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Abstract.  
Data-driven deep learning models usually perform well in terms of improving computational efficiency for predicting heat 15 

transfer processes in heterogeneous riparian zones. However, traditional deep learning models often suffer from accuracy when 

data availability is limited. In this study, a novel physics-informed deep transfer learning (PDTL) approach is proposed to 

improve the accuracy of spatiotemporal temperature distribution predictions. The proposed PDTL model integrates the 

physical mechanisms described by an analytical model into the standard Deep Neural Networks (DNN) model using a transfer 

learning technique. To test the robustness of the proposed PDTL model, we analyse the influence of the number of observation 20 

points at different locations, streambed heterogeneity, and observation noise levels on the MSE values between the observed 

and predicted temperature fields. Results indicate that the PDTL model significantly outperforms the DNN model in scenarios 

with scarce training data, and the mean MSE values decrease with increasing observation points for both PDTL and DNN 

models. Furthermore, increasing streambed heterogeneity and observation noise levels raises the mean MSE values of the 

PDTL and DNN models, with the PDTL model exhibiting greater robustness than the DNN model, highlighting its potential 25 

for practical applications in riparian zone management. 
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1 Introduction 

Understanding heat transfer processes in riparian zones is critical for evaluating physical and biochemical 

processes during surface water-groundwater interactions, such as contaminants transport (Elliott and 30 

Brooks, 1997; Schmidt et al., 2011), water resources management (Bukaveckas, 2007; Fleckenstein et al., 

2010) and aquatic ecosystems regulation (Ren et al., 2018; Halloran et al., 2016). As a primary source of 

uncertainty in riparian zone modeling, the inherent heterogeneity of the streambed stands out as a pivotal 

factor in accurately modeling groundwater flow and heat transfer processes (Karan et al., 2014; Brunner 

et al., 2017). However, given the intricacies of streambed heterogeneity, data acquisition in heterogeneous 35 

riparian zone is often time-consuming and costly (Zhang et al., 2023; Kalbus et al., 2006). Consequently, 

achieving accurate predictions of heat transfer processes in heterogeneous riparian zones with limited 

observation data remains challenging. 

Over the past few decades, there has been a substantial increase in efforts toward simulating heat transfer 

processes in riparian zones, which can be categorized into two groups: physics-based models and data-40 

driven models (Barclay et al., 2023; Feigl et al., 2021; Heavilin and Neilson, 2012). Typically, the 

physics-based models employ partial differential equations to characterize heat transfer dynamics within 

riparian zones, like the convection-diffusion equation (Chen et al., 2018; Keery et al., 2007), which aims 

to simulate and forecast temperature variations within riparian zones. Resolving the convection-diffusion 

equation generally involves two approaches: analytical and numerical models. Analytical models provide 45 

a precise mathematical representation of heat transfer dynamics and offer fundamental insights into 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/aquatic-ecosystem


3 
 

physical processes within riparian zones, but their applicability is often limited to rather simplified and 

idealized scenarios (Keery et al., 2007; Bandai and Ghezzehei, 2021; Zhou and Zhang, 2022). Numerical 

models, which rely on discretizing governing equations and solving them iteratively, are able to handle 

more intricate scenarios and address unsteady flows effectively (Cui and Zhu, 2018; Ren et al., 2019; Ren 50 

et al., 2023). Nevertheless, numerical models are constrained by the uncertainties of model structures and 

the prerequisites of streambed characteristic parameters (Heavilin and Neilson, 2012; Shi et al., 2023). 

Data-driven models, unlike physics-based models, can create a direct mapping between input and output 

variables without explicit knowledge of underlying physical processes governing the system (Zhou and 

Zhang, 2023; Callaham et al., 2021). In recent years, data-driven models have achieved significant 55 

advancements and emerged as a successful alternative in hydrological and environmental modeling (Zhou 

et al., 2024; Cao et al., 2022; Wade et al., 2023). However, their deficiency in incorporating physical 

principles restricts their capability to delineate explicit computational processes as physics-based models, 

posing a challenge to achieve enhanced extrapolation capabilities (Read et al., 2019; Cho and Kim, 2022). 

Meanwhile, data-driven models typically require massive amounts of data for training and may yield 60 

results that defy established physical laws due to the lack of physical principles (Read et al., 2019; Xie et 

al., 2022). The strengths and weaknesses inherent in both data-driven and physically-based models are 

evident across various research domains (Kim et al., 2021; Wang et al., 2023). Consequently, there is an 

increasing inclination towards integrating physical processes into data-driven models, which enables 

these models to extract patterns and laws from both observation data and underlying physical principles 65 

(Zhao et al., 2021; Karpatne et al., 2017).  
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Typically, several methods exist to integrate two divergent models: one is to employ a deep learning 

framework to substitute either a submodule or an intermediary parameter in physically-based models 

(Jiang et al., 2020; Zhao et al., 2019; Cho and Kim, 2022; Arcomano et al., 2022), and the other involves 

integrating physical models to furnish additional constraints or penalizations to the deep learning 70 

framework (Kamrava et al., 2021; Raissi et al., 2019; Yeung et al., 2022). Additionally, transfer learning 

provides a feasible approach for integrating analytical and deep learning models, where knowledge is 

transferred from a distinct but relevant source domain to enhance the efficacy of the target domain (Zhang 

et al., 2023; Chen et al., 2021). This approach can diminish the requirement for extensive training data in 

the target domain, which is considered as a major barrier of deep learning applications. By leveraging 75 

knowledge gained from pre-training models, it accelerates the learning process and enhances model 

performance (Guo et al., 2023; Jiang and Durlofsky, 2023). Recently, the use of the transfer learning 

technique has gained attention in the field of hydrological modeling (Zhang et al., 2023; Cao et al., 2022; 

Chen et al., 2021; Vandaele et al., 2021; Willard et al., 2021). For example, Xiong et al. (2022) developed 

an Long-short term memory (LSTM) model of daily dissolved inorganic nitrogen concentrations and 80 

fluxes in the coastal watershed located in southeastern China. They retrained this model using multi-

watershed data and successfully applied it to seven diverse watersheds through transfer learning approach. 

Zhang et al. (2023) used the transfer learning technique to integrate the deep learning model and analytical 

models for predicting groundwater flow in aquifers and obtained satisfactory prediction performance for 

complex scenarios. 85 

In this study, we introduce a novel physics-informed deep transfer learning (PDTL) approach that 

incorporates physical information from analytical models into a deep learning framework using the 
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transfer learning technique. The proposed PDTL model is implemented to predict the spatiotemporal 

temperature distribution in heterogeneous riparian zones by leveraging analytical solutions, deep learning 

models, and transfer learning techniques. The analytical model is used to efficiently produce physically 90 

consistent heat distribution patterns and data in homogeneous riparian zones, which serve as the training 

data for the pre-training deep learning model. Subsequently, the weights and biases learned from the pre-

training model are transferred to a new deep learning model under heterogeneous scenarios through 

transfer learning. By integrating insights from analytical models with the approximation capability of 

deep learning models, the PDTL model achieves improved efficiency and performance. Notably, the 95 

newly proposed approach demonstrates significant performance improvement, even with scarce 

observational data. This innovative approach provides for accurate and efficient modeling of complex 

heat transfer processes in heterogeneous environments, even with limited observation data. 

2 Methods 

2.1 Conceptual model 100 

The two-dimensional (2D) conceptual model of the heat transfer process in a heterogeneous streambed is 

depicted in Figure 1. The coordinate system originates at the center of the river, with the x-axis orientated 

horizontally from left to right along the streambed. The 𝑧𝑧-axis is located vertically downward along the 

left inlet boundary of the system and perpendicular to the 𝑥𝑥 -axis. It is postulated that the thermal 

properties of the streambed are uniform. The river has a width of 2𝐿𝐿. Heat originated from the river, with 105 

its temperature represented by an arbitrary function. The initial and boundary conditions are depicted in 
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Figure 1. An initial temperature of 20 °C is prescribed. The boundary conditions on the left, right, and 

bottom sides are all specified as no heat flux boundary. The top boundary condition at 0 ≤ 𝑥𝑥 ≤ 𝐿𝐿 (𝐿𝐿 =

0.32 𝑚𝑚 in this study) is represented by a sinusoidal temperature signal ranging between 19 and 21 °C (i.e., 

𝑓𝑓(𝑡𝑡) = 20 + 𝑠𝑠𝑠𝑠𝑠𝑠(2𝜋𝜋𝜋𝜋) °𝐶𝐶 ). Meanwhile, the top boundary condition at 𝑥𝑥 > 𝐿𝐿  is held constant at a 110 

temperature of 20 °C. For this conceptual framework, two modelling approaches are employed. The 

analytical model provides exact solutions for heat transfer in homogeneous streambeds with uniform 

hydraulic conductivity and thermal properties (Shi et al., 2023). It generates physically consistent 

temperature distributions efficiently for the pre-training phase of our PDTL model. Meanwhile, the 

numerical model extends this solution to heterogeneous streambeds with spatially variable hydraulic 115 

conductivity, accommodating complex flow paths created by streambed heterogeneity. The details of the 

analytical solution for the homogeneous streambed and the numerical solution for the heterogeneous 

streambed are available in the Supplement. 

2.2 Deep neural network (DNN) 

The deep neural network (DNN) is a multi-layer feed-forward network with an input layer, multiple 120 

hidden layers, and an output layer. The backpropagation algorithm is utilized to minimize the mean error 

of the output and has been proven to be crucial in enhancing convergence (Jin et al., 2024). Assuming the 

presence of 𝑚𝑚 hidden layers, the input and output vectors are denoted by 𝑋𝑋 and 𝑂𝑂, respectively. The 

forward equations of the DNN model can be represented as follows: 

𝐻𝐻𝑖𝑖 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝑖𝑖𝑋𝑋 + 𝑏𝑏𝑖𝑖), 𝑖𝑖 = 1, … ,𝑚𝑚         (1a) 125 

𝑂𝑂 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝑚𝑚+1𝑋𝑋 + 𝑏𝑏𝑚𝑚+1)          (1b) 
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where 𝐻𝐻𝑖𝑖 represents the output of the 𝑖𝑖-th hidden layer; 𝑊𝑊 and 𝑏𝑏 represent the weight matrices and bias 

vectors, respectively. Typically, 𝑊𝑊 and 𝑏𝑏 can amalgamate as the parameter set 𝜃𝜃 = {𝑊𝑊𝑖𝑖 , 𝑏𝑏𝑖𝑖}𝑖𝑖=1𝑚𝑚+1, 𝑡𝑡𝑡𝑡𝑡𝑡ℎ 

refers the 𝑡𝑡𝑡𝑡𝑡𝑡ℎ activation function. To mitigate the impact of dimensionality during the training process, 

the temperature field dataset is normalized to [−1,1] through the following equation in the pre-training 130 

process:  

𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 2 𝐷𝐷−𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚
𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚−𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚

− 1          (2) 

where 𝐷𝐷 denotes data utilized in the DNN model, 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 denote the maximum and minimum 

values and are computed with reference to the training samples exclusively. The same values of 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 

and 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 are employed to normalize the testing samples to prevent data leakage (Zuo et al., 2020). 135 

2.3 Deep collocation method 

The collocation technique uses a collection of randomly distributed points to minimize the loss 

function while adhering to a specified set of constraints. This method demonstrates a degree of immunity 

against instabilities, such as explosion or vanishing gradients encountered in DNNs, offering a feasible 

strategy for training DNNs (Guo et al., 2023). By incorporating the collocation points throughout the 140 

model domain, along with the physical principles of the boundary and initial conditions, the learning 

process aims to minimize the following loss functions: 

𝐿𝐿(𝜃𝜃) = 𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷 + 𝑀𝑀𝑀𝑀𝑀𝑀𝐵𝐵𝐵𝐵 + 𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼𝐼𝐼         (3a) 

𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷 = 𝜉𝜉𝐷𝐷
𝑁𝑁𝐷𝐷
∑ ‖𝑇𝑇𝑁𝑁(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑡𝑡𝑖𝑖;𝜃𝜃) − 𝑇𝑇(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑡𝑡𝑖𝑖)‖2
𝑁𝑁𝐼𝐼𝐼𝐼
𝑖𝑖=1        (3b) 

𝑀𝑀𝑀𝑀𝑀𝑀𝐵𝐵𝐵𝐵 = 𝜉𝜉𝐵𝐵𝐵𝐵
𝑁𝑁𝐵𝐵𝐵𝐵

∑ ‖𝑇𝑇𝑁𝑁(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑡𝑡𝑖𝑖;𝜃𝜃) − 𝐺𝐺(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑡𝑡𝑖𝑖)‖2
𝑁𝑁𝐵𝐵𝐵𝐵
𝑖𝑖=1       (3c) 145 
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𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼𝐼𝐼 = 𝜉𝜉𝐼𝐼𝐼𝐼
𝑁𝑁𝐼𝐼𝐼𝐼

∑ ‖𝑇𝑇𝑁𝑁(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 0;𝜃𝜃) − 𝑇𝑇(𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖 , 0)‖2𝑁𝑁𝐼𝐼𝐼𝐼
𝑖𝑖=1        (3d) 

where L(𝜃𝜃) refers to the total loss, 𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷 , 𝑀𝑀𝑀𝑀𝑀𝑀𝐵𝐵𝐵𝐵  and 𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼𝐼𝐼  represent the mean square error of the 

model domain, boundary conditions and initial conditions, respectively; 𝑁𝑁𝐷𝐷 , 𝑁𝑁𝐵𝐵𝐵𝐵 , and 𝑁𝑁𝐼𝐼𝐼𝐼  are the 

numbers of data points for different terms; 𝜉𝜉𝐷𝐷, 𝜉𝜉𝐵𝐵𝐵𝐵, and 𝜉𝜉𝐼𝐼𝐼𝐼  are scaling factors to normalize loss terms. 

According to the study of He and Tartakovsky (2021), the values of 𝜉𝜉𝐷𝐷, 𝜉𝜉𝐵𝐵𝐵𝐵, and 𝜉𝜉𝐼𝐼𝐼𝐼  in this study are set 150 

to 1, 10 and 10, respectively. 𝑇𝑇𝑁𝑁(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑡𝑡𝑖𝑖) represent the values estimated by the DNN model; 𝑇𝑇(𝑥𝑥,𝑦𝑦, 𝑡𝑡) 

is the solution of the 2D analytical model with boundary conditions 𝐺𝐺(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)  and initial condition 

𝑇𝑇(𝑥𝑥,𝑦𝑦, 0). The objective is to find the parameter set 𝜃𝜃 that minimizes the loss function 𝐿𝐿(𝜃𝜃) considers 

the constraints of physical principles and imposes penalties for initial and boundary conditions. It allows 

the neural networks to learn the underlying physical principles, boundary and initial conditions rather 155 

than simply memorizing the training data, thus improving the efficiency and accuracy (He and 

Tartakovsky, 2021; Raissi et al., 2020; Tartakovsky et al., 2020). 

2.4 Transfer learning 

As depicted in Figure 2, traditional deep learning models are allocated to distinct learning tasks, which 

require each model to be trained independently from scratch, leading to high computational demands and 160 

the need for substantial amounts of training data for each task. In contrast, the transfer learning technique 

offers an efficient alternative. By employing a pre-trained model that is then fine-tuned for predicting 

heat transfer in heterogeneous streambeds, transfer learning can significantly reduce the computational 

burden and the need for large datasets. This is achieved by leveraging the knowledge gained from the 
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source domain and applying it to the target domain, thereby accelerating the learning process and 165 

improving the model performance. 

The transfer learning technique involves training a model to establish a mapping between the input vector 

𝑋𝑋 and the observed data 𝑂𝑂 derived from a target dataset 𝐷𝐷 = {(𝑋𝑋𝑖𝑖 ,𝑂𝑂𝑖𝑖)𝑖𝑖=1𝑛𝑛 ,𝑋𝑋𝑖𝑖 ∈ 𝑋𝑋,𝑂𝑂𝑖𝑖 ∈ 𝑂𝑂}. It assumes that 

both the source and the target tasks share similar parameters or prior distributions of the hyperparameters. 

The pre-training model is established utilizing the dataset from the source tasks 𝐷𝐷𝑠𝑠 = {(𝑋𝑋𝑠𝑠,𝑂𝑂𝑠𝑠)𝑠𝑠=1𝑛𝑛 ,𝑋𝑋𝑠𝑠 ∈170 

𝑋𝑋,𝑂𝑂𝑠𝑠 ∈ 𝑂𝑂} which is generated through analytical or numerical models. In this study, the source and target 

datasets are spatiotemporal distributions of temperature fields in homogeneous and heterogeneous 

streambeds, respectively. The analytical model developed by Shi et al. (2023)  is employed to provide 

training dataset for pre-training. However, for the heterogeneous streambed, the analytical model is not 

available; the numerical models are employed to generate the fine-tuning dataset and serve as the 175 

benchmarks to evaluate the performance of the proposed PDTL model. The parameters 𝜃𝜃𝑇𝑇 for the fine-

tuning model is acquired through the optimization of the loss function delineated by: 

𝜃𝜃𝑇𝑇 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝜃𝜃𝑇𝑇

∑ 1
𝑛𝑛∗

𝑛𝑛∗
𝑖𝑖=1 |𝑓𝑓𝑡𝑡(𝑋𝑋𝑡𝑡;𝜃𝜃𝑇𝑇) − 𝑂𝑂𝑡𝑡|2        (4) 

where 𝑛𝑛∗  denotes the number of training datasets employed to fine tune the pre-training model, 𝑓𝑓𝑡𝑡() 

denotes the predictive function of the fine-tuning model.  180 

The flowchart of the newly proposed framework is summarized in Figure 3: the PDTL model is developed 

by initially generating an input dataset using the analytical model for heat transfer in homogeneous 

streambeds. The dataset is subsequently employed to pre-train a DNN model with physical constraints, 

focusing on learning the weights and biases of the fully connected layer. Next, the data of the observation 
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points in the corresponding numerical model for heat transfer in heterogeneous streambeds is utilized to 185 

fine-tune the pre-trained DNN model by transferring the learned insensitive layers (i.e., freezing their 

weights and biases) and retraining the learnable parameters of the remaining layers. Finally, the 

effectiveness of the PDTL model is evaluated by comparing its performance against a traditional DNN 

model with different amount of observation points, which evaluates the model's ability to predict the 

spatiotemporal temperature distribution in heterogeneous streambeds. 190 

3 Results 

3.1 Pre-training process 

In this study, the pre-training model is a DNN model with 6 hidden layers, each containing 16 neurons. 

To evaluate the sensitivity of weights and biases to hydraulic conductivity and to identify which layers 

should be trainable or remain frozen, two pre-training models with identical structures but varying 195 

hydraulic conductivities are constructed. Both datasets consist of a 100 × 100 grid with 100-time steps 

generated by the 2D analytical model, where 80% of the dataset is utilized for training and the remaining 

20% for testing. 𝑞𝑞𝑥𝑥 and 𝑞𝑞𝑧𝑧 depend on hydraulic conductivities in 𝑥𝑥 and 𝑧𝑧 directions. In this section, 𝑞𝑞𝑥𝑥 

and 𝑞𝑞𝑧𝑧 are set to 0.2𝑚𝑚/𝑑𝑑, 0.3𝑚𝑚/𝑑𝑑 and 0.6𝑚𝑚/𝑑𝑑, 0.9𝑚𝑚/𝑑𝑑 for these two models, respectively. The input 

data consist of spatial locations (𝑥𝑥,𝑦𝑦) and time 𝑡𝑡, while the output data is the corresponding temperature. 200 

Results indicate that the predictions of the two pre-training models closely align with the analytical model 

with average MSE values of 1.2𝐸𝐸 − 6 and 1.5𝐸𝐸 − 6, respectively. Similar to the works of Hu et al. (2020) 
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and Zhang et al. (2023), the difference in weights and biases between the two pre-training models is 

evaluated using the relative change rate (RCR): 

𝑅𝑅𝑅𝑅𝑅𝑅 = 1
𝐼𝐼
∑ |𝜃𝜃1𝑖𝑖−𝜃𝜃2𝑖𝑖|

𝜃𝜃1𝑖𝑖
𝐼𝐼
𝑖𝑖            (5) 205 

where 𝜃𝜃1𝑖𝑖  and 𝜃𝜃2𝑖𝑖  are parameter matrixes in two pre-training models, respectively, 𝐼𝐼 is the number of 

elements in the parameter matrix. For enhanced comparability and credibility, each of the two pre-training 

models undergoes 20 training processes. Figure 4 presents the average RCR of weights and biases across 

all layers for two per-training models over 20 trials. The RCR of biases shows consistent stability across 

all layers, except for layer 3. In contrast, variations in weights are more prominent, particularly in layers 210 

1, 2, and 3, which underscores the heightened sensitivity of these layers to hydraulic conductivity. 

Consequently, layers 1, 2, and 3 of the pre-training models are marked as trainable, while the remaining 

layers are held frozen in the following analysis. Notably, the convergence criteria are defined as a 

threshold of 3000 iterations with a minimum gradient alteration of 5𝐸𝐸 − 6 throughout the training phase 

(Zhang et al., 2023; Wang et al., 2021). 215 

3.2 Spatial and temporal performance for homogeneous scenario 

The spatiotemporal distribution of temperature in homogeneous streambeds is obtained by the analytical 

model. In this study, we use 1, 5, 10, 20, 50, and 100 observation points, each with 100-time steps. The 

hydrological parameters are set at 𝑞𝑞𝑥𝑥 = 0.4 𝑚𝑚/𝑑𝑑  and 𝑞𝑞𝑧𝑧 = 0.6 𝑚𝑚/𝑑𝑑 , with all other parameters being 

consistent with those presented in Figure 1. The temperature data from these observation points are used 220 

as training data for PDTL and DNN, respectively. The reference temperature field on 0.5𝑑𝑑 (i.e., the 50𝑡𝑡ℎ 

time step) is employed as testing data. Figure 5 illustrates the absolute errors of the PDTL and DNN 
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models for the homogeneous riparian zone. The results suggest that the PDTL model aligns well with the 

reference temperature field, whereas the DNN model tends to struggle in accurately capturing the 

reference temperature field. This highlights the significant improvement in the performance of the deep 225 

learning model facilitated by prior knowledge of the analytical solution and physical information. The 

pre-training model incorporates physical knowledge to provide superior initial parameters (weights and 

biases), which narrows the search space during the fine-tuning process. In contrast, the DNN model 

randomly initializes these parameters and requires more training points to explore the entire parameter 

space. To further demonstrate the predictive performance of the proposed model in time series, Figure 6 230 

shows the temperature time series predicted by the PDTL and DNN models at a given observation point 

(𝑥𝑥 = 0.5𝑚𝑚, 𝑦𝑦 = 0.5𝑚𝑚). Results indicate that the PDTL model predicts the temperature fluctuation trend 

better compared to the DNN model. Especially for the sparse dataset with a few observation points, the 

average 𝑀𝑀𝑀𝑀𝑀𝑀 of the PDTL model with 5 observation points is approximately 3.2 times lower than that of 

the DNN model. As shown in Figure S2 in the Supplement, there is no significant difference in the 235 

performance of the PDTL and DNN models when the number of observations point increases to 200. 

Notably, the performance of the PDTL model appears to be less sensitive to the amount of observation 

points. We attribute this phenomenon to two factors: (1) randomly selected observation points lead to 

optimal performance when the observation points are in proximity to the test point, and vice versa; (2) 

the PDTL model demonstrates the capacity to integrate substantial information from the analytical model, 240 

which diminishes the requirement for the number of observation points.  

The choice of observation points can influence the outcomes of the proposed PDTL model. To mitigate 

the effect of their positions, each observation point is randomly generated 200 times. The distributions of 
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the average 𝑀𝑀𝑀𝑀𝑀𝑀 for both the PDTL and the DNN models across diverse amount of observation points 

are illustrated in Figure 7. Results reveal that both the interquartile range and mean values of MSE for the 245 

PDTL model are considerably smaller than those of the DNN model. As an illustration, when considering 

10 observation points, the average MSE for the PDTL model is approximately 0.11, whereas that for the 

DNN model is 0.54. Furthermore, there is a significant reduction in both interquartile range and mean 

values of MSE of the PDTL model, and the interquartile range and mean values of MSE of the PDTL 

model tend to stable as the amount of observation points exceeds 50. On the contrary, the interquartile 250 

range and mean values of 𝑀𝑀𝑀𝑀𝑀𝑀 of the DNN model consistently decrease with an increasing amount of 

observation points, displaying a consistent pattern as observed in Figure 6. It should be emphasized that 

the PDTL model can still produce satisfactory results even with sparse data. Even with more than 50 

observation points, the DNN model still underperforms the PDTL model, which can be attributed to the 

following reasons: (1) due to the lack of prior physical knowledge, the DNN model may require more 255 

data to learn relatively complex patterns; (2) both the PDTL and the DNN model follow the identical 

convergence criterion with a restricted number of epochs during the fine-tuning process, which may result 

in incomplete training for the DNN model. 

3.3 Effects of nonuniform flow on heat transfer 

In this section, we evaluate the performance of the PDTL model in predicting the spatiotemporal 260 

temperature distribution in heterogeneous streambeds. The heterogeneous 𝑙𝑙𝑙𝑙𝑙𝑙 field is generated by the 

exponential covariance function with mean 𝜇𝜇 = 0 , correlation length 𝑙𝑙 = 0.1𝑚𝑚  in both the 𝑥𝑥  and 𝑧𝑧 

directions, variance 𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙2 = 0.2, 0.5 and 1.0, respectively. Accordingly, three scenarios with low to high 
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heterogeneity are created. Figure 8 depicts the random 𝑙𝑙𝑙𝑙𝑙𝑙 fields and references flow fields of three 

scenarios. The other parameters remain consistent with those of the homogeneous streambed. The 265 

temperature distribution in the heterogeneous streambed is estimated using the numerical model. 

Temperature time series of 1, 5, 10, 20, 50 and 100 observation points are extracted to fine tune both the 

PDTL and DNN models.  

To mitigate the impacts of random sampling during the fine-tuning process, 200 stochastic simulations 

are performed. The distribution of the average MSE for both the PDTL and DNN models in three distinct 270 

heterogeneous streambeds from low to high heterogeneity are shown in Figure 9. One can find that the 

average MSE of the PDTL model is consistently minimal and significantly lower than that of the DNN 

model. Besides, with the same number of observation points, a decrease in 𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙2  corresponds to a 

reduction in average MSE. These findings can be explained by the fact that the proposed PDTL model 

exhibits a strong ability to transfer knowledge between two datasets with similar structures or features. A 275 

decreased 𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙2  indicates less heterogeneity in the 𝑙𝑙𝑙𝑙𝑙𝑙 field, resulting in a temperature field that more 

closely resembles those generated by the analytical model. We attribute this improvement in the PDTL 

model to the enhanced initial parameters of the DNN model through the incorporation of physical 

knowledge during the fine-tuning process. For both the PDTL and DNN models, the interquartile ranges 

and mean values of MSE decrease as the amount of observation points increases. Notably, by leveraging 280 

the insights from the analytical model, the PDTL model can effectively predict the temperature 

distribution in heterogeneous streambeds, even with sparse observation points (e.g., 5 observation points). 

In contrast, while the DNN model exhibits improved performance with an increased amount of 

observation points, its performance heavily relies on this factor, showing unsatisfactory outcomes with 
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fewer observation points. When the amount of observation points reaches 50, the interquartile range and 285 

mean MSE of the PDTL model exhibit marginal changes, but the interquartile range and mean MSE of the 

DNN model still decrease significantly. Furthermore, there is no significant difference in the performance 

of the PDTL and DNN models in heterogeneous scenarios when the number of observation points 

increases to 200, as shown in Figures S3 and S4 in the Supplement. The average MSE of the PDTL model 

is approximately 2.8 to 18.4 times smaller than that of the DNN model with the same observation points, 290 

which further demonstrates the capability of the PDTL model to transfer knowledge from homogeneous 

environments in heterogeneous environments.  

3.4 Effects of river temperature uncertainty 

In this section, we evaluate the effectiveness of the PDTL model in the context of river temperature 

observation noises, which may arise from suboptimal field conditions or sensor resolution limitations 295 

(Chen et al., 2022; Shi et al., 2023). Specifically, the white Gaussian noise is introduced at the top 

boundary: 

𝑓𝑓(𝑡𝑡) = 20 + 𝑠𝑠𝑠𝑠𝑠𝑠(2𝜋𝜋𝜋𝜋) + 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝜑𝜑𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,𝜎𝜎𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁)       (6) 

where 𝜑𝜑𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  and 𝜎𝜎𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  denote the mean and variance of white Gaussian noise, respectively, and 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛() denotes the Gaussian distribution. In this section, 𝜑𝜑𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 is set to 0°C and 𝜎𝜎𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 is set to 300 

0.025°C, 0.05°C and 0.075°C, respectively, as shown in Figure 10. Similarly, the heterogeneous 𝑙𝑙𝑙𝑙𝑙𝑙 field 

of streambed is generated by the exponential covariance function with 𝜇𝜇 = 0, 𝑙𝑙 = 0.1𝑚𝑚 in both 𝑥𝑥 and 𝑧𝑧 

directions and 𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙2 = 0.5. The temperature time series from diverse numbers of observation points (1, 5, 

10, 20, 50, and 100) are utilized as training datasets for both PDTL and DNN models. Additionally, 200 
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stochastic simulations are conducted to mitigate the influence of random sampling of observation points 305 

during the fine-tuning process. 

Figure 11 shows the distributions of the average 𝑀𝑀𝑀𝑀𝑀𝑀 for both the PDTL and DNN models under different 

noise levels. It is observed that that the PDTL and DNN models exhibit sensitivity to noise, and the 

elevated noise levels result in diminished model performance. Nevertheless, the PDTL model is less 

impacted by river temperature uncertainty compared to the DNN model. For instance, in cases of 10 310 

observation points, the average MSE of the DNN model varies from 0.59 to 0.45 as 𝜎𝜎 decreases from 

0.075 to 0.025. In contrast, the average MSE of the PDTL model ranges only from 0.11 to 0.08 under the 

same conditions, demonstrating the superior robustness of the PDTL model over the DNN model. 

4 Discussions 

This study investigates the effects of streambed heterogeneity, temperature observation noises, and the 315 

number of observation points at different locations on the performance of the proposed PDTL model. 

Results indicate that the proposed PDTL model exhibits robust prediction performance with significantly 

reduced interquartile range and mean MSE, particularly in scenarios with sparse data. These findings 

suggest that integrating analytical knowledge effective decrease of model uncertainties. Compared to 

conventional data-driven models, which often require extensive training data, the PDTL model leverages 320 

analytical knowledge to improve accuracy while reducing uncertainty. This highlights its potential 

advantages in environmental and hydrological studies where data collection is often constrained. A key 

strength of this framework is its transferability to other applications beyond heat transfer in riparian zones. 

By integrating analytical knowledge with data-driven approach, it can be extended to solute transport 
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processes and heat transfer in other heterogeneous porous media, such as groundwater contaminant 325 

migration and CO2 geological storage. This versatility highlights the framework's potential for broader 

applications across various fields within environmental and hydrological studies. However, scientists 

should carefully consider the choice of training data and the assumptions underlying the analytical 

solutions when applying this framework to different settings. 

Despite its advantages, it is imperative to recognize several constraints associated with the PDTL model 330 

proposed in this study. Firstly, the incapacity for extrapolation of the PDTL model restricts its 

applicability. As it lacks observation points outside the training domain, the PDTL model tends to face 

limitations concerning extrapolative tasks. Secondly, this study centers on modeling heat transfer 

problems in heterogeneous riparian zones, and the effectiveness of the PDTL model may be influenced 

by the selection of the 𝐾𝐾 value. Thirdly, using locations as inputs may limit the model’s transferability to 335 

other sites and weaken its direct connection to measurable physical variables. Future work will 

incorporate additional physically measurable parameters, such as surface temperature, river-aquifer fluxes, 

or hydraulic gradients, to enhance the model’s generalizability and physical relevance. Finally, analytical 

models usually require regular spatial domains, while real-world study areas (e.g., watersheds) often 

feature irregular spatial domains. The effectiveness of the PDTL model may be influenced by 340 

discrepancies between the temperature field in the real-world area and the simplified analytical solution, 

especially near the boundary. Future research should systematically compare transfer learning-based 

models with conventional models regarding computational efficiency, predictive accuracy, and 

adaptability to diverse hydrological settings. Additionally, efforts should focus on improving the 

framework’s ability to handle irregular spatial domains through coordinate transformations, domain 345 
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padding, or hybrid numerical-analytical datasets, and on refining its extrapolation capability. Addressing 

these challenges will further enhance the applicability of the PDTL model in environmental and 

hydrological research. 

5. Conclusions 

In this study, we propose a novel physics-informed deep transfer learning (PDTL) approach, which 350 

enhances DNN models by integrating physical mechanisms described by an analytical model using 

transfer learning technique. The proposed PDTL model is tested against the DNN model under different 

heterogeneous streambeds and observation noise levels. Results indicate that the PDTL model 

significantly improves the robustness and accuracy in predicting the spatiotemporal temperature 

distribution in heterogeneous streambeds by incorporating knowledge transferred from pre-trained DNN 355 

models. Importantly, the PDTL model maintains satisfactory performance even with sparse training data 

and high uncertainties in geological conditions and observations, making it a promising tool for practical 

applications in riparian zone management. This is particularly relevant in situations where data acquisition 

is often challenging and costly, highlighting the potential impact of our research. The main conclusions 

are summarized as follows:  360 

(1) The hydraulic conductivity primarily influences the parameters of the shallow layers in the DNN 

model, rendering it visible to use transfer learning approach in predicting spatiotemporal temperature 

distribution in heterogeneous streambeds; 



19 
 

(2) The accuracy of predicted temperature fields for both the PDTL and DNN models improves with an 

increased number of observation points, and the PDTL model significantly outperforms the DNN model 365 

for both homogeneous and heterogeneous scenarios； 

(3) The PDTL model demonstrates stronger robustness in dealing with observation noise compared to the 

DNN model and performs satisfactorily even with sparse training data; 

(4) The successful application of the PDTL model for predicting the spatiotemporal temperature 

distribution in heterogeneous streambeds indicates its pronounced advantages and prospects for 370 

estimating surface water and groundwater interaction fluxes in such heterogeneous riparian zones.  
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Figure Captions 

 

 

Figure 1. Schematic diagram of the temperature distribution in the riparian zones. 555 
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Figure 2. Schematic diagram of the pre-training and fine-tuning methods in the transfer learning model 

(Revised from (Guo et al., 2023)). (a) Traditional machine learning method; (b) Transfer learning method. 560 
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Figure 3. Proposed PDTL framework used in this study. The framework consists of a pre-training module, 565 

a transfer learning module, and an evaluation module. 
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Figure 4. The average relative change rate (𝑅𝑅𝑅𝑅𝑅𝑅) of weight between pre-training neural network with 570 

different 𝐾𝐾 values. 
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Figure 5. Absolute errors between the predicted temperature field and reference temperature field using 

PDTL and DNN models for homogeneous streambed.  575 
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Figure 6. Comparisons of the predicted temperature (blue curves) and reference temperature (red curves) 

using PDTL and DNN models for homogeneous streambed.  
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Figure 7. 𝑀𝑀𝑀𝑀𝑀𝑀  distribution of normalized results from PDTL and DNN models plotted against the 580 

number of observation points for homogeneous streambed. (a) PDTL model; (b) DNN model. 
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Figure 8. Heat map and the contours of hydraulic head, temperature field and streamlines for different 

𝐾𝐾-fields. (a1) - (c1) show the heat map of 𝐾𝐾-fields, (a2) - (c2) show the contours of hydraulic head and 585 

streamlines at 0.5𝑑𝑑 and (a3) - (c3) show the contours of temperature field and streamlines at 0.5𝑑𝑑 for 

𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙2 = 0.2, 0.5, and 1.0, respectively. 
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Figure 9. 𝑀𝑀𝑀𝑀𝑀𝑀  distribution of normalized results from PDTL and DNN models plotted against the 590 

number of observation points for different heterogeneous streambeds. (a1) - (c1) show the PDTL model 

and (a2) - (c2) show the DNN model for 𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙2 = 0.2, 0.5, and 1.0, respectively. 
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Figure 10. Time series diagram of river temperature under different observation noises. (a) 𝜎𝜎 = 0.025℃; 595 

(b) 𝜎𝜎 = 0.05℃; (c) 𝜎𝜎 = 0.075℃. 
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Figure 11. 𝑀𝑀𝑀𝑀𝑀𝑀  distribution of normalized results from PDTL and DNN models plotted against the 

number of observation points for different observation noises. (a1) - (c1) show the PDTL model and (a2) 

- (c2) show the DNN model for 𝜎𝜎 = 0.025℃, 0.05℃, and 0.075℃, respectively. 600 
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