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Abstract

Perfluoroalkyl acids (PFAS) have become the focus due to their physicochemical
stability and potential toxicity. In this study, the investigation aimed to characterize
the pollution levels, identify the primary sources, and assess the health risks
associated with PFAS in PMa.s. The average concentration range for PFAS were
between 46.68 and 181.63 pg-m3, with the main components being perfluorooctanoic
acid (PFOA), perfluorooctane sulfonate (PFOS), and perfluorobutanoic acid. PFAS
concentrations in PMz s were greatly influenced by the short- and medium-range air
masses, and markedly elevated by industrial activities in surrounding urban areas. The
results by positive matrix factorization revealed that PFOA-based products (38.2%)
and degradation byproducts of fluorotelomer alcohols (26.7%) were the predominant
sources. The average daily inhalation of 17 PFAS fluctuated greatly (median: 4.35 %
1073 to 8.78 pg-(kg-d)™"), showing different seasonal variations with estimated daily
intake of PFOA and PFOS reaching peak value in winter (5869.39 pg) and spring
(4219.41 pg), respectively. The research indicated that seasonal regulation of
PFOA-related manufacturing and joint pollution control with neighboring cities could
reduce PFAS levels in PM2s. The results provided theoretical support for government

to make targeted control plans for PFAS and basic data for relevant researchers.

Keywords: PFAS, , PMF model, source apportionment, health risks.
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1 Introduction

Perfluoroalkyl Acids (PFAS) can form smooth surfaces that are waterproof,
oil-resistant, and stain-resistant, hence their widespread application in various
industrial productions, such as paints, surfactants, coatings, emulsifiers, and fire
retardants (Lindstrom et al., 2011). During the production and utilization of
PFAS-containing products, PFAS are released into a variety of environment.
Consequently, PFAS could be detected in the human body (Cardenas et al., 2017),
the atmosphere, water, or snow (Dreyer et al., 2009; Hu et al., 2016; Wang et al.,
2017) and wildlife (Sedlak et al., 2017). PFAS, having environmental stability,
potential for long-range transport and toxicity, cause significant risks to
environment and human health (Wang et al., 2022a; Wu et al., 2022). PFAS levels
in the atmosphere have attracted adequate attention due to the bioaccumulation and
potential toxicity of PFAS.

The PFAS concentration range in the atmosphere of Japan and Malaysia were
3.7-330 pg'm>, with perfluorobutanoic acid (PFBA) exhibiting the highest
concentrations (Wang et al., 2022b). The atmospheric concentration range of
Y 13PFAS in Chinese cities was between 6.19 and 292.57 pg-m, with an average
value of 39.84 + 28.08 pg'm>, exceeding the values in other countries. The
predominant constituent was identified perfluorooctanoic acid (PFOA) (Han et al.,
2019). PFOA and perfluorooctane sulfonate (PFOS) were the primary components of
PFAS in the atmosphere of Shenzhen, accounting for approximately 35% and 22% of
PFAS (Liu et al., 2015a). The PFAS peak concentrations occurred during spring
(97.5-709 pg-L"), while autumn recorded the lowest levels (9.27-105 pg'L™),
exhibiting a seasonal variation in Chengdu (Fang et al., 2019). Due to their low
volatility, PFAS tend to be more prevalent in the particulate phase (Liu et al., 2018).
The previous study found that most PFAS in the atmosphere are concentrated in the
particle phase rather than the gas phase, especially perfluoroalkyl carboxylic acids
(PFCAs) tending to distribute in PM2s (Heydebreck et al., 2016; Lin et al., 2020).

PM:s have the capacity to penetrate deep into the lungs, so health risks of
3
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PM:s-bound PFAS have more health risks than PFAS alone, and the synergistic
effects of PFAS in PM2s have become a key public health priority (Qiao et al.,
2024). In a whole, there is a lack of seasonal comparative studies on PM2 s-bound
PFAS in densely populated inland urban areas.

PFAS can be directly emitted into the atmosphere during production,
transportation, application, and disposal processes (Dong et al., 2021), and enter other
environment through atmospheric dry and wet deposition (Barton et al., 2000).
Studies have demonstrated that long range atmospheric transport (LRAT) is a
significant process influencing the distribution of PFAS (Gawor et al., 2014; Jahnke et
al., 2007), serving as a key source for remote inland regions (Ellis et al., 2004; Murr,
2020) and even polar (Wang et al., 2014). Receptor model was successfully used in
source apportionment of PFAS. Han et al. (2022) employed positive matrix
factorization (PMF) to identify four sources of PFAS within the atmosphere.
Meanwhile, Chen et al. (2021) and Wang et al. (2022b) combined principal
component analysis with back-trajectory model to assess air mass influence PFAS
concentrations in precipitation from the Tibetan Plateau and airborne particulate
matter in Chengdu, China. Direct emissions associated with fluoropolymer
manufacturing and indirect contributions from incomplete degradation of precursors
are the main sources of PFAS in the atmosphere (Barber et al., 2007). For instance,
fluorotelomer alcohols (FTOHs) are oxidized by hydroxyl radicals leading to the
formation of PFAS (Thackray and Selin, 2017). PFAS are known to be carcinogenic
and exposure assessments were conducted in previous studies. The average daily
inhalation (ADI) of PFOA and PFOS were quantified, ranging from 0.05-11.97
pg-(kg-d)! and 0.03-8.90 pg-(kg-d)!, respectively (Lin et al., 2022; Liu et al.,
2015a; Liu et al., 2023; Liu et al., 2018). According to human epidemiological
studies, the European Food Safety Authority (EFSA) has delineated a tolerable
weekly intake for PFOS at 13 ng-kg™' and for PFOA at 6 ng-kg™ (Yeung et al.,
2019). In brief, few studies have begun to focus on the source and health risks of
PFAS, however no systematic studies have been conducted of PFAS in PMas.

Given a comprehensive research of PFAS in PMz s is important for enhancing
4
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our understanding of the environmental activity, so the pollution characteristics,
sources and health risks of PMa2s-bound PFAS were studied. The PMazs samples
were collected in Zhengzhou, central China, characterized by dense population
(12.828 million resident population in 2022) (Statistics, 2023) and heavy PMas
pollution (47.7 pg'm> in 2022, exceeding the national average by 64.5%)
(Department of Ecology and Environment of Henan Province, 2022; Ministry of
Ecology and Environment of the People’s Republic of China, 2022), and 17 PFAS
were analyzed in this study. The objectives of this study were (1) to characterize
seasonal variations in PFAS pollution in PMazs, (2) to employ multiple models
(including back trajectory model, potential source contribution function (PSCF)
and PMF model) to identify primary sources as well as potential regional sources
contributing to PFAS, and (3) to evaluate health risks associated with PFAS in
PMzs in four seasons. This study conducted a systemative investigation of
PM:s-bound PFAS in a typical rapidly developing city with relative high PMas
pollution, providing an integrated analysis of the pollution characteristics, source
identification, and health risks of PFAS, thereby expanding the existing data of
knowledge and providing a theoretical basis for the government to make control

plans on PFAS in different seasons.

2 Material and methods

2.1 Sample collection

PM>s samples were collected from the rooftop of the Collaborative
Innovation Building at Zhengzhou University (34°48'N, 113°31'E) on the roof (14
m height), approximately 500 meters east of the West Fourth Ring Road and 2
kilometers south of the Lianhuo Expressway. A total of 60 valid samples were
collected from Dec 2022 to Nov 2023 (details in Table S4). The diameter of the
quartz membrane was 90 mm, with sampling conducted from 10:00 to 09:00 on the
following day by using a sampler (JCH-6120-1, Ju Chuang Environmental inc.,

5
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China) at a flow rate of 100 L-min~!. Before sampling, quartz filters were wrapped
in aluminum foil and baked in a muffle furnace at 450°C for 5 hours to eliminate
organic components. They were then placed in a super clean room (temperature of
20 + 5°C; relative humidity of 50 + 5%) for 48 hours. Clean the instrument with
alcohol cotton before and after each sampling and record the standard state volume
of the sampler. Quartz filters were weighed twice before and after sampling
respectively, and the error between the two weighing was not more than 10 mg.
After weighing the quartz filter, the quartz filter was wrapped in aluminum foil and
stored at —18 °© C. The above experimental processes were carried out in the
ultra-clean room. The samples would be deemed invalid when adverse weather
conditions (such as rain or snow) or power outages occurred during sampling

process.

2.2 Chemicals and reagents

The chemical reagents used in this study were 17 kinds of PFAS mixed
standard solutions and 9 kinds of mass-labeled internal standard mixed standard
solutions. 17 PFAS mixed standard solutions: PFBA, Perfluoropentanoic acid
(PFPeA), Perfluorohexanoic acid (PFHxA), Perfluoroheptanoic acid (PFHpA), PFOA,
Perfluorononanoic acid (PFNA), Perfluorodecanoic acid (PFDA),
Perfluoroundecanoic acid (PFUnDA), Perfluorododecanoic acid (PFDoDA),
Perfluorotridecanoic acid (PFTrDA), Perfluorotetradecanoic acid (PFTeDA),
Perfluorohexadecanoic acid (PFHxDA), Perfluorooctadecanoic acid (PFODA),
Perfluorobutane sulfonate (PFBS), Perfluorohexane sulfonate (PFHxS), PFOS, and
Perfluorodecane sulfonate (PFDS). 9 kinds of mass-labeled internal standard mixed
solutions: *C4PFBA, *C4PFHxA, C4PFOA, BC4PENA, PC4PFDA, BC4PFUNDA,
BC,PFDoDA, 80,PFHxS, and '*C4PFOS. Details could been found in supplementary
table. S1 and S2.
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2.3 Sample preparation and instrument analysis

After the addition of methanol, the extraction was performed 3 times by
sonication. Following the centrifugation (4500 r/min, 15 min), the extracts were
diluted with ultrapure water. The extracts were purified using weak anion exchange
cartridges and then concentrated to 200 pL with nitrogen. Prior to instrumental
analysis, the sample was filtered through a 0.22 um nylon membrane and
transferred into a 2 mL brown injection vial. Detailed steps for sample pretreatment
are documented in Supplementary 1.1.1.

The analysis of PFAS was performed using Ultra High Performance Liquid
Chromatography-Tandem Mass Spectrometry (Ekspcrt nano Lc425, Singapore)
UPLC-MS/MS. The analytical instrument employed consisted of a triple
quadrupole liquid chromatography-mass spectrometer. For chromatographic
separation, a Cyg reverse-phase column (150 mm x 2.1 mm, 1.8 pum) was selected.
Comprehensive details regarding the instrumental analysis can be found in

Supplementary 1.1.2.

2.4 Quality assurance and quality control

During the sample collection, processing, and analysis phases, fluorinated
plastic materials were avoided, such as polytetrafluoroethylene (PTFE). Use
ceramic scissors to cut quartz filters and wipe the scissor with methanol before
cutting another sample to avoid excess particles affecting the next sample. The
polypropylene tubes were used. All samplers and containers were precleaned with
methanol. The concentrations of the prepared 7-point calibration solution were as
follows 0.1, 1, 5, 10, 50, 100, and 200 pg-L~'. The concentration of internal
standard solution was 10 ng/mL. The procedure blanks were prepared using the
same methods as the samples. Two field blank membranes were collected during
each seasonal sampling period. The final concentrations of PFAS were determined
by subtracting the concentrations of the procedure blanks from those of the

7
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samples. Reagent blanks were employed to monitor instrumentation performance.
PFAS were not detected in field blanks and program blanks. The method detection
limit (MDL) was calculated based on three times the standard deviation of the
blanks. If PFAS were not detected in the blanks, MDL refers to a concentration
corresponding to peak intensity with a signal-to-noise ratio (S/N) of 3. Values
below MDL were replaced with half of MDL (Han et al., 2019; Li et al., 2024).
The MDL value and Mark recovery ranged from 0.2-0.3 (ng:'L™') and
71.27%—-118.08% respectively. This study used a dual-filter sampling system: The
Teflon filter was positioned upstream to remove particulate matter, followed by a
quartz filter downstream to capture gas-phase PFAS adsorbed onto the quartz filter
(Turpin et al., 1994). The dual-filter sampling system was used for supplementary
experiments. The sampling location and conditions were consistent with the main
PM; s sampling work, and the sampling time was from 10:00 on June 10, 2025 to 9:00
on the following day. PFAS levels were below the MDL in the quartz filter sample.
This result indicated that the impact of positive sampling artefacts in this study could
be ignored. Since the dual-filter experiment was not conducted throughout the entire
sampling phase, the possibility of positive sampling artefacts could not be completely
excluded. Detailed information on the individual compounds of PFAS is
documented in Table S1 and S2.

The PMF model was used to cluster PFAS with similar sources to identify
potential sources. The ADI model was employed to quantitatively evaluate the
health risks posed by PFAS to human populations. The detailed information of
PMF and ADI models could be found in supplementary 1.2 and 1.3, which

provides an in-depth explanation of these analytical frameworks.

3 Results and discussion

3.1 Characteristics of PFAS in PM; 5

The PFAS average concentrations ranged from 46.68 to 181.63 pg-m~ in Fig.

8



201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

1 across four seasons. However, the increased airflow during pump operation
enhanced the adsorption of gaseous PFAS on quartz filters (Turpin et al., 1994;
McMurdo et al., 2008; Ahrens et al., 2012; Chang et al., 2024), which may lead to
a slight overestimated of PFAS values in this study. The PFAS average
concentrations were comparable to levels observed in Chengdu (150 pg-m) (Fang
et al., 2019), but significantly higher than those recorded in Shenzhen (8.80 pg-m™)
(Liu et al., 2015a) and the average concentration in China (39.84 pg-m™) (Han et
al., 2019). These factors, which characterized this region as having a dense
population, concentrated industrial activities, and serious PMas pollution, may
contribute to higher PFAS levels than other cities. As shown in Fig. 2, the PFAS
concentrations in PMazs peaked during winter and were 1.7 times higher than
autumn level and 3.9 times higher than summer level. The result indicated that
PFAS had obvious seasonal variation. The long-chain PFAS concentrations
(1169.60 pg-m) significantly exceeded that of short-chain PFAS (915.24 pg-m™),
consistent with the findings in researches (Han et al., 2019; Tian et al., 2018).
Detection rates for PFOA, PFPeA, and PFBA in four seasons reached 100%, while
detection rates for PFHxA, PFHpA, PFBS, and PFOS exceeded 80%. During the
study period, PFOA and PFOS along with its primary substitutes (PFOA primary
substitutes: PFBA and PFHxA. PFOS primary substitutes: PFPeA and PFBS.)
accounted for 23%-34% and 18.1%-29.9% of total PFAS, consistent with the

research (Liu et al., 2017).
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Fig. 1. Box diagram of 17 PFAS concentrations in PM s across four seasons

The content of PFOA and its substitutes reached 23% of total PFAS in autumn,
34% in winter and, and 31% in spring and summer. Their applications span across
the chemical industry and domestic activities, particularly in the manufacture of
plastic and rubber commodities (Liu et al., 2015a; Prevedouros et al., 2006). The
rising domestic demand and industrial output of PFOA products were outstanding
trends within China (Du et al., 2023). The mean concentration of PFOA (294.52 +
215.40 pg'm>) in Zhengzhou markedly surpassed those recorded in Chengdu
(42.3+54.4 pg-m™), Ireland (8.9 pg-m™3), and Japan (Tsukuba, 2.6 pg-m~; Morioka,
2.0 pg'm>), but it fell below the levels detected in Changshu, China (556.0
pg'm), a local area of fluorochemical industrial park (Barber et al., 2007; Fang et
al., 2019; Harada et al., 2005; Yu et al., 2018). The content of PFOS and its
substitutes were more than 25% in winter and summer, more than 20% in autumn,
and more than 10% in spring. PFOS is extensively utilized in metal electroplating,
firefighting foams, the semiconductor industry, paper treatment, textiles, and
leather processing (Liu et al., 2017). PFPeA and PFBS are the principal substitutes
to long-chain PFAS in China, being emitted during the production of PFOS
products (Liu et al., 2017). Previous studies have identified PFHxDA as a
degradation byproduct of substances based on FTOHs (Ellis et al., 2004; Loewen

et al., 2005). The PFHxDA concentration escalated from 2.2% in winter to 10.4%

10



242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

in spring, potentially attributable to enhanced atmospheric oxidation.

The seasonal distribution of PFAS in the study region exhibited a pattern
where winter concentrations surpassed those of other seasons, with the lowest in
autumn. This seasonal variation correlated with the heightened PMas pollution
during the winter in this region. It was noteworthy that PFAS concentrations
during autumn (46.68 pg-m~), when were at the minimum, still exceeded the
national average concentration of 39.84 pg'm~ (Han et al., 2019). Long-chain
PFAS (e.g., PFOA and PFOS) were major pollutants and require replacement with
short-chain alternatives (e.g., PFBS and PFPeA) or non-fluorinated substitutes
such as silicon-based emulsifiers. The chemical industry and domestic activities
were the primary contributors to PFAS pollution in this region. A comprehensive
analysis of the pollution characteristics and sources of PFAS in PMas was

important for generating strategies aiming at release PFAS pollution.
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Fig. 2. PFAS concentrations characteristics across four seasons

3.2 Analysis of potential regional sources of PFAS in PM; 5

The content of PFAS in the atmosphere is easily influenced by the transport of

11
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atmospheric air masses (Liu et al., 2015a). As shown in Fig. 3, this study conducted a
meteorological trajectory cluster analysis during the sampling period. The spring
season was most influenced by short-range atmospheric air masses (accounting for
40.4%) in this study region. The air mass originated from Middle-Lower Yangtze
River plains (PFAS concentrations: 0.26-1.90 pg-m™) (Lu et al., 2018) and then
entered the study region from Hubei Province. This air mass would reduce the content
of PFAS concentrations in the study area because of the slow diffusion of pollutants
caused by relative stability of this air mass and the lower PFAS concentrations than
this region. The study region was also affected by the transport of long-range air
masses from the northwest direction (accounting for 38.5%), which passed through
the Inner Mongolia and Loess Plateau and the Taihang Mountains. In the autumn, the
study region was more influenced by long-range air masses from the northwest
(accounting for 57.7%), which passed through Inner Mongolia and the Loess Plateau
to reach the study area. In winter, all trajectory clusters, accounting for 10.0%, 23.3%,
and 66.7% respectively, originated from the northwest, indicating a pronounced
influence of the cold air from that direction. The increased use of urban coal
combustion in winter along this direction tended to create polluted air masses, which
were then transported and increased the pollution levels in the study region by
northwesterly winds. The long-range air masses, passing through the Inner Mongolia
Plateau and the Loess Plateau of northwest, generated the most important influence on
the seasonal transport patterns during summer, autumn, and winter in the study region.
Northwest China is situated in a plateau region. The high-altitude region has a
cold-trapping effect on PFAS in the atmosphere (Gouin et al., 2004), which can
effectively reduce the content of PFAS in atmospheric air masses. The Loess Plateau
could weaken the influence of air masses from the northwest on PMzs-bound PFAS
levels in the study region. This result was consistent with the analysis of potential

sources of PFAS using the PSCF below.
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Fig. 3. Cluster analysis map of backward trajectories in Zhengzhou City (left and right are spring
and winter respectively, created by MeteolnfoMap 3.5.11 (Wang, 2014; Wang, 2019)). ©
Microsoft. The software is open.

As shown in Fig. 4, the strong potential source regions (WPSCF > 0.5) during
spring were primarily concentrated in the southwest region of the province,
significantly influenced by the southwest air masses. The strong potential source
regions were mainly found in the surrounding regions of the province during summer,
transferred to the northwest and southwest outside the province during autumn, and
were principally distributed in the northwest and northeast within the province during
winter. The study results indicated that the influence of the northeast air masses on the
distribution of potential sources was more obvious in the study region. This result
could be attributed to the fact that the study region was located in the typical
industrial province characterized by industries such as textile treatment, metal
electroplating, and fire-fighting foam manufacturing. The wide use of PFAS in
industrial production, such as emulsifiers and fluoropolymers, had led to increased
emissions of these substances into the atmosphere. Additionally, human activities,
such as the use of non-stick coatings on cookware and waterproof and stain-resistant
materials, particularly in densely populated areas near study region, heightened PFAS
pollution levels (Dewapriya et al., 2023; Dhore and Murthy, 2021; Grunfeld et al.,

2024; Li et al., 2024; Wang et al., 2024). This result was consistent with conclusions
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drawn by Chen et al. (2021) and Han et al. (2019). Seasonal variation could cause the
distribution of strong potential source regions to change. In contrast to spring and
summer, the distribution of strong potential source regions were more influenced by
the northwest air masses in autumn and winter. In addition to autumn, strong potential
source regions mainly distributed in the surrounding regions of the province in spring,

summer and winter.
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Fig. 4. Map of potential source analysis of PMas-bound PFAS in Zhengzhou City in four seasons
(a, b, c and d are spring, summer, fall and winter respectively, created by MeteolnfoMap 3.5.11
(Wang, 2014; Wang, 2019)). © Microsoft. The software is open.

Research indicated that the PFAS levels in PM2s were more influence by
medium- and short-range air masses and terrain. To control PFAS levels in PMy 3, it is
necessary to not only manage local emissions but also identify the pollution transport
pathways and sources across different seasons. Strengthen the joint prevention and
control of neighboring cities on a seasonal basis. For example, regulate PFAS
emissions from textile and electroplating industries along southern urban in spring,
collaborate with northwestern provinces to curb coal combustion in key transport
cities in winter, establish pollution-blocking monitoring networks at northwestern
entry points (e.g., Jiaozuo city and Jiyuan city) and leveraging the Taihang Mountains

and Loess Plateau to intercept pollutants, in summer and autumn. The results of this
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research provided a theoretical basis for the formulation of policies related to the

control of PFAS levels in PM3 s.

3.3 PMF receptor analysis

To further investigate the potential PFAS sources in PM s, this study employed
PMF for source apportionment of PFAS. As illustrated in Fig. 5(b), Factor 1 was
predominantly characterized by high loadings of PFUnDA (72.5%), PFDoDA (71.4%),
PFTrDA (80.4%), and PFTeDA (96.0%). Long-chain PFAS (C11-C14) were known
degradation products of Long-chain FTOHs (Liu et al., 2017; Thackray and Selin,
2017; Wang et al., 2014). The global accumulated estimates for PFUdA, PFDoDA,
PFTrDA, and PFTeDA ranged from 9 to 230 tons from 2003 to 2015, and the research
shown an expected release of between 0 to 84 tons from 2016 to 2030 based on the
lifecycle use and emission patterns associated with fluorocomplexes and other
fluorine-containing products (Wang et al., 2014). Therefore, this factor, contributing

26.7% to total PFAS, was thought to be the degradation products of FTOHs.
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Fig. 5. The source distribution spectrum of PFAS in PMF (a), the annual source proportion

diagram (b) and the winter source proportion diagram (c)

According to the PMF analysis results, it indicated that PFPeA, PFBS, and PFOS
may originate from a common source with contribution rates of 87.4%, 91.0%, and
76.6% in Factor 2 respectively. The research indicated that three primary kinds of
chemicals related to PFOS-namely perfluorooctane sulfonates, substances containing

these compounds and polymers were widely useded in industrial production (Xie et
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al., 2013). The use of PFOS-related products have resulted in the emission of PFOS
into the atmosphere during both industrial processes and human activities. PFPeA and
PFBS, because of being the significant substitutes of long-chain PFAS, may be
released as impurities or by-products during the manufacturing of PFOS-based
products (Liu et al., 2017). Therefore, this factor, contributing 21.6% to total PFAS,
was regarded as a direct source of perfluorooctane sulfonic acid products.

Factor 3 was characterized by high loadings of PFHpA (loading value: 87.1%)
and PFHxS (loading value: 85.0%). The formation and transformation for PFHpA and
its derivatives remained unclear. The factor containing only PFHxS did not point to a
specific source. Therefore, it was thought to be other sources influenced potentially by
atmospheric air masses or alternative origins. Thus, the contribution from the source
was thought to be 13.5% for PFAS.

Factor 4 was identified as the primary source of PFOA products manufacturing,
characterized by significant loadings of PFHxA (77.5%), PFOA (83.4%), PFNA
(77.5%), and PFDA (47.6%). PFOA had been widely used as an emulsifying agent in
the production of plastics, rubber products, textile flame retardants, paper surface
treatments, fire-fighting foams, and PTFE emulsifiers (Liu et al., 2015b). The research
indicated that due to a rapid increase in domestic demand for PFOA products in China,
the emissions of PFCAs from factories producing these substances have increased
(Wang et al., 2014). PFOA, PFNA and their substitutes could be released through
waste gases. The contribution of this source to PFAS accounted for 38.2%.

The sources of PFAS are multifaceted and seasonal. Source apportionment was
conducted in winter when PFAS pollution was most severe. As shown in Fig. 5(c),
PFOS products contributed the most to PFAS sources in winter PMa .5 (41%), followed
by FTOHs degradation products (33%). Factor analysis indicated the contributions of
PFAS in PM25 came from the degradation of specific fluorinated products and direct
emissions from industrial productions. The analysis of long-chain PFAS emphasized
the potential environmental impact associated with the production and use of FTOHs
with degradation products contributing 26.7% to PFAS in PMas. Furthermore,

contributions from PFOS- and PFOA-related compounds to PFAS in PMzs were
17
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found to be 21.6% and 38.2%. Additionally, it was thought that 13.5% of PFAS
originated from unknown sources, and indicated a significant gap in our
understanding regarding their environmental behavior. This finding emphasizes the
urgent need for further research aiming at enhancing our comprehension of PFAS in

PM;s.

3.4 Environmental indication of health impact risk

Fig. 6 illustrated the ADI of PFAS in PMzs. The median ADI ranged from 4.35
x 107 to 8.78 pg-(kg-d)™!, with relative high values for PFBA, PFOA, and PFOS in
four seasons. Notably, PFOA exhibited a median ADI as high as 8.78 pg-(kg-d)”,
with potential carcinogenicity risk on human immune and reproductive systems
(Lin et al., 2022). The high ADI values of these compounds raise concerns
regarding their potential health impacts, especially given that PM s can be inhaled
into human lungs, thereby complicating the health implications of exposure to
PM:s containing PFAS. Although the ADI levels of these compounds remained
below the tolerable intake limits set by the EFSA (Yeung et al., 2019), it is
important to consider that PFAS are resistant to degradation within the human body.
For example PFOS has a half-life of approximately 5.4 years (Wei et al., 2023).
Therefore, long-term exposure to lower concentrations of PFAS than limit values
still may accumulate over time and potentially lead to adverse health outcomes.
This study discovered pronounced seasonal variation in the estimated daily intake
(EDI) (Fig. 7). The PFOA and PFOS EDI exhibited the remarkable peak during
winter (the median values: 5869.39 pg) and spring (the median values: 4219.41 pg)
respectively, and recorded the lowest average daily exposure dose during autumn
(the median values 1787.21 and 3285.28 pg). A comparative analysis of the
seasonal EDI patterns indicated that the winter season was characterized by a
relatively elevated daily exposure dose, particularly for PFOA. The observed
seasonal fluctuations in EDI were due to changes in concentration due to a
combination of influence factors such as ambient temperature, relative humidity,
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human activities, and atmospheric air mass transport. For example, these factors

comprehensively influenced the atmospheric partitioning and deposition of PFOA

and PFOS, thereby impacting the population's exposure to these PFAS.
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To mitigate PFAS contamination and protect environmental health, it is

recommended to strengthen regulatory controls on industrial emissions, upgrade

wastewater treatment technologies, and enhance public awareness of PFAS risks.

Regular monitoring of PFAS in environmental media is crucial, and industries should
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be incentivized to adopt safer alternatives. Additionally, further research is needed to

better understand the long-term environmental and health impacts of PFAS exposure.

4 Conclusion

This study conducted a one-year sampling of PM; s and utilized UPLC-MS/MS
to detect PFAS in the samples. A comprehensive analysis of the pollution
characteristics, source apportionment, and health risk assessment of PFAS in PMs
was conducted. The results indicated that the detection rates of PFOA, PFPeA and
PFBA were 100%, PFHxA, PFHpA, PFBS and PFOS were more than 80%. PFAS
concentrations were highest in winter (mean value: 181.63 pg:m™) and lowest in
autumn (mean value: 46.68 pg-m™2), however the lowest values still significantly
higher than the national average from previous study. PFOA and PFOS along with its
substitutes were primary PFAS in PM,s. Backward trajectory analysis of the study
region revealed that the PFAS concentrations were susceptible to medium and
short-range atmospheric air mass transport. Controlling the concentration of PFAS in
PM, 5 requires primarily reducing local emissions and strengthening joint prevention
in different seasons. PMF analysis indicated that the main PFAS sources were
products of PFOA and its substitutes (38.2%), degradation products of
fluorotelomer-based products (26.7%) and PFOS and its substitutes (21.6%). There
was also an unknown source accounting for 13.6%, indicating that there are still
significant limitations in our understanding of the PFAS environmental behavior, and
further research is necessary. The PFAS ADI was below the tolerable intake limit set
by the EFSA. The high EDI PFAS values, which could be inhaled into human lungs
through PM> s, should be a concern due to their potential to complicate health effects,
making PFAS research particularly important in regions with heavy PMa s pollution.
Monitoring the impact of atmospheric air mass transport in the study region by season,
strengthening targeted joint prevention and control with neighboring cities are crucial
steps in reducing the concentration of PFAS in PMs. The study results of
concentration characteristics, origin and health effects of PFAS could provide
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