records, precipitation data, topographic information, and soil characteristics. The key datasets and preprocessing 

steps are outlined below. 1)Stream Discharge, Discharge data from hydrological stations are crucial for estimating stream 

power; 2) Rainfall, the Standardized Precipitation Index (SPI) is computed at daily, monthly, and annual scales using high-

resolution, long-term daily grid precipitation data from the ECMWF ERA5-Land product (Period: Jan 1950–present) with a 

~9 km spatial resolution, which is derived from radar and satellite-based weather observations 105 

(https://cds.climate.copernicus.eu), this data demonstrates superior quality compared to satellite-based precipitation retrieval 

in similar data products(Xu et al., 2022); 3) Topography, elevation and catchment areas along the longitudinal profile are 
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extracted from SRTM 1" DEM data, which offers a spatial resolution of approximately 30 meters; Critically, the dataset 

deliberately retains vegetation elevation values, thereby facilitating the acquisition of surface connectivity characteristics 

under vegetative interference and enabling systematic evaluation of vegetation's modulating effects on debris flow 110 

susceptibility mechanisms; 4) Debris Flow Incident Sites, the distribution of debris flow events in China is mapped at a 

scale of 1:5,000,000 (or Obtain the vector data from Resource and Environmental Science Data Platform, Chinese Academy 

of Sciences; https://www.resdc.cn/). This map, based on field investigations and depositional markers, provides locations 

and magnitudes of historical debris flows (Yi and Qu, 2018).Due to spatial discrepancies between some annotated hazard 

points and the corresponding gully centerlines, it was necessary to manually adjust the positions of these points within the 115 

ArcGIS platform prior to the calculation of geomorphic dynamic parameters. This step ensured the alignment of points with 

relevant geomorphic features and allowed us to retain enough samples for both model training and validation. 5) Soil 

Characteristics, the China Soil Map-based Harmonized World Soil Database (HWSD v1.2) is used to estimate soil 

erodibility (K), with a spatial resolution of 250 meters (Wieder et al., 2014). To reduce potential errors, data from flat 

surfaces are excluded. When implementing the D8 algorithm for depression filling in DEM processing, the filled regions 120 

(typically reservoirs or natural depressions) exhibit zero gradient in elevation. Fluid flow through such hydraulically 

flattened areas undergoes complete kinetic energy dissipation, rendering them non-informative for hydrodynamic 

investigations.  

Debris flows are categorized into three classes based on the volume of the accumulation body: small (< 1 × 10⁴ m³), medium 

(1 × 10⁴–1 × 10⁵ m³), and large (> 1 × 10⁵–1 × 10⁶ m³). Volume estimates account for factors such as debris-flow bulk 125 

density, solid particle bulk density, debris-flow duration, and peak discharge (Yu and Tang, 2016). The surface regolith data 

at a reference depth of 1 meter provide detailed information on the percentage contents of gravel, sand, clay, and organic 

matter, along with related parameters (Meng and Wang, 2018). This methodological framework ensures an accurate 

assessment of debris-flow susceptibility by integrating critical environmental and geological factors. 

3.2 Modeling Approach 130 

Debris flows are influenced by surface erosion and sediment supply, requiring a thorough consideration and quantification of 

related factors. Before designing the assessment framework, we identified key indicators with significant physical relevance 

to Earth's surface processes and made necessary adjustments to produce a three-dimensional visual representation of the 

numerical values. During the research, we used parameter sequences from debris-flow survey sites as training and testing 

samples. These parameters include dynamic characteristics of surface rock erosion, sediment connectivity, stream power, 135 

and the frequency and severity of extreme precipitation events in highly sensitive debris-flow valleys within the Jinsha River 

basin. A Naïve Bayes model was then applied to assess debris-flow probability across daily, monthly, and annual timescales 

(Fig. 2). 
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This model calculates the posterior probability of each feature using Bayesian inference based on its prior probability, 

assigning it to the category with the highest posterior probability. Specifically, if there are m classes (e.g., non-occurring, 140 

small, medium, and large debris flows) denoted as C₁, C₂, ..., Ck, and spatiotemporal variables denoted as x₁, x₂, ..., x5 (e.g., 

stream power, erodibility, connectivity, and the severity and frequency of extreme precipitation). According to Bayes’ 

theorem, the posterior probability of a class 𝐶௞ given a set of features x=(𝑥ଵ, 𝑥ଶ, … , 𝑥ହ) can be expressed as: 

𝑃(𝐶௞|𝑥ଵ, 𝑥ଶ, … , 𝑥ହ) =
௉(஼ೖ)·௉(௫భ,௫మ,…,௫ఱ|஼ೖ)

௉(௫భ,௫మ,…,௫ఱ)
                                                     (1) 

Here, 𝑃(𝐶௞) denotes the prior probability of class  𝐶௞, which reflects the proportion of samples belonging to that class in the 145 

training data. The term 𝑃(𝑥ଵ, 𝑥ଶ, … , 𝑥ହ|𝐶௞) represents the likelihood, i.e., the joint probability of observing the feature set 

xxx given that the sample belongs to class 𝐶௞. The denominator 𝑃(𝑥ଵ, 𝑥ଶ, … , 𝑥ହ) is the marginal probability of the features, 

which remains constant across classes and thus can be omitted when performing class comparisons.In the Naïve Bayes 

framework, a core assumption is that features are conditionally independent given the class. This allows the likelihood term 

to be factorized into a product of individual conditional probabilities: 150 

𝑃(𝑥ଵ, 𝑥ଶ, … , 𝑥ହ|𝐶௞) = 𝑃(𝑥ଵ|𝐶௞) · 𝑃(𝑥ଶ|𝐶௞), … , 𝑃(𝑥ହ|𝐶௞)                            (2) 

Substituting Equation (2) into Equation (1), the posterior probability simplifies to: 

𝑃(𝐶௞|𝑥ଵ, 𝑥ଶ, … , 𝑥ହ) ∝ 𝑃(𝐶௞) · ∏ 𝑃(𝑥௜|𝐶௞)ହ
௜ୀଵ                                                (3) 

For classification, a new sample 𝑥 = (𝑥ଵ, 𝑥ଶ, … , 𝑥ହ) is assigned to the class with the highest posterior probability: 

𝑦ො = arg max
஼ೖ

[𝑃൫𝐶௞ · ∏ 𝑃(𝑥௜|𝐶௞)ହ
௜ୀଵ ൯]                                                          (4) 155 

The likelihood estimation methods are based on the normal distribution function (for continuous variables), frequency 

statistics (for discrete variables), and the Bernoulli equation (for binary outcomes, i.e., 0 or 1). In this study, the conditional 

probability density 𝑃(𝑥௜|𝐶௞) is estimated using a kernel density estimation (KDE) approach defined as: 

𝑃(𝑥௜|𝐶௞) =
ଵ

௡ೖ௛೔
∑ 𝐾(

௫೔ି௫೔,ೕ
ೖ

௛೔
)

௡ೖ
௝ୀଵ                                                                     (5) 

Where 𝑛௞  is the number of training samples in class 𝐶௞ , 𝑥௜,௝
௞  is the  𝑗௧௛   observation of feature 𝑖  in class 𝐶௞ ,  ℎ௜  is the 160 

bandwidth for feature 𝑖, and 𝐾 denotes the kernel function—typically the Gaussian function. It is important to note that when 

feature values are approximately continuous across their ranges, the Gaussian kernel can be directly applied to estimate the 

probability density. However, in cases where certain features are relatively discrete, a preprocessing step is introduced to 

estimate a smoothed continuous distribution using the kernel function, thereby enabling the application of Equation (5) under 

the continuous assumption.  165 

The attribute value for a point within the basin is computed as the average value of the upstream confluence interval, using 

the following formula: 

Fത j=
∑ Ei,j

n
i=1

Ni,j
                                                                                                       (6) 
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Figure 2: Study Implementation Framework. 

In the formula, Ei,j is the attribute value of the jᵗʰ parameter at point i, and N is the number of corresponding grids. Due to the 

algorithm's resilience, this model is not susceptible to missing data, and the discriminant effect is steady (Mu et al., 2021; 170 

Soomro et al., 2022). Following this scheme, the probability of debris flow at various sizes and durations can be determined 

to produce a more realistic and understandable illustration of debris-flow susceptibility. 

3.3 Quantitative parameters 

3.3.1 Stream power and its gradient 

Stream power (W/m) is the rate at which runoff's gravitational potential energy is transformed into kinetic energy (Pérez-175 

Peña et al., 2009). Its ratio (ω, W/m²) to river width may be used to quantify runoff erosivity to river channels (Bagnold, 

1960). When stream power increases throughout the channel, the value is higher  than 0, and runoff erodes; when stream 

power is reduced downstream, the value is less than 0, indicating an energy-dissipating stretch and sediment deposition 

occur. Erosion and deposition are balanced at 0 (Lea and Legleiter, 2016). In fluvial systems across low-relief terrain, stream 

power per unit channel length (Ω, in W/m) is dominantly governed by discharge (Q, m³/s) and channel width, as longitudinal 180 

gradients (S, %) exhibit minimal spatial variability. We quantify the spatial distribution of erosional potential within the 

valley using specific stream power (ω, W/m²), calculated as: 

𝜔 = Ω 𝐿⁄                                                                                                         (7) 

where L represents the reach length (m). Given that Ω is functionally linked to discharge and gradient (Ω = γQS), and 

discharge can be parametrized as a power-law function of contributing catchment area (Q = aAᵇ), Equation 3 is expanded 185 

into: 

ω=
γaAbS

L
                                                                                                         (8) 
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Figure 3: Diagram of numbering reaches. Note: The reach between the two gully junctions is considered a gradient cell. 

 

Figure: 4 The calculation process of stream power and its gradient. 

Here, γ denotes the specific weight of the fluid (N/m³). While clean water flows adopt γ = 9800 N/m³, debris-laden flows 

require an amplified value (Reference value: γ=1.6×10⁴ N/m³) to account for elevated bulk densities (1000–2400 kg/m³) and 

enhanced erosive loads. Coefficients a and b were calibrated via nonlinear regression against gauge-derived Q and A 190 

measurements. Crucially, this formulation focuses on isolating baseline erosional drivers, deliberately excluding transient 

sediment feedbacks to align with the study's scope of identifying first-order geomorphic controls. 

Stream power computation involves depression-filling, slope aspect, catchment area, channel numbering, and elevation 

extraction. Using a threshold of 1 km², we extracted the longitudinal profile of the valley and its catchment areas (m²), and 

the channel gradients were computed using the first-order fitting function (Fig. 3): 195 

⎩
⎨

⎧
ℎଵ,௜ = 𝑘ଵ𝐿ଵ,௜ + 𝑐ଵ,௜,              𝑅ଵ

ଶ                               

ℎଶ,௝ = 𝑘ଶ𝐿ଶ,௝ + 𝑐ଶ,௝ ,            𝑅ଶ
ଶ                               

…                         
ℎ௡,௠ = 𝑘௡𝐿௡,௠ + 𝑐௡,௠,      𝑅௡

ଶ                                

                                         (9) 
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where n is the number of reaches; hn,m denotes the elevation of point m; C is the corresponding constant; kn is the ratio of the 

calculation; Rn
2 is the linear fitting coefficient of the reach; Ln,m is the length (m) between the mth point of a certain reach and 

its gully head; and i, j..., m has the same meaning as m but represents river segments with different lengths, that is, the 

distance between the intersection of two confluence points (Fig. 3). The calculation process is shown in Fig. 4. 200 

3.3.2 Index of connectivity (IC) 

Connectivity reflects the topographic resistance of detrital material on a mountain as it is transported. The transport 

mechanism of detrital materials will change due to the tight relationship between the upslope component (Dup) and the 

downslope component (Ddn) with topographic variations. The following equation is as follows:  

IC=Log10(
Dup

Ddn
)                                                                                             (10) 205 

where IC is defined in the range of [-∞, +∞], with greater IC values indicating higher connectivity. The upslope component 

(Dup) describes the potential for the downward routing of sediment produced upslope and is estimated as follows: 

𝐷௨௣ = 𝑊ഥ 𝑆̅√𝐴                                                                                                (11) 

where Wഥ  is the average weighting factor for the upslope contributing area, Sത is the mean slope (%), and A is the size (m²). 

The downslope component (Ddn) considers particles' flow path lengths to reach the nearest target or sink. It is expressed as 210 

follows:   

𝐷ௗ௡ = ∑
ௗ೔

ௐ೔ௌ೔
௜                                                                                                 (12) 

where di is the length of the flow path along the ith cell according to the steepest downslope direction (m), and Wi and Si are 

the weighting factor and slope of the ith cell, respectively (Jing et al., 2022).Determining weighting factors within a 

watershed uses the standardized roughness index (SRI) or land use classification data (Zanandrea et al., 2020). The 215 

determination of weights in this paper is based on the standardized roughness index (RI), which is calculated as the standard 

deviation of the difference between the nonsmoothed and smoothed DTM and can represent vegetated regions(Zanandrea et 

al., 2020). The RI values provide valuable surface roughness information computed in an n×n cell moving window over the 

residual topography grid. The RI is defined as follows: 

𝑅𝐼 = ට
∑ (௫೔ି௫೘)మమఱ

೔సభ

ଶହ
                                                                                       (13) 220 

where xi is the value of each cell of the residual topography within the moving window, and xm is the mean of the n×n cell 

values. Here, we used nine as the number of processing cells within the 3×3 cell moving window. The W value is typically 

calculated from the RI according to the methodology defined by the following: 

𝑊ோூ = 1 − (
ோூ

ோூಾೌೣ
)                                                                                         (14) 

where RIMax is the maximum RI value in the study area. 225 
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3.3.3 Extreme precipitation identification 

Extreme precipitation (or wetting) events are identified using the run theory (Huang et al., 2021; Yevjevich, 1969). We used 

McKee's standardized precipitation index (SPI) from 1993 to characterize the precipitation probabilities and observed 

extreme precipitation events at three scales: daily, monthly, and annual. In the SPI, a two-parameter gamma probability 

density function is used to explain the frequency distribution of precipitation: 230 

𝑔(𝑥) =
ଵ

ఉഀ௰(ఈ)
𝑥ఈିଵ𝑒

షೣ

ഁ                                                                                  (15) 

where x is the precipitation accumulation, and Γ(α) is the gamma function. The gamma distribution's shape and scale 

parameters, α and β, may be calculated using the most excellent likelihood method (Edwards, 1997). Under certain 

conditions, the cumulative probability G(x) can be reduced to the so-called incomplete cumulative gamma distribution 

function, t=
x

β
: 235 

𝐺(𝑥) =
ଵ

௰(ఈ)
∫ 𝑡ఈିଵ𝑒ି௧𝑑𝑡

௫

଴
                                                                            (16) 

Since Eq. (12) is invalid for zero precipitation (x=0), the cumulative probability distribution, including zeros, may be stated 

as H(x)=q+(1-q) G(x), where q and 1-q are the probabilities of zero (x=0) and nonzero (x≠0) precipitations, respectively. The 

SPI is computed by changing H(x) to a zero-mean, one-variance normal distribution. Positive SPI levels imply moist periods, 

whereas negative values suggest dry periods (Farahmand and Aghakouchak, 2015). The severity of precipitation can be 240 

described as the total of the SPI across the length of numerous single severe rainfalls. 

𝑆௜௝ = (
ଵ

௠
∑ |𝑆𝑃𝐼௜|௠

௜ୀଵ )௝                                                                                   (17) 

where m is the number of extreme wetting events, indicating wetting occurrences dominated by precipitation. 

Table 1 Category of standardized precipitation index (SPI) based on range values (Dutta et al., 2015; Mckee et al., 1993) 

SPI Range Category 

+2 to more Extremely wet 

1.5 to 1.99 Very wet 

1.0 to 1.49 Moderately wet 

-0.99 to 0.99 Near Normal 

-1.0 to -1.49 Moderately dry 

-1.5 to -1.99 Severely dry 

-2 to less Extremely dry 

3.3.4 Erodibility (K) 245 

Erodibility (K) is a surface erosion factor related to the concentration of organic materials, sand, mud, and gravel in 

weathered accumulations. A higher number suggests a more easily degraded surface nature. It is commonly represented as 

the number of soil particles lost due to precipitation erosivity per unit of time in a standard area. The models used to 
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calculate K include Nomograph (Wischmeier et al., 1971), EPIC(Sharpley and Williams, 1990), Torri (Torri et al., 1997), 

Shirazi(Shirazi et al., 1988), and Wang (Wang et al., 2013). As it is more widespread in hilly places, the EPIC model 250 

(Erosion/Productivity Impact Calculator) was utilized to estimate erosion in this study. The model can be expressed as 

follows: 

𝐾ா௉ூ஼ = ቂ0.2 + 0.3𝑒ି଴.଴ଶହ଺ఝೞೌቀଵି
കೞ೔
భబబ

ቁ
ቃ × (

ఝೞ೔

ఝ೎೗ାఝೞ೔
)଴.ଷ× ൬1-

0.25φoc

φoc+e3.72-2.95φoc
൰ ×[1-

0.7(φcl+φsi)

φcl+φsi+e-5.51+22.9(φcl+φsi)
]       (18) 

where φsa, φsi, φoc and φcl(%) are the sand, silt, organic carbon and clay contents, respectively (Sharpley and Williams, 1990). 

4 Results 255 

4.1 Mapping of High-Energy Valleys and Erosion Dynamics 

Stream power is a critical parameter in erosion processes, as it reflects the rate at which gravitational potential energy is 

converted into kinetic energy, closely linking it to the channel gradient. In the Jinsha River basin, most areas have a channel 

slope of less than 5.63%, with regions of steeper gradients predominantly concentrated in the middle and lower reaches of 

the Jinsha and Yalong Rivers, within approximately 30 kilometers of the riverbanks (Fig. 5a and 6). According to 260 

geomorphological evolution principles, in the initial stages of erosion, the longitudinal profile of the valley typically follows 

a straight-line form. As the erosion process progresses, this profile gradually becomes more curved, and eventually, the 

mountains are reduced to a peneplain. Throughout the different stages of this process, the valley’s longitudinal profile can be 

best represented by four functions: linear, exponential, logarithmic, and power, in the following sequence: linear → 

exponential → logarithmic → power (Ohmori and Saito, 1993; Ohmori, 1991; Rãdoane et al., 2003). In contrast, the 265 

longitudinal profiles of most valleys in the basin display distinct linear characteristics, with an average linear fitting 

coefficient (R²) exceeding 0.94 (Fig. 5b). This suggests that the majority of valleys in the basin are still in the early stages of 

erosional evolution. To quantify stream power, we estimated the flow parameters and gradients at each grid location, 

converting them into stream power values (Fig. 5d). In Fig. 5c, we categorized river segments by different stream power 

intervals. Figures 5e, h, and k show the geographical locations of erosion and deposition along the downstream river sections. 270 

Our analysis revealed that effective erosion in the Jinsha River basin is primarily concentrated in the middle and lower 

reaches, with tributaries on both sides exhibiting stronger erosional activity (Fig. 5a). By using an average stream power 

gradient threshold of 1×10⁻⁴ W/m², we identified high-energy valleys and validated this threshold using debris flow fans as 

geomorphic markers (Fig. 5f-1 and 5f-2). We then quantified the number of high-energy valleys at various buffer distances 

along the Jinsha and Yalong Rivers, which revealed a significant power-function relationship (Fig. 6). The total number of 275 

valleys longer than 200 meters is approximately 32,000 (Valley segments shorter than 200 m and disconnected gullies were 

excluded from statistical aggregation due to resolution limitations.). These valleys, requiring substantial driving forces for 

debris flows, are likely to pose significant disaster risks. 
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Figure 5: Spatial Distribution Characteristics of Runoff Erosion Activity: (a) Channel gradient; (b) Linear fit coefficients of the longitudinal profile; 

(c) Length of river segments across different stream power intervals; (d) Stream power distribution; (e) Stream power gradient; (f) A typical debris-

flow valley (f-1) and its geomorphic landscape (f-2); (g) Number of erosion and deposition grids in the mainstream of the Jinsha River; (h) 

Longitudinal profile of the Jinsha River and stream power gradient along the river; (k) A typical high-energy watershed environment. Note: In this 

study, we calculated the gradient values, stream power, and power gradients for all river reaches. Due to the extensive spatial data involved, we 

applied interpolation techniques to simplify the results for easier interpretation by readers, as shown in (a), (b), (d), and (e). Image credit: Z. Gu. 

 280 
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Figure 6: Characteristic statistics of High-Energy valley: (a)Variation in the Number of High-Energy Reaches with Channel 

Buffer Distance; (b) Debris flow investigation points in various stream power gradient intervals. Note: High-energy valleys are 

defined here as those with a stream power gradient greater than 1.3×10⁻⁴W/m² and the threshold is defined according to the 

inflection point of the trend change of the fitted curve. This chart displays the count of high-energy valleys within a 200m buffer 

along the Jinsha River and Yalong River, across a range of buffer widths, specifically including those with a stream power 

gradient exceeding 1.3×10⁻⁴ W/m². 

4.2 Variations in Surface Erodibility and Connectivity 

The formation and transportation of debris flow source material are significantly influenced by surface erodibility and terrain 

connectivity. During the short period of debris flow formation, an equilibrium is often established between the supply of 

eroded material to the river and the river’s capacity to transport and deposit these materials. The source material typically 

originates from loose debris triggered by earthquakes, landslides, or shallow landslides, which evolve into unconfined debris 285 

(mud) flows. In flatter regions, stable accumulation occurs, disrupting surface connectivity. As shown in Fig. 7, areas with 

high erodibility in the Jinsha River basin are primarily concentrated in the downstream regions, where the erodibility factor 

(K) typically exceeds 0.245 t·ha·h·(ha·MJ·mm)⁻¹. These regions are characterized by high clay content and low organic 

matter. The connectivity of these areas follows a distinct pattern, with lower values in the source regions and higher values in 

the middle and lower reaches. The Index of Connectivity (IC) values range from -2.47 to 1.17, with high-connectivity zones 290 

mainly found in the middle sections of the Jinsha River and along both sides of the Yalong River. In these high-connectivity 

zones, IC values generally exceed 2.68, which corresponds to the spatial distribution of high-energy or high-gradient valleys. 

The transition in connectivity between valley slopes and valley bottoms shows a clear decline in values, from high at the 

slopes to low at the valley bottoms. Deeply incised valleys typically exhibit low connectivity, with the valley bottom often 

having lower connectivity than the adjacent valley branches. These low-connectivity regions are highly prone to sediment 295 

accumulation, which can lead to the formation of barrier dams. 
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Figure 7: Spatial Variation Characteristics of Surface Erodibility and Connectivity: (a) Spatial distribution of erodibility; (b) Composition of materials within 

different erodibility ranges; (c) Surface connectivity of the Jinsha River basin; (d) Combined profile of connectivity and elevation (red: mean; black: maximum; 

blue: minimum). 
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4.3 Variations in Extreme Precipitation Events and Implications for Debris Flow Risk 

We identified extreme precipitation events in the Jinsha River basin over the past decade (2010-2020) using the Standardized 

Precipitation Index (SPI) on daily, monthly, and yearly time scales, as well as the Run Theory. Figure 8 illustrates that the 300 

frequency of extreme precipitation events in any given area is generally fewer than 22 occurrences. The middle and lower 

reaches of the Jinsha River are identified as high-frequency zones for extreme rainfall events. However, as the observation 

time scale increases, a noticeable shift of these high-frequency areas towards the upstream regions occurs. The observed 

spatiotemporal decoupling—wherein extreme precipitation hotspots shift across daily, monthly, and annual scales—

highlights mechanistic divergence between stochastic microscale forcings (e.g., terrain-modulated convection) and 305 

deterministic macroscale controls (e.g., orbital cycles), thereby manifesting intrinsic instability in event patterning. This 

spatial shift suggests that the pattern of extreme precipitation events is not stable over time. Figures 8b, e, and h display the 

severity of precipitation events under daily, monthly, and yearly observation scales. The severity of these events is 

negatively correlated with the frequency of extreme precipitation events (Figs. 8c, f, and i). Consequently, in regions with 

fewer occurrences of extreme precipitation, when debris flows do occur, they may be more destructive in terms of scale and 310 

intensity than in areas with higher frequencies of extreme precipitation events. Time-series statistical analysis reveals that 

2014 experienced a higher number of extreme precipitation events, with a decrease in frequency observed starting from 2015 

(Fig. 9a). This trend indicates a declining risk of debris flows in the Jinsha River basin in recent years. Extreme precipitation 

events most frequently occur in July, accounting for approximately 30% of the total annual occurrences (Fig. 9b). The 

severity of major precipitation events shows minimal interannual variation (Fig. 9c). 315 
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Figure 8: Frequency, Severity, and Correlation of Extreme Precipitation in the Jinsha River Basin (2010–2020). Note: Panels (a), (d), and (g) illustrate 

the number of extreme precipitation events from 2010 to 2020 at daily, monthly, and yearly observation scales, respectively. Panels (c), (f), and (i) 

depict the severity of extreme precipitation under the corresponding conditions. 
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Fig. 9 Temporal Characteristics of Extreme Precipitation Frequency and Severity in the Jinsha River Basin: (a) Interannual 

variation in the frequency of extreme precipitation from 2010 to 2020; (b) Monthly variations in the frequency of extreme 

precipitation; (c) Severity of extreme precipitation events. 

4.4 Probability of Debris Flow Occurrence at Different Observation Scales 

The occurrence probabilities of small, medium, and large debris flow events under daily, monthly, and yearly observation 

scales are presented in Figure 10. The estimation results show that medium- and small-sized debris flows are more prevalent 320 

in the basin. During the disaster formation process, the relative importance of various factors contributing to debris flow risk 

decreases in the following order: surface material erodibility > connectivity > stream power > extreme precipitation 

frequency and severity (Fig. 11b). 

To explore the variability in disaster risk, we constructed a Taylor diagram to evaluate the differences in risk across different 

time scales. This diagram provides a visual comparison of risk deviations at the monthly and yearly scales relative to the 325 

daily scale, characterized by standard deviation, root mean square error (RMSE), and correlation coefficient (Fig. 11c). We 

found that the standard deviation and RMSE for large debris flows at the yearly scale are significantly smaller compared to 

the other two categories, suggesting that the risk of large debris flows exhibits relatively stable spatial and temporal patterns. 

Based on these findings, we can conclude that the temporal and spatial stability of debris flow occurrence probabilities in the 

Jinsha River basin follows this order: large debris flows > small debris flows > medium debris flows. 330 
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Figure 10: Probability of Debris Flow Occurrence in the Jinsha River Basin. Note: Panels (a), (b), and (c) represent the 

probabilities of small debris flows occurring at daily, monthly, and yearly scales, respectively; Panels (d), (e), and (f) depict the 

probabilities of medium-sized debris flows under the same three time scales; Panels (g), (h), and (i) illustrate the probabilities of 

large debris flows occurring at daily, monthly, and yearly scales; Panels (k), (l), and (m) show the probabilities of no debris flow 
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Figure 11: Characteristics of the Probabilistic Model for Debris Flow Occurrence: (a) Confusion matrix; (b) Ranking of 

covariate importance; (c) Comparisons between daily, monthly, and annual observational scales. Note: SMD, MMD, and GMD 

represent the deviations of small, medium, and large debris flow occurrence probabilities at the monthly scale relative to the 

daily scale, respectively; SYD, MYD, and GYD represent the deviations of small, medium, and large debris flow occurrence 

probabilities at the annual scale relative to the daily scale, respectively. 

4.5 Verification of Disaster Probability Maps with Actual Cases 

Model robustness was rigorously validated using an independent dataset preserved from the initial training cohort, with the 

average accuracy benchmarking at 63% (Fig. 11a). To validate the accuracy of the disaster probability maps, we reviewed 

news reports of recent debris flow events in the Jinsha River basin and compared them with our evaluation results. One such 335 

event occurred in the early morning of August 21, when a flash flood and debris flow impacted the Yanjiang Expressway 

JN1 project section in Lugao Town, Jinyang County, Liangshan Prefecture. The site, managed by Shudao Group, is located 

in the lower reaches of the Jinsha River. According to reports, heavy rainfall persisted for nearly 10 hours prior to the 

disaster, with accumulated precipitation reaching 160 mm (Fig. 12). Lugao Town (Fig. 13) was the hardest hit, with four 

confirmed fatalities and 48 missing individuals at the time of reporting. Tragically, in the months following the event, all the 340 

missing persons were confirmed dead, raising the total death toll to 52. 

When compared with the probability map we created, the likelihood of a medium-scale debris flow occurring at this location 

was found to exceed 80%, significantly higher than the surrounding areas (Fig. 13b and f). This supports the accuracy of our 

model, as it predicted the occurrence of debris flow in a high-risk zone. In the aftermath of the disaster, the local geomorphic 

landscape was significantly altered (Fig. 13d and e), likely due to a combination of accumulated loose sediment, heavy 345 

precipitation, and the presence of a high-energy valley. While the probability of small, large, and super-large scale debris 

flows in this area was relatively low (Fig. 13a and c), it is important to note that this does not imply safety in all areas outside 

the event zone. Our model also identified other high-risk zones in Jinyang County and its surroundings, highlighting the need 

for enhanced disaster risk preparedness in the future (Fig. 13b). 

 350 
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Figure 12: Precipitation Changes in Jinyang County, Sichuan Province, China, Since 00:00 on August 20, 2003. 

 
Figure 13: Analysis of the "8·21" Debris Flow in Jinyang County Based on Daily Scale Probability of Occurrence: (a) 

Probability of small debris flow; (b) Probability of medium-sized debris flow; (c) Probability of large debris flow; (d) Photos of 

the site before the disaster; (e) Photos of the site after the disaster; (f) Location of the disaster on a satellite image. 
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5 Discussion 

5.1 Impact of Temporal Observation Scale Changes on the Assessment 

Precipitation characteristics are among the most dynamic and least predictable factors influencing debris flow formation. In 

general, climate change on an annual scale is often determined by ocean-atmosphere coupling oscillations, solar radiation 355 

variations, etc; climate change on a monthly scale is mainly determined by the seasonal periodic variations of Earth's orbit; 

climate change on a daily scale is influenced by local factors such as the modulation of solar radiation forcing by the diurnal 

cycle, valley wind circulation, land-sea wind oscillation, and human activities. An extreme weather event is often the result 

of the superposition of the effects of different levels of dynamic factors. There are substantial differences in precipitation 

characteristics across different temporal observation scales. These differences significantly affect our understanding of debris 360 

flow susceptibility, suggesting that both the spatial extent and precipitation variables influencing debris flow risk may vary 

depending on the time scale of observation. We observed an inverse relationship between the frequency and severity of 

extreme precipitation events, along with notable spatial inconsistencies in the Jinsha River basin at daily, monthly, and 

annual time scales. Specifically, as the observation scale increased, the number of extreme precipitation events and the extent 

of high-incidence areas both decreased and shifted (Fig. 9). These findings suggest a pattern in which extreme precipitation 365 

events are more frequent, shorter in duration, and more localized on shorter observation scales. In contrast, on longer time 

scales, these events are less frequent but tend to cover broader spatial and temporal extents. This pattern aligns with broader 

changes in climate elements such as temperature, wind, and atmospheric pressure (Mckitrick and Christy, 2019), reflecting 

the complex dynamics of the surface environmental system. Daily precipitation variations are heavily influenced by factors 

such as diurnal temperature fluctuations, local topography, wind patterns, vegetation cover, and human activities, leading to 370 

high variability and low regularity in regional climate change. In contrast, monthly variations are more strongly influenced 

by seasonal changes driven by Earth's orbital fluctuations, exhibiting clear periodicity and recurrence patterns. For effective 

disaster preparedness, it is crucial to focus on areas where debris flow susceptibility remains consistent across different time 

scales. These regions indicate relatively stable spatial and temporal risk, with more predictable probability values. 

Furthermore, before a debris flow can form, rainfall must undergo processes such as interception, infiltration, and 375 

convergence with the vegetation and soil layers to generate sufficient erosive force—processes that inherently require time. 

Therefore, assessing debris flow susceptibility under different temporal observation scales can help mitigate bias from 

response time differences, leading to more accurate risk assessments. 

5.2 Changes in Debris Flow Susceptibility Influenced by Climate Change 

The rapid uplift of the Tibetan Plateau within the Jinsha River basin has caused widespread stratigraphic fracturing, 380 

destabilizing rock masses and creating favorable conditions for accelerated weathering and gravitational erosion (Zhu et al., 

2021; Li et al., 2020). This process has contributed to the accumulation of debris and the formation of highly undulating 

terrain, creating a high-energy environment conducive to debris flow development. These geomorphological features also 
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play a key role in controlling the spatial distribution of debris flow-prone areas. Between 2000 and 2015, China experienced 

10,927 debris flow disasters, accounting for 36.14% of fatalities from geological hazards (Wei et al., 2021; Zhang et al., 385 

2018a). However, given the vast geographical span of the Jinsha River basin, which covers multiple natural zones with 

significant spatial and temporal climatic variations, the locations and frequency of such disasters may shift under the 

influence of global warming (Wei et al., 2021). 

The IPCC’s 5th Assessment Report indicates a global average surface temperature increase of approximately 0.85°C 

between 1880 and 2012, with the warming more pronounced in the Northern Hemisphere. The past 30 years have likely 390 

experienced the highest temperatures in the last 1,400 years. According to the Clausius-Clapeyron relation, for every 1°C 

rise in global temperature, the intensity of extreme precipitation increases by 7%, by 15% in high-altitude areas, and 

precipitation variability rises by 5% (Zhang and Zhou, 2020; Ombadi et al., 2023). We recognize the broad significance of 

this conclusion, but this does not imply that the basin strictly adhered to this rule during the research period. For at least 

since 2014, the frequency of extreme precipitation has shown a decreasing trend. This suggests a more uneven temporal 395 

distribution of precipitation, with greater fluctuations between wet and dry periods, and an expanded range of precipitation 

intensities. Two primary theories explain the increase in extreme precipitation events. First, climate warming leads to higher 

atmospheric moisture content and a slowdown in atmospheric circulation, causing low-pressure systems to remain stationary. 

Second, weakened summer atmospheric circulation causes it to become slower and more erratic, resulting in prolonged 

heatwaves and droughts (associated with high-pressure systems) and extended periods of heavy rainfall (associated with 400 

low-pressure systems). In China, the intensity and frequency of extreme precipitation events, particularly in the southern 

regions and the Yangtze River basin, have significantly increased from 1970 to 2018 (Li et al., 2022). These changes have 

altered the hydrological cycle, leading to shifts in the spatial and temporal distribution of water resources, as well as changes 

in the overall quantity of available water resources (Wu et al., 2020). As a result, the susceptibility of disaster-prone 

environments has increased. The Jinsha River basin, in line with general climate trends, has seen increases in temperature, 405 

precipitation, and runoff between 1972 and 2017, primarily driven by ice melt and precipitation (Wu et al., 2020). This has 

caused a significant rise in streamflow from May to June, peaking in July (Fig. 10b). Consequently, this period is critical for 

debris flow preparedness. Previous studies indicate that precipitation in the Jinsha River basin follows a distinct wet and dry 

cycle with minimal interannual variability (Song et al., 2012). However, this pattern primarily reflects general precipitation 

trends, while extreme rainfall events exhibit marked interannual fluctuations (Fig. 9). Future projections for extreme 410 

precipitation indices in China suggest a consistent upward trend, with a slight decrease in the number of consecutive dry 

days (CDD). The growth rate of these indices is expected to accelerate over the coming decades, extending into the middle 

of this century. Changes in thermal (temperature) and dynamic (circulation) factors are likely contributors to the increased 

intensity and frequency of future precipitation events (Guo et al., 2018). Recent precipitation simulations for the Yalong 

River basin under future warming scenarios suggest that the region may experience more frequent and intense precipitation 415 

events, which would increase the likelihood of debris flows(Guo et al., 2018). While heavy precipitation typically results in 

flooding in plains, it can have catastrophic consequences in high mountain valleys, such as those found in the Jinsha River 
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basin(Zhao et al., 2021). Therefore, the susceptibility areas identified in Figure 10 should be prioritized for disaster 

prevention efforts. 

5.3 Interaction Between Reservoir Operations and Debris Flow Activity 420 

The Jinsha River basin is rich in hydropower resources, with an exploitable capacity of approximately 1.1 × 10⁸ kilowatts, 

making it one of China’s strategically significant hydropower bases. Several large hydropower plants have already been 

constructed, including Wudongde (dam height: 270 m), Baihetan (289 m), Xiluodu (285.5 m), and Xiangjiaba (88.2 m), with 

a total installed generation capacity exceeding 4.2 × 10⁶ kilowatts. Additionally, numerous smaller hydropower plants are 

either operational or in the planning stages along the main streams of the Jinsha and Yalong Rivers (Fig. 4). The 425 

development of hydropower has significantly altered the river valley landscape, transforming it from one primarily shaped 

by runoff and erosion into a series of reservoirs extending hundreds of kilometers. Debris flows bring substantial sediment 

into these reservoir areas, leading to complex interactions between reservoir water levels and debris flow activity. The 

presence of dams raises the water level, elevating the base level of erosion, which reduces the erosive and incisional forces 

acting on the valleys along the reservoir areas of the Jinsha River. However, the sediment carried by debris flows contributes 430 

to soil and water conservation within the reservoirs(Schmidt et al., 2019), effectively reducing sediment flux and intercepting 

71.4% of the sediment in the Yangtze River(Lu et al., 2019), surpassing the impacts of land reclamation and landslides 

caused by agricultural activities. For example, the average annual sediment load at the Panzhihua station increased by 42.4% 

from 1966–1984 to 1985–2010, primarily due to mineral extraction and deforestation. However, this was followed by a 75.9% 

decrease from 2011–2015, attributed to the operation of cascade reservoirs in the middle Jinsha River basin since 2010 (Li et 435 

al., 2018). Such fluctuations in sediment load can significantly impact the lifespan of the reservoirs. The long-term interplay 

between regional geology, geomorphology, and hydrology will be shaped by this reciprocal feedback. Notably, nearly all 

completed and planned reservoirs along the Jinsha and Yalong main streams are situated in areas highly susceptible to debris 

flows, as identified in this study (Fig. 8a). The number of debris-flow channels exhibits a multiplicative power function 

relationship with their distance from the mainstream channel, with a distinct trend change occurring within a 5 km radius of 440 

the reservoir area (Fig. 6). The relatively dense distribution of debris-flow channels in this zone highlights the significant 

interaction between reservoir operations and debris flow activity. 

5.4 Response to Debris Flow Hazards 

The distribution of debris flow gullies in the middle and lower reaches of the Jinsha River is notably dense (Fig. 8a), and the 

challenges associated with responding to debris flow disasters are exacerbated by global climate change and the development 445 

of engineering infrastructure. The occurrence of debris flows has disrupted river ecosystems, making the scientific 

management of these hazards a pressing societal concern. Effective responses to debris flow disasters must consider the 

principles of geomorphological evolution and human safety, utilizing the specific spatial and energy characteristics of the 

affected areas. Currently, a combination of check dams, ecological engineering, and management practices is widely adopted 
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to mitigate the impacts of debris flows on critical infrastructure and residential areas. These measures include constructing 450 

check dams and dredging channels at the mouths of debris flow gullies, creating terraces, afforesting catchment areas, and 

installing monitoring and early warning systems (Xiong et al., 2016). Globally, building check dams in potential debris flow 

gullies is recognized as one of the most effective disaster prevention methods (Gao et al., 2022; Chong et al., 2021). This 

intervention modifies the micro-environment of river valleys in hydrological, geomorphological, and ecological dimensions. 

In the initial stages, check dams serve multiple functions: storing water, reducing runoff peaks, slowing flow velocity, 455 

promoting seepage, and recharging groundwater. Additionally, the dams trap organic matter and sediment, contributing to 

carbon sequestration and sediment retention. As silt accumulates, the topography upstream of the check dam gradually 

flattens, creating favorable conditions for vegetation growth and fostering ecological restoration in the local environment 

(Xiong et al., 2016). Over time, this process can transform debris flow gullies into ecological corridors, directly reflected in 

reduced surface connectivity and adjustments in river power. A critical challenge in debris flow control is identifying 460 

optimal locations and determining the appropriate scale for check dam construction. During dam construction, structures 

must be designed to accommodate peak flow from potential debris flows. However, for many debris flow gullies, the 

necessary engineering parameters are often derived from industry-standard formulas, which may be limited by regional 

variations and insufficient observational data. The findings of this study provide valuable insights into the spatial locations 

and occurrence probabilities of debris flow-prone valleys in the Jinsha River basin. Beyond merely identifying areas with 465 

high debris flow density, this research offers data on stream power, gradient values, surface connectivity, and the probability 

of debris flow events in specific channels. This enables the precise identification of high-energy valleys and the targeted 

monitoring and management of these areas. In the context of global climate change, although controlling the frequency and 

intensity of extreme precipitation events may be challenging, disaster risk areas can be more effectively identified using the 

debris flow probability maps generated in this study (Fig. 10). High-risk zones of river power and connectivity can be 470 

pinpointed from Figures 5d and 7c, allowing for the accurate determination of locations for constructing silt dams. The scale 

of dam construction can then be optimized based on the relationship between soil erodibility, sediment connectivity, river 

power, and the observed effects of existing check dams of varying sizes. 

6 Conclusions 

Accurate delineation of the spatiotemporal window of debris flow occurrence remains a fundamental challenge in 475 

mountain hazard assessment and a prerequisite for designing effective disaster mitigation and ecological restoration 

strategies. Existing large-scale susceptibility evaluations are often constrained by an overreliance on simplistic 

topographic indicators, limiting their spatial resolution and predictive reliability. Here, we develop a 

geomorphodynamic Parameters’ system that captures the source-to-sink physical processes governing debris flow 

generation and implement a Naïve Bayesian model to quantify the probabilistic occurrence and spatial heterogeneity of 480 

debris flows across multiple scales in the Jinsha River Basin. The model achieves an average accuracy of 63% and 
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demonstrates high spatial localization precision, as validated by the catastrophic “August 21” 2023 debris flow event 

in Jinyang County, China. Our analysis yields several key insights: (1) Spatial patterns: We identify approximately 3.2

×10⁴ high-risk gullies (each exceeding 200 m in length) predominantly located within a 30 km buffer zone along the 

middle and lower reaches of the Jinsha–Yalong River system. Notably, regions with infrequent extreme rainfall tend to 485 

exhibit larger debris flow volumes; (2) Dominant controls: The debris flow probability follows the hierarchy: surface 

erodibility > surface connectivity > stream power > extreme rainfall frequency > extreme rainfall intensity. This 

indicates that basin substrate characteristics exert stronger controls on debris flow development than climatic drivers in 

the study area; (3) Climate implications: Despite a decline in extreme rainfall events since 2014, the overarching trend 

of global warming persists, suggesting an eventual increase in extreme rainfall frequency. Over longer temporal scales, 490 

debris flow-prone zones are projected to migrate toward higher elevations.The resulting datasets—comprising fluvial 

power, surface connectivity, and debris flow probability maps—provide robust quantitative inputs for infrastructure 

siting, including hydropower hubs, transport corridors, and residential zones. Our process-informed “Geomorphic 

Dynamics–Spatial Patterns–Probabilistic Hazard” framework offers a transferable model for risk-tiered debris flow 

management in mountainous river systems worldwide. 495 
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