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The authors thank Reviewer 1 for their valuable comments. The authors respond to all comments
below and document resulting modifications to the manuscript, as appropriate. Reviewer 1’s
comments are shown in slanted typeface. The Authors responses are shown in plain typeface.
Revised or added text is indicated in red. All line numbers are indicated with a capital “L” and
refer to the line numbers in the original submitted work. Citations within this response document
correspond to the References section at the end of this document.

• Comments from Reviewer 1: The manuscript by Houskeeper and Hooker presents a novel
perspective on the primacy of colored dissolved organic matter (CDOM) over chlorophyll a
(Ca) in driving aquatic light variability. This manuscript makes a significant contribution to
the field of ocean optics by challenging long-standing assumptions about the primacy of Ca

in driving aquatic light variability. Their comprehensive analysis of three independent bio-
optical datasets provides compelling evidence that CDOM absorption—not Ca—represents
the dominant factor influencing spectral variability in aquatic environments. This finding
has profound implications for ocean color remote sensing, potentially reshaping algorithm
development and improving our ability to monitor marine ecosystems from space. The
authors’ demonstration that expanded spectral ranges (including UV and NIR domains) im-
prove the independent retrieval of optical constituents provides timely insights for utilizing
data from new hyperspectral satellite missions like PACE. Their work effectively bridges
historical perspectives on ocean optics with contemporary understanding of microbial loop
dynamics, offering a more nuanced view of the biogeochemical processes influencing marine
optical properties. Overall, the paper represents a valuable contribution that could signif-
icantly advance our ability to interpret and utilize ocean color observations in a changing
climate.

Authors Response 1: The authors thank the reviewer for the positive comments.

While their eigendecomposition analysis is thorough, I have concerns about terminology
and methodology. The authors repeatedly refer to “EMA” (end-member analysis) without
adequately explaining this approach or its relation to established methodologies. Have they
invented it? If so, I am not sure it warrants a name nor acronym.

Authors Response 2: End-member analysis (EMA) is an algorithmic approach
wherein information is captured from the most spectrally separated (e.g., ultra-
violet, UV, and near-infrared, NIR)—rather than from the internal (primarily
VIS)—wavelengths. The concept was first described in Hooker et al. (2013) and
the terminology was introduced in Hooker et al. (2020), which also noted that this
approach provides continuity between historical multispectral observations and
forthcoming hyperspectral observations:
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“. . . the simplified approach provided by end-member analysis can be used
with both legacy and next-generation sensors, thereby providing continu-
ity in space and time as well as a capability to generate high-quality
in-water data with a simplified measurement approach. . . ”

The EMA approach was subsequently leveraged to develop aquatic remote sensing
algorithms or investigate optical relationships in Houskeeper et al. (2021,2022) and
Hooker et al. (2021a,b). Greater community adoption—and therefore familiarity—
with EMA is, perhaps, limited by the sparsity of compliant UV and NIR aquatic
radiometric datasets.

The authors clarify this topic by better defining EMA at its first usage (L016–017),
as follows:

“. . . based on using ratios of the most spectrally separated optical data
products (Hooker et al. 2013), especially those from the UV and NIR spec-
tral domain, an approach hereafter termed end-member analysis (EMA)
following Hooker et al. (2020). Conservative waters. . . ”

After investigating their cited works and testing their CDOM prescription against the Loisel
et al. (2023) dataset (see: https://github.com/ocean-colour/bing/blob/ema/nb/

EMA/Explore_EMA.ipynb ), I found their approach exhibits sensitivity to algorithm variants
that warrants further discussion. The authors appear to have developed this method across
several publications, but it requires more explicit contextualization for readers unfamiliar
with their previous work, particularly regarding how different implementations might affect
results.

Authors Response 3: The authors revise elements of the manuscript to provide
context based on the reviewer’s point. But first, some clarifications are warranted
regarding the reviewer’s referenced Python notebook.

Briefly, the reviewer has attached a notebook using data wherein synthetic ap-
parent optical properties (AOPs), e.g.,

[
LW (λ)

]
N
, are synthesized from various

datasets of inherent optical properties (IOPs), e.g., aCDOM(440). For individual
AOP observations in this dataset, the suite of IOPs needed to derive the AOP
do not represent the same set of in situ observations, i.e., they include dissimi-
lar sampling times or locations. IOPs are randomly assembled using each IOP’s
distribution, and from these random assemblages, AOPs such as

[
LW (λ)

]
N
are

derived. The synthetic dataset, therefore, is not constrained to the associations
that exist among in situ IOPs in the ocean (Morel 2009) or aquatic environments.

Conversely, the applicable algorithm from Houskeeper et al. (2021), i.e., GLOBC,
was derived using in situ observations of aquatic environments. GLOBC thereby
includes in situ relationships in IOPs—generally discussed in terms of optically
active constituents (OACs) in the manuscript under review.
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The reviewer’s notebook tests the performance of EMA algorithms using both the
applicable tuning (GLOBC), as well as two inapplicable tunings (OCEAN and
NOMAD). The latter correspond to observations derived using legacy above- and
in-water instrumentation, with in-water data products derived in a deep extrap-
olation column with coarse vertical sampling resolution (VSR), and above-water
data products derived using slow sampling speeds (on the order of 0.5Hz) and low
signal-to-noise ratio (SNR) observations (Kudela et al. 2024).

The reviewer’s notebook graphic shows two characteristics, both of which the
authors consider to be consistent (not inconsistent) with the published literature:

1. The reviewer’s graphic shows that synthetic data products produce increased
scatter and nonlinearity compared to in situ data products. This finding is an-
ticipated and consistent with the literature, as follows: random re-organization
of IOPs removes the OAC covariances observed within in situ water bodies;
removing OAC covariances increases variability in OACs; and increasing vari-
ability in OAC relationships increases scatter in visible (VIS) algorithms.

Algorithm sensitivity to variability in OACs was shown to be a function of
algorithmic spectral range, which was the primary finding of Houskeeper et
al. (2021). Non-visible—or invisible (INV)—algorithms are more robust to
OAC variability than VIS algorithms. The reviewer’s notebook implements
VIS algorithms and has shown, as is expected, that removing IOP or OAC
covariances increases the scatter for VIS algorithms.

For example, consider this text from Houskeeper et al. (2020):

“. . . correlation to aCDOM(440) increase[s] with greater spectral sep-
aration of the waveband ratio toward ultraviolet and near-infrared
wavelengths.”

Another example, from Houskeeper et al. (2021):

“For all datasets, the dynamic range in [the waveband ratio] increases
with increasing spectral separation between wavelength pairs, which
is anticipated to increase the sensitivity and robustness of the algo-
rithmic approach.”

And another, from the submitted manuscript (L445–447):

“Linearity and loglinearity of CDOM algorithms decreases with de-
creasing spectral separation of algorithm end members (Hooker et
al. 2020, 2021a; Houskeeper et al. 2021) because increasing overlap
in OAC absorption properties adds nonlinearity (Houskeeper et al.
2020a).”
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Regarding relationships among OACs, the observed covariances within in situ
water bodies have been fundamental to the development of ocean color algo-
rithms, namely the Ocean Chlorophyll (OC) family of algorithms. The au-
thors’ manuscript does not argue against the existence of covariances among
OACs within oceanic and global in situ data products, which are well doc-
umented (Morel et al. 2009; Hooker et al. 2021a). Rather, the authors
have previously shown that EMA algorithms—especially INV but also VIS
implementations—mitigate some of the algorithmic sensitivity to variability
in the OAC relationships.

Finally, the scatter in the notebook graphic for the applicable algorithm
(GLOBC) appears to be consistent with the uncertainty reported in Hous-
keeper et al. (2021) for the VIS algorithm, i.e., 45% (although uncertainty
metrics are not presented in the graphic).

2. The reviewer’s graphic shows that algorithms become biased if retuned using
legacy data products (i.e., the OCEAN and NOMAD tunings), which are
often nonphysical, e.g., negative or signal limited, and biased. The authors
strongly agree and have discussed this challenge in many contexts (Hooker et
al. 2020, 2021a, 2021b; Houskeeper et al. 2020, 2021, 2023, 2024; and Kudela
et al. 2019, 2024). The reviewer’s graphic provides additional support for this
trajectory of literature by showing that algorithms derived using legacy AOP
data products (most notably those of NOMAD) are strongly biased compared
to AOP data products synthesized using radiative transfer. The point is
consistent with the submitted manuscript, which did not use NOMAD data
products based, in part, on the previously published findings indicating bias.

The authors revise the text to help clarify elements related to implementation of
the EMA algorithms.

First, the authors clarify the tuning (to avoid readers implementing the OCEAN
or NOMAD coefficients from the Python notebook) by specifying the applicable
coefficients directly in Eq. 2, as follows:

aCDOM(440) = 0.242
[
Λλ1

λ2

]−0.961
, [m−1] (1)

The authors add discussion regarding decreased performance of VIS implementa-
tions compared to INV implementations at L113, as follows:

“. . . indicating the importance of accurately deriving UV data products
for robust CDOM estimation. VIS algorithms, conversely, were shown to
exhibit decreased robustness to variability in OAC relationships relative
to INV algorithms (Hooker et al. 2020, 2021b; Houskeeper et al. 2020,
2021).
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The authors revise text on L601–603 to clarify EMA is leveraged herein is im-
proved robustness to OAC relationships, and the improvement is dependent on
the spectral range (e.g., VIS compared to INV), as follows:

“Spectrally expansive data products have been shown to improve retrieval
of aCDOM(440) independent of Ca (Sathyendranath et al. 1987; Hooker et
al. 2020; Houskeeper et al. 2021), attributed, in part, to improved robust-
ness to variability in the relationships between OACs. The comparisons
herein of eigenanalyses using the INV21 and VIS21 spectral subsets fur-
ther support the hypothesis that an expansive spectral range for data
products improves the separability of signals.

The authors improve discussion of the limitations by adding text regarding the
efficacy of EMA when applied to legacy datasets (wherein spectral range is gen-
erally confined to VIS wavelengths). Most notably, the RSE2022 dataset corre-
sponds to much coarser VSR plus depth aliasing (see L215–217 of the manuscript)
and commercial-off-the-shelf (COTS) spectrometers limiting the SNR (Kudela et
al. 2019; 2024). The authors add text to L265, as follows:

“The uncertainty of EMA is anticipated to increase when applied to opti-
cal data products obtained using spectrometers and rocket-shaped profil-
ers (e.g., RSE2022) due to increasing extrapolation depths combined with
the strong attenuation of signal, particularly within the end-member spec-
tral domains (Kudela et al. 2019, 2024; Hooker et al. 2020; Houskeeper
et al. 2021).”

Deficient data quality (most applicable to RSE2022 which corresponds to degraded
SNR and VSR) is presently managed, in part, by applying quality control metrics
to identify and remove spectra that are likely nonphysical. For example, oceanic
spectra that are significantly darker than the darkest global waters (as observed
using much higher SNR and finer VSR technologies) are associated with SNR-
limited measurements or depth aliasing within vertical profiles. The authors add
discussion of sensitivity testing regarding quality control to L238, as follows:

“. . . the threshold removal of nonphysical radiometric brightness was thus
applied, albeit only using VIS data products (given that RSE2007 and
RSE2022 are restricted to the VIS domain), following sensitivity testing.
Briefly, more stringent quality control metrics (e.g., requiring observa-
tions to comply with the brightness ranges of the globally representa-
tive RSE2021 dataset) produced similar eigenanalyses results but reduced
the size of RSE2022 by approximately 50%. Alternately, relaxed quality
control thresholds permitting radiometric values up to 50 times darker
than the global dataset did not alter the primary findings of RSE2022,
and no threshold relaxation affected the primary findings of RSE2007.
Considering acknowledged uncertainties relating to hardware, processing,
data acquisition, and water mass differences, the quality control thresh-
olds were performed within this insensitivity range by. . . ”
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The manuscript notably omits sufficient discussion of detrital absorption, which significantly
contributes to absorption at wavelengths below 500nm. The authors acknowledge overlap-
ping spectral characteristics between Ca and CDOM but don’t adequately address how
detrital absorption might influence their conclusions about CDOM primacy. Given that
detritus can substantially affect spectral signatures in the same regions they analyze, this
omission represents a gap in their analysis framework. A more comprehensive treatment
of all optically active constituents would strengthen their argument regarding the relative
importance of CDOM in aquatic environments.

Authors Response 4: The authors have not chosen to omit detritus or any other
OAC from their study, but rather the analyses reflect the reality that detrital mea-
surements are more sparse for globally applicable bio-optical datasets. Nonethe-
less, elements of the results describe detrital absorption, as follows: the leading
eigenfunction for each dataset—the eigenfunction with a spectral shape most sim-
ilar to that of detrital (but also CDOM) absorption—captures approximately 60%
of the variance in each dataset. The datasets represent dissimilar water body
types—ranging from purely oceanic waters (RSE2007) to oceanic, coastal, and in-
land waters in nearly equal representation (RSE2021). Contributions from detri-
tus would therefore be anticipated to vary greatly between datasets. Differences
in the variance captured between the datasets, however, are negligible (within
±1%), thereby not supporting strong differences in detrital effects. This means
that although detritus certainly contributes to blue absorption in the dataset,
the spectral modifications captured by the leading eigenfunction do not support
primacy of detrital absorption. This point is also supported by the leading eigen-
function indicating strong linearly correlation to aCDOM(440). Detrital absorption
and CDOM absorption exhibit variable correlation for different natural waters
(Babin et al. 2003; Twardowski et al. 2004), which would degrade the linear
correlation if detritus was playing a major role in the analysis.

Therefore, the sparsity of detrital absorption data is unfortunate (and not due
to omission by the authors), but the data and analyses nonetheless still support
the findings presented. The authors improve discussion of detrital absorption by
adding a new paragraph discussing detrital absorption following L467, as follows:

“Observations of detrital absorption were not available, and detritus and
CDOM share similarities in the spectral-shape of absorption, i.e., absorp-
tion increases for both at shorter wavelengths. Some key factors relevant
to the focus herein on aCDOM(440) over detritus in driving variability
in aquatic spectra include that the leading eigenfunction captures sim-
ilarly high proportions of the variance for each dataset (within 1% to
the mean), whereas each dataset corresponds to dissimilar contributions
from open-ocean waters. Absorption by CDOM and detritus also exhibit
variable correlation patterns (Babin et al. 2003; Twardowski et al. 2004),
which would degrade the correlation between the leading eigenfunction
and aCDOM(440), if the leading eigenfunction was strongly associated with
detritus.”
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In addition, the authors add discussion of the benefits conferred by expanded field
sampling, namely for detrital absorption and non-algal particles, at L515 (further
discussed in Authors Response 25), as follows:

“The findings demonstrate high variance captured by the leading eigen-
function and the eigenfunction’s strong association with aCDOM(440) vari-
ability, but the findings would be strengthened by adding field sam-
pling for additional biochemical or bio-optical parameters. For example,
RSE2021 demonstrates the importance of combining spectrally expan-
sive radiometry and observations of Ca with observations of aCDOM(440).
Also adding observations of non-algal particles (NAPs) and detrital ab-
sorption would help to further improve clarity on the eigenfunction in-
terpretations, and, perhaps, contribute to a better understanding of the
subsequent modes.”

Throughout the manuscript, the authors consistently refer to their analysis as an “eigen-
decomposition” rather than using more widely recognized terms like Principal Component
Analysis (PCA) or Empirical Orthogonal Functions (EOF). While technically correct, this
terminological choice may unnecessarily distance their work from the broader scientific liter-
ature, potentially impeding recognition of their method’s relation to established techniques.

Authors Response 5: The authors improve clarity based on the reviewer’s comment
in two ways. First, when the eigenanalysis is introduced on L13, the authors add
the terms “Empirical Orthogonal Function (EOF)” and “Principal Component
Analysis (PCA),” as follows:

“. . . is tested herein using eigenanalysis—e.g., an Empirical Orthogonal
Function (EOF) analysis, Principal Component Analysis (PCA), or other
eigendecomposition depending on the literature—on three independent
bio-optical datasets . . . ”

Second, the authors replace the term “eigendecomposition” with the term “eigen-
analysis” when it appears in the methodological description on L267–269 and the
results text on L301.

Additionally, the manuscript would benefit significantly from showing the mean spectra
alongside their eigenfunctions, as well as demonstrating reconstructed spectra with varying
CDOM and Ca concentrations to illustrate how these constituents individually contribute
to spectral variability.

Authors Response 6: Fig. A1 shows mean spectra plus reconstructed spectra based
on varying influences of the eigenfunctions (the eigenfunctions are already shown
in Fig. 1). The magnitude to which the reconstructed spectra are modified by the
eigenfunctions (i.e., represented by the scalar in the legend) is selected based on

7



the approximate inverse of the y-axis range in Fig. 1. That range is a mathematical
consequence of the spectral resolution of each dataset and is not prescribed by the
authors.

Fig. A1. Mean
[
LW (λ)

]
N
spectra—represented as Γ̄ for brevity following Hooker et al. 2021a—

are shown for each dataset as solid black lines. Reconstructed spectra are shown in dashed
plus dotted lines and represent spectral modifications associated with adding or subtracting,
respectively, scalar quantities derived from the eigenfunctions. Modifications associated with
ψ1, ψ2, and ψ3 are shown in the top, middle, and bottom rows, respectively.

The authors should acknowledge that their eigendecomposition approach assumes linear
relationships among spectral variables, which may not fully capture nonlinear aspects of
aquatic optical properties. Ocean color properties often exhibit complex nonlinear relation-
ships, particularly in optically complex waters. This impacts some of the conclusions drawn.
In particular, on Line 503-505, the authors write: “. . . the leading eigenfunction would be
anticipated to capture nearly all of the variance of the dataset.” This only holds if the
relationships are linear.
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Authors Response 7: The authors agree with the reviewer that eigenanalyses cap-
ture variability expressed in a linear framework. The authors also agree with the
reviewer that ocean color properties can exhibit nonlinear relationships, while si-
multaneously acknowledging that quasi-linear approximations have been applied
for decades. For example, Gordon et al. (1988) established a fundamental frame-
work for relating IOPs to the remote-sensing reflectance, Rrs, wherein Rrs is pro-
portional to the ratio of backscattering to absorption. In waters where absorption
greatly exceeds backscattering (which include most global waters if considering
VIS optical properties and nearly all global waters if considering INV optical
properties), this fundamental framework would invoke approximately log-linear
relationships, e.g., ln(Rrs) ∝ − ln(a). The authors also agree that nonlinearities,
e.g., those commonly associated within case-1 algorithms wherein optical proper-
ties are empirically tuned to Ca (Morel et al. 2009), are applicable to the discussion
of the idealized case-1 dataset at L503–505.

The analyses conducted herein do not negate nonlinear processes, but the datasets
also do not suggest the eigenanalysis results are strongly swayed by nonlinear-
ity. For example, the leading eigenfunction—which captures most of the vari-
ance for each dataset—produces S1 values with a distribution similar to that
of aCDOM(440). The S1 matrix predictors produce linear correlation to log-
transformed aCDOM(440) with Pearson’s correlation coefficient indicated as ρ, plus
Spearman’s rank correlation coefficient included as ρ̃. High variance captured
by the leading eigenfunction combined with loglinear relationships produced be-
tween S1 and a physically interpretable environmental parameter, support that
the eigenanalysis is uncovering a dominant parameter influence, as intended. The
relationships between the S1 plus S2 matrix predictors and aCDOM(440) plus Ca,
respectively, are shown in Fig. A2, as follows:
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Fig. A2. Relationships between the S1 (top row) and S2 (bottom row) matrix predictors to
CDOM absorption (top row) and Ca values (bottom row). Pearson’s (ρ) and Spearman’s (ρ̃)
correlation coefficients are overlaid, with bold type indicating significance at P < 0.01.

The authors add text in the methods section at L269 to clarify that an eigenanal-
ysis characterizes linear patterns of variability, as follows:

“The eigenanalysis captures linear patterns of variability in the datasets,
and is performed, as follows:”

Next, the authors revise L503–505 to incorporate the reviewers point, as follows:

“For example, considering an idealized case-1 dataset wherein all OACs
are accurately derived from Ca, the leading eigenfunction would be an-
ticipated to produce rank correlation coefficients for each OAC. In con-
trast. . . ”

While their analysis provides valuable insights into the primary modes of variability, explic-
itly discussing these limitations would provide readers with important context for interpret-
ing their findings. This is especially relevant given their conclusion that CDOM, rather than
Ca, drives the primary mode of variability in aquatic light fields—a finding that challenges
conventional assumptions in ocean color remote sensing.

Authors Response 8: The authors improve the discussions of limitations, as well as
clarify elements regarding linearity and algorithm implementation. In Authors Re-
sponse 7, the authors describe revisions to the text at L269 and L503 to add clarity
regarding linearity assumptions of eigenanalyses. The authors also clarify that the
eigenfunctions are capturing most of the variance in the dataset, that Spearman’s
ρ̃ and Pearson’s ρ produce similar metrics, and the authors agreed to add the new
Fig. A2, which demonstrates linearity between log-transformed aCDOM(440) and
S1. These elements, particularly the relationships shown in Fig. A2, do not support
strong nonlinear effects. In addition to the authors’ described revisions—including
those described at L269 and L503—the authors also add additional discussion of
potential limitations within the Conclusion section, described in Authors Response
23.

A last, potentially challenging request: I am going to insist that the authors make the
RSE2021 and RSE2022 datasets public, not merely by request. These are too valuable to
leave to the chance that the 2 authors become unavailable, etc.

Authors Response 9: The authors acknowledge the reviewer’s comment regarding
data availability and appreciate the recognition that the RSE2021 and RSE2022
datasets are valuable. Most importantly, the authors fully comply with the data
policy of Biogeosciences . This policy specifically acknowledges that scenarios arise
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when “data cannot be deposited publicly.” In these circumstances, the policy
requires a Data Availability statement to be produced to clearly explains this
limitation. As it pertains to the reviewer’s comment, the authors are constrained
in the full release of the RSE2021 dataset because of a prior data acquisition
agreement, and the RSE2022 dataset is already released (and already adequately
referenced in the manuscript).

The authors will update the Data Availability statement. To comply with all
journal requirements, the authors will also provide a supplementary data file con-
taining the specific data used to generate all figures in the manuscript. The authors
believe that this approach is in keeping with both the letter and spirit of the Bio-
geosciences data policy: the authors agree that open data is the ideal, while also
acknowledging that there are legitimate situations where complete data sharing is
not immediately possible.

Here are some additional, more minor comments for the authors to consider. In order of
appearance, not importance:

1. Include numbers in the Abstract, i.e. be quantitative.

Authors Response 10: The authors revise L17–19 of the Abstract, as follows:

“. . . Blue and green band-ratio algorithms routinely used for remote
sensing of Ca are found to be maximally sensitive to CDOM—rather
than Ca—variability based on validation tests of OC algorithm perfor-
mance (e.g., R2 of 0.85 versus 0.78), plus partial correlation coefficients
relating eigenfunction scalar amplitude functions to field or derived ob-
servations.”

2. I encourage the authors to reference Cael+2020 near line 95.

Authors Response 11: The authors add a citation for Cael et al. 2020 at L130,
as follows:

“. . . of the variance—similar information constraint was likewise pre-
viously shown for hyperspectral observations of particulate absorption
(Cael et al. 2020).”

3. Line 137: maybe specify that the “optical signatures” are spatial not spectral.

Authors Response 12: The authors revise L137, as follows:

“. . . airborne investigations leveraged spatially cohesive optical signa-
tures associated with. . . ”
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4. Lines 139-142: The leading components are not always (maybe not even typically)
dominated by broadband features. Those are taken out by the mean. One example I
know where the first modes are *very* informative are galaxy spectra. Please reword
these lines accordingly.

Authors Response 13: The authors agree with the reviewer’s comment about
the first modes being informative—the implication of the first mode is fun-
damental to the results herein. This statement instead describes a potential
pitfall in quantifying information content based on eigenanalyses: Processes or
constituents that modify spectra across an expansive wavelength range mathe-
matically receive more weight in an eigenanalysis than those that modify only
a narrow spectral region. Therefore, the results of an eigenanalysis may some-
times not adequately reflect information associated with processes that modify
a narrow spectral region. The authors clarify this by revising L139–141, as
follows:

“Quantifying information content using eigenanalyses can likewise be
challenging: dimensionality bias can produce an incomplete perspective
of information content by increasing the variance captured by broad-
band features relative to that of narrow features. The latter—when
not spectrally diluted—often provide informative and exploitable in-
formation (Houskeeper et al. 2020b).”

5. Somewhere in the last paragraph of the Introduction, I encourage the authors to cite
the recent papers by Z. Erickson (2020 and 2023).

Authors Response 14: The authors revise L141–143, as follows:

“Mixture density networks (MDNs) and inverse models that incorpo-
rate prior knowledge (i.e., leveraging a Bayesian framework) improve
the management of degeneracy in radiative transfer, and are forthcom-
ing for PACE science objectives (O’Shea et al. 2021; Erickson et al.
2020,2023).”

6. Somewhere, consider citing Siegel+2013 as a previous reference showing/asserting that
CDOM dominates absorption at bluer wavelengths.

Authors Response 15: The authors previously cited Jerlov (1968) on L320–321.
Following the reviewer’s preference, the authors add Siegel et al. (2013):

“Conversely, spectral darkening of shorter wavelengths with minimal
spectral features is most consistent with CDOM absorption (Jerlov
1968; Siegel et al. 2013).”

7. Line 313: Please cite a reference supporting the assertion that “scattering processes
confer less spectral dependencies.”
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Authors Response 16: The authors add a citation for Kirk (2011), which pro-
vides a useful review on this topic, and also add text to reference absorption
band effects for completeness, as follows:

“The spectral shapes of the eigenfunctions are primarily considered as
a function of absorption processes, which generally—notwithstanding
absorption band effects (Zaneveld and Kitchen 1995)—confer stronger
spectral dependencies than scattering processes (Kirk 2011).”

8. Line 373: I have to admit I am not familiar with the term “R2 statistics.”

Authors Response 17: The authors replace “R2 statistics” with “R2” following
the reviewer’s preference.

9. Line 436: I struggle to parse this paragraph. Found myself mainly confused reading it.
Maybe provide additional context?

Authors Response 18: The discussion is related, in part, to the reviewer’s
earlier questions regarding nonlinearities in aquatic optics. The authors revise
the paragraph to improve clarity and reduce length plus complexity, as follows:

Bio-optical formulations to derive optical properties as a function of Ca

do not require primacy of Ca. Rather, algorithms parameterize evolu-
tion in optical properties—notwithstanding observational challenges—
based on empirical OAC relationships (Morel and Prieur 1977; Morel
2009). Nonetheless, variability in OAC relationships exists for in situ
water bodies (Hansell and Orellana 2021). Empirical approaches such
as the OC family of algorithms must mitigate observational artifacts
(Uitz et al. 2006; Kudela et al. 2019, 2024), plus regional variability and
nonlinearity in OAC relationships (Morel 2009). The latter manifests
with the need to regionally tune VIS algorithms for specific waters.
For example, tunings for arctic waters account for higher aCDOM(440)
relative to Ca content (Matsuoka et al. 2013; Lewis and Arrigo 2020),
and tunings for antarctic waters account for lower aCDOM(440) relative
to Ca (Dierssen and Smith 2000). The latter is also in keeping with
highly nonlinear formulations of OC algorithms, e.g., the number of
power terms used in the polynomial model to fit Ca to ratios of Rrs

is routinely four (Morel 2009; O’Reilly and Werdell 2019). Linearity
and loglinearity of CDOM algorithms increases with increasing spec-
tral separation of wavelengths (Hooker et al. 2020, 2021a; Houskeeper
et al. 2021). The results herein suggest that differences in linearity cor-
respond, in part, to differences in the separability of signals associated
with spectral range.

10. Line 447: “are stable” –> “are [un]stable” ?
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Authors Response 19: The original usage, i.e., stable, was correct, but the
authors revise this paragraph to improve clarity and reduce length, as described
in Authors Response 18.

11. Line 460: I was not persuaded that item c) was actual, independent evidence

Authors Response 20: The authors revise this text to help clarify their mean-
ing, i.e., that their findings are supported by both the variance captured by
the leading and secondary eigenfunctions, as well as the correlations observed
between the S matrixes and the biochemical parameters. The latter is also
further clarified by Fig. A2. The authors reorganize L455–465, as follows:

“The similarities favor primacy of aCDOM(440)—rather than Ca—as the
predominant driver of optical variability for waters, including those of
the open ocean, summarized briefly, as follows: a) the leading eigenvec-
tor from each dataset—capturing approximately 60% of the variance—
indicates opposing anomalies for longer versus shorter wavelengths with
minimal amplitude in the blue-green transition domain. The secondary
eigenvector from each dataset—capturing approximately 32% of the
variance—indicates internal VIS spectral dependencies characteristic
of Ca absorption, including a maximum near the blue-green transition;
b) the S1 term representing the stretching and compressing necessary
to best represent the data using the leading eigenfunction is always
more strongly associated with variability in aCDOM(440) than Ca val-
ues. The S2 term more strongly associates with field observations of
Ca than aCDOM(440) for two of the three datasets. . . ”

12. Lines 489: I encourage authors to include equations describing the processes written
about here.

Authors Response 21: The reviewer has requested that the authors include an
equation regarding L489, which describes the negative buoyancy of particles—
which is parameterized following Stokes law (1851). While the authors are
generally supportive of including equations, the authors perceive sinking rate
parameterizations as only indirectly relevant to the manuscripts findings. The
authors will therefore add clarity regarding the reviewer’s comment by adding
text, plus a citation regarding the following line which the reviewer also may
have been intending. The authors perceive that this revision helps clarify the
material without adding unnecessary complexity. The authors revise L489–
490, as follows:

“Spatial differences occur, perhaps, due to negative buoyancy of par-
ticles—e.g., sinking velocity increases proportionally with density dif-
ferences and the squared particle radius (Bach et al., 2012)—driving
particulate organic distributions away from the surface where remote
sensing signals are weighted (e.g., Morel and Berthon 1989).”
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13. Line 560: Consider citing Prochaska & Frouin (2025) here.

Authors Response 22: The authors add Prochaska and Frouin (2025) at L560.
Based on additional revisions described in Authors Response 30, the full revi-
sion at L569 is as follows:

“Accurate retrieval of aCDOM(440) is, therefore, prerequisite to—not
separate from—accurate retrieval of phytoplankton properties, in keep-
ing with the trajectory of research into simultaneous inherent optical
property (IOP) inversions (e.g., Maritorena et al. 2022; Lee et al. 2002;
Werdell et al. 2013), machine learning approaches (O’Shea et al. 2021),
and degeneracy (Prochaska and Frouin 2025).”

14. The conclusions are largely summary + self-promoting. If that is the standard for this
Journal, no problem.

Authors Response 23: While the Biogeosciences submission guidelines do not
provide any specialized requirements relating to the composition of the Conclu-
sion section (https://www.biogeosciences.net/submission.html), the authors
appreciate this feedback on the Conclusion text. The authors revise the Con-
clusions section, as follows:

“Spectral observations of aquatic environments produce leading
eigenfunctions of AOPs more strongly correlated to variability in
CDOM absorption than Ca. Greater independence of OACs and
the elevated importance of CDOM variability in governing aquatic
light variability are consistent with advancing knowledge of micro-
bial loop dynamics and an increasing diversity of trophic pathways
represented therein (Azam 1998). The consistency of results using
three independent datasets strengthens support for and are based on
consistent results for the eigenanalyses—including the spectral shapes
of the eigenfunctions and the partial correlation coefficients relating the
eigenfunctions to biogeochemical variables—plus performance metrics
of OC algorithms. The eigenanalyses indicate accurate and indepen-
dent estimation of CDOM as prerequisite to retrieval of Ca and other
phytoplankton parameters. However, not every bio-optical dataset,
quality control protocol is assessed, not all applicable OACs are
present in the datasets, and the eigen analyses capture linear—but
not nonlinear—patterns of variability. and satellite OC algorithms are
found herein to produce values more highly correlated with CDOM
than Ca. Confounding signals identified for CDOM and Ca are con-
sistent with early investigations into the drivers of color variability
(Yentsch 1960), as well as subsequent work assessing vulnerabilities in
band-ratio algorithms for characterizing Ca (Dierssen 2010; Sauer et
al. 2012). Spectrally expansive data products have been shown to
improve retrieval of aCDOM(440) independent of Ca (Sathyendranath
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et al. 1987; Hooker et al. 2020; Houskeeper et al. 2021), and com-
parisons herein of eigenanalyses using the INV21 and VIS21 complete
spectra versus spectral subsets further support potential opportunities
associated with spectral range expansions. Spectrally expansive data
products have been demonstrated in situ spanning the UV to short-
wave infrared (SWIR) wavelength domain, with the latter formerly
ascribed as null in the ocean color community of practice (Houskeeper
and Hooker 2023). The recently launched OCI sensor of the PACE
mission provides hardware capabilities to support expansive spectral
range observing of the global ocean surface. The findings herein sup-
port opportunities associated with leveraging the spectrally expansive
capabilities of OCI, although further advances in image processing,
atmospheric correction, algorithm design, and applicability of in situ
datasets would be necessary.”

The authors thank Reviewer 1 for their comments and suggestions, which helped the authors
to improve the manuscript.
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Authors Response to Reviewer 2 Comments for Manuscript egusphere-
2024-4163: The primacy of dissolved organic matter to aquatic light variability

9 May 2025

The authors thanks Reviewer 2 for their valuable comments. The authors respond to all comments
below and document resulting modifications to the manuscript, as appropriate. Reviewer 2’s
comments are shown in slanted typeface. The Authors Responses are shown in plain typeface.
The numbering of the Authors Responses continues from the numbering of the Authors Responses
to Reviewer 1 to minimize ambiguity when referencing across response documents. Revised or
added text is indicated in red. All line numbers are indicated with a capital “L” and refer to the
line numbers in the original submitted work. Citations within this response document correspond
to the References section at the end of this document.

Comments from Reviewer 2:

The manuscript proposes a change in paradigm in ocean color remote sensing, providing
evidence that CDOM absorption—rather than Ca—primarily drives water-leaving light
variability. They additionally make a strong case for exploiting information in the INV
range of the spectra, clearly highlighting current limitations in both in situ and satellite
datasets. The work has potentially great scientific implications, as it could change the
way that aquatic light variability is thought, and ocean color algorithms are designed.
However, I believe that the authors should address some comments detailed below to
make their point stronger.

Authors Response 24: The authors thank the reviewer for their positive and
constructive comments.

The authors acknowledge the important role of different OACs in the variability of
aquatic light, with the purpose of ultimately demonstrating the primacy of CDOM
over Ca. OACs in water are typically grouped in three different categories: CDOM,
phytoplankton and non-algal particles (NAP) that can covary or not. However, the
work does not assess the potential contribution of non-algal particles (NAP) to light
variability (apart from briefly mentioning inorganic particles in lines 410-412). How
relevant are NAPs in the study’s datasets? Can their contribution be reasonably
neglected? If so, this needs to be clearly justified. How does this omission in the
datasets limit the findings of the work? How about the extrapolation of the findings
to waters where NAPs contribution may be more relevant.

Authors Response 25: The authors agree with the reviewer regarding the
importance of NAPs to aquatic light variability. Correlation coefficients
relating the principal component time series to NAP variability were not
presented because coincident observations of NAPs were not available. The
challenge stems, in part, from the paradigm noted by the reviewer in their
initial comment: Chlorophyll a (Ca) is generally considered the primary vari-
able in ocean color. As a result, Ca is often the primary—and sometimes
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only—biogeochemical field measurement obtained to accompany observa-
tions of apparent optical properties (AOPs). The RSE2021 dataset was able
to add routine measurements of aCDOM(440), which, in part, made this study
into the primacy of aCDOM(440) possible.

However, despite the challenging deficiency in observations of NAPs for
many applicable datasets, the RSE2021 dataset presented herein does cap-
ture substantial variability in NAP based on water bodies sampled. For
example, many riverine systems frequently contain high concentrations of
suspended sediments, and examples of sediment-rich rivers—namely the Col-
orado, Napa, and Columbia rivers—are represented in the RSE2021 eigen-
analysis. Similarly, an expansive range in NAP is represented by lacustrine
waters sampled spanning Crater Lake (OR) to Pinto Lake (CA), plus the
sampling or estuaries such as Elkhorn Slough (CA) and San Francisco Bay
(CA). This is not true for the RSE2022 or RSE2007 datasets, which did
not include inland waters, and so the similarity in variance captured by the
leading eigenfunction for all datasets (within ±1%) suggests that NAPs are
not strongly modifying the leading eigenfunction of RSE2021. This scenario
is similar to the discussion of detrital absorption in Authors Response 4.

For a previous publication, the authors derived estimates of the coefficient
for particulate backscattering at 443 nm, bbp(443), based on an inversion
scheme applicable to case-1 and case-2 waters (Matsuoka et al. 2013) and
with updates for coastal waters (Hooker et al. 2021a). The estimation indi-
cates an expansive range in bbp(443) spanning 0.001 to 0.329m−1. Combined
with the representation of riverine, lacustrine, and estuarine water bodies
wherein inorganic particle concentrations were highly variable, the bbp(443)
range indicates that the RSE2021 eigenanalysis is anticipated to capture
a non-negligible amount of in situ variability associated with NAPs. The
authors show the dataset quartile characteristic for the synthetic bbp(443)
coefficients in Table A1 (also discussed in Authors Response 29) to clarify
elements of NAP representation by RSE2021. The authors do not test the S
matrix values against the synthetic bbp(443), because this could contribute
to misinterpretation based on presently uncharacterized dynamics of the
bbp(443) algorithm performance, which is outside the scope of the submitted
manuscript.

Next, the authors note that the leading eigenfunction of the RSE2021 dataset
explained 0.60 of the variance in the dataset. The leading eigenfunction
produced a spectral shape similar to CDOM absorption and also indicated
very high linear correlation to aCDOM(440) with r = 0.92 (the somewhat
lower value of 0.80 shown in Fig. 1 is a partial correlation value that includes
accounting for effects of Ca, discussed in Authors Response 39), or an r2

of 0.85. This suggests (approximately) that aCDOM(440) captures on the
order of 0.85 of the 0.60 captured by ψ1, which amounts to 0.51. Even if
all other variance in the dataset was driven by a single other OAC (e.g.,
Ca, NAP, but also aphy referencing Authors Response 26), the OAC could
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not achieve primacy because only 0.49 of the total variance remains. For
the INV domain, the results are much stronger and suggest aCDOM(440)
captures greater than 0.70 of the variance. The results of these comparisons,
therefore, do not suggest primacy of NAPs for the datasets tested herein.

The results of the datasets herein correspond to large-scale (e.g., global)
dynamics. Targeted subsets of these datasets would not necessarily show
similar importance of aCDOM(440). For example, lacustrine datasets with
a wide range in Ca—e.g., combining Crater Lake, (CA) and Clear Lake
(CA)—might be anticipated to produce spectral variability most associated
with Ca. Similarly, an onshore to offshore transect from the mouth of the Rio
de la Plata—wherein very high suspended sediments injected into the coastal
ocean by river discharge are mixed and diluted with oceanic water—might
be anticipated to produce spectral variability most associated with changes
in suspended sediment concentrations. The authors clarify that the results
of the large-scale analyses do not apply to individual or regional scenarios
by adding discussion after L515, as follows:

“The findings presented herein correspond to datasets spanning
globally representative or broad oceanic waters, and do not rank the
importance of drivers in any specific region. For example, regional
scenarios wherein high variability of non-algal particles (NAPs) is
associated with riverine flux or resuspension would not be antic-
ipated to reflect the findings herein supporting aCDOM(440) pri-
macy.”

The authors also agree with the reviewer that not having field observations
of bbp or NAP (or detrital absorption, as described in Authors Response 7)
is an important limitation to address. The authors clarify that the findings
indicate high importance of CDOM absorption—despite the effects of Ca

but also NAP and other OACs—but that adding field sampling of other
OACs would help strengthen the analysis and provide more opportunities
to explore additional relationships. The authors add discussion at L515, as
follows:

“The findings demonstrate high variance captured by the lead-
ing eigenfunction and the eigenfunction’s strong association with
aCDOM(440) variability, but the findings would be strengthened by
adding field sampling for additional biochemical or bio-optical pa-
rameters. For example, RSE2021 demonstrates the importance of
combining spectrally expansive radiometry and observations of Ca

with observations of aCDOM(440). Also adding observations of non-
algal particles (NAPs) and detrital absorption would help to further
improve clarity on the eigenfunction interpretations, and, perhaps,
contribute to a better understanding of the subsequent modes.”
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CDOM absorption coefficient (aCDOM) is an optical property itself, more directly
related to Lw than Ca. Therefore, one could argue that it would be fairer to use
phytoplankton absorption (aphy) rather than Ca in this study. They additionally have
another important difference: while the spectral shape of CDOM absorption is smooth
and can be roughly defined by two quantities (aCDOM at a reference wavelength, e.g.,
440 nm, and an exponential decay exponent), aphy can present much more spectral
variability in natural waters, not being as easily parameterized. Can these differences
give an “advantage” to CDOM in the analyses presented in the manuscript, particularly
when computing linear correlation coefficients with the eigenfunctions? Please include
any pertinent discussion about this.

Authors Response 26: Similar to detrital absorption (Authors Response 4)
and NAP (Authors Response 25), the authors are constrained by the sam-
pling activities of globally representative radiometric datasets and their cor-
responding field observations—but the analyses nonetheless are informative
regarding other OACs. For example, the likelihood of a scenario wherein vari-
ability in Ca to aphy could alter the findings presented herein is challenged by
the strength of the results concerning aCDOM(440)—including the variance
calculations discussed in Authors Response 25. Briefly, the results presented
herein support very high correlation of the leading eigenfunction to log-
transformed aCDOM(440), i.e., greater than 0.9 for the RSE2021, RSE2022,
and RSE2007 datasets. The relationships to aCDOM(440) are also highly
linear, shown in Fig. A2 (introduced in Authors Response 7), which also
presents Pearson’s correlation coefficient (ρ) and Spearman’s rank correla-
tion coefficient (herein ρ̃) side-by-side for comparison:

Fig. A2. Relationships between the S1 (top row) and S2 (bottom row) matrix predictors to
CDOM absorption (top row) and Ca values (bottom row). Pearson’s (ρ) and Spearman’s
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(ρ̃) correlation coefficients are overlaid, with bold type indicating significance at P < 0.01.

The partial correlation coefficients presented in Fig. 1 for aCDOM(440) and
Ca as they relate to the leading eigenfunction are also quite disimilar. For
example, RSE2021 indicates that correlation of aCDOM(440) to the leading
eigenfunction (and accounting for covariance with Ca) is 0.80. The opposite
comparison—correlation of Ca to the leading eigenfunction and accounting
for covariance with aCDOM(440)—is 0.11. The magnitude of these differences
(0.80 versus 0.11) does not support the results being dependent on variabil-
ity in Ca to aphy, which are generally highly correlated. For example, as
described in Roesler and Barnard (2013):

“The line height absorption is shown to be significantly related to
the extracted chlorophyll concentration over a large range of natural
optical regimes and diverse phytoplankton cultures.”

The spectral shape of aphy is also routinely derived from Ca (Morel 2009), i.e.,
consistent with the focus herein on assessing the validity of Ca primacy. The
authors clarify potential sources of variability in the relationship between Ca

and phytoplankton absorption by adding discussion to L453, as follows:

“Phytoplankton absorption—rather than Ca—was not tested due
to the limitations of the datasets. Although phytoplankton absorp-
tion is generally considered to correspond to Ca, processes such as
pigment packaging can add variability relevant to the correlations
presented herein (Bricaud et al. 2004).”

Following the previous comments, why did the authors decide to use only Pearson
correlation? I suggest they consider including (additionally) a non-linear correlation
coefficient (e.g., Spearman’s rank correlation). This could enrich the results and dis-
cussion.

Authors Response 27: The authors add Spearman’s rank correlation in
Fig. A2, which they also describe in Authors Response 7 of their responses
to Referee 1. The authors find that the results from Spearman’s rank corre-
lation are extremely similar to those using Pearson’s rank correlation. The
authors show the Spearman’s rank correlation values in Fig. A2, which also
shows that the relationships between the S1 matrix and log-transformed
aCDOM(440) are highly linear. The authors thank the reviewer for the sug-
gestion to also add Spearman’s rank correlation.

I think the work could greatly benefit from exploiting the datasets a bit more, com-
plementing the results of the principal components analysis. For example:
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1. For completeness and better contextualization, I suggest including a figure with
the measured spectra when describing each dataset, so the reader can have a
quick visualization of the spectral variability represented in the work.

Authors Response 28: Fig. A1, as described in Authors Response 6,
presents the mean spectra from each dataset, plus the shapes of the
changes associated with each eigenfunction. The authors believe that
these examples are more informative given the high quantity and overlap
of the spectra, combined with the eigenfunctions in Fig. A1 representing
97% of the variance in the datasets.

2. It would also be beneficial to report the correlation coefficient between aCDOM
and Ca in the considered datasets, as well as a table with the median, quartiles and
ranges of aCDOM and Ca measurements. Could it be the case that aCDOM can
“explain” more variance because it already had greater variability in the datasets,
while Ca varied in a more limited range (maybe it is necessary to consider some
relation between aphy and Ca to do this comparison)?

Authors Response 29: The reviewer makes multiple good points, and the
authors address each element, as follows:

• Report the correlation coefficient between aCDOM and Ca in the
considered datasets:

The authors add text stating the correlation coefficients for
aCDOM(440) and Ca to L287:

“. . . captured by a remote sensing algorithm. Pearson’s cor-
relation coefficients comparing Ca and aCDOM(440)—measured
or derived algorithmically—are 0.812, 0.912, and 0.909 for the
RSE2021, RSE2022, and RSE2007 datasets, respectively.”

• [Add] a table with the median, quartiles and ranges of aCDOM and
Ca measurements:

Table A1 at the end of this Authors Response shows the requested
information—plus synthetic bbp(443) to also expand on Authors Re-
sponse 25.

• Could it be the case that aCDOM(440) can “explain” more variance
because it already had greater variability in the datasets, while Ca

varied in a more limited range?

The authors investigate this scenario and confirm it is not supported
based on comparison of dynamic ranges expressed in the datasets.
Briefly, aCDOM(440) confers greater dynamic range than Ca in the
RSE2007. Ca confers greater dynamic range than aCDOM(440) in
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RSE2022. aCDOM(440) and Ca confer the same number of decades of
dynamic range in RSE2021. Although scenarios wherein variability in
aCDOM(440) is greater, less than, or comparable to that of Ca arise,
the results indicating primacy of aCDOM(440) are consistent across
datasets. The authors add discussion at 467 to discuss the dynamic
range expressed in the biochemical quantities for the datasets, as
follows:

“The datasets assess herein represent aCDOM(440) spanning
greater, lesser, or comparable dynamic range compared to Ca,
indicating that the result of aCDOM(440) primacy is not associ-
ated with differences in the dataset ranges of the biochemical
constituents.”

Table. A1. The quartile summary of biogeochemical quantities from the RSE2021, RSE2022,
and RSE2007 dataset field observations, plus estimated values for bbp(443) derived following
Matsuoka et al. (2013) and Hooker et al. (2021a). Out-of-bound values are indicated as limit
of detection (LOD).

Dataset Parameter Min Lower Median Upper Max

Quartile Quartile

aCDOM(440) RSE2021 0.0010 0.0175 0.4550 0.2185 2.1460
[m−1] RSE2022 0.0015 0.0028 0.0044 0.0088 0.0795

RSE2007 0.0004 0.0027 0.0040 0.0124 0.1242
Ca RSE2021 0.0590 0.2925 0.7440 2.690 44.1960

[mgm−3] RSE2022 0.0190 0.0580 0.1015 0.2520 4.1510
RSE2007 0.0190 0.0780 0.1450 0.4815 7.3180

bbp(443) [m
−1] RSE2021 LOD 0.0010 0.0050 0.0290 0.3290

3. Finally, I suggest the authors include an example of improved Ca retrieval after
determining aCDOM first. I know this is a non-trivial and challenging request,
but I think it would be a very convincing proof that the change of paradigm is
necessary.

Authors Response 30: The authors acknowledge the reviewer’s point, but
respectfully do not perceive that adding an example of Ca retrieval would
improve the manuscript. The authors summarize four main reasons for
their perspective, as follows:

First, improving phytoplankton biomass estimation (e.g., Ca) via simul-
taneous or prior estimation of dissolved organic absorption is very well
documented in the literature. Briefly, the topic supports the development
of so-called semi- and quasi-analytical algorithms—including the Gen-
eralized Inherent Optical Property (GIOP), Garver Siegel Maritorena
(GSM), and Quasi-Analytical Approach (QAA) algorithms (e.g., Mari-
torena et al. 2022; Lee et al. 2002; Werdell et al. 2013)—and is inherent
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in machine-learning approaches (e.g., O’Shea et al. 2023). In these and
many other instances, advances in quantifying phytoplankton biomass is
shown via corresponding retrieval of dissolved organic (and other) optical
properties.

The authors will improve clarity of the historical context, by modifying
L560–561, as follows:

“Accurate retrieval of aCDOM(440) is, therefore, prerequisite to—
not separate from—accurate retrieval of phytoplankton proper-
ties, in keeping with the trajectory of research into simultaneous
inherent optical property (IOP) inversions (e.g., Maritorena et
al. 2022; Lee et al. 2002; Werdell et al. 2013), machine learning
approaches (O’Shea et al. 2021), and degeneracy (Prochaska and
Frouin 2025).”

Second, demonstrating that Ca retrieval is improved by first determining
aCDOM(440) is documented by Fig. 2. In this figure, all three datasets in-
dicate higher R2 values for Ca estimation using an aCDOM(440) algorithm
(panels d–f) compared to that derived using the OC algorithm (panels
a–c). In other words, Fig. 2 proves that estimation of Ca improves when
aCDOM(440) is derived first, because Fig. 2 shows that a loglinear fit of
algorithmic aCDOM(440) improves Ca estimation. The manuscript states
on L384–386:

“Although the differences observed are slight for RSE2007 (in-
dicating the dataset adheres well to case-1 waters), all datasets
nonetheless produce stronger R2 statistics when comparing the
OC algorithm values to aCDOM(440) versus Ca.”

Third, the suggestion would unnecessarily expand the scope of the sub-
mitted manuscript, which already approaches 20 pages without including
figures or other revisions described herein. Responsibly producing a Ca

algorithm would also require much more analysis to ensure that the ob-
servations being fit—as well as the fitting procedure—produce Ca estima-
tions that are representative of natural waters. The Ca algorithm would
also require addition of substantial new text to describe the quantification
of uncertainties and define the limitations for the new Ca approach.

Comments from another reviewer also provide an example as to why the
authors do not anticipate that adding a new approach for estimation
of Ca would be beneficial: algorithms produced to investigate a topic
or provide an example can also reduce clarity of a manuscript or cause
confusion later. For example, a notebook analysis discussed in Authors
Response 3 invokes algorithms (e.g., the blue and green dots from the
link in Authors Response 3) that were previously produced for compar-
ison purposes to investigate whether dissimilar datasets—corresponding
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to significant differences in data quality and bias—produce similar degra-
dations in algorithmic performance when the spectral range of the algo-
rithmic relationship is decreased.

Fourth, the authors perceive that adding a new method for estimating
Ca would decrease the clarity of the manuscript by redirecting the focus
towards Ca estimation and ocean color algorithm development.

Other minor and more specific comments are:

• The references throughout the manuscript to “end-member analysis (EMA)” are
somewhat confusing. At first I thought that it was a stablished methodology (the
term is actually used in other disciplines), but then I realized that it is unrelated
to the methodologies used in other disciplines, and it rather seems to refer to a
type of algorithm developed by the authors in previous works, referring to the
use of wavebands in the extremes of the spectra to estimate CDOM absorption.
I think this should be clearly stated in the manuscript to avoid any confusion.

Authors Response 31: The authors clarify on this point by defining end-
member analysis at its first usage. The authors revise L106–107 (also
described in Authors Response 2), as follows:

“. . . based on using ratios of the most spectrally separated op-
tical data products (Hooker et al. 2013), especially those from
the UV and NIR spectral domain, an approach hereafter termed
end-member analysis (EMA) following Hooker et al. (2020). Con-
servative waters. . . ”

• Lines 19-20: “Spectral subset eigen analyses indicate expansive spectral range
observing improves the independence in retrieving CDOM absorption and Ca.” I
cannot understand this sentence, please rephrase it.

Authors Response 32: The authors revise L19–L20, as follows:

“Eigenanalyses applied to spectral subsets of the data indicate
expansive spectral range observing improves the independence in
retrieving CDOM absorption and Ca.”

• Lines 58-84: Although I find the information summarized in these paragraphs
very interesting, I do not think that the level of details included here is necessary,
particularly because it does not flow with the reading of the previous and following
paragraphs. I would recommend shortening this part and reducing the number
of citations to those only necessary to support the current work.
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Authors Response 33: The authors perceive this material as necessary to
understand the differences in bias between the in situ datasets leveraged
herein. To improve flow based on the reviewer’s comment, the authors
shorten and re-organize this material so that the discussion occurs nearer
to existing methodological discussion of the in situ datasets. The authors
remove L71–84 and add a portion of this text at L189, as follows:

“. . . approximately the length of the downward-pointing radiance
radiometer (Hooker et al. 2020). Improvements in sampling rates
support management of high-frequency, non-Gaussian variability
in flux observed by an above- or in-water instrument (due to glint
and wave focusing, respectively), thereby expanding the spectral
range of optical data products to preserve INV information and
retaining information associated with spectral signal amplitudes
or brightness (Houskeeper et al. 2023; 2024).

SOTA advances in hyperspectral instrumentation include hy-
bridspectral sensing configurations (Hooker et al. 2022), wherein
microradiometer and spectrograph observations are obtained in
concert, with the multispectral microradiometer providing nec-
essary quality control for the hyperspectral spectrograph. The
quality control is desirable, in part, because COTS spectrographs
suffer from slower integration times, narrower dynamic range, and
a degraded signal-to-noise ratio (SNR) relative to COTS micro-
radiometers (Houskeeper et al. 2024; Kudela et al. 2019; 2024).
In addition, a radiance control arm positions the Lu(z, λ) aper-
ture near the water surface and approximately aligned with the
upward-pointing irradiance radiometer (Hooker et al. 2018a).
Improvements in the number of spectrograph pixels to as high as
2,048. . . ”

This also requires minor revisions to L120 to preserve presentation of
acronyms, as follows:

“. . . preclude most non-visible—or invisible (INV)—data prod-
ucts. . . ”

As well as to and L101:

“. . . spectral range, resolution, and signal-to-noise ratio (SNR) of
legacy ocean color datasets. . . ”

• Line 84: The reference to Ruddick et al. (2023) is missing.

Authors Response 34: The authors thank the reviewer for catching the
missing reference. The Ruddick et al. 2023 citation is removed in Authors
Response 33.
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• Line 104, 154: I am not familiar with the expression “spectrally expansive”, if this
is well-known terminology, please disregard this comment, otherwise, I suggest to
briefly define what the authors mean by this.

Authors Response 35: The authors add a sentence defining spectrally
expansive following its first usage on L104, as follows:

“Spectral expansivity herein refers to the spectral range of (com-
pliant) data products, with the most spectrally expansive obser-
vations corresponding to those representing the greatest spectral
range.”

• Lines 151, 199, 204, 210, 221, etc. What are contemporaneous measurements?
Do you mean simultaneous?

Authors Response 36: The authors revise the text to define
contemporaneous—following the Merriam-Webster dictionary—at its
first usage on L63, as follows:

“. . . This era of development also included contemporaneous—
i.e., occurring during the same time—advances in. . . .”

• Line 268: “the square root transformation improves normality” Why? Is there a
reference to support this assertion?

Authors Response 37: Transforming a dataset using, e.g., the natural log-
arithm can be helpful for improving normality so that the assumptions
of some parametric statistical tests are approximately satisfied. Normal-
ity may be assessed, e.g., by visually inspecting histograms of the data
products, as well as using metrics such as the Shapiro-Wilk test statistic,
W , wherein values closer to 1 indicate normality.

In their study, the authors tested various transformations of the differ-
ent datasets using W and found that no one transformation type was
optimal across all wavelength domains. Overall, the authors found that
W was maximal in the longer wavelength domain (> 500nm) if logarith-
mic transformation were applied, and maximal in the shorter wavelength
domain (< 500nm) if root transformations were applied. The authors
applied a square-root transformation because most absorption variabil-
ity in aquatic optics is associated with the blue (< 500nm) domain (e.g.,
Chase et al. 2013). In addition, the authors performed sensitivity testing
to test whether the results were insensitive to the transformation type.
Briefly, natural-log transformation, square-root transformation, and no
transformation all produced eigenfunctions with the same approximate
spectral shapes.

The authors revise L268 to clarify this topic, as follows:
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“. . . observations of the square root of
[
LW (λ)

]
N
, hereafter

[LW (λ)]0.5N , because the square-root transformation was found
to improve normality in the blue spectral domain based on the
Shapiro-Wilk test statistic, W . Sensitivity testing was performed
by reproducing the eigenanalyses using natural-log transforma-
tion, as well as no transformation, to assess whether the spectral
shapes of the eigenfunctions were approximately insensitive to
the transformation treatment.”

• Lines 270-276: I must admit that I am not very familiar with PCA applied to
spectral datasets, and it would have greatly helped if the authors included matri-
ces dimensions in equations (3) and (4).

Authors Response 38: The authors revise the text to add dimension
information based on the reviewer’s comment. First, the authors revise
L271, as follows:

“. . . in which C is the covariance matrix of the [LW (λ)]0.5N values
for each dataset, with square dimensions, each corresponding to
the number of wavelengths in each dataset. The ψ value de-
notes. . . ”

Next, the authors revise L278, as follows:

“. . . (where i is the eigenfunction index). The length of each Si

column is the number of observations in the underlying dataset.”

• Line 283-284: ”after adjusting for covariance with the biogeochemical quantity
y.” How was this done? Please describe or add a reference.

Authors Response 39: Adjusting the correlation coefficient for covariance
with another quantity is a statistical technique termed the partial corre-
lation coefficient. The authors add a reference, plus re-organize L281–284
to add clarity, as follows:

“Because biogeochemical parameters covary, e.g., Ca and
aCDOM(440) are strongly correlated (Morel and Prieur 1977), par-
tial correlation coefficients (Fisher 1924) are derived using nota-
tion wherein ρi,x|y indicates correlation of Si with biogeochemical
quantity x after adjusting for covariance with the biogeochemical
quantity y.”

• Lines 335: “or fluorescence properties” instead of ”of fluorescence properties”?
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Authors Response 40: The authors thank the reviewer for catching this
typo. The authors revise the text on L335, as follows:

“. . . the spectral domains of Ca absorption or fluorescence prop-
erties.”

• Lines 438-440: I do not understand the sentence that begins with: “The variability
may, perhaps, correspond in part to. . . ” I do not follow the connection with the
previous sentence. Please rephrase it.

Authors Response 41: The authors agree that this sentence should be
revised to improve clarity, and revisions to the sentence (and paragraph
in which this sentence occurs) are described in Authors Response 18.
The revision is, as follows:

“Bio-optical formulations to derive optical properties as a func-
tion of Ca do not require primacy of Ca. Rather, algorithms
parameterize evolution in optical properties—notwithstanding
observational challenges—based on empirical OAC relationships
(Morel and Prieur 1977; Morel 2009). Nonetheless, variability in
OAC relationships exists for in situ water bodies (Hansell and
Orellana 2021). Empirical approaches such as the OC family of
algorithms must mitigate observational artifacts (Uitz et al. 2006;
Kudela et al. 2019, 2024), plus regional variability and nonlin-
earity in OAC relationships (Morel 2009). The latter manifests
with the need to regionally tune VIS algorithms for specific wa-
ters. For example, tunings for arctic waters account for higher
aCDOM(440) relative to Ca content (Matsuoka et al. 2013; Lewis
and Arrigo 2020), and tunings for antarctic waters account for
lower aCDOM(440) relative to Ca (Dierssen and Smith 2000). The
latter is also in keeping with highly nonlinear formulations of OC
algorithms, e.g., the number of power terms used in the polyno-
mial model to fit Ca to ratios of Rrs is routinely four (Morel 2009;
O’Reilly and Werdell 2019). Linearity and loglinearity of CDOM
algorithms increases with increasing spectral separation of wave-
lengths (Hooker et al. 2020, 2021a; Houskeeper et al. 2021). The
results herein suggest that differences in linearity correspond, in
part, to differences in the separability of signals associated with
spectral range.”

• Line 580: “aCDOM and Ca absorption” instead of “aCDOM and CDOM absorp-
tion”?

Authors Response 42: The authors thank the reviewer for catching this
mistake. The authors revise the text, as follows:

13



“. . . confounding effects of spectral overlap in Ca and CDOM ab-
sorption. . . ”

The authors thank Reviewer 2 for useful comments and suggestions, which helped the
authors to improve the manuscript.
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