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Abstract. Absorption and scattering by optically active constituents (OACs) modify the sunlit aquatic light environment, facil-

itating the derivation of biogeochemical data products at scales spanning in situ to satellite observations. Excluding solar illu-

mination, plus geometric and atmospheric effects, variability in an optical parameter arises from changing OAC concentrations,

wherein observed patterns in the spectral evolution of data products are associated with the connectivity and spatiotemporal

dynamics of OACs. In open-ocean waters far from terrestrial and riverine inputs, the content and mixture of OACs princi-5

pally relates to the dynamics of phytoplankton and the microbial loop—a trophic pathway describing the cycling of microbial

primary producers, remineralizers (e.g., bacteria and archaea), plus dissolved organic and inorganic materials (as applicable).

Historical bio-optical models for the open ocean primarily invoke chlorophylla concentration (Ca)—a commonly used proxy

for phytoplankton biomass—as the ubiquitous independent variable governing optical data products such as the normalized

water-leaving radiance, [LW (λ)]N. Formulation of [LW (λ)]N as a function of Ca invokes an idealized food chain, wherein10

phytoplankton are the dominant control of OACs, including the colored (or chromophoric depending on the literature) portion

of the dissolved organic matter (DOM) pool, hereafter CDOM. This prescription, in which Ca maximally explains oceanic light

variability (hereafter primacy), is tested herein using eigenanalysis—e.g., an Empirical Orthogonal Function (EOF) analysis,

Principal Component Analysis (PCA), or other eigendecomposition depending on the literature. Analyses using three indepen-

dent bio-optical datasets assess the shapes and associations of the principal and secondary eigenfunctions of aquatic [LW (λ)]N15

observations. The analyses reveal [LW (λ)]N variations to be more strongly associated with changes in CDOM rather than

Ca—even for purely oceanic datasets—indicating that CDOM dynamics are more variable and exhibit greater independence

from Ca than formerly ascribed. Blue and green band-ratio algorithms routinely used for remote sensing of Ca are found to be

maximally sensitive to variability in CDOM—rather than Ca—based on validation tests of OC algorithm performance (e.g.,

R2 of 0.85 versus 0.78), plus partial correlation coefficients relating eigenfunction scalar amplitude functions to field or de-20

rived observations. Eigenanalyses applied to spectral subsets of the data indicate expansive spectral range observing improves

the independence in retrieving CDOM absorption and Ca. The spectral subset comparisons indicate expanded spectral obser-

vations supported by recent domestic and international satellite missions constitute a new and unique opportunity to optically

characterize surface ocean phytoplankton stocks without relying on explicit or implied empiricisms requiring CDOM and other

OACs to covary with Ca. The shapes and associations of the eigenfunctions suggest a greater diversity of trophic pathways25

determine OAC dynamics—e.g., in addition to phytoplankton contributing CDOM via cellular lysis, excretion, and grazing—
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and are consistent with advancing knowledge of the microbial loop in the decades after bio-optical formulations based on Ca

were proposed.

1 Introduction

More than seven decades ago, transitions in the visual perception of electromagnetic emission (hereafter color) from the deepest30

blue waters to the much shallower green coastal zone were attributed primarily to changes in the colored dissolved organic

matter (CDOM) content (Jerlov 1951; Kalle 1966). Known absorption characteristics of photosynthetic pigments, principally

absorption associated with the content of chlorophylla, Ca, supported analogous dependencies of color on phytoplankton

content, which motivated investigations into optical approaches for retrieving surface ocean phytoplankton abundance (Yentsch

and Ryther 1959; Tyler 1960). Significant overlap in Ca and CDOM spectral absorption characteristics, combined with limited35

spectral resolution of early optical technologies, however, prevented the partition of Ca and CDOM signals (Yentsch 1960).

Contents of Ca and CDOM covary in oceanic environments away from the confounding effects of terrestrial and riverine inputs,

and a generalized relationship between color and Ca content was demonstrated using airborne surveys (Clarke et al. 1970)—

despite acknowledged confounding factors, including (but not exclusively) solar glint, sky state, and natural variability in the

content of other optically active constituents (OACs) such as CDOM or suspended inorganic particles. Natural variability40

in OACs was temporarily managed by stipulating that OACs were adherent to stable empirical relationships in open-ocean

environments, which were operationally defined as case-1 waters (Morel and Prieur 1977). The case-1 prescription circumvents

uncertainty associated with natural variability in the relative content of different OACs so that the color of seawater could be

related to individual biogeochemical parameters, namely Ca (Morel 1980; Grew and Mayo 1983; Gordon et al. 1983a). The

approach was consistent with contemporary knowledge of the grazing food chain—wherein phytoplankton growth and grazing45

regulate oceanic ecosystems (Steele 1974)—prior to growing recognition of the importance of microbial loop dynamics (Azam

et al. 1983; Azam 1998).

The launch of the Coastal Zone Color Scanner (CZCS) satellite mission in 1978 enabled remote assessment of electro-

magnetic flux emitted from aquatic surface waters in the visible (VIS) spectral domain—hereafter ocean color—at large

spatial scales (Hovis 1981). CZCS imagery corroborated linkages between ocean color and Ca, e.g., by demonstrating ele-50

vated oceanic Ca within eddy-like turbidity patterns (Gordon et al. 1980). Satellite remote sensing of oceanic apparent optical

products (AOPs) relies principally on the normalized water-leaving radiance, [LW (λ)]N, or its conjugate product the remote-

sensing reflectance, Rrs(λ), where λ denotes wavelength. Both were—and continue to be—derived for ocean color satellite

observations by ascribing null oceanic flux at the longest signal-limited wavelength to facilitate the partitioning of oceanic and

atmospheric observed signals (Gordon et al. 1983b). As technology inexorably advanced, the wavelength associated with null55

flux was incrementally adjusted from the VIS (i.e., red) to the near-infrared (NIR), and then to the shortwave infrared (SWIR)

domain (Gordon 2021)—necessary, in pertinent part, because null flux approximations are inconsistent with the optical prop-

erties of the sunlit aquatic environment (Houskeeper and Hooker 2023). Inversions relating [LW (λ)]N or Rrs(λ) waveband

ratios to Ca—hereafter ocean chlorophyll (OC) algorithms—were defined for the CZCS mission (Clark 1981) and subse-
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quently extended to, for example, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), the MODerate resolution Imaging60

Spectroradiometer (MODIS), the Second-Generation Global Imager (SGLI), and other dedicated ocean color missions (Aiken

et al. 1996; O’Reilly et al. 1998; Hirata et al. 2014; O’Reilly and Werdell 2019; Isada et al. 2022).

As satellite missions progressed, pigment quantitation from water samples—requisite for developing and validating empir-

ical OC algorithms—evolved from spectrophotometric and fluorometric techniques to high performance liquid chromatogra-

phy (HPLC) methods (Tyler 1961; Smith et al. 1981; Hooker et al. 2000) and ultimately advanced to ultra HPLC (Suzuki et65

al. 2015). The trajectory in advancing laboratory methods allowed a concomitant improvement in OC algorithms by including

chlorophyll allomers, epimers, and degradation products (Claustre et al. 2004), while lowering pigment uncertainties (Van

Heukelem and Hooker 2011; Hooker et al. 2012a). This era of development also included contemporaneous—i.e., occurring

during the same time—advances in commercial-off-the-shelf (COTS) in situ optical instrumentation. The fixed-wavelength

microradiometer (Morrow et al. 2010) reduced the size and weight of instruments while providing purely digital operations70

with improved dynamic range and accuracy. When coupled with a compact backplane equipped with hydrobaric buoyancy

and small digital thrusters (Hooker et al. 2018a), oceanic, coastal, and inland (hereafter global ) waters could be sampled with

the same instrument suite. The new capabilities included autonomous at-sea operations (Hooker et al. 2018b)—plus onshore

support measurements and semiautonomous airborne surveys (Guild et al. 2020)—to provide data products for the calibration

and validation of the next generation of ocean color satellite missions (Hooker et al. 2018c).75

Over the time span of advancing satellite, laboratory, and field capabilities, the architecture of OC algorithms remained

largely unchanged, i.e., OC algorithms continued to rely on VIS band ratios (O’Reilly and Werdell 2019), although improve-

ments were obtained, e.g., in oligotrophic waters (Hu et al. 2012) and by simultaneous (VIS) retrieval of multiple OACs (e.g.,

Garver and Siegel 1997). Continuity of satellite OC algorithm retrievals supports global monitoring of oceanic Ca needed to

assess planetary change (McClain et al. 2006), but correspondence between the OC algorithm data product and oceanic Ca80

content varies significantly in space and time (Dierssen 2010; Sauer et al. 2012). For example, natural variability in OAC re-

lationships (Dierssen and Smith 2000; Siegel et al. 2005) injects regional biases into OC algorithmic products, even for large

oligotrophic (purportedly case-1) water bodies, such as the Mediterranean Sea (Claustre et al. 2002; Morel and Gentili 2009).

Evolving climate and biological conditions further alter OAC relationships and derivation of optical data products, thereby

modifying OC algorithm performance (Sauer et al. 2012). Variability in OAC relationships confounds detection of long-term85

Ca trends (Dierssen 2010), although trends in the fundamental remote sensing optical data products, e.g., [LW (λ)]N or Rrs(λ),

are detectable (Dutkiewicz et al. 2019). Relating changes in oceanic optical properties to specific OACs—e.g., robust estimation

of Ca—would help to assess changes in oceanic ecosystem functionality and provide context for cause-and-effect relationships

in aquatic environments coinciding with a changing global climate.

Interpreting changes in oceanic AOPs remains challenging—as noted in earlier historical studies, e.g., Yentsch (1960)—due90

to confounding similarities in the spectral absorption of OACs within the VIS domain relative to the spectral range, resolution,

and signal-to-noise ratio (SNR) of legacy ocean color datasets combined with non-adherence to an absolute radiometric scale

(Houskeeper and Hooker 2023). An eigenanalysis for modeled aquatic spectra demonstrated optical data products require the

shortest available wavelength (modeled to 400nm at the time), i.e., the spectral end member, to support discrimination of in-
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dependently varying CDOM and Ca (Sathyendranath et al. 1987). As field technologies advanced, spectrally expansive above-95

and in-water observations were shown to provide optimal estimation of CDOM across global conservative waters with maxi-

mal independence from Ca (Hooker et al. 2020; Houskeeper et al. 2020a)—with spectral expansivity refering to the spectral

range of compliant data products, with the most spectrally expansive observations characterizing the greatest spectral range.

Conservative waters—wherein the inflow and outflow of properties constrain the range in the gradient of a constituent (Hooker

et al. 2020)—include all case-1 or otherwise oligotrophic waters, while also including significant representation from opti-100

cally complex, hereafter case-2 (e.g., including coastal and inland), waters. The inclusion of case-2 waters means that regional

(or global average) empirical OAC relationships are not invoked, and global algorithms are, thus, more capable of partitioning

OACs and maintaining consistent performance under changing environmental conditions (Houskeeper et al. 2020a). New algo-

rithmic approaches included using ratios of the most spectrally separated optical data products (Hooker et al. 2013), especially

those from the UV and NIR spectral domains, an approach hereafter termed end-member analysis (EMA) following Hooker105

et al. (2020). EMA analyses were subsequently extended to single-channel UV algorithms (Hooker et al. 2021b), indicating

the importance of accurately deriving UV data products for robust CDOM estimation. VIS algorithms, conversely, were shown

to exhibit decreased robustness to variability in OAC relationships relative to non-visible—or invisible (INV)—algorithms

(Hooker et al. 2020, 2021b; Houskeeper et al. 2020, 2021, 2022).

In February 2024, the launch of the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) satellite mission provided state-of-110

the-art hyperspectral and spectrally extended oceanographic observing using the Ocean Color Instrument (OCI). Hyperspectral

observations obtained using OCI are anticipated to reveal new opportunities for satellite observing of the microbial community

(Cetinić et al. 2022), but the fidelity of inversions relating hyperspectral features to biological parameters is mostly unknown.

The challenges stem, in part, from the use of legacy in situ instrumentation, e.g., wherein COTS spectrometers lacking paired

microradiometers—i.e., hybridspectral configuration—to mitigate low sampling rate and SNR (Hooker et al. 2022; Houskeeper115

et al. 2024; Kudela et al. 2024) preclude most INV data products and do not support adherence to an absolute radiometric scale.

For example, non-hybridspectral data products frequently rely on a null long-wavelength bias. Reporting of observations at

resolutions finer than the nominal resolution of the spectrograph—often in addition to spectral smoothing—further challenges

assessments of spectral content and independence of adjacent waveband observations.

Nonetheless, assessments of optical information content of the sunlit aquatic environment are ongoing and indicate ade-120

quate derivation of independent OACs is plausible—but not guaranteed. Hooker et al. (2021a) assessed spectral variability of

global conservative plus nonconservative water bodies, with the latter modified by internal processes rather than linear mix-

ing of parent or source waters, and demonstrated that a finite number of spectral modes adequately describe the majority of

spectral variability across globally representative—and including case-2—waters. Cael et al. (2023) applied an eigenanalysis

to legacy smoothed and interpolated hyperspectral observations and demonstrated two components capture over 80% of the125

variance—with similar information constraint also previously shown for hyperspectral observations of particulate absorption

(Cael et al. 2020). Prochaska and Frouin (2025) applied a Bayesian framework testing whether hyperspectral observations

could overcome an acknowledged degeneracy in radiative transfer (wherein multiple combinations of spectral absorption and

backscattering are possible and reasonable) and reasoned that hyperspectral ocean color inversions are ill-posed.
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Quantifying information content using eigenanalyses can be challenging: dimensionality bias can produce an incomplete per-130

spective of information content by decreasing the variance captured by spectrally broadband versus spectrally narrow features.

The latter—when not spectrally diluted—often provide informative and exploitable information (Houskeeper et al. 2020b).

Furthermore, despite known challenges in finite information content and spectral degeneracy, new information sources have

steadily been discovered in aquatic optics throughout the field’s long history. Legacy satellite observations of phytoplankton

fluorescence added new biological observables complementary to—but distinct from—OC observations, while also minimizing135

vulnerabilities to atmospheric correction (Letelier and Abbott 1996). Hyperspectral airborne investigations leveraged spatially

cohesive optical signatures associated with harmful algal bloom (HAB) events (e.g., Lee and Carder 2005; Kudela et al. 2015)

and retrieved macroalgal physiological condition (Bell and Siegel 2022). Mixture density networks (MDNs) and inverse models

that incorporate prior knowledge (e.g., leveraging a Bayesian framework) improve the management of degeneracy in radiative

transfer and are forthcoming for PACE science objectives (O’Shea et al. 2021; Erickson et al. 2020, 2023).140

A fundamental and timely question remains how to best leverage PACE observations within the trajectory of ocean color

satellite missions to improve robust quantification of phytoplankton biomass and support characterization of biogeochemical

changes in the sunlit ocean. Advancing this trajectory—wherein confounding effects of CDOM have been reported for at least

over seven decades (e.g., Jerlov 1951; Kalle 1966; Yentsch 1960; Sathyendranath et al. 1987) and recent studies suggest high

spectral autocorrelation and degeneracy (Hooker et al. 2021a; Cael et al. 2023; Prochaska and Frouin 2025)—requires im-145

provements in understanding the primary sources of marine spectral variability. Aquatic spectral variability is assessed herein

for natural aquatic environments using three independent bio-optical datasets, and analyses are replicated using the datasets’

oligotrophic subsets, as applicable. Associations relating spectral variability to contemporaneous OAC field observations in-

dicate the relative importance of individual constituents in modifying AOP spectral shapes. The key findings document, as

follows: continuing challenges in retrieving Ca using observations constrained to the VIS domain; opportunities to advance150

independent OAC retrieval using spectrally expansive observations; greater variability in OAC relationships for oceanic en-

vironments than formerly ascribed; and primacy of CDOM absorption in spectrally modifying AOPs. The outcomes reflect a

greater complexity of OAC dynamics consistent with advancing knowledge of the microbial loop, wherein new trophic path-

ways have been discovered contemporaneously with the aforementioned advances in optical oceanography (Azam et al. 1983;

Azam 1998; Fenchell 2008).155

2 Methods

Aquatic observations presented herein correspond to published datasets of above- and in-water observations of the emergent

aquatic light field. The datasets rely on instrumentation, including legacy and state-of-the-art (SOTA) radiometers and spec-

trometers, corresponding to a technological trajectory spanning decades of improvements applicable across the hardware,

software, and processing domains. For example, legacy oceanic radiometric observations were obtained using in-water optical160

instrument suites consisting of primarily analog radiometers mounted on rapidly descending, so-called rocket-shaped, profilers

(Morel et al. 2007). Rocket-shaped profilers confer coarse vertical sampling resolution (VSR), deep extrapolation intervals,
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and a limited spectral range of observations. These deficiencies prevent observations in shallow, highly turbid, or high-flow-

rate waters, meanwhile introducing uncertainties including, but not limited to, those arising from depth aliasing, expanded

extrapolation distances, and low signal (Hooker et al. 2002). The Compact-Optical Profiling System (C-OPS) introduced a165

novel kite-shaped backplane (Morrow et al. 2010) to slow the rate of descent of the profiler while ensuring planar stabilities,

along with corresponding improvements in microradiometer technology to advance sampling rates from usually less than 1Hz

for legacy spectrometers to routinely 15Hz, with improved SNR and dynamic range. The addition of digital thrusters, i.e., the

Compact-Propulsion Option for Profiling Systems (C-PrOPS), ensures planar stability at the initiation of a cast and mitigates

adjacency effects by supporting navigation away from a ship or dock (Hooker et al. 2018a). The C-OPS with C-PrOPS tech-170

nologies greatly expand the spectral range of in-water observations and reduce uncertainties in optical data products relative

to legacy observations, in part, by supporting improved VSR (as fine as 0.9mm) to enable accurate derivation of the central

tendency of the wave-focusing field (e.g., Zaneveld et al. 2001) and reducing the initial depths of upwelling radiance observa-

tions, Lu(z,λ), to as shallow as 0.3m, i.e., approximately the length of the downward-pointing radiance radiometer (Hooker et

al. 2020). Improvements in sampling rates support management of high-frequency, non-Gaussian variability in flux observed175

by an above- or in-water instrument (due to glint and wave focusing, respectively), thereby expanding the spectral range of

optical data products to preserve INV information and supporting necessary corrections to retain information associated with

spectral signal amplitudes or brightness (Houskeeper et al. 2023, 2024).

SOTA advances in hyperspectral instrumentation include hybridspectral sensing configurations (Hooker et al. 2018c, 2022),

wherein microradiometer and spectrograph observations are obtained in concert, with the multispectral radiometer providing180

necessary quality control for the hyperspectral spectrography. The quality control is desirable, in part, because COTS spectro-

graphs suffer from slower integration times, narrower dynamic range, and a degraded signal-to-noise ratio (SNR) relative to

COTS microradiometers (Houskeeper et al. 2024; Kudela et al. 2019, 2024). In addition, a radiance control arm positions the

Lu(z,λ) aperture near the water surface and approximately aligned with the upward-pointing irradiance radiometer (Hooker

et al. 2018a). Improvements in the number of spectrograph pixels to as high as 2,048, denoted λ2,048, with 3nm resolution is185

in keeping with PACE mission requirements for vicarious calibration exercises (Hooker et al. 2012b). For comparison, spectral

resolution of legacy spectrometers include λ256 spectrographs sampling the visible domain as often as every 3nm, although

bandwidths can be on the order of 10nm resolution (Seabird 2024), i.e., comparable to COTS microradiometers but conferring

lower SNR, dynamic range, and sampling rates. Legacy spectrometer observations are often interpolated to synthetic 1nm

intervals—which eases archiving requirements for dissimilar spectral configurations but over-reports the spectral resolution—190

and smoothed, e.g., using a 5nm moving mean, which removes spectral information. Spectral smoothing and interpolation

creates challenges for comparisons of spectral resolution between instruments.

2.1 Datasets

Three AOP datasets are considered herein, with biogeochemical parameters included when available. No dataset includes

SOTA hybridspectral observations, because hybridspectral observations are presently too sparse in terms of the number of195
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observations. Naming conventions for the datasets correspond to the applicable published literature, and their descriptions plus

quality control are briefly summarized, as follows:

RSE2007 Oceanic [LW (λ)]N observations obtained using primarily analog free-falling instrument suites during open-ocean

field campaigns, including a minority of stations in the coastal zone, are described by Morel et al. (2007). Three

stations (0.5% of the dataset) corresponding to surface mucilage and coccolithophore blooms were removed, and200

observations were thinned so that only one spectrum was retained per station, although at least three spectra were

generally obtained per station. The dataset is defined as RSE2007 and consists of contemporaneous observations of

Ca and [LW (λ)]N spanning the VIS domain.

RSE2021 Global [LW (λ)]N observations obtained using the digital C-OPS with C-PrOPS instrument suite deployed at oceanic

(31.2%), coastal (36.6%), and inland (32.2%) water sites are presented by Houskeeper et al. (2021). Optical ob-205

servations featured average VSR of 6.0mm (maximum VSR of 0.9mm) and initial Lu(z,λ) observations routinely

obtained at 0.3m, i.e., the depth corresponding to the length of the Lu(z,λ) radiance radiometer. Contemporaneous

observations of Ca and the absorption coefficient of CDOM at 440nm, aCDOM(440), supported global algorithm

development (Hooker et al. 2020; 2021b; Houskeeper et al. 2021; 2022) and confirmed expansive ranges for OACs.

For example, observed aCDOM(440) spanned 0.001–2.305m−1, and the spectral slope of CDOM spanned 0.0095–210

0.0410nm−1. Conservative versus nonconservative designations were objectively determined prior to sampling

(Hooker et al. 2020) and only the conservative observations are used herein. The dataset is defined as RSE2021

and consists of contemporaneous observations of Ca, aCDOM(440), and [LW (λ)]N spanning the INV plus VIS

domains.

RSE2022 Oceanic hyperspectral observations with concurrent samples of phytoplankton pigments are described in Kramer et215

al. (2022) and accessed via Kramer et al. (2021). Observations span the open and coastal oceans, with Ca ranging

from 0.019–4.150mgm3. Optical observations were obtained using rocket-shaped profilers and buoys equipped

with legacy COTS spectrometers, including systems with 10nm bandwidths (Seabird 2024). Vertical profiles of

measurements obtained deep in the water column were averaged to 2m or coarser depth bins and extrapolated to the

surface (Taylor et al. 2011). The compiled dataset overcomes differences in spectral configuration between various220

COTS systems by spectral interpolation to 1nm resolution and mitigates optical data product artifacts associated

with legacy profiling systems by subsetting spectra to VIS wavelengths, smoothing using a 5nm moving mean, and

additionally removing 19% of the observations by visual inspection (Kramer et al. 2022). The dataset is defined as

RSE2022 and consists of contemporaneous observations of Ca and [LW (λ)]N spanning the VIS domain.

The field campaign supporting the RSE2021 dataset (Hooker et al. 2020; Houskeeper et al. 2021a) was designed to capture225

maximal range in global OAC variability, including the clearest waters to the most sedimented, eutrophic, or humic-rich wa-

ters. The clearest waters were observed, e.g., near Kawaihae, HI, and in Crater Lake, OR, both of which corresponded to an

aCDOM(440) value of 0.001m−1, approaching so-called pure seawater. The turbidity limit is inherently undefined, e.g., there
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is no known natural maximum to turbidity, but the RSE2021 dataset greatly exceeds the turbidity range of the RSE2007 and

RSE2022 datasets because it contains significant representation from inland waters. The absolute radiometric data products230

from RSE2021, therefore, constitute a reasonably expansive range in optical properties such that open and coastal ocean op-

tical data products—collected with legacy systems and with degraded SNR and VSR relative to the RSE2021 dataset—that

lie substantially outside of the range of global conservative data products indicate likely nonphysical or biased observations.

Quality control based on the threshold removal of nonphysical radiometric brightness was thus applied, albeit only using VIS

data products (given that RSE2007 and RSE2022 are restricted to the VIS domain), following sensitivity testing. Briefly, more235

stringent quality control metrics (e.g., requiring observations to comply with the brightness ranges of the globally representative

RSE2021 dataset) produced similar eigenfunction shapes but reduced the size of RSE2022 by approximately 50%. Alternately,

relaxed quality control metrics permitting radiometric values up to 50 times darker than the global dataset did not alter the pri-

mary findings of RSE2022, and no threshold relaxation affected the primary findings of RSE2007. Considering acknowledged

uncertainties relating to hardware, processing, data acquisition, and water mass differences, the quality control thresholds were240

performed within this insensitivity range by filtering: RSE2022 observations radiometrically darker than the darkest RSE2021

observations (by at least approximately 50%); and RSE2007 observations radiometrically darker or brighter than RSE2021 ob-

servations (approximately) at corresponding green (555nm) or red (683nm) wavebands, respectively. The brightness filtering

resulted in the removal of 18 of 590 observations (3%) from RSE2007 and 22 of 144 observations (15%) from RSE2022. Be-

cause both RSE2007 and RSE2022 include observations obtained using rocket-shaped profilers, the difference in compliance245

is likely due to differences in the optical sensing technologies—i.e., COTS spectrometers (RSE2022) are more degraded by

slow sampling rates, reduced dynamic range, and low SNR (Houskeeper et al. 2024; Kudela et al. 2024). The final number of

compliant observations for the RSE2007, RSE2021, and RSE2022 datasets are 572, 612, and 122, respectively. The quartile

summary of the biochemical quantities corresponding to each dataset is shown in the supplemental materials.

2.2 Biogeochemical algorithms250

OC algorithms are derived for each dataset using the OC4 formulation (O’Reilly and Werdell, 2019), a fourth-order polynomial

with coefficients configured to match the spectral configurations of the SeaWiFS mission and others, as follows:

Ca = a0 +

4∑
n=1

an

(
log10

Rrs(λb)

Rrs(555)

)n
, [mg m−3] (1)

where the a terms are fitting constants, n is the order index, and λb indicates the wavelength corresponding to the radiometri-

cally brightest Rrs(λ) observation at applicable blue SeaWiFS wavelengths (i.e., 443, 489, and 510nm). The OC4 formulation255

was selected to ensure maximal applicability to RSE2007, which supported the fewest spectral channels, while maintaining a

consistent formulation across datasets. Nonetheless, other OC formulations are anticipated to produce similar results.

The RSE2021 dataset contains contemporaneous observations of aCDOM(440), but contemporaneous aCDOM(440) obser-

vations were not contained in the other datasets. Consequently, an EMA algorithm derived using both case-1 plus case-2 waters

to minimize biases in algorithm fitting corresponding to regional OAC covariances (Houskeeper et al. 2021) is applied to the260

RSE2007 and RSE2022 datasets to estimate aCDOM(440). The approach leverages ratios of [LW (λ)]N, hereafter Γλ1

λ2
, using
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the most spectrally separated wavelengths, which mitigates confounding signals from internal VIS wavelengths to improve the

independence of aCDOM(440) retrieval from Ca variability (Houskeeper 2020a; 2021). The EMA formulation for above-water,

spectrally expansive observations is modeled as a power-law relationship, as follows:

aCDOM(440) = 0.242
[
Γλ1

λ2

]−0.961

. [m−1] (2)265

The λ1 and λ2 values correspond to the shortest and longest wavelengths, respectively, supported by the given dataset. EMA

algorithm performance improves with expanding spectral range (Hooker et al. 2020; Houskeeper et al. 2021), but robust per-

formance of VIS algorithms has been documented for ocean color observations (Houskeeper et al. 2021; Hooker et al. 2021b),

and simulated geostationary weather satellite observations (Houskeeper et al. 2022). The uncertainty of EMA, however, is

anticipated to increase when applied to optical data products obtained using spectrometers and rocket-shaped profilers (e.g.,270

RSE2022) due to increasing extrapolation depths combined with strong attenuation of signal, particularly within the end-

member spectral domains (Kudela et al. 2019, 2024; Hooker et al. 2020; Houskeeper et al. 2021, 2024).

2.3 Spectral comparisons

The dimensionality for each of the RSE2007, RSE2021, and RSE2022 datasets is reduced using an eigenanalysis of obser-

vations of the square root of [LW (λ)]N, hereafter [LW (λ)]
0.5
N , because the square-root transformation was found to improve275

normality in the blue spectral domain based on the Shapiro-Wilk test statistic, W . Nonetheless, sensitivity testing was per-

formed by reproducing the eigenanalyses using natural-log transformation, as well as no transformation. The eigenanalysis

captures linear patterns of variability in the datasets and is performed, as follows:

Cψ = Λψ , [µW cm−2 nm−1 sr−1] (3)

in which C is the covariance matrix of the [LW (λ)]
0.5
N values for each dataset, with square dimensions corresponding to the280

number of wavelengths in each dataset. The ψ value denotes the eigenfunction matrix (matrices are denoted by bold symbols).

The diagonal matrix Λ contains scalar information corresponding to the variance captured by each eigenfunction. The mean

spectra from each dataset, plus reconstructed spectra indicating the effects of the leading and secondary eigenfunctions, are

shown in the supplemental materials.

Scalar amplitude functions quantifying the stretching and compressing necessary to represent the [LW (λ)]
0.5
N values in the285

coordinates defined by ψ are derived by projecting the optical observations onto ψ, as follows:

S = [LW (λ)]
0.5
N ψ , [µW cm−2 nm−1 sr−1]0.5 (4)

in whichS is the scalar amplitude function matrix with columns,Si, corresponding to scalar amplitude functions for individual

eigenfunctions, ψi (where i is the eigenfunction index). The length of each Si column is the number of observations in the

underlying dataset.290

Comparisons between available biogeochemical parameters—e.g., field plus algorithm values of Ca and aCDOM(440)—and

the S matrices are derived using Pearson’s correlation coefficient, ρi,x, where i is the eigenfunction index and x represents
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the biogeochemical quantity under comparison with the corresponding column i of the S matrix. Because biogeochemical

parameters covary, e.g., Ca and aCDOM(440) are strongly correlated (Morel et al. 1977), partial correlation coefficients (Fisher

1924) are derived using notation of ρi,x|y to indicate correlation of Si with biogeochemical quantity x after adjusting for295

covariance with the biogeochemical quantity y. The subscript representations used herein are g (for the legacy linkage to

gelbstoff absorption), Ca, EMA, and OC4, which correspond to field observations of aCDOM(440), field observations of

Ca, EMA algorithm observations of aCDOM(440), and OC algorithm observations of Ca, respectively. The R2 value is also

utilized when quantifying variance in biogeochemical field observations captured by a remote sensing algorithm. Pearson’s

correlation coefficients comparing Ca and aCDOM(440)—measured or derived algorithmically—for the RSE2021, RSE2022,300

and RSE2007 datasets are 0.812, 0.912, and 0.909, respectively.

3 Results

Eigenanalyses indicate that the first, second, and third eigenfunctions capture 60%, 32%, and 5% (±1%), respectively, of the

variance within each data set. The decomposition of the majority of the variance in the aquatic spectral dataset into three

functions is consistent with the findings of Hooker et al. (2021a) and Cael et al. (2023), as follows: Hooker et al. (2021a)305

demonstrated that spectral changes corresponding to increasing optical complexity were represented using only five spectral

modifications—two of which are similar but in opposing directions and would therefore correspond to a single eigenfunction,

plus one which is characterized by the emergence of multiple peaks and corresponds to severely complex waters; and Cael

et al. (2023) showed the aquatic optical spectra could be compressed into three (or four) principal components with minimal

information loss. The Cael et al. (2023) dataset includes significant representation by RSE2022, and similar results obtained310

herein using RSE2022 provide support for the normalizations and methodologies are comparable.

3.1 Eigenfunction characteristics

The three eigenfunctions capturing maximal variance for the RSE2021, RSE2022, and RSE2007 datasets are presented as

a function of λ in Fig. 1. Similarities in the eigenfunction spectral shapes are apparent across datasets for each of ψ1, ψ2,

and ψ3, and similar shapes are likewise produced by the eigenanalyses for the oligotrophic (Ca less than 0.5mgm3) datasets315

(gray). Although the tertiary eigenfunction explains only approximately 5% of the variance for each dataset, the spectral shapes

represented by ψ3 are consistent across all datasets. The similarities in ψ are summarized, as follows:

ψ1 Reversed sign for the anomaly between shorter (UV/blue) and longer (red/NIR) wavelengths;

ψ2 Maximum amplitude for the anomaly in the blue/green domain (i.e., a peak), plus the emergence of spectral features in

the spectral vicinity of the Ca fluorescence peak (except for RSE2007 which lacks the requisite spectral resolution in the320

applicable wavelength domain); and

ψ3 Reversed sign for the anomaly between interior VIS and exterior VIS plus INV wavelengths.
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Individual eigenfunctions are not anticipated to be singularly associated with variability in a specific OAC (e.g., because

OACs covary), but the spectral shapes of the eigenfunctions may nonetheless be assessed qualitatively in light of known spectral

properties of individual OACs to identify similarities to spectral properties of OACs. The spectral shapes of the eigenfunctions325

are primarily considered as a function of absorption processes, which generally—notwithstanding absorption band effects

(Zaneveld and Kitchen 1995)—confer stronger spectral dependencies than scattering processes (Kirk 2011). Differences in

brightness or peak height, however, could produce reversals in the VIS and INV anomalies, possibly relevant to ψ3, but are not

assessed herein.

Spectral features associated with Ca absorption—e.g., a relative maximum or minimum in the blue and red domains (Brigi-330

dare et al. 1990), or a fluorescence peak (Letelier and Abbott 1996)—are most clearly visible inψ2. For example, although both

ψ1 and ψ2 indicate spectral dependencies in the vicinity of 670nm for RSE2022, the amplitude of the anomaly (as a percent-

age of the range expressed in ψ) is on the order of 10% versus 50% for ψ1 and ψ2, respectively. Similarly, all datasets indicate

a blue- or green-domain peak (or trough) in ψ2 of greater magnitude than in ψ1. Conversely, spectral darkening of shorter

wavelengths with minimal spectral features is most consistent with CDOM absorption (Jerlov 1968; Siegel et al. 2013), which335

approximately describesψ1. The similarity of spectral shapes forψ between the complete and oligotrophic (gray) datasets—as

well as the differences in the range and mean properties of the water bodies sampled across the three datasets—indicates that

spectral variability is consistent across datasets and not primarily a function of differences in sampling within each dataset.

The spectral shape comparisons, while qualitative, can be verified using partial correlation coefficients comparing the S am-

plitude functions and corresponding values of Ca and aCDOM(440), while controlling for aCDOM(440) and Ca, respectively.340

RSE2021 includes field observations of aCDOM(440) and Ca, whereas RSE2022 and RSE2007 include field observations of

Ca but not aCDOM(440). Consequently, the RSE2021 results are considered first. Briefly, partial correlation coefficients for

S1 indicate maximal correlation to aCDOM(440) values (ρ1,g |Ca
= 0.80) compared to Ca values (ρ1,Ca |g = 0.11), whereas

partial correlation coefficients for S2 indicate maximal correlation to Ca values (ρ2,Ca |g = −0.22) compared to aCDOM(440)

values (ρ2,g |Ca
= 0.02). Both of the maximal correlation results are highly significant (P < 0.01), whereas the non-maximal345

comparisons are not ( P > 0.18). These results are in keeping with the qualitative assessments of the spectral shapes of ψ, in

which ψ1 was shown to produce spectral dependencies more consistent with that of CDOM as documented in the literature,

whereas ψ2 was shown to produce spectral dependencies with features most closely matching the spectral domains of Ca ab-

sorption or fluorescence properties. The sign of the significant partial correlation coefficients is also consistent with theψ phase

and the spectral shape of absorption for aCDOM(440) and Ca. For example, negative anomalies in the blue and UV indicated350

by S1 produce a positive correlation with aCDOM(440) values, whereas positive (peak-like) anomalies in blue wavelengths

indicated by S2 produce a negative correlation with Ca values.

Estimates of aCDOM(440) are also obtained for RSE2022 and RSE2007 using EMA. The partial correlation values derived

using the EMA product for the RSE2022 dataset are very similar to those derived using the RSE2021 dataset. Briefly, partial

correlation coefficients for S1 indicate maximal correlation to aCDOM(440) values, whereas partial correlation coefficients355

for S2 indicate maximal correlation to Ca values. Both of the maximal correlation results are highly significant (P ≤ 0.01),

whereas the other comparisons are not ( P > 0.38). The results from the RSE2007 dataset are different from those of RSE2022
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and RSE20221 as follows: Partial correlation coefficients for S1 still indicate maximal correlation to aCDOM(440) values, but

correlation to Ca is also significant, albeit lower. Partial correlation coefficients for S2 indicate slightly higher correlation to

aCDOM(440) values compared to Ca values, and both are highly significant (P < 0.01). The differences are consistent with360

decreasing independence of EMA to Ca variability with decreasing spectral range (Houskeeper et al. 2021), plus maximal

representation of open-ocean waters in RSE2007.

Correlation tests comparing the S functions with OC algorithm values find the strongest relationships for all datasets cor-

respond to S1, ranging from 0.89 to 0.96. Less strong, albeit significant, relationships are found for S2, ranging from −0.38

to 0.16. The significant results for comparing OC algorithm values with S2 are likely due to the test not accounting for co-365

variance in Ca and aCDOM(440). For example, the correlation coefficients using RSE2021—the highest quality dataset and

the only dataset to contain contemporaneous Ca and aCDOM(440) observations—still indicate strong significant relationships

when comparing OC algorithm values and S1 while controlling for Ca, but indicate weak and insignificant relationships when

comparing OC algorithm values and S2 while controlling for aCDOM(440).

In summary, analyzing the shapes of the eigenfunctions and comparing correlation matrices using the eigenfunction am-370

plitude functions and contemporaneous OAC field observations yields five observations, as follows: a) spectral shapes of the

eigenfunctions for an individual dataset are distinct from one another and characterized by maxima and minima consistent with

OAC absorption properties described in the applicable literature; b) the transition in spectral shapes for the first, second, and

third eigenfunctions are similar across all datasets and the oligotrophic subsets of those same datasets; c) the interpretation of

the eigenfunction shapes based on the spectral positioning of observed minima and maxima is consistent with the results of the375

partial correlation tests (e.g.,ψ1 confers spectral similarities with CDOM absorption and the corresponding amplitude function

produces highly significant correlation to CDOM absorption); d) the OC algorithm produces stronger correlation to S1 than

S2; and e) S1 produces stronger correlation to field observations of aCDOM(440) than Ca values. Although RSE2007 indicates

relatively more OAC covariance than RSE2021 and RSE2022, as anticipated, the key findings are nonetheless consistent.

3.2 OC algorithm retrievals380

Section 3.1 documents the primary mode of variability in [LW (λ)]N for all datasets is maximally correlated with aCDOM(440)

and OC algorithm retrievals (Fig. 1). The observed linkage between OC algorithm sensitivity and aCDOM(440) variability is

further investigated by comparing OC algorithm retrievals with field observations of Ca, plus field or algorithmic aCDOM(440)

observations (Fig. 2), as applicable. The coherence of a relationship between the OC algorithm and Ca observations is assessed

using R2, and differences across datasets in the coherences observed are consistent with differences in the oceanic contributions385

of each dataset, as follows: a) the least coherence is associated with RSE2021, which contains similar representation of oceanic,

coastal, and inland waters and, therefore, consists of a high percentage of optically complex water types; b) intermediate

coherence is associated with RSE2022, which contains coastal and inland water observations and also consists of data products

obtained with coarse VSR, low SNR, and deep sampling intervals far from the surface; and c) the most coherence is associated

with RSE2007, which corresponds to primarily open-ocean waters and was obtained with technology most similar to that used390

in the earliest OC algorithm derivations.

12



The coherence of the relationship between the OC algorithm and aCDOM(440) observations is also assessed using R2,

and improvements in R2 are observed for the aCDOM(440) comparison relative to the Ca comparison. The magnitude of the

improvements are likewise consistent with the differences in the oceanic contributions of each dataset, as follows: a) maximal

improvement in coherence is indicated by RSE2021; b) intermediate improvement in coherence is indicated by RSE2022; and395

c) minimal improvement in coherence is indicated by RSE2007. Although the differences observed are slight for RSE2007

(indicating the dataset adheres well to case-1 waters), all datasets nonetheless produce stronger R2 values when comparing the

OC algorithm values to aCDOM(440) versus Ca. The findings are consistent with those of Sect. 3.1, in which the OC algorithm

products produced maximal correlation to ψ1, which in turn was maximally associated with aCDOM(440)—and not with Ca.

3.3 Information content of invisible and visible data products400

Information content as a function of spectral range is further investigated using the RSE2021 dataset, which confers the most

expansive spectral range (313–865nm). Scree plots indicating variance captured for eigenfunctionsψ1–ψ6 are shown for three

spectral partitions of the RSE2021 dataset in Fig. 3, as follows: UVN21 corresponds to the full spectral range of RSE2021

data products (i.e., UVN21 is identical to RSE2021); INV21 corresponds to the invisible data products of RSE2021 (i.e.,

wavelengths shorter than 400nm or longer than 700nm); and VIS21 corresponds to the visible data products of RSE2021 (i.e.,405

wavelengths within 400–700nm). Pearson’s correlation coefficients in Fig. 3 compare the S1 and S2 amplitude functions with

Ca and aCDOM(440) values. The comparisons explore the results of Fig. 1, whereinψ1 andψ2 are found to confer information

likely most related to aCDOM(440) and Ca, respectively.

Variances captured by the UVN21, INV21, and VIS21 datasets decrease rapidly with increasing eigenfunction number. Con-

sidering the UVN scree plot as a baseline, ψ1 captures similar variance and ψ2 captures more variance for the VIS21 dataset,410

whereas ψ1 captures more variance and ψ2 captures less variance for the INV21 dataset. Information content of INV21 is thus

compressed more fully into a singular eigenfunction, which captures nearly 78% of the variance in the dataset. The INV21

leading eigenfunction is very strongly associated with variability in aCDOM(440), and the correlation coefficient comparing

S1 and aCDOM(440) for the INV21 dataset, −0.96, approaches that of a perfect inverse correlation. The INV21 secondary

eigenfunction indicates minimal adherence to either aCDOM(440) or Ca, with correlation values of −0.07 and −0.09, respec-415

tively. Very strong correlation of ψ1 with aCDOM(440), no correlation of ψ2 with Ca, and very low explanatory power of the

subsequent eigenfunctions for INV21 indicate photosynthetic pigmentation confers minimal spectral modifications in the INV

domain besides those covarying with aCDOM(440), consistent with previous EMA assessments (Hooker et al. 2020; Hous-

keeper et al. 2021). Inorganic particles, not measured in any of the datasets assessed herein, modify INV data products (e.g.,

Doron et al. 2011) and may contribute to the variance captured in INV21 ψ2. Inorganic particles are not assessed herein due420

to the sparsity of independent particle field observations contemporaneous and co-registered with the AOP observations.

Information content of VIS21 is less compressed into a singular eigenfunction (although the leading eigenfunction still

dominates), and the correlation coefficients comparing ψ1 and ψ2 to aCDOM(440) and Ca are more similar than for the

INV21 dataset. Similar correlation coefficient values indicate spectral modifications associated with aCDOM(440) and Ca

are less readily partitioned using only VIS data products, despite the high SNR of the RSE2021 dataset. The result suggests425
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independent derivation of Ca is more challenging using VIS observations in the absence of UV and NIR information. Spectrally

expansive (UV, VIS, and NIR) observations thus support more accurate and independent retrievals of aCDOM(440) compared

to VIS observations wherein aCDOM(440) and Ca signals are maximally confounded.

4 Discussion

4.1 Historical formulations invoke primacy of chlorophyll a430

The generalized transition from bluer oceanic to greener coastal waters is routinely mapped with OC algorithms to increases in

the near-surface abundance of oceanic phytoplankton (McClain et al. 2006). The theoretical basis for OC algorithms is the ab-

sorption of blue light by biogenic compounds (Morel 1983; Gordon 1983a), including Ca but also other covarying OACs, e.g.,

aCDOM(440), various secondary photopigments, and detritus. OC algorithms and the ocean color activities supporting their

development and validation historically pose Ca as the predominant determinant of oceanic optical properties, demonstrated435

in pertinent part, as follows: a) OC algorithms regress ratios of oceanic reflectances to Ca only and do not include secondary

photopigments or dissolved compounds (O’Reilly et al. 1998); b) Ca field observations are more ubiquitous than aCDOM(440)

field observations (Werdell and Bailey 2002); c) spatiotemporal differences in OC algorithm performance are routinely miti-

gated using regional tunings, in which OC algorithms are refit for a subset of global waters using regional field observations of

Rrs and Ca—but not other parameters such as aCDOM(440); and d) primacy of Ca is consistent with the published literature440

regarding the modeling of optical properties of case-1 water masses. For example, Morel 1988 leverages Ca for quantifying

oceanic living and detrital algal material, as well as the depth of the euphotic layer.

Bio-optical formulations to derive optical properties as a function of Ca do not explicitly require primacy of Ca. Rather,

algorithms parameterize the evolution in optical properties—notwithstanding observational challenges—based on empirically

observed relationships (Morel and Prieur 1977; Morel 2009). Nonetheless, variability in OAC relationships exists for in situ445

water bodies (Hansell and Orellana 2021). Empirical approaches such as the OC family of algorithms must mitigate obser-

vational artifacts (Uitz et al. 2006; Kudela et al. 2019; 2024), plus regional variability and nonlinearity in OAC relationships

(Morel 2009). Regional variability in OAC relationships manifests with the need to tune VIS algorithms for specific water

bodies. For example, tunings for arctic waters account for higher aCDOM(440) relative to Ca content (Matsuoka et al. 2013;

Lewis and Arrigo 2020), and, conversely, tunings for antarctic waters account for lower aCDOM(440) relative to Ca (Dierssen450

and Smith 2000). Nonlinear OAC relationships are in keeping with highly nonlinear formulations of OC algorithms, e.g., the

number of power terms used in the polynomial model to fit Ca to ratios of Rrs is routinely four (Morel 2009; O’Reilly and

Werdell 2019). Linearity and loglinearity of CDOM algorithms were shown previously to be a function of the spectral separa-

tion of algorithm end members (Hooker et al. 2020, 2021a; Houskeeper et al. 2021). The results herein suggest that differences

in linearity correspond, in part, to differences in the separability of signals associated with the spectral range.455
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4.2 Observations indicate primacy of CDOM over Ca

The eigenanalyses herein assess the primacy of Ca using three independent datasets, plus the oligotrophic subsets of each

dataset. Phytoplankton absorption—rather than Ca—was not tested due to the limitations of the datasets. Although phyto-

plankton absorption is generally considered to correspond to Ca, processes such as pigment packaging can add variability

relevant to the correlations presented herein (Bricaud et al. 2004). Nonetheless, despite significant differences in the spectral460

range and uncertainties of the datasets due to differences in hardware, software, and processing implemented, as well as the

water bodies assessed plus variability associated with pigment packaging, the eigenanalyses show qualitative and quantitative

similarities for all datasets and oligotrophic subsets (Fig. 1). The similarities favor primacy of aCDOM(440)—rather than Ca—

as the predominant driver of optical variability for waters, including those of the open ocean, summarized briefly, as follows:

a) the leading eigenvector from each dataset—capturing approximately 60% of the variance—indicates opposing anomalies465

for longer versus shorter wavelengths with minimal amplitude in the blue-green transition domain. The secondary eigenvector

from each dataset—capturing approximately 32% of the variance—indicates internal VIS spectral dependencies characteristic

of Ca absorption, including a maximum near the blue-green transition; b) the S1 term representing the stretching and com-

pressing necessary to best represent the data using the leading eigenfunction is always more strongly associated with variability

in aCDOM(440) than Ca values. The S2 term more strongly associates with field observations of Ca than aCDOM(440) for470

two of the three datasets, likely due to reduced applicability of the EMA algorithm for the less spectrally expansive dataset;

and c) the signs of the partial correlation coefficients derived comparing the leading and secondary eigenfunctions to Ca and

aCDOM(440) variability are in all cases consistent considering the short wavelength anomaly inψ1 and the blue-green anomaly

in ψ2 compared to the spectral absorption profiles of CDOM and Ca. Observations of detrital absorption were not available,

and detritus and CDOM share general similarities in the spectral shape of absorption, i.e., absorption increases for both at475

shorter wavelengths. Some key factors relevant to the focus herein on primacy of aCDOM(440) rather than detritus include

the leading eigenfunction capturing approximately (within 1% of) 60% of the variance for each dataset, whereas each dataset

corresponds to dissimilar contributions from inland, coastal, and open-ocean waters. Absorption by CDOM and detritus also

exhibit variable correlation patterns (Babin et al. 2003; Twardowski et al. 2004), which would degrade the correlation between

the leading eigenfunction and aCDOM(440) if the leading eigenfunctions were most strongly associated with detritus. The480

comparisons between S1 and aCDOM(440) indicate loglinear relationships, which are shown—along with Spearman’s rank

correlation coefficient values—in the supplemental materials.

Although primacy of aCDOM(440) is conceptually distinct from formulations in the published literature posing Ca as an

independent variable primarily determining optical properties (e.g., Gordon 1988; Morel 1988), the results do not necessarily

conflict with published observations in the bio-optical literature. For example, the inadequacy of multispectral VIS observations485

to partition Ca and aCDOM(440) signals was noted at least six decades ago (Yentsch 1960), and the case-1 prescription does

not explicitly require primacy of Ca (Morel and Prieur 1977). Rather, primacy of Ca is invoked by models representing the

oceanic light field and its OACs as a function of Ca (Morel 1988), plus the implementation of OC algorithms wherein regional

tunings refit Rrs ratios and Ca to overcome regional differences in relationships between OACs. The principal finding wherein
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CDOM—rather than Ca—variability is most directly associated with optical data products emerging from the aquatic surface,490

e.g., [LW (λ)]N or Rrs, may reflect differences in temporal and vertical dynamics of particulate versus dissolved constituents,

including via the complex pathways dissolved materials cycle in the microbial loop (Azam et al. 1983) that would contribute

to decoupling CDOM dynamics from Ca.

For example, the connectivity, directionality, and rates of fluxes connecting phytoplankton, dissolved organics, nutrients,

and other parameters determine the degree to which one parameter could feasibly predict another. The case-1 model, wherein495

Ca predominantly modifies the aquatic light environment and predicts CDOM and other OACs, is perhaps most logically

consistent with historical understandings of the so-called grazing food chain, a simplified oceanic trophic cascade wherein

bacteria were considered negligible in the cycling of organic materials (Steele 1974). Increasingly complex microbial loop

dynamics—wherein phytoplankton contribute dissolved organic matter (DOM) directly through cellular lysis, excretion, and

grazing, and wherein bacteria regulate the remineralization of DOM that fuels phytoplankton growth—support an increasing500

diversity of pathways representing the flow of energy and materials through marine systems (Azam et al. 1983; Azam 1998).

Additional discoveries, including new functional groups (e.g., viruses) and pathways (e.g., direct phytoplankton uptake of

DOM), further complicate oceanic food webs (Granéli et al. 1999; Fenchell 2008) relative to those of the grazing food chain.

Stratification and mixing modify vertical time scales of sinking and have been related to global-scale patterns in surface

concentrations of DOM, e.g., wherein stratified mid-latitude waters are characterized by higher concentrations of DOM and505

well-mixed waters of higher latitudes—with the exception of the arctic—contain relatively lower concentrations of DOM

(Hansell and Orellana 2021). The optically active DOM subset, i.e., CDOM, is further influenced by the kinematic processes

governing photobleaching and degradation rates, affected by mixed layer depth, seasonality, latitude, sea surface temperature,

and sky condition (Gonsior et al. 2014; Del Vecchio and Blough 2002). Changing ocean temperatures and acidity also relate to

temporal dynamics in DOM via the restructuring of microbial food webs through altering stratification (and therefore nutrient510

availability), microbial metabolic rates plus nutrient demands, remineralization of DOM, and perhaps, species distributions

(Sala et al. 2016). Horizontal spatial comparisons are not assessed, but the results are, perhaps, in keeping with recent findings

that patchiness in oceanic CDOM is not well explained by patchiness in Ca and exhibits a distribution more similar to sea

surface temperature (Gray et al. 2025). Vertical differences may also be relevant although neither the depth dimension nor

vertical flux are investigated here. Negative buoyancy of particles—e.g., sinking velocity increases proportionally with density515

differences and the squared particle radius (Bach et al. 2012)—or nutricline structure may drive particulate organic distributions

away from the surface, i.e., away from where remote sensing signals are weighted (e.g., Morel and Berthon 1989). DOM—

including a refractory pool that also persists with lower sensitivity to the dynamics of microbial food webs (Jiao et al. 2010)—is

transported primarily through advection with water masses.

The eigenanalyses presented herein additionally suggest case-1 conditions are not representative of global water bodies520

nor selective oceanic subsets, because the partial correlation coefficients indicate the eigenfunctions associate—to a greater

extent than anticipated—with individual OACs, and not with bulk combinations. For example, considering an idealized case-1

dataset wherein all OACs are accurately derived from Ca, the leading eigenfunction would be anticipated to produce similar

rank correlation coefficients for each OAC. In contrast to expectations that water mass OACs should be modeled from Ca, the
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eigenfunction analyses indicate that the majority of the variance (approximately 60%) in oceanic optical data products most525

strongly corresponds to aCDOM(440), and an orthogonal mode capturing less variance (approximately 32%) may correspond

to residual variability in Ca. Finally, although the results suggest a case-1 model with aCDOM(440) as the fundamental variable

rather than Ca might better represent the three datasets and their oligotrophic subsets, the underlying assumption that a single

OAC captures oceanic light variability would limit the model to representing only 60% of the variance observed. The result

suggests oceanic trophic cascades are characterized by greater complexity than can be represented by a univariate model.530

Overall, the findings demonstrate high variance captured by the leading eigenfunction and the strong association of the

leading eigenfunction with aCDOM(440) variability, but the findings would be strengthened by adding field sampling for

additional biochemical or bio-optical parameters. For example, RSE2021 demonstrates the importance of adding observations

of aCDOM(440) plus spectrally expansive radiometry to observations of Ca. Also adding observations of non-algal particles

(NAPs) and detrital absorption would improve clarity on the eigenfunction interpretations and provide another option for535

investigating subsequent modes. The findings presented herein correspond to datasets spanning globally representative or

oceanic waters and do not rank the importance of constituents in any specific region. For example, regional scenarios wherein

high variability of NAPs is associated with riverine flux or resuspension would not be anticipated to reflect the findings herein

supporting aCDOM(440) primacy.

4.3 OC algorithm retrievals540

High sensitivity of OC algorithms to regional differences in bio-optics is likewise consistent with the findings herein of S1 pro-

ducing maximal correlation to aCDOM(440) and the OC algorithm products. For example, regional tunings of OC algorithms

have proven necessary even at spatial scales as large as currents (Kahru and Mitchell 1999), seas (Morel and Gentili 2009), and

oceans (Johnson et al. 2013), revealing an ever diminishing fraction of oceanic surface environments wherein OC algorithms

are robust to natural variability in the mixtures and dynamics of OACs.545

Sensitivity of the OC algorithm to aCDOM(440) is supported by the R2 metrics, which indicate the OC algorithm captures

greater variance in aCDOM(440) compared to Ca, consistent with the results of the eigenanalyses. The assessment warrants cau-

tion, as follows: aCDOM(440) is less commonly obtained in bio-optical field sampling than Ca, which is why two of the datasets

herein do not include contemporaneous aCDOM(440) observations; and the RSE2021 dataset, which does include contempo-

raneous observations of both aCDOM(440) and Ca, also includes representation from coastal and inland waters. Regarding the550

former, the high incidence of optical measurements with contemporaneous field observations of Ca but not aCDOM(440) poses

a persistent difficulty in aquatic optics, and the results herein indicate the importance of routine aCDOM(440) field observations

in bio-optical field activities. Regarding the latter, the water mass representation of RSE2021 is addressed to the extent practi-

cable by considering the scatter of the data points in the separate quadrants of the Fig. 2 validation comparisons. For example,

a hypothesis wherein the OC algorithm would produce maximal association to Ca in open-ocean waters would correspond555

to reduced scatter of the data points in the lower left quadrant in the Ca comparison (panel a) relative to the aCDOM(440)

comparison (panel d). Conversely, the Fig. 2 results show tighter association of the OC algorithm to aCDOM(440) relative to

Ca in the lower left quadrant.

17



Comparing between datasets, the RSE2007 observations produce the most similar R2 values when comparing OC algorithm

products to Ca and aCDOM(440), consistent with the RSE2007 dataset being maximally represented by open-ocean waters560

far from coastal inputs and RSE2007 conferring the least expansive spectral range, which challenges the applicability of the

EMA algorithm for retrieving aCDOM(440) independently of Ca. Regarding the former, nearly identical agreement in R2

comparing the OC algorithm products to Ca and aCDOM(440) suggests RSE2007 waters are most consistent with the case-1

scenario wherein OACs covary. Nonetheless, aCDOM(440) always produces higher R2 values than Ca, with differences being

insignificant for RSE2007 but increasing for RSE2022 and RSE2021.565

The results of the algorithmic comparisons (Fig. 2) are consistent with those of the eigenanalyses (Fig. 1), and both suggest

the OC algorithm more strongly associates with variability in aCDOM(440) rather than Ca. The OC algorithm’s applicability,

therefore, depends strongly upon the relationships between OACs. The finding regarding the applicability of the OC algorithm

is not the primary focus herein, and is consistent with previous studies demonstrating vulnerabilities in band-ratio retrievals

of Ca to changing bio-optical relationships (Dierssen 2010). The comparisons further suggest estimation of aCDOM(440) is570

more readily obtained than estimation of Ca using remote sensing. For example, the OC algorithm produces aCDOM(440)

estimation with an R2 of 0.85 for the RSE2021 dataset wherein optically complex waters are included, although applying the

OC algorithm for aCDOM(440) estimation is not recommended. Improved R2 values greater than 0.90 have been shown for

remote sensing of aCDOM(440) using end-member analysis with VIS or INV wavebands (Houskeeper et al. 2021).

4.4 Spectral information content of aquatic spectra575

Maximal association of the leading eigenfunction for each dataset with aCDOM(440)—rather than Ca—indicates that accu-

rate retrieval of aCDOM(440) is fundamental to the objectives of the ocean color community to quantify oceanic productivity.

Information extraction for subsequent eigenfunctions—including the second eigenfunction observed herein for most datasets

to correlate most strongly with Ca—demands both increasing radiometric capabilities (e.g., higher accuracy, more expansive

spectral range, and perhaps finer spectral resolution) but also accurate retrieval of the information associated with the preced-580

ing eigenfunctions. Regarding the latter, small uncertainties or residual errors in retrievals of information corresponding to a

leading eigenfunction produce so-called noise amplification in retrieval of information corresponding to subsequent eigenfunc-

tions, just as the mean spread of Si functions decreases with increasing i. Accurate retrieval of aCDOM(440) is, therefore,

prerequisite to—not separate from—accurate retrieval of phytoplankton properties, in keeping with the trajectory of research

into simultaneous inherent optical property (IOP) inversions (e.g., Maritorena et al. 2002; Lee et al. 2002; Werdell et al. 2013),585

machine learning approaches (O’Shea et al. 2021), and degeneracy (Prochaska and Frouin 2025).

Fine-scale spectral dependencies have previously been shown to confer useful and exploitable information—e.g., fluores-

cence (Letelier and Abbott 1996), absorption band effects (Houskeeper et al. 2020b), and macroalgal physiological state (Bell

and Siegel 2022)—which in some cases may not emerge with strong explanatory power in an eigenanalysis using the full

spectral range, because Λ is a metric of variance captured across the full spectral range of the analysis. Eigenfunction analyses590

such as those performed here—as well as in Sathyendranath et al. (1987), Cael et al. (2023), and others—are useful tools for
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exploring the major patterns of a dataset. However, caution is also warranted because information only impacting a subset of

the wavebands in an eigenanalysis may average out or suffer spectral dilution (Houskeeper et al. 2020b).

The eigenanalyses recreated for the RSE2021 dataset but using VIS or INV spectral subsets (denoted VIS21 and INV21,

respectively) also support previous findings demonstrating improvements in aCDOM(440) algorithmic relationships with in-595

creasing spectral separation of the algorithm wavebands from the VIS domain (Hooker et al. 2020, 2021b; Houskeeper et

al. 2020a, 2021). For example, the results indicate INV information is more readily represented by a single mode of variability

than VIS information, as follows: a) the leading eigenfunction of VIS21 captures similar variance to that of the spectrally ex-

pansive UVN21; b) the leading eigenfunction of INV21 captures approximately 17% more variance than that of either UVN21

or VIS21; and c) the second eigenfunction of VIS21 captures approximately 15% more variance than that of INV21. Pearson’s600

correlation coefficients relating S1 to aCDOM(440) increase strongly for the INV21 subset, approaching that of a perfectly

coherent relationship (−0.96). The results indicate INV21 captures information more associated with aCDOM(440) and less

associated with Ca. Conversely, the leading eigenfunction of the VIS21 subset captures information more similarly associated

with both aCDOM(440) and Ca. The findings confirm previous literature based on theoretical formulations and observations,

wherein spectrally expansive observations mitigate the confounding effects of spectral overlap in Ca and CDOM absorption605

(Houskeeper et al. 2021).

The recent launch of the PACE satellite mission supports novel spectrally expansive and hyperspectral observations of

surface ocean environs. The spectral subset eigenanalyses indicate opportunities to leverage spectrally expansive PACE ob-

servations to advance OAC retrievals. For example, accurate retrieval of INV reflectances support retrieval of aCDOM(440)

with improved independence from Ca, and knowledge of aCDOM(440) could then inform Ca retrievals using VIS information.610

Alternately, the results indicate that simultaneous retrieval of OACs, e.g., using inversions (Garver and Siegel 1997) or MDNs

(O’Shea et al. 2021), may improve if (quality assured) input reflectances are spectrally expansive and include INV domains.

However, spectrally expansive in situ datasets are presently sparse and corresponding improvements in atmospheric correction

are likewise required to support spectrally expansive satellite ocean observing.

5 Conclusions615

Spectral AOP data products of aquatic environments produce leading eigenfunctions more strongly correlated to variability in

CDOM absorption than Ca, consistent with advancing knowledge of microbial loop dynamics and an increasing diversity of

trophic pathways represented therein (Azam 1998). The similarity of results using three independent datasets strengthens sup-

port for CDOM primacy and suggests that accurate and independent estimation of CDOM is requisite to the retrieval of Ca and

other phytoplankton parameters. Acknowledged limitations include the eigenanalyses capturing linear—but not nonlinear—620

patterns of variability, although the relationships between the leading eigenfunction and log-transformed aCDOM(440) indi-

cated linearity. The eigenanalyses results are insensitive to moderate changes in the quality control filtering, but not to com-

plete removal of quality control filtering for the legacy data, which contain significant proportions of likely nonphysical data

products. Confounding signals identified for CDOM and Ca are consistent with early investigations into the drivers of color
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variability (Yentsch 1960), as well as subsequent work assessing vulnerabilities in band-ratio algorithms for characterizing Ca625

(Dierssen 2010; Sauer et al. 2012). Spectrally expansive data products have been shown to improve retrieval of aCDOM(440)

independent of Ca (Sathyendranath et al. 1987; Hooker et al. 2020; Houskeeper et al. 2021), attributed, in part, to improved

robustness to variability in the relationships between OACs. The comparisons herein of eigenanalyses using the INV21 and

VIS21 spectral subsets further support the hypothesis that an expansive spectral range for data products improves the sepa-

rability of signals. Spectrally expansive data products have been demonstrated in situ spanning the UV to shortwave infrared630

(SWIR) wavelength domain, with the latter formerly ascribed as null (Houskeeper and Hooker 2023). The findings herein

support opportunities associated with leveraging the spectrally expansive capabilities of PACE OCI, although further advances

in image processing, atmospheric correction, algorithm design, and in situ datasets would be necessary.
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Figure 1. Spectral representations of the eigenfunction matrices corresponding to the RSE2021, RSE2022, and RSE2007 datasets are rep-

resented as blue, orange, and green lines, respectively. The first three eigenfunctions ψ1–ψ3 are organized vertically based on descending

variance explained, Λ. The y-axis label superscripts indicate the phase, i.e., either positive (+) or negative (−), in which the eigenvectors are

presented, and y-axis label subscripts indicate the ordering of the eigenvector. Correlation coefficients relating S for each eigenfunction to

recorded environmental (g and Ca) or algorithm (EMA and OC4) values are indicated using ρ notation, wherein the left subscript indicates

the parameter under comparison with S, given the parameter indicated by the right subscript, when applicable. Eigenfunctions for olig-

otrophic subsets (Ca less than 0.5mgm−3) of the datasets are plotted on the same axes using gray lines. For clarity, all statistics presented

correspond to the complete datasets (colored lines), and the sign for ρ corresponds to the phase in which ψ is plotted. The nominal locations

of the blue and green wavebands used by the OC4 algorithm are indicated by blue and green vertical dashed lines, respectively.
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Figure 2. Algorithmic relationships for the RSE2021, RSE2022, and RSE2007 datasets are represented as blue, orange, and green open

circles, respectively. The top panels indicate relationships between OC algorithms and field Ca, and a 1:1 correspondence line is shown in

black. The bottom panels indicate relationships between OC algorithms and field (panel d) or algorithmic (panels e and f) observations of

aCDOM(440), with R2 values shown. Algorithmic products (using an EMA relationship following Houskeeper et al. 2021) were required

for the RSE2022 and RSE2007 datasets because only RSE2021 included routine field sampling of aCDOM(440).
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Figure 3. Variance explained by the first six eigenfunctions (ψ1–ψ6) for eigenanalyses using spectral subsets of the RSE2021 dataset, as

follows: the full spectral range (320–875nm) is shown in blue matching the presentations of Fig. 1 and 2 and denoted UVN21; the visible

(412–683nm) spectral subset results are shown in yellow and denoted VIS21; and the invisible (313–395 and 710–875nm) spectral subset

results are shown in red and denoted INV21. Pearson’s correlation coefficients for aCDOM(440) and Ca (ρ1,g and ρ1,Ca , respectively) are

denoted using arrows for the VIS21 and INV21 analyses, with bold font indicating significance (P < 0.05). The inlay panel shows that

RSE2007, RSE2021, and RSE2022 datasets have similar maximal variance explained in ψ1 and ψ2.
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