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Abstract.  

Data-driven deep learning models usually perform well in terms of improving computational efficiency for predicting heat 

transfer processes in heterogeneous riparian zones. However, traditional deep learning models often suffer from accuracy when 

data availability is limited. In this study, a novel deep transfer learning (DTL) approach is proposed to improve the accuracy 15 

of spatiotemporal temperature distribution predictions. The proposed DTL model integrates the physical mechanisms described 

by an analytical model into the standard Deep Neural Networks (DNN) model using a transfer learning technique. To test the 

robustness of the proposed DTL model, the influence of the number of observation points at different locations, streambed 

heterogeneity (𝜎𝑙𝑛𝐾
2 =0, 0.2, 0.5, and 1.0), and observation noise levels (𝜎𝑁𝑜𝑖𝑠𝑒 =0.025, 0.05, 0.075) on the MSE values 

between the observed and predicted temperature fields. Results indicate that the DTL model significantly outperforms the 20 

DNN model in scenarios with scarce training data, and the mean MSE values decrease with increasing observation points for 

both DTL and DNN models. The mean MSE values for both the DTL and DNN models approach zero as the number of 

observation points increases to 200, indicating that both DTL and DNN models perform satisfactorily. Furthermore, increasing 

𝜎𝑙𝑛𝐾
2  and 𝜎𝑁𝑜𝑖𝑠𝑒  raises the mean MSE values of the DTL and DNN models, with the DTL model exhibiting greater robustness 

than the DNN model, highlighting its potential for practical applications in riparian zone management. 25 
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1 Introduction 

Understanding heat transfer processes in riparian zones is critical for evaluating physical and biochemical 

processes during surface water-groundwater interactions, such as contaminants transport (Elliott and 

Brooks, 1997; Schmidt et al., 2011), water resources management (Bukaveckas, 2007; Fleckenstein et al., 30 

2010) and aquatic ecosystems regulation (Ren et al., 2018; Halloran et al., 2016). As a primary source of 

uncertainty in riparian zone modeling, the inherent heterogeneity of the streambed stands out as a pivotal 

factor in accurately modeling groundwater flow and heat transfer processes (Karan et al., 2014; Brunner 

et al., 2017). However, given the intricacies of streambed heterogeneity, data acquisition in heterogeneous 

riparian zone is often time-consuming and costly (Zhang et al., 2023; Kalbus et al., 2006). Consequently, 35 

achieving accurate predictions of heat transfer processes in heterogeneous riparian zones with limited 

observation data remains challenging. 

Over the past few decades, there has been a substantial increase in efforts toward simulating heat transfer 

processes in riparian zones, which can be categorized into two groups: physics-based models and data-

driven models (Barclay et al., 2023; Feigl et al., 2021; Heavilin and Neilson, 2012). Typically, the 40 

physics-based models employ partial differential equations to characterize heat transfer dynamics within 

riparian zones, like the convection-diffusion equation (Chen et al., 2018; Keery et al., 2007), which aims 

to simulate and forecast temperature variations within riparian zones. Resolving the convection-diffusion 

equation generally involves two approaches: analytical and numerical models. Analytical models provide 

a precise mathematical representation of heat transfer dynamics and offer fundamental insights into 45 

physical processes within riparian zones, but their applicability is often limited to rather simplified and 

idealized scenarios (Keery et al., 2007; Bandai and Ghezzehei, 2021). Numerical models, which rely on 
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discretizing governing equations and solving them iteratively, are able to handle more intricate scenarios 

and address unsteady flows effectively (Cui and Zhu, 2018; Ren et al., 2019; Ren et al., 2023). 

Nevertheless, numerical models are constrained by the uncertainties of model structures and the 50 

prerequisites of streambed characteristic parameters (Heavilin and Neilson, 2012; Shi et al., 2023). 

Data-driven models, unlike physics-based models, can create a direct mapping between input and output 

variables without explicit knowledge of underlying physical processes governing the system (Zhou and 

Zhang, 2023; Callaham et al., 2021). In recent years, data-driven models have achieved significant 

advancements and emerged as a successful alternative in hydrological and environmental modeling (Zhou 55 

et al., 2024; Cao et al., 2022; Wade et al., 2023). However, their deficiency in incorporating physical 

principles restricts their capability to delineate explicit computational processes as physics-based models, 

posing a challenge to achieve enhanced extrapolation capabilities (Read et al., 2019; Cho and Kim, 2022). 

Meanwhile, data-driven models typically require massive amounts of data for training and may yield 

results that defy established physical laws due to the lack of physical principles (Read et al., 2019; Xie et 60 

al., 2022). The strengths and weaknesses inherent in both data-driven and physically-based models are 

evident across various research domains (Kim et al., 2021; Wang et al., 2023). Consequently, there is an 

increasing inclination towards integrating physical processes into data-driven models, which enables 

these models to extract patterns and laws from both observation data and underlying physical principles 

(Zhao et al., 2021; Karpatne et al., 2017). 65 

Transfer learning provides a feasible approach for integrating analytical and DL models, where 

knowledge is transferred from a distinct but relevant source domain to enhance the efficacy of the target 

domain (Zhang et al., 2023; Chen et al., 2021). This approach can diminish the requirement for extensive 

https://doi.org/10.5194/egusphere-2024-4145
Preprint. Discussion started: 16 January 2025
c© Author(s) 2025. CC BY 4.0 License.



4 

 

training data in the target domain, which is considered as a major barrier of DL applications. By 

leveraging knowledge gained from pre-training models, it accelerates the learning process and enhances 70 

model performance (Guo et al., 2023; Jiang and Durlofsky, 2023). Recently, the use of the transfer 

learning technique has gained attention in the field of hydrological modeling (Zhang et al., 2023; Cao et 

al., 2022; Chen et al., 2021; Vandaele et al., 2021; Willard et al., 2021). For example, Xiong et al. (2022) 

developed an Long-short term memory (LSTM) model of daily dissolved inorganic nitrogen 

concentrations and fluxes in the coastal watershed located in southeastern China. They retrained this 75 

model using multi-watershed data and successfully applied it to seven diverse watersheds through transfer 

learning approach. Zhang et al. (2023) used the transfer learning technique to integrate the deep learning 

model and analytical models for predicting groundwater flow in aquifers and obtained satisfactory 

prediction performance for complex scenarios. 

In this study, we introduce a novel deep transfer learning (DTL) approach that incorporates physical 80 

information from analytical models into a deep learning framework using the transfer learning technique. 

The proposed DTL model is implemented to predict the spatiotemporal temperature distribution in 

heterogeneous riparian zones by leveraging analytical solutions, deep learning models, and transfer 

learning. The analytical model is used to efficiently produce physically consistent heat distribution 

patterns and data in homogeneous riparian zones, which serve as the training data for the pre-training 85 

deep learning model. Subsequently, the weights and biases learned from the pre-training model are 

transferred to a new deep learning model under heterogeneous scenarios through transfer learning. By 

integrating insights from analytical models with the approximation power of deep learning models, the 

DTL model achieves improved efficiency and performance. Notably, the newly proposed demonstrates 
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significant performance improvement, even with scarce observational data. This innovative approach 90 

provides for accurate and efficient modeling of complex heat transfer processes in heterogeneous 

environments, even with limited observation data. 

2 Methods 

2.1 Conceptual model 

The two-dimensional (2D) conceptual model of the heat transfer process in a heterogeneous streambed is 95 

depicted in Figure 1. The coordinate system originates at the center of the river, with the x-axis orientated 

horizontally from left to right along the streambed. The 𝑧-axis is located vertically downward along the 

left inlet boundary of the system and perpendicular to the 𝑥-axis. It is postulated that the thermal and 

hydraulic properties of the streambed maintain uniformity. The river has a width of 2𝐿. Heat originated 

from the river, with its temperature represented by an arbitrary function. The initial and boundary 100 

conditions are depicted in Figure 1. An initial temperature of 20 °C is prescribed. The boundary conditions 

on the left, right, and bottom sides are all specified as no heat flow boundaries. The top boundary condition 

at 0 ≤ 𝑥 ≤ 𝐿  (𝐿 = 0.32 𝑚  in this study) is represented by a sinusoidal temperature signal ranging 

between 19 and 21°C (i.e., 𝑓(𝑡) = 20 + 𝑠𝑖𝑛(2𝜋𝑡) °𝐶). Meanwhile, the top boundary condition at 𝑥 > 𝐿 

is held constant at a temperature of 20 °C. The initial and boundary conditions are adopted from Shi et al. 105 

(2023). The details of the analytical solution for the homogeneous streambed and the numerical solution 

for the heterogeneous streambed are available in the Supplement. 
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2.2 Deep neural network (DNN) 

The deep neural network (DNN) is a multi-layer feed-forward network with an input layer, multiple 

hidden layers, and an output layer. The backpropagation algorithm is utilized to minimize the mean error 110 

of the output and has been proven to be crucial in enhancing convergence (Jin et al., 2024). Assuming the 

presence of 𝑚 hidden layers, the input and output vectors are denoted by 𝑋 and 𝑂, respectively. The 

forward equations of the DNN model can be represented as follows: 

𝐻1 = 𝑡𝑎𝑛ℎ(𝑊1𝑋 + 𝑏1)          (1a) 

𝐻2 = 𝑡𝑎𝑛ℎ(𝑊2𝑋 + 𝑏2)          (1b) 115 

𝐻𝑚 = 𝑡𝑎𝑛ℎ(𝑊𝑚𝑋 + 𝑏𝑚)          (1c) 

𝑂 = 𝑡𝑎𝑛ℎ(𝑊𝑚+1𝑋 + 𝑏𝑚+1)          (1d) 

where 𝐻𝑖 represents the output of the 𝑖-th hidden layer; 𝑊 and 𝑏 represent the weight matrices and bias 

vectors, respectively. Typically, 𝑊 and 𝑏 can amalgamate as the parameter set 𝜃 = {𝑊𝑖, 𝑏𝑖}𝑖=1
𝑚+1, 𝑡𝑎𝑛ℎ 

refers the 𝑡𝑎𝑛ℎ activation function. These parameters can be estimated by minimizing the following loss 120 

function: 

𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜃∗

1

𝑛
∑ |𝑁𝑁(𝑋, 𝜃) − 𝑦𝑖|

2𝑛
𝑖=1         (2) 

To mitigate the impact of dimensionality during the training process, the temperature field dataset is 

normalized to [−1,1] through the following equation in the pre-training process:  

𝐷𝑛𝑜𝑟𝑚 = 2
𝐷−𝐷𝑚𝑖𝑛

𝐷𝑚𝑎𝑥−𝐷𝑚𝑖𝑛
− 1          (3) 125 
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where 𝐷 denotes data utilized in the DNN model, 𝐷𝑚𝑎𝑥 and 𝐷𝑚𝑖𝑛 denote the maximum and minimum 

values and are computed with reference to the training samples exclusively. The same values of 𝐷𝑚𝑎𝑥 

and 𝐷𝑚𝑖𝑛 are employed to normalize the testing samples to prevent data leakage (Zuo et al., 2020). 

2.3 Transfer learning 

As depicted in Figure 2, traditional deep learning models are allocated to distinct learning tasks, which 130 

require each model to be trained independently from scratch, leading to high computational demands and 

the need for substantial amounts of training data for each task. In contrast, the transfer learning technique 

offers an efficient alternative. By employing a pre-trained model that is then fine-tuned for predicting 

heat transfer in heterogeneous streambeds, transfer learning can significantly reduce the computational 

burden and the need for large datasets. This is achieved by leveraging the knowledge gained from the 135 

source domain and applying it to the target domain, thereby accelerating the learning process and 

improving the model performance. 

The transfer learning technique involves training a model to establish a mapping between the input vector 

𝑋 and the observed data 𝑂 derived from a target dataset 𝐷 = {(𝑥𝑖, 𝑜𝑖)𝑖=1
𝑛 , 𝑥𝑖 ∈ 𝑋, 𝑜𝑖 ∈ 𝑂}. It assumes that 

both the source and the target tasks share similar parameters or prior distributions of the hyperparameters. 140 

The pre-training model is established utilizing the dataset from the source tasks 𝐷𝑠 = {(𝑥𝑠, 𝑜𝑠)𝑠=1
𝑛 , 𝑥𝑠 ∈

𝑋, 𝑜𝑠 ∈ 𝑂} which is generated through analytical or numerical models. In this study, the source and target 

datasets are spatiotemporal distributions of temperature fields in homogeneous and heterogeneous 

streambeds, respectively. The hyperparameters 𝜃𝑇  for the fine-tuning model is acquired through the 

optimization of the loss function delineated by: 145 
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𝜃𝑇 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜃𝑇

∑
1

𝑛∗
𝑛∗

𝑖=1 |𝑓(𝑥𝑡; 𝜃𝑇) − 𝑜𝑡|2        (4) 

where 𝑛∗  denotes the number of training datasets employed to fine tune the pre-training model, 𝑓() 

denotes the predictive function of the fine-tuning model.  

The flowchart of the newly proposed framework is summarized in Figure 3: the DTL model is developed 

by initially generating an input dataset using the analytical model for heat transfer in homogeneous 150 

streambeds. The dataset is subsequently employed to pre-train a DNN model, focusing on learning the 

weights and biases of the fully connected layer. Next, the data of the observation points in the 

corresponding numerical model for heat transfer in heterogeneous streambeds is utilized to fine-tune the 

pre-trained DNN model by transferring the learned insensitive layers (i.e., freezing their weights and 

biases) and retraining the learnable parameters of the remaining layers. Finally, the effectiveness of the 155 

DTL model is evaluated by comparing its performance against a traditional DNN model with different 

amount of observation points, which evaluates the model's ability to predict the spatiotemporal 

temperature distribution in heterogeneous streambeds. 

3 Results 

3.1 Pre-training process 160 

In this study, the pre-training model is a DNN model with 6 hidden layers, each containing 16 neurons. 

To evaluate the sensitivity of weights and biases to hydraulic conductivity and to identify which layers 

should be trainable or remain frozen, two pre-training models with identical structures but varying 

hydraulic conductivities are constructed. Both datasets consist of a 100 × 100 grid with 100-time steps 
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generated by the 2D analytical model, where 80% of the dataset is utilized for training and the remaining 165 

20% for testing. 𝑞𝑥 and 𝑞𝑧 depend on hydraulic conductivities in 𝑥 and 𝑧 directions. In this section, 𝑞𝑥 

and 𝑞𝑧  are set to 0.2𝑚/𝑑 , 0.3𝑚/𝑑  and 0.6𝑚/𝑑 , 0.9𝑚/𝑑  for these two models, respectively. Results 

indicate that the predictions of the two pre-training models closely align with the analytical model with 

average MSE values of 1.2𝐸 − 6 and 1.5𝐸 − 6, respectively. Similar to the works of Hu et al. (2020) and 

Zhang et al. (2023), the difference in weights and biases between the two pre-training models is evaluated 170 

using the relative change rate (RCR): 

𝑅𝐶𝑅 =
1

𝐼
∑

|𝜃1𝑖−𝜃2𝑖|

𝜃1𝑖

𝐼
𝑖            (5) 

where 𝜃1𝑖  and 𝜃2𝑖  are parameter matrixes in two pre-training models, respectively, 𝐼 is the number of 

elements in the parameter matrix. For enhanced comparability and credibility, each of the two pre-training 

models undergoes 20 training processes. Figure 4 presents the average RCR of weights and biases across 175 

all layers for two per-training models over 20 trials. The RCR of biases shows consistent stability across 

all layers, except for layer 3. In contrast, variations in weights are more prominent, particularly in layers 

1, 2, and 3, which underscores the heightened sensitivity of these layers to hydraulic conductivity. 

Consequently, layers 1, 2, and 3 of the pre-training models are marked as trainable, while the remaining 

layers are held frozen in the following analysis. Notably, the convergence criteria are defined as a 180 

threshold of 3000 iterations with a minimum gradient alteration of 5𝐸 − 6 throughout the training phase. 

3.2 Spatial and temporal performance for homogeneous scenario 

The spatiotemporal distribution of temperature in homogeneous streambeds is obtained by the analytical 

model. In this study, we use 1, 5, 10, 20, 50, and 100 observation points, each with 100-time steps. The 
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hydrological parameters are set at 𝑞𝑥 = 0.4 𝑚/𝑑  and 𝑞𝑧 = 0.6 𝑚/𝑑 , with all other parameters being 185 

consistent with those presented in Figure 1. The temperature data from these observation points are used 

as training data for DTL and DNN, respectively. The reference temperature field on 0.5𝑑 (i.e., the 50𝑡ℎ 

time step) is employed as testing data. Figure 5 illustrates the absolute errors of the DTL and DNN models 

for the homogeneous riparian zone. The results suggest that the DTL model aligns well with the reference 

temperature field, whereas the DNN model tends to struggle in accurately capturing the reference 190 

temperature field. This highlights the significant improvement in the performance of the DL model 

facilitated by prior knowledge of the analytical solution and physical information. The pre-training model 

incorporates physical knowledge to provide superior initial parameters (weights and biases), which 

narrows the search space during the fine-tuning process. In contrast, the DNN model randomly initializes 

these parameters and requires more training points to explore the entire parameter space. To further 195 

demonstrate the predictive performance of the proposed model in time series, Figure 6 shows the 

temperature time series predicted by the DTL and DNN models at a given observation point (𝑥 = 0.5𝑚, 

𝑦 = 0.5𝑚 ). Results indicate that the DTL model predicts the temperature fluctuation trend better 

compared to the DNN model. Especially for the sparse dataset with a few observation points, the average 

𝑀𝑆𝐸 of the DTL model with 5 observation points is approximately 3.2 times lower than that of the DNN 200 

model. As shown in Figure S2 in the Supplement, there is no significant difference in the performance of 

the DTL and DNN models when the number of observations point increases to 200. Notably, the 

performance of the DTL model appears to be less sensitive to the amount of observation points. We 

attribute this phenomenon to two factors: (1) randomly selected observation points lead to optimal 

performance when the observation points are in proximity to the test point, and vice versa; (2) the DTL 205 
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model demonstrates the capacity to integrate substantial information from the analytical model, which 

diminishes the requirement for the number of observation points.  

The choice of observation points can influence the outcomes of the proposed DTL model. To mitigate the 

effect of their positions, each observation point is randomly generated 200 times. The distributions of the 

average 𝑀𝑆𝐸 for both the DTL and the DNN models across diverse amount of observation points are 210 

illustrated in Figure 7. Results reveal that both the interquartile range and mean values of MSE for the 

DTL model are considerably smaller than those of the DNN model. As an illustration, when considering 

10 observation points, the average MSE for the DTL model is approximately 0.12, whereas that for the 

DNN model is 0.54. Furthermore, there is a significant reduction in both interquartile range and mean 

values of MSE of the DTL model, and the interquartile range and mean values of MSE of the DTL model 215 

tend to stable as the amount of observation points exceeds 50. On the contrary, the interquartile range and 

mean values of 𝑀𝑆𝐸 of the DNN model consistently decrease with an increasing amount of observation 

points, displaying a consistent pattern as observed in Figure 6. It should be emphasized that the DTL 

model can still produce satisfactory results even with sparse data. Even with more than 50 observation 

points, the DNN model still underperforms the DTL model, which can be attributed to the following 220 

reasons: (1) due to the lack of prior physical knowledge, the DNN model may require more data to learn 

relatively complex patterns; (2) both the DTL and the DNN model follow the identical convergence 

criterion with a restricted number of epochs during the fine-tuning process, which may result in 

incomplete training for the DNN model. 
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3.3 Effects of nonuniform flow on heat transfer 225 

In this section, we evaluate the performance of the DTL model in predicting the spatiotemporal 

temperature distribution in heterogeneous streambeds. The heterogeneous 𝑙𝑛𝐾 field is generated by the 

exponential covariance function with mean 𝜇 = 0 , correlation length 𝑙 = 0.1𝑚  in both the 𝑥  and 𝑧 

directions, variance 𝜎𝑙𝑛𝐾
2 = 0.2, 0.5 and 1.0, respectively. Accordingly, three scenarios with low to high 

heterogeneity are created. Figure 8 depicts the random 𝑙𝑛𝐾 fields and references flow fields of three 230 

scenarios. The other parameters remain consistent with those of the homogeneous streambed. The 

temperature distribution in the heterogeneous streambed is estimated using the numerical model. 

Temperature time series of 1, 5, 10, 20, 50 and 100 observation points are extracted to fine tune both the 

DTL and DNN models.  

To mitigate the impacts of random sampling during the fine-tuning process, 200 stochastic simulations 235 

are performed. The distribution of the average MSE for both the DTL and DNN models in three distinct 

heterogeneous streambeds from low to high heterogeneity are shown in Figure 9. One can find that the 

average MSE of the DTL model is consistently minimal and significantly lower than that of the DNN 

model. Besides, with the same number of observation points, a decrease in 𝜎𝑙𝑛𝐾
2  corresponds to a 

reduction in average MSE. These findings can be explained by the fact that the proposed DTL model 240 

exhibits a strong ability to transfer knowledge between two datasets with similar structures or features. A 

decreased 𝜎𝑙𝑛𝐾
2  indicates less heterogeneity in the 𝑙𝑛𝐾 field, resulting in a temperature field that more 

closely resembles those generated by the analytical model. We attribute this improvement in the DTL 

model to the enhanced initial parameters of the DNN model through the incorporation of physical 

knowledge during the fine-tuning process. For both the DTL and DNN models, the interquartile ranges 245 
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and mean values of MSE decrease as the amount of observation points increases. Notably, by leveraging 

the insights from the analytical model, the DTL model can effectively predict the temperature distribution 

in heterogeneous streambeds, even with sparse observation points (e.g., 5 observation points). In contrast, 

while the DNN model exhibits improved performance with an increased amount of observation points, 

its performance heavily relies on this factor, showing unsatisfactory outcomes with fewer observation 250 

points. When the amount of observation points reaches 50, the interquartile range and mean MSE of the 

DTL model exhibit marginal changes, but the interquartile range and mean MSE of the DNN model still 

decrease significantly. Furthermore, there is no significant difference in the performance of the DTL and 

DNN models in heterogeneous scenarios when the number of observation points increases to 200, as 

shown in Figures S3 and S4 in the Supplement. The average MSE of the DNN model is approximately 255 

2.8 to 18.4 times smaller than that of the DTL model with the same observation points, which further 

demonstrates the capability of the DTL model to transfer knowledge from homogeneous environments in 

heterogeneous environments.  

3.4 Effects of river temperature uncertainty 

In this section, we evaluate the effectiveness of the DTL model in the context of river temperature 260 

observation noises, which may arise from suboptimal field conditions or sensor resolution limitations 

(Chen et al., 2022; Shi et al., 2023). Specifically, the white Gaussian noise is introduced at the top 

boundary: 

𝑓(𝑡) = 20 + 𝑠𝑖𝑛(2𝜋𝑡) + 𝑛𝑜𝑟𝑚𝑟𝑛𝑑(𝜑𝑁𝑜𝑖𝑠𝑒 , 𝜎𝑁𝑜𝑖𝑠𝑒)       (6) 
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where 𝜑𝑁𝑜𝑖𝑠𝑒  and 𝜎𝑁𝑜𝑖𝑠𝑒  denote the mean and variance of white Gaussian noise, respectively, and 265 

𝑛𝑜𝑟𝑚𝑟𝑛𝑑() denotes the Gaussian distribution. In this section, 𝜑𝑁𝑜𝑖𝑠𝑒 is set to 0°C and 𝜎𝑁𝑜𝑖𝑠𝑒 is set to 

0.025°C, 0.05°C and 0.075°C, respectively, as shown in Figure 10. Similarly, the heterogeneous 𝑙𝑛𝐾 field 

of streambed is generated by the exponential covariance function with 𝜇 = 0, 𝑙 = 0.1𝑚 in both 𝑥 and 𝑧 

directions and 𝜎𝑙𝑛𝐾
2 = 0.5. The temperature time series from diverse numbers of observation points (1, 5, 

10, 20, 50, and 100) are utilized as training datasets for both DTL and DNN models. Additionally, 200 270 

stochastic simulations are conducted to mitigate the influence of random sampling of observation points 

during the fine-tuning process. 

Figure 11 shows the distributions of the average 𝑀𝑆𝐸 for both the DTL and DNN models under different 

noise levels. It is observed that that the DTL and DNN models exhibit sensitivity to noise, and the elevated 

noise levels result in diminished model performance. Nevertheless, the DTL model is less impacted by 275 

river temperature uncertainty compared to the DNN model. For instance, in cases of 10 observation points, 

the average MSE of the DNN model varies from 0.59 to 0.45 as 𝜎 decreases from 0.075 to 0.025. In 

contrast, the average MSE of the DTL model ranges only from 0.12 to 0.09 under the same conditions, 

demonstrating the superior robustness of the DTL model over the DNN model. 

4 Discussions 280 

This study investigates the effects of streambed heterogeneity, temperature observation noises and the 

number of observation points at different locations on the performance of the proposed DTL model. 

Results indicate that the proposed transfer learning model exhibits robust prediction performance with 

significantly reduced interquartile range and mean MSE, particularly in scenarios with sparse data. These 
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findings suggest that integrating analytical knowledge enables effective decrease of model uncertainties. 285 

It is worthwhile to point out that the framework developed in this study is not limited to heat transfer in 

riparian zones: it can also be applied to mass transport and heat transfer in other heterogeneous porous 

media. This versatility highlights the framework's potential for broader applications across various fields 

within environmental and hydrological studies. Future research will systematically explore the difference 

between transfer learning-based models and conventional models for modeling heat transfer under 290 

uncertain conditions. However, it is imperative to recognize several constraints associated with the DTL 

model proposed in this study. Firstly, the incapacity for extrapolation of the DTL model restricts its 

applicability. As it lacks observation points outside the training domain, the DTL model tends to face 

limitations concerning extrapolative tasks. Secondly, this study centres on modeling heat transfer 

problems in heterogeneous riparian zones, and the effectiveness of the DTL model may be influenced by 295 

the selection of the 𝐾 value. Finally, analytical models usually require regular spatial domains, while real-

world study areas (e.g., watersheds) often feature irregular spatial domains. The effectiveness of the DTL 

model may be influenced by discrepancies between the temperature field in the real-world area and the 

simplified analytical solution, especially near the boundary. All these issues should be investigated 

separately in the future. 300 

5. Conclusions 

In this study, we propose a novel deep transfer learning (DTL) approach, which enhances DNN models 

by integrating physical mechanisms described by an analytical model using transfer learning technique. 

The proposed DTL model is tested against the DNN model under different heterogeneous streambeds and 

https://doi.org/10.5194/egusphere-2024-4145
Preprint. Discussion started: 16 January 2025
c© Author(s) 2025. CC BY 4.0 License.



16 

 

observation noise levels. Results indicate that the DTL model significantly improves the robustness and 305 

accuracy in predicting the spatiotemporal temperature distribution in heterogeneous streambeds by 

incorporating knowledge transferred from pre-trained DNN models. Importantly, the DTL model 

maintains satisfactory performance even with sparse training data and high uncertainties in geological 

conditions and observations, making it a promising tool for practical applications in riparian zone 

management. This is particularly relevant in situations where data acquisition is often challenging and 310 

costly, highlighting the potential impact of our research. The main conclusions are summarized as follows:  

(1) The hydraulic conductivity primarily influences the parameters of the shallow layers in the DNN 

model, rendering it visible to use transfer learning approach in predicting spatiotemporal temperature 

distribution in heterogeneous streambeds; 

(2) The accuracy of predicted temperature fields for both the DTL and DNN models improves with an 315 

increased number of observation points, and the DTL model significantly outperforms the DNN model 

for both homogeneous and heterogeneous scenarios； 

(3) The DTL model demonstrates stronger robustness in dealing with observation noise compared to the 

DNN model and performs satisfactorily even with sparse training data; 

(4) The successful application of the DTL model for predicting the spatiotemporal temperature 320 

distribution in heterogeneous streambeds indicates its pronounced advantages and prospects for 

estimating surface water and groundwater interaction fluxes in such heterogeneous riparian zones.  

https://doi.org/10.5194/egusphere-2024-4145
Preprint. Discussion started: 16 January 2025
c© Author(s) 2025. CC BY 4.0 License.



17 

 

Data availability  

The Python codes of the DTL and DNN models are made available for download from a public repository 
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Figure Captions 

 

 470 

Figure 1. Schematic diagram of the temperature distribution in the riparian zones. 
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Figure 2. Schematic diagram of the pre-training and fine-tuning methods in the transfer learning model 475 

(Revised from (Guo et al., 2023)). (a) Traditional machine learning method; (b) Transfer learning method. 
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Figure 3. Proposed DTL framework used in this study. The framework consists of a pre-training module, 480 

a transfer learning module, and an evaluation module. 
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Figure 4. The average relative change rate (𝑅𝐶𝑅) of weight between pre-training neural network with 485 

different 𝐾 values. 
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Figure 5. Absolute errors between the predicted temperature field and reference temperature field using 

DTL and DNN models for homogeneous streambed.  490 
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Figure 6. Comparisons of the predicted temperature (blue curves) and reference temperature (red curves) 

using DTL and DNN models for homogeneous streambed.  
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Figure 7. 𝑀𝑆𝐸 distribution of normalized results from DTL and DNN models plotted against the number 495 

of observation points for homogeneous streambed. (a) DTL model; (b) DNN model. 
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Figure 8. Heat map and the contours of hydraulic head and streamline for different 𝐾-fields. (a1) - (c1) 

show the heat map and (a2) - (c2) show the contours of hydraulic head and streamlines for 𝜎𝑙𝑛𝑘
2 = 0.2, 500 

0.5, and 1.0, respectively. 
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Figure 9. 𝑀𝑆𝐸 distribution of normalized results from DTL and DNN models plotted against the number 

of observation points for different heterogeneous streambeds. (a1) - (c1) show the DTL model and (a2) - 

(c2) show the DNN model for 𝜎𝑙𝑛𝑘
2 = 0.2, 0.5, and 1.0, respectively. 505 
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Figure 10. Time series diagram of river temperature under different observation noises. (a) 𝜎 = 0.025℃; 

(b) 𝜎 = 0.05℃; (c) 𝜎 = 0.075℃. 
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 510 

Figure 11. 𝑀𝑆𝐸  distribution of normalized results from DTL and DNN models plotted against the 

number of observation points for different observation noises. (a1) - (c1) show the DTL model and (a2) - 

(c2) show the DNN model for 𝜎 = 0.025℃, 0.05℃, and 0.075℃, respectively. 
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