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Abstract. Absorption and scattering by optically active constituents (OACs) modify the sunlit aquatic light environment, fa-

cilitating the derivation of biogeochemical data products at scales spanning in situ to satellite observations. Excluding solar

illumination and atmospheric effects, variability in an optical parameter arises from changing OAC concentrations, wherein

observed patterns in the spectral evolution of data products are associated with the connectivity and spatiotemporal dynamics

of OACs. In open-ocean water masses far from terrestrial and riverine inputs, the content and mixture of OACs principally5

relates to the dynamics of the microbial loop—a trophic pathway describing the cycling of microbial primary producers (i.e.,

phytoplankton), remineralizers (e.g., bacteria and archaea), plus dissolved organic and inorganic materials (as applicable). His-

torical models of open-ocean optical data products, such as the normalized water-leaving radiance, [LW (λ)]N, primarily invoke

chlorophylla (Ca)—a commonly used proxy for phytoplankton biomass—as the ubiquitous independent variable governing

aquatic light variability. Formulation of [LW (λ)]N as a function of Ca content assumes an idealized microbial loop wherein10

phytoplankton variability modifies other OACs, including the colored (or chromophoric depending on the literature) portion

of the dissolved organic matter (DOM) pool, hereafter CDOM. The prescription in which Ca maximally captures oceanic

light variability (hereafter primacy) is tested herein using eigen analyses on three independent bio-optical datasets to assess

the shapes and associations of the principal and secondary eigenfunctions of aquatic [LW (λ)]N observations. The analyses re-

veal [LW (λ)]N variations to be more strongly associated with changes in CDOM than Ca—even for oligotrophic and oceanic15

datasets—indicating that CDOM dynamics are more variable and exhibit greater independence from Ca than formerly as-

cribed. Blue and green band-ratio algorithms routinely used for remote sensing of Ca are found to be maximally sensitive to

CDOM—rather than Ca—variability based on partial correlation coefficients relating eigenfunction scalar amplitude functions

to field or derived observations, plus validation tests of OC algorithm performance. Spectral subset eigen analyses indicate

expansive spectral range observing improves the independence in retrieving CDOM absorption and Ca. The combined find-20

ings indicate expanded spectral observations supported by recent domestic and international satellite missions constitute a new

and unique opportunity to optically characterize surface ocean phytoplankton stocks without relying on explicit or implied

empiricisms requiring CDOM and other OACs to vary consistently with Ca. Shapes and associations of the eigen functions

suggest a greater diversity of trophic pathways drive OAC dynamics—e.g., in addition to phytoplankton contributing CDOM

via cellular lysis, excretion, and grazing—and are consistent with advancing knowledge of the microbial loop in the decades25

after bio-optical formulations based on Ca were proposed.
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1 Introduction

More than seven decades ago, transitions in the visual perception of electromagnetic emission (hereafter color) from the deepest

blue waters to the much shallower green coastal zone were attributed primarily to changes in the colored dissolved organic mat-

ter (CDOM) content (Jerlov 1951). Known absorption characteristics of photosynthetic pigments, principally chlorophylla, Ca,30

supported analogous dependencies of color on phytoplankton content, which motivated investigations into optical approaches

for retrieving surface ocean phytoplankton abundance (Yentsch and Ryther 1959; Tyler 1960). Significant overlap in Ca and

CDOM spectral absorption characteristics, combined with limited spectral resolution of early optical technologies, however,

prevented the partition of Ca and CDOM signals (Yentsch 1960). Contents of Ca and CDOM covary in oceanic environments

away from the confounding effects of terrestrial and riverine inputs, and a generalized relationship between color and Ca con-35

tent was demonstrated using airborne surveys (Clarke et al. 1970)—despite acknowledged confounding factors, including (but

not exclusively) solar glint, sky state, and natural variability in the content of other optically active constituents (OACs) such

as CDOM or suspended inorganic particles. Natural variability in OACs was temporarily managed by stipulating that OACs

were adherent to stable empirical relationships in open-ocean environments, which were operationally defined as case-1 wa-

ters (Morel and Prieur 1977). The case-1 prescription circumvents uncertainty associated with natural variability in the relative40

content of different OACs so that the color of seawater could be related to individual biogeochemical parameters, namely Ca

(Morel 1980; Grew and Mayo 1983; Gordon et al. 1983a).

The launch of the Coastal Zone Color Scanner (CZCS) satellite mission in 1978 enabled remote assessment of electro-

magnetic flux emitted from aquatic surface waters in the visible (VIS) domain—hereafter ocean color—at large spatial scales

(Hovis 1981). CZCS imagery corroborated linkages between ocean color and Ca, e.g., by demonstrating elevated oceanic Ca45

within eddy-like turbidity patterns (Gordon et al. 1980). Satellite remote sensing of oceanic apparent optical products (AOPs)

relies principally on the normalized water-leaving radiance, [LW (λ)]N, or its conjugate product the remote-sensing reflectance,

Rrs(λ), where λ denotes wavelength. Both were—and continue to be—derived for ocean color satellite observations by as-

cribing null oceanic flux at the longest signal-limited wavelength to facilitate the partitioning of oceanic and atmospheric

observed signals (Gordon et al. 1983b). As technology inexorably advanced, the wavelength associated with null flux was50

incrementally adjusted from the VIS (i.e., red) to the near-infrared (NIR), and then to the shortwave infrared (SWIR) domain

(Gordon 2021)—necessary, in pertinent part, because null flux approximations are inconsistent with the optical properties of the

sunlit aquatic environment (Houskeeper and Hooker 2023). Inversions relating [LW (λ)]N or Rrs(λ) waveband ratios to Ca—

hereafter ocean chlorophyll (OC) algorithms—were defined for the CZCS mission (Clark 1981) and subsequently extended to

the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), the MODerate resolution Imaging Spectroradiometer (MODIS), the55

Second-Generation Global Imager (SGLI), and other dedicated ocean color missions (Aiken et al. 1996; O’Reilly et al. 1998;

Hirata et al. 2014; O’Reilly and Werdell 2019; Isada et al. 2022).

As satellite missions progressed, pigment quantitation from water samples—requisite for developing and validating empir-

ical OC algorithms—evolved from spectrophotometric and fluorometric techniques to high performance liquid chromatogra-

phy (HPLC) methods (Tyler 1961; Smith et al. 1981; Hooker et al. 2000) and ultimately advanced to ultra HPLC (Suzuki60
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et al. 2015). The trajectory in advancing laboratory methods allowed a concomitant improvement in OC algorithms by in-

cluding chlorophyll allomers, epimers, and degradation products (Claustre et al. 2004), while lowering pigment uncertainties

(Van Heukelem and Hooker 2011; Hooker et al. 2012a). This era of development also included contemporaneous advances in

commercial-off-the-shelf (COTS) in situ optical instrumentation. The fixed-wavelength microradiometer (Morrow et al. 2010)

reduced the size and weight of instruments while providing purely digital operations with improved dynamic range and ac-65

curacy. When coupled with a compact backplane equipped with hydrobaric buoyancy and small digital thrusters (Hooker et

al. 2018a), oceanic, coastal, and inland (hereafter global ) waters could be sampled with the same instrument suite. The new

capabilities included autonomous at-sea operations (Hooker et al. 2018b)—plus support measurements on shore and airborne

surveys (Guild et al. 2020)—to provide data products for the calibration and validation of the next generation of ocean color

satellite missions (Hooker et al. 2018c).70

Technological advances mitigated deficiencies inherent in legacy COTS spectrometers to improve the efficacy of hyperspec-

tral data products. The addition of a hyperspectral spectrograph to the aforementioned multispectral instrument suite (Hooker

et al. 2018a) resulted in hybridspectral observing capabilities (Hooker et al. 2022), wherein microradiometer and spectrograph

observations are obtained in concert, with the multispectral microradiometer providing necessary quality control for the hy-

perspectral spectrograph. The quality control is desirable, in part, because COTS spectrographs suffer from slower integration75

times, narrower dynamic range, and a degraded signal-to-noise ratio (SNR) relative to COTS microradiometers (Houskeeper

et al. 2024; Kudela et al. 2019; 2024). Hybridspectral sensing and other concurrent advances in hardware, data acquisition, and

data processing support derivation of data products adherent to an absolute radiometric scale, i.e., absolute radiometry (Hous-

keeper and Hooker 2023), in part, because high-frequency, non-Gaussian variability in flux observed by an above- or in-water

instrument (due to glint and wave focusing, respectively) is managable (Houskeeper et al. 2024). Absolute radiometry advances80

optical oceanography, in pertinent part, by expanding the spectral range of observations to preserve non-visible—or invisible

(INV)—information and by retaining information associated with spectral signal amplitudes or brightness. Data products not

adherent to an absolute radiometric scale often require non-physical corrections including the prescription of null flux in the

INV domain and spectral smoothing to manage atmospheric absorption band artifacts (Ruddick et al. 2023).

Over the time span of advancing satellite, laboratory, and field capabilities, the architecture of OC algorithms remained85

largely unchanged, i.e., OC algorithms continued to rely on VIS band ratios (O’Reilly and Werdell 2019), although improve-

ments were obtained, e.g., in oligotrophic waters (Hu et al. 2012) and by simultaneous (VIS) retrieval of multiple OACs (e.g.,

Garver and Siegel 1997). Continuity of satellite OC algorithm retrievals supports global monitoring of oceanic Ca needed to

assess planetary change (McClain et al. 2006), but correspondence between the OC algorithm data product and oceanic Ca

content varies significantly in space and time (Dierssen 2010; Sauer et al. 2012). For example, natural variability in OAC re-90

lationships (Dierssen and Smith 2000; Siegel et al. 2005) injects regional biases into OC algorithmic products, even for large

oligotrophic (purportedly case-1) water bodies, such as the Mediterranean Sea (Claustre et al. 2002; Morel and Gentili 2009).

Evolving climate and biological conditions further alter OAC relationships and derivation of optical data products, thereby

modifying OC algorithm performance (Sauer et al. 2012). Variability in OAC relationships confounds detection of long-term

Ca trends (Dierssen 2010), although trends in the fundamental remote sensing optical data products, e.g., [LW (λ)]N or Rrs(λ),95

3

https://doi.org/10.5194/egusphere-2024-4163
Preprint. Discussion started: 4 February 2025
c© Author(s) 2025. CC BY 4.0 License.



are detectable (Dutkiewicz et al. 2019). Relating changes in oceanic optical properties to specific OACs—e.g., robust estimation

of Ca—would help to assess changes in oceanic microbial ecosystem functionality and provide context for cause-and-effect

relationships in aquatic environments coinciding with a changing global climate.

Interpreting changes in oceanic AOPs remains challenging—as noted in earlier historical studies, e.g., Yentsch (1960)—due

to confounding similarities in the spectral absorption of OACs within the VIS domain relative to the spectral range, resolution,100

and SNR of legacy ocean color datasets combined with non-adherence to an absolute radiometric scale (Houskeeper and

Hooker 2023). An eigen analysis for modeled aquatic spectra demonstrated optical data products require the shortest available

wavelength (400nm at the time), i.e., the spectral end member, to support discrimination of independently varying CDOM

and Ca (Sathyendranath et al. 1987). As field technologies advanced, spectrally expansive above- and in-water observations

were shown to provide optimal estimation of CDOM across global conservative waters with maximal independence from Ca105

(Hooker et al. 2020; Houskeeper et al. 2020a) based on end-member analysis (EMA) using ratios of optical data products at

UV and NIR wavelengths (Hooker et al. 2013). Conservative waters—wherein the inflow and outflow of properties constrain

the range in the gradient of a constituent (Hooker et al. 2020)—include all case-1 or otherwise oligotrophic waters, while also

including significant representation from optically complex case-2 waters (i.e., waters that are not case-1). The inclusion of

case-2 waters means that regional (or global average) empirical OAC relationships are not invoked, and global algorithms are,110

thus, more capable of partitioning OACs and maintaining consistent performance under changing environmental conditions

(Houskeeper et al. 2020a). EMA analyses were subsequently extended to single-channel UV algorithms (Hooker et al. 2021b),

indicating the importance of accurately deriving UV data products for robust CDOM estimation.

In February 2024, the launch of the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) satellite mission provided state-of-

the-art hyperspectral and spectrally extended oceanographic observing using the Ocean Color Instrument (OCI). Hyperspectral115

observations obtained using OCI are anticipated to reveal new opportunities for satellite observing of the microbial community

(Cetinić et al. 2022), but the fidelity of inversions relating hyperspectral features to biological parameters is mostly unknown.

The challenges stem, in part, from the use of legacy in situ instrumentation, wherein COTS spectrometers lacking hybridspectral

configuration to mitigate low sampling rate and SNR (Hooker et al. 2022; Houskeeper et al. 2024; Kudela et al. 2024) preclude

most INV data products and do not support adherence to an absolute radiometric scale, i.e., non-hybridspectral data products120

frequently rely on a null long-wavelength bias. The reporting of observations at resolutions finer than the native resolution of the

spectrograph—often in addition to spectral smoothing—further challenges assessments of spectral content and independence

of adjacent waveband observations. Paradoxically, observations obtained using hybridspectral instrumentation are, at present,

exceedingly sparse.

Nonetheless, assessments of optical information content of the sunlit aquatic environment are ongoing and indicate ade-125

quate derivation of independent OACs is plausible—but not guaranteed. For example, Hooker et al. (2021a) assessed spectral

variability of global conservative plus nonconservative water bodies, with the latter modified by internal processes rather than

linear mixing of parent or source waters, and demonstrated that a finite number of spectral modes adequately describe the

majority of spectral variability across globally representative waters. Cael et al. (2023) applied an eigen analysis to legacy

smoothed and interpolated hyperspectral observations and demonstrated two components capture over 80% of the variance.130
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Prochaska and Frouin (2024) applied a Bayesian framework testing whether hyperspectral observations could overcome an

acknowledged degeneracy in radiative transfer (wherein multiple combinations of spectral absorption and backscattering are

possible and reasonable) and reasoned that hyperspectral ocean color inversions are ill-posed.

Despite known challenges in finite information content and spectral degeneracy, new information sources have steadily been

discovered in aquatic optics throughout the field’s long history. Legacy satellite observations of phytoplankton fluorescence135

added new biological observables complementary to—but distinct from—OC observations, while also minimizing vulnerabil-

ities to atmospheric correction (Letelier and Abbott 1996). Hyperspectral airborne investigations leveraged optical signatures

associated with harmful algal bloom (HAB) events (e.g., Lee and Carder 2005; Kudela et al. 2015) and retrieved macroalgal

physiological condition (Bell and Siegel 2022). Variances captured by the leading components of an eigen analysis provide

an incomplete perspective of spectral information content because of a dimensionality bias, wherein broadband features dom-140

inate the dataset variance while narrow, but exploitable, features are spectrally diluted (Houskeeper et al. 2020b). Mixture

density networks (MDNs) improve the management of degeneracy in radiative transfer and are forthcoming for PACE science

objectives (O’Shea et al. 2021).

A fundamental and timely question remains as to how to best leverage PACE observations within the trajectory of ocean

color satellite missions to improve robust quantification of phytoplankton biomass and support characterization of biogeo-145

chemical changes of the sunlit ocean. Advancing this trajectory—wherein confounding effects of CDOM have been reported

for at least over seven decades (e.g., Jerlov 1951; Yentsch 1960; Sathyendranath et al. 1987) and recent studies suggest high

spectral autocorrelation and degeneracy (Hooker et al. 2021a; Cael et al. 2023; Prochaska and Frouin 2024)—requires im-

provements in understanding the primary drivers of marine spectral variability. Aquatic spectral variability is assessed herein

for natural aquatic environments using three independent bio-optical datasets, and analyses are replicated using the datasets’150

oceanographic or oligotrophic subsets, as applicable. Associations relating spectral variability to contemporaneous OAC field

observations indicate the relative importance of individual constituents in modifying AOP spectral shapes. The key findings

document, as follows: continuing challenges in retrieving Ca using observations constrained to the VIS domain; opportuni-

ties to advance independent OAC retrieval using spectrally expansive observations; greater variability in OAC relationships

for oceanic environments than formerly ascribed; and primacy of CDOM absorption in spectrally modifying AOPs. The out-155

comes reflect a greater complexity of OAC dynamics consistent with advancing knowledge of the microbial loop, wherein new

trophic pathways have been discovered contemporaneously with the aforementioned advances in optical oceanography (Azam

et al. 1983; Fenchell 2008).

2 Methods

Aquatic observations presented herein correspond to published datasets of above- and in-water observations of the emergent160

aquatic light field. The datasets rely on instrumentation, including legacy and state-of-the-art (SOTA) radiometers and spec-

trometers, corresponding to a technological trajectory spanning decades of improvements applicable across the hardware,

software, and processing domains. For example, legacy oceanic radiometric observations were obtained using in-water optical
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instrument suites consisting of primarily analog radiometers mounted on rapidly descending, so-called rocket-shaped, profilers

(Morel et al. 2007). Rocket-shaped profilers confer coarse vertical sampling resolution (VSR), deep extrapolation intervals,165

and a limited spectral range of observations. These deficiencies prevent observations in shallow, highly turbid, or high-flow-

rate waters, meanwhile introducing uncertainties including, but not limited to, those arising from depth aliasing, expanded

extrapolation distances, and low signal (Hooker et al. 2002). The Compact-Optical Profiling System (C-OPS) introduced a

novel kite-shaped backplane (Morrow et al. 2010) to slow the rate of descent of the profiler while ensuring planar stabilities,

along with corresponding improvements in microradiometer technology to advance sampling rates from usually less than 1Hz170

for legacy spectrometers to routinely 15Hz, with improved SNR and dynamic range. The addition of digital thrusters, i.e., the

Compact-Propulsion Option for Profiling Systems (C-PrOPS), ensures planar stability at the initiation of a cast and mitigates

adjacency effects by supporting navigation away from a ship or dock (Hooker et al. 2018a). The C-OPS with C-PrOPS tech-

nologies greatly expand the spectral range of in-water observations and reduce uncertainties in optical data products relative

to legacy observations, in part, by supporting improved VSR (as fine as 0.9mm) to enable accurate derivation of the central175

tendency of the wave-focusing field (e.g., Zaneveld et al. 2001) and reducing the initial depths of upwelling radiance observa-

tions, Lu(z,λ), to as shallow as 0.3m, i.e., approximately the length of the downward-pointing radiance radiometer (Hooker

et al. 2020).

SOTA advances in hyperspectral instrumentation include hybridspectral sensing configurations (Hooker et al. 2022), the

addition of a radiance control arm to position the Lu(z,λ) aperture near the water surface and approximately aligned with the180

upward-pointing irradiance radiometer (Hooker et al. 2018a), plus improvements in the number of spectrograph pixels to as

high as 2,048, denoted λ2,048, with 3nm resolution in keeping with PACE mission requirements for vicarious calibration exer-

cises (Hooker et al. 2012b). For comparison, spectral resolution of legacy spectrometers include λ256 spectrographs sampling

the visible domain as often as every 3nm, although bandwidths can be on the order of 10nm resolution (Seabird 2024), i.e.,

comparable to COTS microradiometers but conferring lower SNR, dynamic range, and sampling rates. Legacy spectrometer185

observations are often interpolated to synthetic 1nm intervals—which eases archiving requirements for dissimilar spectral con-

figurations but over-reports the spectral resolution—and smoothed, e.g., using a 5nm moving mean (Kramer et al. 2021), which

removes spectral information. Spectral smoothing and interpolation creates challenges for comparisons of spectral resolution

between instruments.

2.1 Datasets190

Three AOP datasets are considered herein, with biogeochemical parameters included when available. No dataset includes

SOTA hybridspectral observations, because hybridspectral observations are presently too sparse in terms of the number of

observations. Naming conventions for the datasets correspond to the applicable published literature, and their descriptions plus

quality control are briefly summarized, as follows:

RSE2007 Oceanic [LW (λ)]N observations obtained using primarily analog free-falling instrument suites during open-ocean195

field campaigns, including a minority of stations in the coastal zone, are described by Morel et al. (2007). Three
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stations (0.5% of the dataset) corresponding to surface mucilage and coccolithophore blooms were removed, and

observations were thinned so that only one spectrum was retained per station, although at least three spectra were

generally obtained per station. The dataset is defined as RSE2007 and consists of contemporaneous observations of

Ca and [LW (λ)]N spanning the VIS domain.200

RSE2021 Global [LW (λ)]N observations obtained using the digital C-OPS with C-PrOPS instrument suite deployed at oceanic

(31.2%), coastal (36.6%), and inland (32.2%) water sites are presented by Houskeeper et al. (2021). Optical ob-

servations featured average VSR of 6.0mm (maximum VSR of 0.9mm) and initial Lu(z,λ) observations routinely

obtained at 0.3m, i.e., the depth corresponding to the length of the Lu(z,λ) radiance radiometer. Contemporaneous

observations of Ca and the absorption coefficient of CDOM at 440nm, aCDOM(440), supported global algorithm205

development (Hooker et al. 2020; 2021b; Houskeeper et al. 2021; 2022) and confirmed expansive ranges for OACs.

For example, observed aCDOM(440) spanned 0.001–2.305m−1, and the spectral slope of CDOM spanned 0.0095–

0.0410nm−1. Conservative versus non-conservative designations were objectively determined prior to sampling

(Hooker et al. 2020) and only the conservative observations are used herein. The dataset is defined as RSE2021

and consists of contemporaneous observations of Ca, aCDOM(440), and [LW (λ)]N spanning the INV plus VIS210

domains.

RSE2022 Oceanic hyperspectral observations with concurrent samples of phytoplankton pigments are described in Kramer et

al. (2022) and accessed via Kramer et al. (2021). Observations span the open and coastal oceans, with Ca ranging

from 0.019–4.150mgm3. Optical observations were obtained using rocket-shaped profilers and buoys equipped

with legacy COTS spectrometers, including systems with 10nm bandwidths (Seabird 2024). Vertical profiles of215

measurements obtained deep in the water column were averaged to 2m or coarser depth bins and extrapolated to the

surface (Taylor et al. 2011). The compiled dataset overcomes differences in spectral configuration between various

COTS systems by spectral interpolation to 1nm resolution and mitigates optical data product artifacts associated

with legacy profiling systems by subsetting spectra to VIS wavelengths, smoothing using a 5nm moving mean, and

additionally removing 19% of the observations by visual inspection (Kramer et al. 2022). The dataset is defined as220

RSE2022 and consists of contemporaneous observations of Ca and [LW (λ)]N spanning the VIS domain.

The field campaign supporting the RSE2021 dataset (Hooker et al. 2020; Houskeeper et al. 2021a) was designed to capture

maximal range in global OAC variability, including the clearest waters to the most sedimented, eutrophic, or humic-rich

waters. The clearest waters were observed, e.g., near Kawaihae, HI, and in Crater Lake, OR, both of which corresponded to an

aCDOM(440) value of 0.001m−1, approaching so-called pure seawater. The turbidity limit is inherently undefined, e.g., there225

is no known natural maximum to turbidity, but the the dataset greatly exceeds the turbidity range of the RSE2007 and RSE2022

datasets because it contains significant representation from inland waters and of RSE2021 because it also includes extreme or

nonconservative waters. For example, observations in Hooker et al. (2020) of the diffuse downward attenuation coefficient,

Kd(λ), at White Lake, NV, (a refilled endorheic basin with extreme sediment loading), exceeded 100m−1, i.e., conditions not

anticipated for open and coastal ocean sampling. The absolute radiometric data products from RSE2021, therefore, constitute a230

7

https://doi.org/10.5194/egusphere-2024-4163
Preprint. Discussion started: 4 February 2025
c© Author(s) 2025. CC BY 4.0 License.



reasonably expansive range in optical properties such that open and coastal ocean data products—collected with legacy systems

and with degraded SNR and VSR relative to the RSE2021 dataset—that lie outside of the range of global conservative data

products indicate likely non-physical or biased observations. Quality control based on the objective removal of non-physical

radiometric brightness was thus applied, albeit only using VIS data products (given that RSE2007 and RSE2022 are restricted to

the VIS domain) and considering acknowledged uncertainties relating to hardware, processing, data acquisition, and water mass235

differences, was performed by filtering: RSE2022 observations radiometrically darker than the darkest RSE2021 observations

(by at least approximately 50%); and RSE2007 observations radiometrically darker or brighter than RSE2021 observations

(approximately) at corresponding green (555nm) or red (683nm) wavebands, respectively. The brightness filtering resulted in

the removal of 18 of 590 observations (3%) from RSE2007 and 22 of 144 observations (15%) from RSE2022. Because both

RSE2007 and RSE2022 include observations obtained using rocket-shaped profilers, the difference in compliance is likely due240

to differences in the optical sensing technologies—i.e., COTS spectrometers (RSE2022) are more degraded by slow sampling

rates, reduced dynamic range, and low SNR (Houskeeper et al. 2024; Kudela et al. 2024). The final number of compliant

observations for the RSE2007, RSE2021, and RSE2022 datasets are 572, 612, and 122, respectively.

2.2 Biogeochemical algorithms

OC algorithms are derived for each dataset using the OC4 formulation (O’Reilly and Werdell, 2019), a fourth-order polynomial245

with coefficients configured to match the spectral configurations of the SeaWiFS mission and others, as follows:

Ca = a0 +
4∑

n=1

an

(
log10

Rrs(λb)
Rrs(555)

)n

, [mg m−3] (1)

where the a terms are fitting constants, n is the order index, and λb indicates the wavelength corresponding to the radiometri-

cally brightest Rrs(λ) observation at applicable blue SeaWiFS wavelengths (i.e., 443, 489, and 510nm). The OC4 formulation

was selected to ensure maximal applicability to RSE2007, which supported the fewest spectral channels, while maintaining a250

consistent formulation across datasets. Nonetheless, other OC formulations are anticipated to produce similar results.

The RSE2021 dataset contains contemporaneous observations of aCDOM(440), but contemporaneous aCDOM(440) obser-

vations were not contained in the other datasets. Consequently, an EMA algorithm (Houskeeper et al. 2021) is applied to the

RSE2007 and RSE2022 datasets to provide an estimate of aCDOM(440) that is maximally independent from Ca (Hooker et

al. 2020; Houskeeper 2020a), e.g., the EMA algorithm derivation used both case-1 plus case-2 waters to minimize biases in255

algorithm fitting corresponding to regional OAC covariances. EMA estimation of aCDOM(440) leverages ratios of [LW (λ)]N,

hereafter Λλ1
λ2

, using the most spectrally separated wavelengths, which mitigates confounding signals from internal VIS wave-

lengths (Hooker et al. 2013; Houskeeper 2020a). The EMA formulation for above-water, spectrally expansive observations is

modeled as a power-law relationship, as follows:

aCDOM(440) = A
[
Λλ1

λ2

]B

, [m−1] (2)260

with the A and B coefficients provided in Houskeeper et al. (2021) for the applicable wavelengths. The λ1 and λ2 values

correspond to the shortest and longest wavelengths, respectively, supported by the given dataset. EMA algorithms performance
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improves with expanding spectral range (Hooker et al. 2020), but robust performance of VIS algorithms has been documented

for ocean color observations (Houskeeper et al. 2021; Hooker et al. 2021b), and simulated geostationary weather satellite

observations (Houskeeper et al. 2022).265

2.3 Spectral comparisons

The dimensionality for each of the RSE2007, RSE2021, and RSE2022 datasets is reduced using an eigendecomposition of

observations of the square root of [LW (λ)]N, hereafter [LW (λ)]0.5
N , because the square root transformation improves normality.

Briefly, the eigendecomposition is performed, as follows:

Cψ = Λψ , [µW cm−2 nm−1 sr−1] (3)270

in whichC is the covariance matrix of the [LW (λ)]0.5
N values for each dataset, andψ denotes the eigenfunction matrix (matrices

are denoted by bold symbols). The diagonal matrix Λ contains scalar information corresponding to the variance captured by

each eigenfunction.

Scalar amplitude functions quantifying the stretching and compressing necessary to represent the [LW (λ)]0.5
N values in the

coordinates defined by ψ are derived by projecting the optical observations onto ψ, as follows:275

S = [LW (λ)]0.5
N ψ , [µW cm−2 nm−1 sr−1]0.5 (4)

in whichS is the scalar amplitude function matrix with columns,Si, corresponding to scalar amplitude functions for individual

eigenfunctions, ψi (where i is the eigenfunction index).

Comparisons between available biogeochemical parameters—e.g., field plus algorithm values of Ca and aCDOM(440)—and

the S matrices are derived using Pearson’s correlation coefficient, ρi,x, where i is the eigenfunction index and x represents the280

biogeochemical quantity under comparison with the corresponding column i of the S matrix. Because biogeochemical param-

eters covary, e.g., Ca and aCDOM(440) are strongly correlated (Morel et al. 1977), partial correlation coefficients are derived,

as appropriate, wherein ρi,x|y indicates correlation of Si with biogeochemical quantity x—after adjusting for covariance with

the biogeochemical quantity y. The subscript representations used herein—g (for the legacy linkage to gelbstoff absorption),

Ca, EMA, and OC4—correspond to field observations of aCDOM(440), field observations of Ca, EMA algorithm observations285

of aCDOM(440), and OC algorithm observations of Ca, respectively. The coefficient of determination, R2, is also utilized when

quantifying variance in biogeochemical field observations captured by a remote sensing algorithm.

3 Results

Eigen analyses indicate that the first, second, and third eigenfunctions capture 60%, 32%, and 5% (±1%), respectively, of

the variance within each data set. The decomposition of the majority of the variance in the aquatic spectral dataset into three290

functions is consistent with the findings of Hooker et al. (2021a) and Cael et al. (2023), as follows: Hooker et al. (2021a)

demonstrated that spectral changes corresponding to increasing optical complexity were represented using only five spectral
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modifications—two of which are similar but in opposing directions and would therefore correspond to a single eigenfunction,

plus one which is characterized by the emergence of multiple peaks and corresponds to severely complex waters; and Cael

et al. (2023) showed the aquatic optical spectra could be compressed into three (or four) principal components with minimal295

information loss. The Cael et al. (2023) dataset includes significant representation by RSE2022, and similar results obtained

herein using RSE2022 confirm the normalizations and methodologies are comparable.

3.1 Eigenfunction characteristics

The three eigenfunctions capturing maximal variance for the RSE2021, RSE2022, and RSE2007 datasets are presented in λ

space in Fig. 1. Similarities in the eigenfunction spectral shapes are apparent across datasets for each of ψ1, ψ2, and ψ3, and300

similar shapes are likewise produced by the eigendecompositions for the oligotrophic (Ca less than 0.5mgm3) datasets (gray).

Although the tertiary eigenfunction explains approximately 5% of the variance for each dataset, the spectral shapes represented

by ψ3 are consistent across all datasets. The similarities in ψ are summarized, as follows:

ψ1 Reversed sign for the anomaly between shorter (UV/Blue) and longer (Red/NIR) wavelengths;

ψ2 Maximum amplitude for the anomaly in the Blue/Green domain (i.e., a peak), plus the emergence of spectral features in305

the spectral vicinity of the Ca fluorescence peak (except for RSE2007 which lacks the requisite spectral resolution in the

applicable wavelength domain); and

ψ3 Reversed sign for the anomaly between interior VIS and exterior VIS plus INV wavelengths.

Individual eigenfunctions are not anticipated to be singularly associated with variability in a specific OAC (e.g., because

OACs covary), but the spectral shapes of the eigenfunctions may nonetheless be assessed qualitatively in light of known spectral310

properties of individual OACs to identify similarities to spectral properties of OACs. The spectral shapes of the eigenfunctions

are primarily considered as a function of absorption processes because scattering processes confer less spectral dependencies,

and scattering effects on spectral brightness are mitigated because the spectra are standardized during preprocessing to support

the eigen analyses. Differences in brightness or peak height, however, could produce reversals in the VIS and INV anomalies,

possibly relevant to ψ3, but are not assessed herein.315

Spectral features associated with Ca absorption—e.g., a relative maximum or minimum in the blue and red domains (Brigi-

dare et al. 1990), or a fluorescence peak (Letelier and Abbott 1996)—are most clearly visible in ψ2. For example, although

both ψ1 and ψ2 indicate spectral dependencies in the vicinity of 670nm for RSE2022, the amplitude of the anomaly (as a

percentage of the range expressed in ψ) is on the order of 10% versus 50% for ψ1 and ψ2, respectively. Similarly, all datasets

indicate a blue- or green-domain peak (or trough) in ψ2 of greater magnitude than in ψ1. Conversely, spectral darkening of320

shorter wavelengths with minimal spectral features is most consistent with CDOM absorption (Jerlov 1968), which approxi-

mately describesψ1. The similarity of spectral shapes forψ between the complete and oligotrophic (gray) datasets—as well as

the differences in the range and mean properties of the water bodies sampled across the three datasets—indicates that spectral

variability is consistent across datasets and not primarily a function of differences in sampling by each dataset.
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The spectral shape comparisons, while qualitative, can be verified using partial correlation coefficients comparing the S am-325

plitude functions and corresponding values of Ca and aCDOM(440), while controlling for aCDOM(440) and Ca, respectively.

RSE2021 includes field observations of aCDOM(440) and Ca, whereas RSE2022 and RSE2007 include field observations of

Ca but not aCDOM(440). Consequently, the RSE2021 results are considered first. Briefly, partial correlation coefficients for

S1 indicate maximal correlation to aCDOM(440) values (ρ1,g |Ca
= 0.80) compared to Ca values (ρ1,Ca |g = 0.11), whereas

partial correlation coefficients for S2 indicate maximal correlation to Ca values (ρ2,Ca |g = −0.22) compared to aCDOM(440)330

values (ρ2,g |Ca
= 0.02). Both of the maximal correlation results are highly significant (P < 0.01), whereas the non-maximal

comparisons are not ( P > 0.18). These results are in keeping with the qualitative assessments of the spectral shapes of ψ, in

which ψ1 was shown to produce spectral dependencies more consistent with that of CDOM as documented in the literature,

whereas ψ2 was shown to produce spectral dependencies with features most closely matching the spectral domains of Ca ab-

sorption of fluorescence properties. The sign of the significant partial correlation coefficients is also consistent with theψ phase335

and the spectral shape of absorption for aCDOM(440) and Ca. For example, negative anomalies in the blue and UV indicated

by S1 produce a positive correlation with aCDOM(440) values, whereas positive (peak-like) anomalies in blue wavelengths

indicated by S2 produce a negative correlation with Ca values.

Estimates of aCDOM(440) are also obtained for RSE2022 and RSE2007 using EMA (following Houskeeper et al. 2021),

which maximizes independence of the Ca and aCDOM(440) estimation (Houskeeper 2020a). The partial correlation values340

derived using the EMA product for the RSE2022 dataset are very similar to those derived using the RSE2021 dataset. Briefly,

partial correlation coefficients for S1 indicate maximal correlation to aCDOM(440) values, whereas partial correlation co-

efficients for S2 indicate maximal correlation to Ca values. Both of the maximal correlation results are highly significant

(P≤ 0.01), whereas the other comparisons are not ( P > 0.38). The results from the RSE2007 dataset are different from those

of RSE2022 and RSE20221 as follows: Partial correlation coefficients forS1 still indicate maximal correlation to aCDOM(440)345

values, but correlation to Ca is also significant, albeit lower. Partial correlation coefficients forS2 indicate slightly higher corre-

lation to aCDOM(440) values compared to Ca values, and both are highly significant (P < 0.01). The differences are consistent

with decreasing independence of EMA to Ca variability with decreasing spectral range (Houskeeper et al. 2021), plus maximal

representation of open-ocean waters in RSE2007.

Correlation tests comparing the S functions with OC algorithm values find the strongest relationships for all datasets cor-350

respond to S1, ranging from 0.89 to 0.96. Less strong, albeit significant, relationships are found for S2, ranging from −0.38

to 0.16. The significant results for comparing OC algorithm values with S2 are likely due to the test not accounting for co-

variance in Ca and aCDOM(440). For example, the correlation coefficients using RSE2021—the highest quality dataset and

the only dataset to contain contemporaneous Ca and aCDOM(440) observations—still indicate strong significant relationships

when comparing OC algorithm values and S1 while controlling for Ca, but indicate weak and insignificant relationships when355

comparing OC algorithm values and S2 while controlling for aCDOM(440).

In summary, analyzing the shapes of the eigenfunctions and comparing correlation matrices using the eigenfunction am-

plitude functions and contemporaneous OAC field observations yields five observations, as follows: a) spectral shapes of the

eigenfunctions for an individual dataset are distinct from one another and characterized by maxima and minima consistent
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with OAC absorption properties described in the applicable literature; b) the transition in spectral shapes for the first, second,360

and third eigenfunctions is similar across all datasets and the oligotrophic subsets of those same datasets; c) the interpretation

of the eigenfunction shapes based on the spectral positioning of observed minima and maxima is consistent with the results

of the partial correlation tests (e.g., ψ1 confers spectral similarities with CDOM absorption and the corresponding amplitude

function produces highly significant correlation to CDOM absorption); d) the OC algorithm produces stronger correlation to

S1 than S2; and e) S1 produces stronger correlation to field observations of aCDOM(440) than Ca values. Although RSE2007365

indicates relatively more OAC covariance than RSE2021 and RSE2022, as anticipated, the key findings including primacy of

CDOM are nonetheless consistent.

3.2 OC algorithm relationships

Section 3.1 documents the primary mode of variability in [LW (λ)]N for all datasets is maximally correlated with aCDOM(440)

and OC algorithm retrievals (Fig. 1). The observed linkage between OC algorithm sensitivity and aCDOM(440) variability is370

further investigated by comparing OC algorithm retrievals with field observations of Ca, plus field or algorithmic aCDOM(440)

observations (Fig. 2), as applicable. The coherence of a relationship between the OC algorithm and Ca observations is assessed

using R2 statistics, and differences across datasets in the coherences observed are consistent with differences in the oceanic

contributions of each dataset, as follows: a) the least coherence is associated with RSE2021, which contains similar represen-

tation of oceanic, coastal, and inland waters and, therefore, consists of a high percentage of optically complex water types; b)375

intermediate coherence is associated with RSE2022, which contains coastal and inland water observations and also consists of

data products obtained with coarse VSR, low SNR, and deep sampling intervals far from the surface; and c) the most coherence

is associated with RSE2007, which corresponds to primarily open-ocean waters and was obtained with technology most similar

to that used in the earliest OC algorithm derivations.

The coherence of the relationship between the OC algorithm and aCDOM(440) observations is also assessed using R2380

statistics, and improvements in R2 are observed for the aCDOM(440) comparison relative to the Ca comparison. The magnitude

of the improvements are likewise consistent with the differences in the oceanic contributions of each dataset, as follows: a)

maximal improvement in coherence is indicated by RSE2021; b) intermediate improvement in coherence is indicated by

RSE2022; and a) minimal improvement in coherence is indicated by RSE2007. Although the differences observed are slight

for RSE2007 (indicating the dataset adheres well to case-1 waters), all datasets nonetheless produce stronger R2 statistics when385

comparing the OC algorithm values to aCDOM(440) versus Ca. The findings are consistent with those of Sect. 3.1, in which the

OC algorithm products produced maximal correlation to ψ1, which in turn was maximally associated with aCDOM(440)—and

not with Ca.

3.3 Information content of invisible and visible data products

Information content as a function of spectral range is further investigated using the RSE2021 dataset, which confers the most390

expansive spectral range (313–865nm). Scree plots indicating variance captured for eigenfunctions ψ1–ψ6 are shown for

three spectral partitions of the RSE2021 dataset in Fig. 3, as follows: UVN21 corresponds to the UV, VIS, and NIR observa-
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tions of RSE2021 (i.e., UVN21 is identical to RSE2021); INV21 corresponds to the invisible observations of RSE2021 (i.e.,

wavelengths shorter than 400nm or longer than 700nm); and VIS21 corresponds to the visible observations of RSE2021 (i.e.,

wavelengths within 400–700nm). Pearson’s correlation coefficients compare the S1 and S2 amplitude functions with Ca and395

aCDOM(440) values. The comparisons explore the results of Fig. 1, wherein ψ1 and ψ2 are found to confer information likely

most related to aCDOM(440) and Ca, respectively.

Variances captured by the UVN21, INV21, and VIS21 datasets decrease rapidly with increasing eigenfunction number. The

variance captured is approximately consistent with those of the three full AOP datasets assessed herein, and a scree plots

showing all datasets, plus that of Cael et al. (2023) for comparison, is shown in the inlay panel. Considering the UVN scree400

plot as a baseline, the VIS21 dataset ψ1 captures similar variance and ψ2 captures more variance, whereas the INV21 dataset

ψ1 captures more variance and ψ2 captures less variance. Information content of INV21 is thus compressed more fully into

a singular eigenfunction, which captures nearly 78% of the variance in the dataset. The INV21 leading eigenfunction is very

strongly associated with variability in aCDOM(440), and the correlation coefficient comparing S1 and aCDOM(440) for the

INV21 dataset, −0.96, approaches that of a perfect inverse correlation. The INV21 secondary eigenfunction indicates minimal405

adherence to either aCDOM(440) or Ca, with correlation values of−0.07 and−0.09, respectively. Very strong correlation ofψ1

with aCDOM(440), no correlation of ψ2 with Ca, and very low explanatory power of the subsequent eigenfunctions for INV21

indicate photosynthetic pigmentation confers minimal spectral modifications in the INV domain besides those covarying with

aCDOM(440), consistent with previous EMA assessments (Hooker et al. 2020; Houskeeper et al. 2021). Inorganic particles,

not measured in any of the datasets assessed herein, modify INV data products (e.g., Doron et al. 2011) and may contribute to410

the variance captured in INV21 ψ2. Inorganic particles are not assessed herein due to the sparsity of independent particle field

observations contemporaneous and co-registered with the AOP observations.

Information content of VIS21 is less compressed into a singular eigenfunction (although the leading eigenfunction still

dominates), and the correlation coefficients comparing ψ1 and ψ2 to aCDOM(440) and Ca are more similar than for the

INV21 dataset. Similar correlation coefficient values indicate spectral modifications associated with aCDOM(440) and Ca415

are less readily partitioned using only VIS data products, despite the high SNR of the RSE2021 dataset. The result suggests

independent derivation of Ca is more challenging using VIS observations in the absence of UV and NIR information. Spectrally

expansive (UV, VIS, and NIR) observations thus support more accurate and independent retrievals of aCDOM(440) compared

to VIS observations wherein aCDOM(440) and Ca signals are maximally confounded.

4 Discussion420

4.1 Historical formulations invoke primacy of chlorophyll a

The generalized transition from bluer oceanic to greener coastal waters is routinely mapped with OC algorithms to increases

in the near-surface abundance of oceanic phytoplankton (McClain et al. 2006). The theoretical basis for OC algorithms is the

absorption of blue light by biogenic compounds (Morel 1983; Gordon 1983a), including Ca but also other covarying OACs,

e.g., aCDOM(440), various secondary photopigments, and detritus. OC algorithms and the ocean color activities supporting425
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their development and validation historically pose Ca as the predominant determinant of oceanic optical properties, demon-

strated in pertinent part, as follows: a) OC algorithms regress ratios of oceanic reflectances to Ca only and do not include

photopigments or dissolved compounds (O’Reilly et al. 1998); b) Ca field observations are more ubiquitous than aCDOM(440)

field observations (Werdell and Bailey 2002); c) spatiotemporal differences in OC algorithm performance are routinely miti-

gated using regional tunings, in which OC algorithms are refit for a subset of global waters using regional field observations of430

Rrs and Ca—but not other parameters such as aCDOM(440); and d) primacy of Ca is consistent with the published literature

regarding the modeling of optical properties of case-1 water masses. Regarding the latter, Morel 1988 prescribes Ca as the

index of practice for quantifying oceanic living and detrital algal material, therefore governing open-ocean optical properties.

Consequently, bio-optical models routinely formulate Ca as the independent variable for parameterizing other OACs (Morel

1988, 2009).435

Bio-optical formulations generally do not require primacy of Ca but rather the stable evolution of OAC relationships in case-

1 waters (Morel and Prieur 1977). Nonetheless, natural variability exists in OAC relationships (Hansell and Orellana 2021),

for which formulations, such as the OC algorithm, must mitigate. The variability may, perhaps, correspond in part to the high

number of power terms in the OC algorithm formulation, wherein the number of power terms used in the polynomial model

to fit Ca to ratios of Rrs is routinely four (Morel 2009; O’Reilly and Werdell 2019). For comparison, Bricaud et al. (1998)440

parameterizes Ca from spectral absorption using a power-law formulation, wherein the number of power terms invoked is one.

Gordon et al. (1988) parameterizes the remote sensing reflectance below the surface from spectral absorption and backscattering

terms using a second-order Taylor polynomial, wherein the number of power terms invoked is two. Hooker et al. (2021b) shows

one-channel VIS observations of Kd support estimation of aCDOM(440) using linear and power-law relationships, wherein the

number of power terms is either zero or one. Linearity and loglinearity of CDOM algorithms decreases with decreasing spectral445

separation of algorithm end members (Hooker et al. 2020, 2021a; Houskeeper et al. 2021) because increasing overlap in OAC

absorption properties add nonlinearity (Houskeeper et al. 2020a). The requirement that OAC relationships are stable is likewise

indicated by the need to regionally tune VIS algorithms for specific waters. For example, tunings for arctic waters account for

higher aCDOM(440) relative to Ca content (Matsuoka et al. 2013; Lewis and Arrigo 2020), and tunings for antarctic waters

account for lower aCDOM(440) relative to Ca (Dierssen and Smith 2000).450

4.2 Observations indicate primacy of CDOM over chlorophyll a

The eigen analyses herein assess the primacy of Ca as the predominant driver of optical variability using three independent

datasets, plus the oligotrophic subsets of each dataset. Despite significant differences in the spectral range and uncertainties of

the datasets due to differences in hardware, software, and processing implemented, as well as the water bodies assessed, the

eigen analyses show qualitative and quantitative similarities for all datasets and oligotrophic subsets (Fig. 1). The similarities455

favor primacy of aCDOM(440)—rather than Ca—as the predominant driver of optical variability for waters, including those of

the open ocean, summarized briefly, as follows: a) the leading eigenvector from each dataset—capturing approximately 60%

of the variance—indicates opposing anomalies for longer versus shorter wavelengths with minimal amplitude in the blue-green

transition domain; b) the S1 term representing the stretching and compressing necessary to best represent the data using the
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leading eigenfunction is always more strongly associated with variability in aCDOM(440) than Ca values; c) the secondary460

eigenvector from each dataset—capturing approximately 32% of the variance—indicates internal VIS spectral dependencies

characteristic of Ca absorption, including a maximum near the blue-green transition; d) the S2 term corresponding to the

secondary eigenfunction more strongly associates with field observations of Ca than aCDOM(440) for two of the three datasets,

likely due to reduced applicability of the EMA algorithm for the less spectrally expansive dataset; and e) the signs of the partial

correlation coefficients derived comparing the leading and secondary eigenfunctions to Ca and aCDOM(440) variability are in465

all cases consistent considering the short wavelength anomaly in ψ1 and the blue-green anomaly in ψ2 along with the spectral

absorption profiles of CDOM and Ca.

Although primacy of aCDOM(440) is conceptually distinct from formulations in the published literature posing Ca as an

independent variable primarily determining optical properties (e.g., Gordon 1988; Morel 1988), the results do not necessarily

conflict with published observations in the bio-optical literature. For example, the inadequacy of multispectral VIS observations470

to partition Ca and aCDOM(440) signals was noted at least six decades ago (Yentsch 1960), and the case-1 prescription does

not explicitly require primacy of Ca (Morel and Prieur 1977). Rather, primacy of Ca is invoked by models representing the

oceanic light field and its OACs as a function of Ca (Morel 1988), plus the implementation of OC algorithms wherein regional

tunings refit Rrs ratios and Ca to overcome regional differences in relationships between OACs. The principal finding wherein

CDOM—rather than Ca—variability is most directly associated with variability of optical data products emerging from the475

aquatic surface, e.g., [LW (λ)]N or Rrs, may derive from differences in temporal and vertical dynamics of particulate versus

dissolved constituents.

Temporal differences correspond, perhaps, to the connectivity, directionality, and rates of fluxes connecting phytoplankton,

dissolved organic nutrients, and other pools and determine the degree to which the presence of one content could feasibly

predict another. The case-1 model, wherein Ca predominantly modifies the aquatic light field and predicts CDOM and other480

OACs, is perhaps most logically consistent with historical understandings of the so-called grazing food chain, a simplified

oceanic trophic cascade wherein bacteria were considered negligible in the cycling of organic materials (Azam 1998). Increas-

ingly complex microbial loop dynamics—wherein phytoplankton contribute dissolved organic matter (DOM) directly through

cellular lysis, excretion, plus grazing, and bacteria regulate the remineralization of DOM that fuels phytoplankton growth—

support an increasing diversity of pathways representing the flow of energy and materials through marine systems (Azam et485

al. 1983). Additional discoveries, including new functional groups (e.g., viruses) and pathways (e.g., direct phytoplankton up-

take of DOM), further complicate the temporal dynamics of oceanic food webs (Granéli et al. 1999; Fenchell 2008) relative to

those of the grazing food chain.

Spatial difference occur, perhaps, due to negative buoyancy of particles driving particulate organic distributions away from

the surface where remote sensing signals are weighed. DOM—including a refractory pool that also persists with lower sensitiv-490

ity to microbial food web dynamics (Jiao et al. 2010)—can meanwhile remain suspended in surface waters. Stratification and

mixing modify vertical time scales of sinking and have been related to global-scale patterns in surface concentrations of DOM,

e.g., wherein stratified mid-latitude waters are characterized by higher concentrations of DOM and well-mixed waters of higher

latitudes—with the exception of the arctic—contain relatively lower concentrations of DOM (Hansell and Orellana 2021). The
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optically active DOM subset, i.e., CDOM, is further influenced by the kinematic processes governing photobleaching and495

degradation rates, affected by mixed layer depth, seasonality, latitude, sea surface temperature, and sky condition (Gonsior

et al. 2014; Del Vecchio and Blough 2002). Changing ocean temperatures and acidity also relate to temporal dynamics in

DOM via the restructuring of microbial food webs through altering stratification (and therefore nutrient availability), microbial

metabolic rates plus nutrient demands, remineralization of DOM, and perhaps, species distributions (Sala et al. 2016).

The eigen analyses presented herein additionally confirm case-1 conditions are not representative of global water bodies500

nor selective oceanic subsets, because the partial correlation coefficients indicate the eigenfunctions associate—to a greater

extent than anticipated—with individual OACs, and not with bulk combinations. For example, for an idealized case-1 dataset

wherein all OACs are accurately derived from Ca, the leading eigenfunction would be anticipated to capture nearly all the

variance of the dataset while also producing similar correlation coefficients for each OAC. The spectral shape of the leading

eigenfunction would include features corresponding to all applicable OACs. In contrast to expectations that water mass OACs505

should be modeled from Ca, the eigenfunction analyses indicate that the majority of the variance (approximately 60%) in

oceanic optical data products most strongly corresponds to aCDOM(440), and an orthogonal mode capturing less variance

(approximately 32%) may correspond to residual variability in Ca. Finally, although the results suggest a case-1 model with

aCDOM(440) as the fundamental variable rather than Ca might better represent the three datasets and their oligotrophic subsets,

the underlying assumption that a single OAC captures oceanic light variability would limit the model to representing only 60%510

of the variance observed. Similar to the finding that Ca captures less spectral variance than anticipated, the similarities in ψ1

and ψ2 to absorption properties of CDOM and Ca, respectively, suggest oceanic trophic cascades are characterized by greater

complexity than can be managed by a univariate model. The result is consistent with increasing complexity of microbial loop

pathways governing the flow of energy and materials, plus the acknowledged importance of bacterial regulation of the DOM

pool (Azam 1998).515

4.3 OC algorithm retrievals

High sensitivity of OC algorithms to regional differences in bio-optics is likewise consistent with the findings herein of S1 pro-

ducing maximal correlation to aCDOM(440) and the OC algorithm products. For example, regional tunings of OC algorithms

have proven necessary even at spatial scales as large as currents (Kahru and Mitchell 1999), seas (Morel and Gentili 2009), and

oceans (Johnson et al. 2013), revealing an ever diminishing fraction of oceanic surface environments wherein OC algorithms520

are robust to natural variability in the mixtures and dynamics of OACs.

Sensitivity of the OC algorithm to aCDOM(440) is further investigated using R2 statistics, which indicate the OC algorithm

captures greater variance in aCDOM(440) compared to Ca, consistent with the results of the eigen enalyses. The assessment

warrants caution, as follows: aCDOM(440) is less commonly obtained in bio-optical field sampling than Ca, which is why

two of the datasets herein do not include contemporaneous aCDOM(440) observations; and the RSE2021 dataset, which does525

include contemporaneous observations of both aCDOM(440) and Ca, also includes representation from coastal and inland

waters. Regarding the former, the high incidence of optical measurements with contemporaneous field observations of Ca

but not aCDOM(440) poses a persistent difficulty in aquatic optics, and the results herein indicate the importance of routine
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aCDOM(440) field observations in bio-optical field activities. Regarding the latter, the water mass representation of RSE2021 is

addressed to the extent practicable by considering the scatter of the data points in the separate quadrants of the Fig. 2 validation530

comparisons. For example, a hypothesis wherein the OC algorithm would produce maximal association to Ca in open-ocean

waters would correspond to reduced scatter of the data points in the lower left quadrant in the Ca comparison (panel a) relative

to the aCDOM(440) comparison (panel d). Conversely, the Fig. 2 results show tighter association of the OC algorithm to

aCDOM(440) relative to Ca in the lower left quadrant.

Comparing between datasets, the RSE2007 observations produce the most similar R2 statistics when comparing OC al-535

gorithm products to Ca and aCDOM(440), consistent with the RSE2007 dataset being maximally represented by open-ocean

waters far from coastal inputs and RSE2007 conferring the least expansive spectral range, which challenges the applicability

of the EMA algorithm for retrieving aCDOM(440) independent of Ca. Regarding the former, nearly identical agreement in R2

comparing the OC algorithm products to Ca and aCDOM(440) suggests RSE2007 waters are most consistent with the case-1

scenario wherein OACs covary. Nonetheless, aCDOM(440) always produces higher R2 statistics than Ca, with differences540

being insignificant for RSE2007 but increasing for RSE2022 and RSE2021.

The results of the algorithmic comparisons (Fig. 2) are consistent with those of the eigen analyses (Fig. 1), and both sug-

gest the OC algorithm more strongly captures variability in aCDOM(440) rather than Ca. The OC algorithm’s applicability,

therefore, depends strongly upon the relationships between OACs. The finding regarding the applicability of the OC algorithm

is not the primary focus herein, and is consistent with previous studies demonstrating vulnerabilities in band-ratio retrievals545

of Ca to changing bio-optical relationships (Dierssen 2010). The comparisons further suggest estimation of aCDOM(440) is

more readily obtained than estimation of Ca using remote sensing. For example, the OC algorithm produces aCDOM(440)

estimation with an R2 of 0.85 for the RSE2021 dataset wherein optically complex waters are included, although applying the

OC algorithm for aCDOM(440) estimation is not recommended. Improved R2 values greater than 0.9 have been shown for

remote sensing of aCDOM(440) using end-member analysis with VIS or INV wavebands (Houskeeper et al. 2021).550

4.4 Spectral information content of aquatic spectra

Maximal association of the leading eigenfunction for each dataset with aCDOM(440)—rather than Ca—indicates that accurate

retrieval of aCDOM(440) is fundamental to the objectives of the ocean color community to quantify oceanic productivity.

Information extraction for subsequent eigenfunctions—including the second eigenfunction observed herein for most datasets

to correlate most strongly with Ca—demands both increasing radiometric capabilities (e.g., higher accuracy, more expansive555

spectral range, and perhaps finer spectral resolution) but also accurate retrieval of the information associated with the preceding

eigenfunctions. Regarding the latter, small uncertainties or residual errors in retrievals of information corresponding to a leading

eigenfunction produce so-called noise amplification in retrieval of information corresponding to subsequent eigenfunctions, just

as the mean spread of Si functions decreases with increasing i. Accurate retrieval of aCDOM(440) is, therefore, prerequisite

to—not separate from—accurate retrieval of phytoplankton properties.560

Fine-scale spectral dependencies have previously been shown to confer useful and exploitable information—e.g., fluores-

cence (Letelier and Abbott 1996), absorption band effects (Houskeeper et al. 2020b), and macroalgal physiological state (Bell
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and Siegel 2022)—which may be orthogonal to leading eigenfunctions of a dataset, and therefore, may not emerge with strong

explanatory power in an eigen analysis using the full spectral range (recalling Λ is a metric of variance captured across the

full spectral range of the analysis). Eigenfunction analyses such as those performed here—as well as in Sathyendranath et565

al. (1987), Cael et al. (2023), and others—are useful tools for exploring the major patterns of a dataset, but caution is also war-

ranted because information only impacting a subset of the wavebands in an eigen analysis suffers spectral dilution (Houskeeper

et al. 2020b).

The eigen analyses recreated for the RSE2021 dataset but using VIS or INV spectral subsets (denoted VIS21 and INV21,

respectively) also support previous findings demonstrating improvements in aCDOM(440) algorithmic relationships with in-570

creasing spectral separation of the algorithm wavebands from the VIS domain (Hooker et al. 2020, 2021b; Houskeeper et

al. 2020a, 2021). For example, the results indicate INV information is more readily represented by a single mode of variability

than VIS information, as follows: a) the leading eigenfunction of VIS21 captures similar variance to that of the spectrally ex-

pansive UVN21; b) the leading eigenfunction of INV21 captures approximately 17% more variance than that of either UVN21

or VIS21; and c) the second eigenfunction of VIS21 captures approximately 15% more variance than that of INV21. Pearson’s575

correlation coefficients relating S1 to aCDOM(440) increase strongly for the INV21 subset, approaching that of a perfectly

coherent relationship (−0.96). The results indicate INV21 captures information more associated with aCDOM(440) and less

associated with Ca. Conversely, the leading eigenfunction of the VIS21 subset captures information more similarly associated

with both aCDOM(440) and Ca. The findings confirm previous literature based on theoretical formulations and observations,

wherein spectrally expansive observations mitigate the confounding effects of spectral overlap in aCDOM(440) and CDOM580

absorption (Houskeeper et al. 2021).

The recent launch of the PACE satellite mission supports novel spectrally expansive and hyperspectral observations of

surface ocean environs. The spectral subset eigen analyses indicate opportunities to leverage spectrally expansive PACE ob-

servations to advance OAC retrievals. For example, accurate retrieval of INV reflectances support retrieval of aCDOM(440)

with improved independence from Ca, and knowledge of aCDOM(440) could then inform Ca retrievals using VIS information.585

Alternately, the results indicate that simultaneous retrieval of OACs, e.g., using inversions (Garver and Siegel 1997) or MDNs

(O’Shea et al. 2021), may improve if (quality assured) input reflectances are spectrally expansive and include INV domains.

However, spectrally expansive in situ datasets are presently sparse and corresponding improvements in atmospheric correction

are likewise required to support spectrally expansive satellite ocean observing.

5 Conclusions590

Spectral observations of aquatic environments produce leading eigenfunctions of AOPs more strongly correlated to variability

in CDOM absorption than Ca. Greater independence of OACs and the elevated importance of CDOM variability in governing

aquatic light variability are consistent with advancing knowledge of microbial loop dynamics and an increasing diversity of

trophic pathways represented therein (Azam 1998). The findings use three independent datasets and are based on consistent

results for the eigen analyses—including the spectral shapes of the eigenfunctions and the partial correlation coefficients595
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relating the eigenfunctions to biogeochemical variables—plus performance metrics of OC algorithms. The eigen analyses

indicate accurate and independent estimation of CDOM is prerequisite to retrieval of Ca and other phytoplankton parameters,

and satellite OC algorithms are found herein to produce values more highly correlated with CDOM than Ca. Confounding

signals from CDOM and Ca are consistent with early investigations into the drivers of color variability (Yentsch 1960), as well

as subsequent work assessing vulnerabilities in band-ratio algorithms for characterizing Ca (Dierssen 2010; Sauer et al. 2012).600

Spectrally expansive data products have been shown to improve retrieval of aCDOM(440) independent of Ca (Sathyendranath

et al. 1987; Hooker et al. 2020; Houskeeper et al. 2021), and comparisons herein of eigen analyses using the INV21 and VIS21

spectral subsets further support the importance of expansive spectral range observing. Spectrally expansive data products

have been demonstrated in situ spanning the UV to shortwave infrared (SWIR) wavelength domain, with the latter generally

ascribed as null in the ocean color community of practice (Houskeeper and Hooker 2023). The recently launched OCI sensor605

of the PACE mission provides hardware capabilities to support expansive spectral range observing of the global ocean surface,

but further advances in image processing, atmospheric correction, algorithm design, and applicability of in situ data sets are

needed to leverage these potential capabilities.
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Chase, A. P., E. Boss, I. Cetinić, and W. Slade. “Estimation of phytoplankton accessory pigments from hyperspectral reflectance spectra:

toward a global algorithm." Journal of Geophysical Research: Oceans 122, no. 12 (2017): 9725-9743.

Clarke, G.L., Gifford C. Ewing, and C.J. Lorenzen. “Spectra of backscattered light from the sea obtained from aircraft as a measure of

chlorophyll concentration." Science 167, no. 3921 (1970): 1119-1121.

Clark, D.K. “Phytoplankton pigment algorithms for the Nimbus-7 CZCS." In Oceanography from Space, pp. 227-237. Boston, MA: Springer640

US, 1981.

Claustre, H., A. Morel, S.B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Quéguiner, and S. Maritorena. “Is

desert dust making oligotrophic waters greener?” Geophys. Rev. Lett., 29, 107 (2002): 1–4.

20

https://doi.org/10.5194/egusphere-2024-4163
Preprint. Discussion started: 4 February 2025
c© Author(s) 2025. CC BY 4.0 License.



Claustre, H., S.B. Hooker, L. Van Heukelem, J-F. Berthon, R. Barlow, J. Ras, H. Sessions, C. Targa, C. Thomas, D. van der Linde, and J-C.

Marty. “An intercomparison of HPLC phytoplankton pigment methods using in situ samples: Application to remote sensing and database645

activities.” Mar. Chem., 85, (2004): 41–61.

Del Vecchio, R., and N.V. Blough. “Photobleaching of chromophoric dissolved organic matter in natural waters: kinetics and modeling."

Marine Chemistry 78, no. 4 (2002): 231-253.

Dierssen, H.M. and R.C. Smith. “Bio-optical properties and remote sensing ocean color algorithms for Antarctic Peninsula waters.” Journal

of Geophysical Research: Oceans 105, no. C11 (2000): 26301-26312.650

Dierssen, H.M. “Perspectives on empirical approaches for ocean color remote sensing of chlorophyll in a changing climate." Proceedings of

the National Academy of Sciences 107, no. 40 (2010): 17073-17078.

Doron, M., S. Bélanger, D. Doxoran, and M. Babin. “Spectral variations in the near-infrared reflectance." Remote Sensing of Environment

115, no. 7 (2011): 1617-1631.

Dutkiewicz, S., A.E. Hickman, O. Jahn, S. Henson, C. Beaulieu, and E. Monier. “Ocean colour signature of climate change." Nature com-655

munications 10, no. 1 (2019): 578.

Franz, B.A., S.W. Bailey, G. Meister, and P.J. Werdell. “Quality and consistency of the NASA ocean color data record." Proc. Ocean Optics

XXI (2012).

Garver, S.A., and D.A. Siegel. “Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation: 1. Time

series from the Sargasso Sea." Journal of Geophysical Research: Oceans 102, no. C8 (1997): 18607-18625.660

Gordon, H.R., D.K. Clark, J.L. Mueller, and W.A. Hovis. “Phytoplankton pigments from the Nimbus-7 Coastal Zone Color Scanner: com-

parisons with surface measurements." Science 210, no. 4465 (1980): 63-66.

Gordon, H.R., and A. Morel. “Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery.” In Lecture Notes on

Coastal and Estuarine Studies, 113 pp., Springer-Verlag, New York, 1983.

Gordon, H.R., D.K. Clark, J.W. Brown, O.B. Brown, R.H. Evans, and W.W. Broenkow. “Phytoplankton pigment concentrations in the Middle665

Atlantic Bight: comparison of ship determinations and CZCS estimates." Applied Optics 22, no. 1 (1983): 20-36.

Gordon, H.R. “Evolution of ocean color atmospheric correction: 1970–2005." Remote Sensing 13, no. 24 (2021): 5051.

Gonsior, M., N. Hertkorn, M.H. Conte, W.J. Cooper, D. Bastviken, E. Druffel, and P. Schmitt-Kopplin. “Photochemical production of polyols

arising from significant photo-transformation of dissolved organic matter in the oligotrophic surface ocean.” Marine Chemistry 163 (2014):

10-18.670

Granéli, E., P. Carlsson, and C. Legrand. “The role of C, N and P in dissolved and particulate organic matter as a nutrient source for

phytoplankton growth, including toxic species.” Aquatic Ecology 33 (1999): 17-27.

21

https://doi.org/10.5194/egusphere-2024-4163
Preprint. Discussion started: 4 February 2025
c© Author(s) 2025. CC BY 4.0 License.



Grew, G.W., and L.S. Mayo. “Ocean color algorithm for remote sensing of chlorophyll." No. NAS 1.60 (1983): 2164.

Haentjens, N. “Optical Signatures of Plankton in the Open Ocean: From Individual Cells to Global Patterns.” The University of Maine, 2020.

Hansell, D.A., and M.V. Orellana. “Dissolved Organic Matter in the Global Ocean: A Primer.” Gels 7, no. 3 (2021): 128.675

Hirata, T., T. Hirawake, F. Sakaida, H. Yamaguchi, K. Suzuki, H. Murakami, J. Ishizaka, H. Kobayashi, A. Fujukara, M. Toratani, and

S. Saitoh. “Development and Verification of SGLI/GCOM-C1 Ocean Algorithms.” Journal of The Remote Sensing Society of Japan 34,

no. 4 (2014): 278-285.

Hooker, S.B., H. Claustre, J. Ras, L. Van Heukelem, J-F. Berthon, C. Targa, D. van der Linde, R. Barlow, and H. Sessions, 2000: The First

SeaWiFS HPLC Analysis Round-Robin Experiment (SeaHARRE-1). NASA Tech. Memo. 2000–206892, Vol. 14, S.B. Hooker and E.R.680

Firestone, Eds., NASA Goddard Space Flight Center, Greenbelt, Maryland, 42pp.

Hooker, S.B., and S. Maritorena. “An evaluation of oceanographic radiometers and deployment methodologies.” J. Atmos. Oceanic Technol.,

17, (2000):811–830.

Hooker, S.B., G. Lazin, G. Zibordi, and S. McLean. “An evaluation of above- and in-water methods for determining water-leaving radiances.

J. Atmos. Oceanic Technol., 19, (2002): 486–515.685

Hooker, S.B., L. Clementson, C.S. Thomas, L. Schlüter, M. Allerup, J. Ras, H. Claustre, C. Normandeau, J. Cullen, M. Kienast, W. Ko-

zlowski, M. Vernet, S. Chakraborty, S. Lohrenz, M. Tuel, D. Redalje, P. Cartaxana, C.R. Mendes, V. Brotas, S.G.P. Matondkar, S.G.

Parab, A. Neeley, and E.S. Egeland, 2012: The Fifth SeaWiFS HPLC Analysis Round-Robin Experiment (SeaHARRE-5). NASA Tech.

Memo. 2012–217503, NASA Goddard Space Flight Center, Greenbelt, Maryland, 98pp.

Hooker, S.B., G. Bernhard, J.H. Morrow, C.R. Booth, T. Comer, R.N. Lind, and V. Quang. 2012: “Optical sensors for planetary radiant690

energy (OSPREy): calibration and validation of current and next-generation NASA missions.” TM-2012-215872, NASA Goddard Space

Flight Center, Greenbelt, Maryland, 117 pp.

Hooker, S.B., J.H. Morrow, and A. Matsuoka. “Apparent optical properties of the Canadian Beaufort Sea–Part 2: The 1% and 1cm perspective

in deriving and validating AOP data products." Biogeosciences 10, no. 7 (2013): 4511-4527.

Hooker, S.B., R.N. Lind, J.H. Morrow, J.W. Brown, K. Suzuki, H.F. Houskeeper, T. Hirawake, and E.R. Maure, 2018a: Advances in Above-695

and In-Water Radiometry, Vol. 1: Enhanced Legacy and State-of-the-Art Instrument Suites. TP–2018–219033/Vol. 1, NASA Goddard

Space Flight Center, Greenbelt, Maryland, 60 pp.

Hooker, S.B., R.N. Lind, J.H. Morrow, J.W. Brown, R.M. Kudela, H.F. Houskeeper, K. Suzuki, 2018b: Advances in Above- and In-Water

Radiometry, Vol. 2: Autonomous Atmospheric and Oceanic Observing Systems. TP–2018–219033/Vol. 2, NASA Goddard Space Flight

Center, Greenbelt, Maryland, 69 pp.700

22

https://doi.org/10.5194/egusphere-2024-4163
Preprint. Discussion started: 4 February 2025
c© Author(s) 2025. CC BY 4.0 License.



Hooker, S.B., R.N. Lind, J.H. Morrow, J.W. Brown, R.M. Kudela, and H.F. Houskeeper, K. Suzuki, 2018c: Advances in Above- and In-Water

Radiometry, Vol. 3: Hybridspectral Next-Generation Optical Instruments. TP–2018–219033/Vol. 3, NASA Goddard Space Flight Center,

Greenbelt, Maryland, 39 pp.

Hooker, S.B., A. Matsuoka, R.M. Kudela, Y. Yamashita, K. Suzuki, and H.F. Houskeeper. “A global end-member approach to derive

aCDOM(440) from near-surface optical measurements." Biogeosciences 17, no. 2 (2020): 475-497.705

Hooker, S.B., H.F. Houskeeper, R.M. Kudela, A. Matsuoka, K. Suzuki, and T. Isada. “Spectral modes of radiometric measurements in

optically complex waters." Continental Shelf Research 219 (2021a): 104357.

Hooker, S.B., H.F. Houskeeper, R.N. Lind, and K. Suzuki. “One-and two-band sensors and algorithms to derive aCDOM(440) from global

above- and in-water optical observations." Sensors 21, no. 16 (2021b): 5384.

Hooker, S.B., H.F. Houskeeper, R.N. Lind, R.M. Kudela, and K. Suzuki. “Verification and validation of hybridspectral radiometry obtained710

from an unmanned surface vessel (USV) in the open and coastal oceans.” Remote Sensing 14, no. 5 (2022): 1084.

Houskeeper, Henry F. “Advances in bio-optics for observing aquatic ecosystems." University of California, Santa Cruz, 2020a.

Houskeeper, H.F., D. Draper, R.M. Kudela, and E. Boss. “Chlorophyll absorption and phytoplankton size information inferred from hyper-

spectral particulate beam attenuation." Applied Optics 59, no. 22 (2020b): 6765-6773.

Houskeeper, H.F., S.B. Hooker, and R.M. Kudela. “Spectral range within global aCDOM(440) algorithms for oceanic, coastal, and inland715

waters with application to airborne measurements." Remote Sensing of Environment 253 (2021): 112155.

Houskeeper, Henry F., Stanford B. Hooker, and Kyle C. Cavanaugh. “Spectrally simplified approach for leveraging legacy geostationary

oceanic observations.” Applied Optics 61, no. 27 (2022): 7966-7977.

Houskeeper, H.F., and S.B. Hooker. “Extending aquatic spectral information with the first radiometric IR-B field observations." PNAS Nexus

2, no. 11 (2023): pgad340.720

Houskeeper, H.F., S.B. Hooker, and R.N. Lind. “Expanded linear responsivity for Earth and planetary radiometry." J. Atm. Ocea. Tech. 41,

no. 11 (2024): 1,093–1,105.

Hovis, W.A. “The Nimbus-7 coastal zone color scanner (CZCS) program." In Oceanography from Space, pp. 213-225. Boston, MA: Springer

US, 1981.

Hu, C., Z. Lee, and B. Franz. “Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance differ-725

ence." J. Geophys. Res., 117 no. C1 (2012): 10.1029/2011JC007395.

Isada, T., S.B. Hooker, Y. Taniuchi, and K. Suzuki. “Evaluation of retrieving chlorophyll a concentration and colored dissolved organic matter

absorption from satellite ocean color remote sensing in the coastal waters of Hokkaido, Japan.” Journal of Oceanography 78, no. 4 (2022):

263-276.

23

https://doi.org/10.5194/egusphere-2024-4163
Preprint. Discussion started: 4 February 2025
c© Author(s) 2025. CC BY 4.0 License.



Jerlov, N.G. “Optical studies of ocean water." Rept. Swedish Deep-Sea Exped., no. 3 (1951): 1-59.730

Jerlov, N.G. “Optical Oceanography,” Elsevier Oceanography, Series 5 (1968).

Jiao, N., et al. “Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean.” Nature Reviews

Microbiology, 8 no. 8 (2010): 593-599.

Johnson, R., P.G. Strutton, S.W. Wright, A. McMinn, and K.M. Meiners. “Three improved satellite chlorophyll algorithms for the Southern

Ocean.” Journal of Geophysical Research: Oceans 118, no. 7 (2013): 3,694–3,703.735

Kahru, M., and B.G. Mitchell. “Empirical chlorophyll algorithm and preliminary SeaWiFS validation for the California Current.” Interna-

tional Journal of Remote Sensing 20, no. 17 (1999): 3,423–3,429.

Kahru, M., R.M. Kudela, M. Manzano-Sarabia, and B.G. Mitchell. “Trends in the surface chlorophyll of the California Current: Merging

data from multiple ocean color satellites." Deep Sea Research Part II: Topical Studies in Oceanography 77 (2012): 89-98.

Kramer, S.J., D.A. Siegel, S. Maritorena, and D. Catlett [dataset]. “Global surface ocean HPLC phytoplankton pigments and hyperspectral740

remote sensing reflectance.” PANGAEA (2021): https://doi.org/10.1594/PANGAEA.937536

Kramer, S.J., D.A. Siegel, S. Maritorena, and D. Catlett. “Modeling surface ocean phytoplankton pigments from hyperspectral remote sensing

reflectance on global scales." Remote Sensing of Environment 270 (2022): 112879.

Kudela, R.M., S.L. Palacios, D.C. Austerberry, E.K. Accorsi, L.S. Guild, and J. Torres-Perez. “Application of hyperspectral remote sensing

to cyanobacterial blooms in inland waters." Remote Sensing of Environment 167 (2015): 196-205.745

Kudela, R.M., S.B. Hooker, H.F. Houskeeper, and M. McPherson. “The influence of signal to noise ratio of legacy airborne and satellite

sensors for simulating next-generation coastal and inland water products." Remote Sensing 11, no. 18 (2019): 2071.

Kudela, R.M., S.B. Hooker, L.S. Guild, H.F. Houskeeper, and N. Taylor. “Expanded signal to noise ratio estimate for validating next-

generation satellite sensors in oceanic, coastal, and inland waters." Remote Sensing 16 (2024): 1238.

Lee, Z.P., and K.L. Carder. “Absorption spectrum of phytoplankton pigments derived from hyperspectral remote-sensing reflectance." Remote750

Sensing of Environment 89, no. 3 (2004): 361-368.

Letelier, R.M., and M.R. Abbott. “An analysis of chlorophyll fluorescence algorithms for the Moderate Resolution Imaging Spectrometer

(MODIS)." Remote Sensing of Environment 58, no. 2 (1996): 215-223.

Lewis, K.M., and K.R. Arrigo. “Ocean color algorithms for estimating chlorophyll a, CDOM absorption, and particle backscattering in the

Arctic Ocean." Journal of Geophysical Research: Oceans 125, no. 6 (2020): e2019JC015706.755

24

https://doi.org/10.5194/egusphere-2024-4163
Preprint. Discussion started: 4 February 2025
c© Author(s) 2025. CC BY 4.0 License.



Matsuoka, A., M. Babin, D. Doxaran, S.B. Hooker, B.G. Mitchell, S. Bélanger, and A. Bricaud. “A synthesis of light absorption properties

of the Pan-Arctic Ocean: application to semi-analytical estimates of dissolved organic carbon concentrations from space." Biogeosciences

Discussions 10, no. 11 (2013).

McClain, C., S. Hooker, G. Feldman, and P. Bontempi, 2006: Satellite data for ocean biology, biogeochemistry, and climate research. Eos,

Trans. Amer. Geophys. Union, 87, 337–343.760

Morel, A., and L. Prieur. “Analysis of variations in ocean color 1." Limnology and Oceanography 22, no. 4 (1977): 709-722.

Morel, A. “In-water and remote measurements of ocean color." Boundary-Layer Meteorology 18, no. 2 (1980): 177-201.

Morel, A. “Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters).” Journal of Geophysical Research,

93, no. C9. (1988): 10,749–10,768.

Morel, A. “Are the empirical relationships describing the bio-optical properties of case 1 waters consistent and internally compatible?”765

Journal of Geophysical Research 114, no. C01016 (2009).

Morel, A., and B. Gentili. “The dissolved yellow substance and the shades of blue in the Mediterranean Sea." Biogeosciences 6, no. 11

(2009): 2625-2636.

Morrow, J.H., S.B. Hooker, C.R. Booth, G. Bernhard, R.N. Lind, and J.W. Brown, 2010: Advances in Measuring the Apparent Optical

Properties (AOPs) of Optically Complex Waters. NASA Tech. Memo. 2010–215856, NASA Goddard Space Flight Center, Greenbelt,770

Maryland, 80pp.

O’Reilly, J.E., S. Maritorena, B.G. Mitchell, D.A. Siegel, K.L. Carder, S.A. Garver, M.Kahru, and C. McClain. “Ocean color chlorophyll

algorithms for SeaWiFS." Journal of Geophysical Research: Oceans 103, no. C11 (1998): 24937-24953.

O’Reilly, J.E., and P.J. Werdell. “Chlorophyll algorithms for ocean color sensors-OC4, OC5 & OC6." Remote Sensing of Environment 229

(2019): 32-47.775

O’Shea, R.E., N. Pahlevan, B. Smith, M. Bresciani, T. Egerton, C. Giardino, L. Li, et al. “Advancing cyanobacteria biomass estimation from

hyperspectral observations: Demonstrations with HICO and PRISMA imagery." Remote Sensing of Environment 266 (2021): 112693.

Prochaska, J.X., and R. Frouin. “On the peril of inferring phytoplankton properties from remote-sensing observations." arXiv:2408.06149.

Sala, M.M., F.L. Aparicio, V. Balagué, J.A. Boras, E. Borrull, C. Cardelús, L. Cros et al. “Contrasting effects of ocean acidification on the

microbial food web under different trophic conditions.” ICES Journal of Marine Science 73, no. 3 (2016): 670-679.780

Sarmiento, J. L., R. Slater, R. Barber, L. Bopp, S.C. Doney, A.C. Hirst, J. Kleypas, R. Matear, U. Mikolajewicz, P. Monfray, and V. Soldatov.

“Response of ocean ecosystems to climate warming." Global Biogeochemical Cycles 18, no. 3 (2004).

25

https://doi.org/10.5194/egusphere-2024-4163
Preprint. Discussion started: 4 February 2025
c© Author(s) 2025. CC BY 4.0 License.



Sathyendranath, S., L. Prieur, and A. Morel. “An evaluation of the problems of chlorophyll retrieval from ocean colour, for case 2 waters."

Advances in Space Research 7, no. 2 (1987): 27-30.

Sauer, M.J., C.S. Roesler, P.J. Werdell, and A. Barnard. “Under the hood of satellite empirical chlorophyll a algorithms: revealing the785

dependencies of maximum band ratio algorithms on inherent optical properties." Optics Express 20, no. 19 (2012): 20920-20933.

Sea-Bird Scientific. “Hyperspectral Ocean Color Radiometer User Manual.” HyperOCR 2024-07-10 Version C. Accessed: 2 August 2024.

Siegel, D.A., S. Maritorena, N.B. Nelson, and M.J. Behrenfeld. “Independence and interdependencies among global ocean color properties:

Reassessing the bio-optical assumption." Journal of Geophysical Research: Oceans 110, no. C7 (2005).

Smith, R.C., K.S. Baker, and P. Dustan. “Fluorometric techniques for the measurement of oceanic chlorophyll in the support of remote790

sensing." Scripps Institution of Oceanography Ref. 81-17 (1981).

Suzuki, K., A. Kamimura, and S.B. Hooker, 2015: Rapid and highly sensitive analysis of chlorophylls and carotenoids from marine phyto-

plankton using ultra-high performance liquid chromatography (UHPLC) with the first derivative spectrum chromatogram (FDSC) tech-

nique. Mar. Chem., 176, 96–109, 10.1016/j.marchem.2015.07.010.

Taylor, B.B., E. Torrecilla, A. Bernhardt, M.H. Taylor, I. Peeken, R. Röttgers, J. Piera, and A. Bracher. “Bio-optical provinces in the eastern795

Atlantic Ocean and their biogeographical relevance.” Biogeosciences 8, no. 12 (2011): 3609-3629.

Tyler, J.E. “In situ detection and estimation of chlorophyll and other pigments in the ocean." Proceedings of the National Academy of Sciences

47, no. 11 (1961): 1726-1733.

Van Heukelem, L., and S.B. Hooker, 2011: “The Importance of a Quality Assurance Plan for Method Validation and Minimizing Uncertainties

in the HPLC Analysis of Phytoplankton Pigments.” In: Phytoplankton Pigments Characterization, Chemotaxonomy and Applications in800

Oceanography, S. Roy et al. Eds., Cambridge University Press, Cambridge, 195–242.

Werdell, P.J., and S.W. Bailey. “The SeaWiFS Bio-optical Archive and Storage System (SeaBASS): Current architecture and implemen-

tation.” NASA Technical Memo: 2002-211617, G.S. Fargion and C.R. McClain, Eds., NASA Goddard Space Flight Center, Greenbelt,

Maryland, 45 pp. (2002).

Yentsch, C.S. “The influence of phytoplankton pigments on the colour of sea water." Deep Sea Research 7, no. 1 (1960): 1-9.805

Zaneveld, J.R.V., E. Boss, and A. Barnard. “Influence of surface waves on measured and modeled irradiance profiles.” Applied Optics 40,

no. 9 (2001): 1442-1449.

26

https://doi.org/10.5194/egusphere-2024-4163
Preprint. Discussion started: 4 February 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 1. Spectral representations of the eigenfunction matrices corresponding to the RSE2021, RSE2022, and RSE2007 datasets are rep-

resented as blue, orange, and green lines, respectively. The first three eigenfunctions ψ1–ψ3 are organized vertically based on descending

variance explained, Λ. The y-axis label superscripts indicate the phase, i.e., either positive (+) or negative (−), in which the eigenvectors are

presented, and y-axis label subscripts indicate the ordering of the eigenvector. Correlation coefficients relating S for each eigenfunction to

recorded environmental (g and Ca) or algorithm (EMA and OC4) values are indicated using ρ notation, wherein the left subscript indicates

the parameter under comparison with S, given the parameter indicated by the right subscript, when applicable. Eigenfunctions for olig-

otrophic subsets (Ca less than 0.5mgm−3) of the datasets are plotted on the same axes using gray lines. For clarity, all statistics presented

correspond to the complete datasets (colored lines), and the sign for ρ corresponds to the phase in which ψ is plotted. The nominal locations

of the blue and green wavebands used by the OC4 algorithm are indicated by blue and green vertical dashed lines, respectively.
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Figure 2. Algorithmic relationships for the RSE2021, RSE2022, and RSE2007 datasets are represented as blue, orange, and green open

circles, respectively. The top panels indicate relationships between OC Ca algorithms and field Ca, and a 1:1 correspondence line is shown in

black. The bottom panels indicate relationships between OC Ca algorithms and field (panel d) or algorithmic (panels e and f) observations of

aCDOM(440) with R2 statistics shown. Algorithmic products were required for the RSE2022 and RSE2007 datasets because only RSE2021

included routine field sampling of aCDOM(440). The EMA relationship was used for deriving aCDOM(440) because EMA provides the

maximal independence from OC Ca algorithms (Houskeeper et al. 2020a) and therefore best facilitates the comparisons presented herein.

Case-1 empirical estimations deriving aCDOM(440) as a function of Ca following Morel (2009) are indicated in the bottom row panels using

gray open circles.
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Figure 3. Variance explained by the first six eigenfunctions (ψ1–ψ6) for results using spectral subsets of the RSE2021 dataset, as follows:

the full spectral range (320–875nm) is shown in blue matching the presentations of Fig. 1 and 2 and denoted UVN21; the visible (412–

683nm) spectral subset results are shown in yellow and denoted VIS21; and the invisible (313–395 and 710–875nm) spectral subset results

are shown in red and denoted INV21. Pearson’s correlation coefficients for aCDOM(440) and Ca (ρg and ρCa , respectively) are denoted

using arrows for the VIS21 and INV21 analyses, with bold font indicating significance (P < 0.05). The inlay panel shows that RSE2007,

RSE2021, and RSE2022 datasets have similar maximal variance explained in ψ1 and ψ2.
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