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Abstract.

Data-driven deep learning models usually perform well in terms of improving computational efficiency for predicting heat
transfer processes in heterogeneous riparian zones. However, traditional deep learning models often suffer from accuracy when
data availability is limited. In this study, a novel physics-informed deep transfer learning (PDTL) approach is proposed to
improve the accuracy of spatiotemporal temperature distribution predictions. The proposed PDTL model integrates the
physical mechanisms described by an analytical model into the standard Deep Neural Networks (DNN) model using a transfer
learning technique. To test the robustness of the proposed PDTL model, we analyse the influence of the number of observation
points at different locations, streambed heterogeneity, and observation noise levels on the MSE values between the observed
and predicted temperature fields. Results indicate that the PDTL model significantly outperforms the DNN model in scenarios
with scarce training data, and the mean MSE values decrease with increasing observation points for both PDTL and DNN
models. Furthermore, increasing streambed heterogeneity and observation noise levels raises the mean MSE values of the
PDTL and DNN models, with the PDTL model exhibiting greater robustness than the DNN model, highlighting its potential

for practical applications in riparian zone management.
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1 Introduction

Understanding heat transfer processes in riparian zones is critical for evaluating physical and biochemical
processes during surface water-groundwater interactions, such as contaminants transport (Elliott and
Brooks, 1997; Schmidt et al., 2011), water resources management (Bukaveckas, 2007; Fleckenstein et al.,
2010) and aquatic ecosystems regulation (Ren et al., 2018; Halloran et al., 2016). As a primary source of
uncertainty in riparian zone modeling, the inherent heterogeneity of the streambed stands out as a pivotal
factor in accurately modeling groundwater flow and heat transfer processes (Karan et al., 2014; Brunner
etal., 2017). However, given the intricacies of streambed heterogeneity, data acquisition in heterogeneous
riparian zone is often time-consuming and costly (Zhang et al., 2023; Kalbus et al., 2006). Consequently,
achieving accurate predictions of heat transfer processes in heterogeneous riparian zones with limited

observation data remains challenging.

Over the past few decades, there has been a substantial increase in efforts toward simulating heat transfer
processes in riparian zones, which can be categorized into two groups: physics-based models and data-
driven models (Barclay et al., 2023; Feigl et al., 2021; Heavilin and Neilson, 2012). Typically, the
physics-based models employ partial differential equations to characterize heat transfer dynamics within
riparian zones, like the convection-diffusion equation (Chen et al., 2018; Keery et al., 2007), which aims
to simulate and forecast temperature variations within riparian zones. Resolving the convection-diffusion
equation generally involves two approaches: analytical and numerical models. Analytical models provide
a precise mathematical representation of heat transfer dynamics and offer fundamental insights into
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physical processes within riparian zones, but their applicability is often limited to rather simplified and
idealized scenarios (Keery et al., 2007; Bandai and Ghezzehei, 2021; Zhou and Zhang, 2022). Numerical
models, which rely on discretizing governing equations and solving them iteratively, are able to handle
more intricate scenarios and address unsteady flows effectively (Cui and Zhu, 2018; Ren et al., 2019; Ren
et al., 2023). Nevertheless, numerical models are constrained by the uncertainties of model structures and

the prerequisites of streambed characteristic parameters (Heavilin and Neilson, 2012; Shi et al., 2023).

Data-driven models, unlike physics-based models, can create a direct mapping between input and output
variables without explicit knowledge of underlying physical processes governing the system (Zhou and
Zhang, 2023; Callaham et al., 2021). In recent years, data-driven models have achieved significant
advancements and emerged as a successful alternative in hydrological and environmental modeling (Zhou
et al., 2024; Cao et al., 2022; Wade et al., 2023). However, their deficiency in incorporating physical
principles restricts their capability to delineate explicit computational processes as physics-based models,
posing a challenge to achieve enhanced extrapolation capabilities (Read et al., 2019; Cho and Kim, 2022).
Meanwhile, data-driven models typically require massive amounts of data for training and may yield
results that defy established physical laws due to the lack of physical principles (Read et al., 2019; Xie et
al., 2022). The strengths and weaknesses inherent in both data-driven and physically-based models are
evident across various research domains (Kim et al., 2021; Wang et al., 2023). Consequently, there is an
increasing inclination towards integrating physical processes into data-driven models, which enables
these models to extract patterns and laws from both observation data and underlying physical principles

(Zhao et al., 2021; Karpatne et al., 2017).
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Typically, several methods exist to integrate two divergent models: one is to employ a deep learning
framework to substitute either a submodule or an intermediary parameter in physically-based models
(Jiang et al., 2020; Zhao et al., 2019; Cho and Kim, 2022; Arcomano et al., 2022), and the other involves
integrating physical models to furnish additional constraints or penalizations to the deep learning
framework (Kamrava et al., 2021; Raissi et al., 2019; Yeung et al., 2022). Additionally, transfer learning
provides a feasible approach for integrating analytical and deep learning models, where knowledge is
transferred from a distinct but relevant source domain to enhance the efficacy of the target domain (Zhang
et al., 2023; Chen et al., 2021). This approach can diminish the requirement for extensive training data in
the target domain, which is considered as a major barrier of deep learning applications. By leveraging
knowledge gained from pre-training models, it accelerates the learning process and enhances model
performance (Guo et al., 2023; Jiang and Durlofsky, 2023). Recently, the use of the transfer learning
technique has gained attention in the field of hydrological modeling (Zhang et al., 2023; Cao et al., 2022;
Chen et al., 2021; Vandaele et al., 2021; Willard et al., 2021). For example, Xiong et al. (2022) developed
an Long-short term memory (LSTM) model of daily dissolved inorganic nitrogen concentrations and
fluxes in the coastal watershed located in southeastern China. They retrained this model using multi-
watershed data and successfully applied it to seven diverse watersheds through transfer learning approach.
Zhang et al. (2023) used the transfer learning technique to integrate the deep learning model and analytical
models for predicting groundwater flow in aquifers and obtained satisfactory prediction performance for

complex scenarios.

In this study, we introduce a novel physics-informed deep transfer learning (PDTL) approach that

incorporates physical information from analytical models into a deep learning framework using the
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transfer learning technique. The proposed PDTL model is implemented to predict the spatiotemporal
temperature distribution in heterogeneous riparian zones by leveraging analytical solutions, deep learning
models, and transfer learning techniques. The analytical model is used to efficiently produce physically
consistent heat distribution patterns and data in homogeneous riparian zones, which serve as the training
data for the pre-training deep learning model. Subsequently, the weights and biases learned from the pre-
training model are transferred to a new deep learning model under heterogeneous scenarios through
transfer learning. By integrating insights from analytical models with the approximation capability of
deep learning models, the PDTL model achieves improved efficiency and performance. Notably, the
newly proposed approach demonstrates significant performance improvement, even with scarce
observational data. This innovative approach provides for accurate and efficient modeling of complex

heat transfer processes in heterogeneous environments, even with limited observation data.

2 Methods

2.1 Conceptual model

The two-dimensional (2D) conceptual model of the heat transfer process in a heterogeneous streambed is
depicted in Figure 1. The coordinate system originates at the center of the river, with the x-axis orientated
horizontally from left to right along the streambed. The z-axis is located vertically downward along the
left inlet boundary of the system and perpendicular to the x-axis. It is postulated that the thermal
properties of the streambed are uniform. The river has a width of 2L. Heat originated from the river, with

its temperature represented by an arbitrary function. The initial and boundary conditions are depicted in
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Figure 1. An initial temperature of 20 °C is prescribed. The boundary conditions on the left, right, and
bottom sides are all specified as no heat flux boundary. The top boundary condition at 0 < x < L (L =
0.32 m in this study) is represented by a sinusoidal temperature signal ranging between 19 and 21 °C (i.e.,
f(t) = 20 + sin(2mt) °C). Meanwhile, the top boundary condition at x > L is held constant at a
temperature of 20 °C. For this conceptual framework, two modelling approaches are employed. The
analytical model provides exact solutions for heat transfer in homogeneous streambeds with uniform
hydraulic conductivity and thermal properties (Shi et al., 2023). It generates physically consistent
temperature distributions efficiently for the pre-training phase of our PDTL model. Meanwhile, the
numerical model extends this solution to heterogeneous streambeds with spatially variable hydraulic
conductivity, accommodating complex flow paths created by streambed heterogeneity. The details of the
analytical solution for the homogeneous streambed and the numerical solution for the heterogeneous

streambed are available in the Supplement.

2.2 Deep neural network (DNN)

The deep neural network (DNN) is a multi-layer feed-forward network with an input layer, multiple
hidden layers, and an output layer. The backpropagation algorithm is utilized to minimize the mean error
of the output and has been proven to be crucial in enhancing convergence (Jin et al., 2024). Assuming the
presence of m hidden layers, the input and output vectors are denoted by X and O, respectively. The

forward equations of the DNN model can be represented as follows:
Hi = tanh(WiX + bi),i = 1, e, m (la)

0 = tanh(Wyps1X + bysst) (1b)
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where H; represents the output of the i-th hidden layer; W and b represent the weight matrices and bias
vectors, respectively. Typically, W and b can amalgamate as the parameter set 8 = {W;, b;}"**, tanh
refers the tanh activation function. To mitigate the impact of dimensionality during the training process,
the temperature field dataset is normalized to [—1,1] through the following equation in the pre-training

process:

D—Dmnin

Dporm = 2 -1 ()

Dmax—Dmin

where D denotes data utilized in the DNN model, D,,,, and D,,;,, denote the maximum and minimum
values and are computed with reference to the training samples exclusively. The same values of D, 4,

and D,,;, are employed to normalize the testing samples to prevent data leakage (Zuo et al., 2020).

2.3 Deep collocation method

The collocation technique uses a collection of randomly distributed points to minimize the loss
function while adhering to a specified set of constraints. This method demonstrates a degree of immunity
against instabilities, such as explosion or vanishing gradients encountered in DNNSs, offering a feasible
strategy for training DNNs (Guo et al., 2023). By incorporating the collocation points throughout the
model domain, along with the physical principles of the boundary and initial conditions, the learning

process aims to minimize the following loss functions:

L(@) = MSED + MSEBC + MSEIC (33.)
MSEp = %Z?:IﬂlTN(xi'Yi: t;0) — T(xy, v t)I? (3b)
MSEpc = 22 S| Ty Gty i 3 6) = G (i i )11 (3¢)



150

155

160

MSEjc = /€ S5 Ty Ceiryi, 05 6) = T v, 011 (3d)

i=1
where L(60) refers to the total loss, MSE,, MSEg. and MSE; represent the mean square error of the
model domain, boundary conditions and initial conditions, respectively; Ny, Ngc, and N, are the
numbers of data points for different terms; &p, 5, and & are scaling factors to normalize loss terms.
According to the study of He and Tartakovsky (2021), the values of ¢, &5, and &, in this study are set
to 1, 10 and 10, respectively. Ty (x;, y;, t;) represent the values estimated by the DNN model; T(x, y, t)
is the solution of the 2D analytical model with boundary conditions G(x,y,t) and initial condition
T(x,y,0). The objective is to find the parameter set 6 that minimizes the loss function L(6) considers
the constraints of physical principles and imposes penalties for initial and boundary conditions. It allows
the neural networks to learn the underlying physical principles, boundary and initial conditions rather
than simply memorizing the training data, thus improving the efficiency and accuracy (He and

Tartakovsky, 2021; Raissi et al., 2020; Tartakovsky et al., 2020).

2.4 Transfer learning

As depicted in Figure 2, traditional deep learning models are allocated to distinct learning tasks, which
require each model to be trained independently from scratch, leading to high computational demands and
the need for substantial amounts of training data for each task. In contrast, the transfer learning technique
offers an efficient alternative. By employing a pre-trained model that is then fine-tuned for predicting
heat transfer in heterogeneous streambeds, transfer learning can significantly reduce the computational

burden and the need for large datasets. This is achieved by leveraging the knowledge gained from the
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source domain and applying it to the target domain, thereby accelerating the learning process and

improving the model performance.

The transfer learning technique involves training a model to establish a mapping between the input vector
X and the observed data O derived from a target dataset D = {(X;, 0;)i=1, X; € X, 0; € 0}. It assumes that
both the source and the target tasks share similar parameters or prior distributions of the hyperparameters.
The pre-training model is established utilizing the dataset from the source tasks Dy = {(X;, O5)7—1, X5 €
X, O, € 0} which is generated through analytical or numerical models. In this study, the source and target
datasets are spatiotemporal distributions of temperature fields in homogeneous and heterogeneous
streambeds, respectively. The analytical model developed by Shi et al. (2023) is employed to provide
training dataset for pre-training. However, for the heterogeneous streambed, the analytical model is not
available; the numerical models are employed to generate the fine-tuning dataset and serve as the

benchmarks to evaluate the performance of the proposed PDTL model. The parameters 8 for the fine-

tuning model is acquired through the optimization of the loss function delineated by:

Or = argmin T, ~ |f;(X;; 07) — O¢|? (4)

T

where n* denotes the number of training datasets employed to fine tune the pre-training model, f;()

denotes the predictive function of the fine-tuning model.

The flowchart of the newly proposed framework is summarized in Figure 3: the PDTL model is developed
by initially generating an input dataset using the analytical model for heat transfer in homogeneous
streambeds. The dataset is subsequently employed to pre-train a DNN model with physical constraints,
focusing on learning the weights and biases of the fully connected layer. Next, the data of the observation

9



185

190

195

200

points in the corresponding numerical model for heat transfer in heterogeneous streambeds is utilized to
fine-tune the pre-trained DNN model by transferring the learned insensitive layers (i.e., freezing their
weights and biases) and retraining the learnable parameters of the remaining layers. Finally, the
effectiveness of the PDTL model is evaluated by comparing its performance against a traditional DNN
model with different amount of observation points, which evaluates the model's ability to predict the

spatiotemporal temperature distribution in heterogeneous streambeds.

3 Results

3.1 Pre-training process

In this study, the pre-training model is a DNN model with 6 hidden layers, each containing 16 neurons.
To evaluate the sensitivity of weights and biases to hydraulic conductivity and to identify which layers
should be trainable or remain frozen, two pre-training models with identical structures but varying
hydraulic conductivities are constructed. Both datasets consist of a 100 X 100 grid with 100-time steps
generated by the 2D analytical model, where 80% of the dataset is utilized for training and the remaining
20% for testing. q,, and g, depend on hydraulic conductivities in x and z directions. In this section, g,
and g, are set to 0.2m/d, 0.3m/d and 0.6m/d, 0.9m/d for these two models, respectively. The input
data consist of spatial locations (x, y) and time t, while the output data is the corresponding temperature.
Results indicate that the predictions of the two pre-training models closely align with the analytical model

with average MSE values of 1.2E — 6 and 1.5E — 6, respectively. Similar to the works of Hu et al. (2020)

10
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and Zhang et al. (2023), the difference in weights and biases between the two pre-training models is

evaluated using the relative change rate (RCR):

RCR — lz{ |91i_92i| (5)
1 01i

where 6,; and 0,; are parameter matrixes in two pre-training models, respectively, I is the number of
elements in the parameter matrix. For enhanced comparability and credibility, each of the two pre-training
models undergoes 20 training processes. Figure 4 presents the average RCR of weights and biases across
all layers for two per-training models over 20 trials. The RCR of biases shows consistent stability across
all layers, except for layer 3. In contrast, variations in weights are more prominent, particularly in layers
1, 2, and 3, which underscores the heightened sensitivity of these layers to hydraulic conductivity.
Consequently, layers 1, 2, and 3 of the pre-training models are marked as trainable, while the remaining
layers are held frozen in the following analysis. Notably, the convergence criteria are defined as a
threshold of 3000 iterations with a minimum gradient alteration of 5E — 6 throughout the training phase

(Zhang et al., 2023; Wang et al., 2021).

3.2 Spatial and temporal performance for homogeneous scenario

The spatiotemporal distribution of temperature in homogeneous streambeds is obtained by the analytical
model. In this study, we use 1, 5, 10, 20, 50, and 100 observation points, each with 100-time steps. The
hydrological parameters are set at q, = 0.4 m/d and q, = 0.6 m/d, with all other parameters being
consistent with those presented in Figure 1. The temperature data from these observation points are used
as training data for PDTL and DNN, respectively. The reference temperature field on 0.5d (i.e., the 50th

time step) is employed as testing data. Figure 5 illustrates the absolute errors of the PDTL and DNN

11
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models for the homogeneous riparian zone. The results suggest that the PDTL model aligns well with the
reference temperature field, whereas the DNN model tends to struggle in accurately capturing the
reference temperature field. This highlights the significant improvement in the performance of the deep
learning model facilitated by prior knowledge of the analytical solution and physical information. The
pre-training model incorporates physical knowledge to provide superior initial parameters (weights and
biases), which narrows the search space during the fine-tuning process. In contrast, the DNN model
randomly initializes these parameters and requires more training points to explore the entire parameter
space. To further demonstrate the predictive performance of the proposed model in time series, Figure 6
shows the temperature time series predicted by the PDTL and DNN models at a given observation point
(x = 0.5m, y = 0.5m). Results indicate that the PDTL model predicts the temperature fluctuation trend
better compared to the DNN model. Especially for the sparse dataset with a few observation points, the
average MSE of the PDTL model with 5 observation points is approximately 3.2 times lower than that of
the DNN model. As shown in Figure S2 in the Supplement, there is no significant difference in the
performance of the PDTL and DNN models when the number of observations point increases to 200.
Notably, the performance of the PDTL model appears to be less sensitive to the amount of observation
points. We attribute this phenomenon to two factors: (1) randomly selected observation points lead to
optimal performance when the observation points are in proximity to the test point, and vice versa; (2)
the PDTL model demonstrates the capacity to integrate substantial information from the analytical model,

which diminishes the requirement for the number of observation points.

The choice of observation points can influence the outcomes of the proposed PDTL model. To mitigate

the effect of their positions, each observation point is randomly generated 200 times. The distributions of

12
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the average MSE for both the PDTL and the DNN models across diverse amount of observation points
are illustrated in Figure 7. Results reveal that both the interquartile range and mean values of MSE for the
PDTL model are considerably smaller than those of the DNN model. As an illustration, when considering
10 observation points, the average MSE for the PDTL model is approximately 0.11, whereas that for the
DNN model is 0.54. Furthermore, there is a significant reduction in both interquartile range and mean
values of MSE of the PDTL model, and the interquartile range and mean values of MSE of the PDTL
model tend to stable as the amount of observation points exceeds 50. On the contrary, the interquartile
range and mean values of MSE of the DNN model consistently decrease with an increasing amount of
observation points, displaying a consistent pattern as observed in Figure 6. It should be emphasized that
the PDTL model can still produce satisfactory results even with sparse data. Even with more than 50
observation points, the DNN model still underperforms the PDTL model, which can be attributed to the
following reasons: (1) due to the lack of prior physical knowledge, the DNN model may require more
data to learn relatively complex patterns; (2) both the PDTL and the DNN model follow the identical
convergence criterion with a restricted number of epochs during the fine-tuning process, which may result

in incomplete training for the DNN model.

3.3 Effects of nonuniform flow on heat transfer

In this section, we evaluate the performance of the PDTL model in predicting the spatiotemporal
temperature distribution in heterogeneous streambeds. The heterogeneous [nK field is generated by the
exponential covariance function with mean u = 0, correlation length [ = 0.1m in both the x and z

directions, variance o/, = 0.2, 0.5 and 1.0, respectively. Accordingly, three scenarios with low to high
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heterogeneity are created. Figure 8 depicts the random InK fields and references flow fields of three
scenarios. The other parameters remain consistent with those of the homogeneous streambed. The
temperature distribution in the heterogeneous streambed is estimated using the numerical model.
Temperature time series of 1, 5, 10, 20, 50 and 100 observation points are extracted to fine tune both the

PDTL and DNN models.

To mitigate the impacts of random sampling during the fine-tuning process, 200 stochastic simulations
are performed. The distribution of the average MSE for both the PDTL and DNN models in three distinct
heterogeneous streambeds from low to high heterogeneity are shown in Figure 9. One can find that the
average MSE of the PDTL model is consistently minimal and significantly lower than that of the DNN
model. Besides, with the same number of observation points, a decrease in o/ corresponds to a
reduction in average MSE. These findings can be explained by the fact that the proposed PDTL model
exhibits a strong ability to transfer knowledge between two datasets with similar structures or features. A
decreased o/ indicates less heterogeneity in the InK field, resulting in a temperature field that more
closely resembles those generated by the analytical model. We attribute this improvement in the PDTL
model to the enhanced initial parameters of the DNN model through the incorporation of physical
knowledge during the fine-tuning process. For both the PDTL and DNN models, the interquartile ranges
and mean values of MSE decrease as the amount of observation points increases. Notably, by leveraging
the insights from the analytical model, the PDTL model can effectively predict the temperature
distribution in heterogeneous streambeds, even with sparse observation points (e.g., 5 observation points).
In contrast, while the DNN model exhibits improved performance with an increased amount of
observation points, its performance heavily relies on this factor, showing unsatisfactory outcomes with

14
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fewer observation points. When the amount of observation points reaches 50, the interquartile range and
mean MSE of the PDTL model exhibit marginal changes, but the interquartile range and mean MSE of the
DNN model still decrease significantly. Furthermore, there is no significant difference in the performance
of the PDTL and DNN models in heterogeneous scenarios when the number of observation points
increases to 200, as shown in Figures S3 and S4 in the Supplement. The average MSE of the PDTL model
is approximately 2.8 to 18.4 times smaller than that of the DNN model with the same observation points,
which further demonstrates the capability of the PDTL model to transfer knowledge from homogeneous

environments in heterogeneous environments.

3.4 Effects of river temperature uncertainty

In this section, we evaluate the effectiveness of the PDTL model in the context of river temperature
observation noises, which may arise from suboptimal field conditions or sensor resolution limitations
(Chen et al., 2022; Shi et al., 2023). Specifically, the white Gaussian noise is introduced at the top

boundary:
f(t) = 20 + sin(2mt) + normrnd(Pnoise» Onoise) (6)

where @ypise and oy,ise denote the mean and variance of white Gaussian noise, respectively, and
normrnd() denotes the Gaussian distribution. In this section, @p,;se 1S set to 0°C and gy,se 1S set to
0.025°C, 0.05°C and 0.075°C, respectively, as shown in Figure 10. Similarly, the heterogeneous (nK field
of streambed is generated by the exponential covariance function with u = 0, [ = 0.1m in both x and z
directions and o = 0.5. The temperature time series from diverse numbers of observation points (1, 5,

10, 20, 50, and 100) are utilized as training datasets for both PDTL and DNN models. Additionally, 200
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stochastic simulations are conducted to mitigate the influence of random sampling of observation points

during the fine-tuning process.

Figure 11 shows the distributions of the average MSE for both the PDTL and DNN models under different
noise levels. It is observed that that the PDTL and DNN models exhibit sensitivity to noise, and the
elevated noise levels result in diminished model performance. Nevertheless, the PDTL model is less
impacted by river temperature uncertainty compared to the DNN model. For instance, in cases of 10
observation points, the average MSE of the DNN model varies from 0.59 to 0.45 as o decreases from
0.075 to 0.025. In contrast, the average MSE of the PDTL model ranges only from 0.11 to 0.08 under the

same conditions, demonstrating the superior robustness of the PDTL model over the DNN model.

4 Discussions

This study investigates the effects of streambed heterogeneity, temperature observation noises, and the
number of observation points at different locations on the performance of the proposed PDTL model.
Results indicate that the proposed PDTL model exhibits robust prediction performance with significantly
reduced interquartile range and mean MSE, particularly in scenarios with sparse data. These findings
suggest that integrating analytical knowledge effective decrease of model uncertainties. Compared to
conventional data-driven models, which often require extensive training data, the PDTL model leverages
analytical knowledge to improve accuracy while reducing uncertainty. This highlights its potential
advantages in environmental and hydrological studies where data collection is often constrained. A key
strength of this framework is its transferability to other applications beyond heat transfer in riparian zones.

By integrating analytical knowledge with data-driven approach, it can be extended to solute transport
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processes and heat transfer in other heterogeneous porous media, such as groundwater contaminant
migration and CO:z geological storage. This versatility highlights the framework's potential for broader
applications across various fields within environmental and hydrological studies. However, scientists
should carefully consider the choice of training data and the assumptions underlying the analytical

solutions when applying this framework to different settings.

Despite its advantages, it is imperative to recognize several constraints associated with the PDTL model
proposed in this study. Firstly, the incapacity for extrapolation of the PDTL model restricts its
applicability. As it lacks observation points outside the training domain, the PDTL model tends to face
limitations concerning extrapolative tasks. Secondly, this study centers on modeling heat transfer
problems in heterogeneous riparian zones, and the effectiveness of the PDTL model may be influenced
by the selection of the K value. Thirdly, using locations as inputs may limit the model’s transferability to
other sites and weaken its direct connection to measurable physical variables. Future work will
incorporate additional physically measurable parameters, such as surface temperature, river-aquifer fluxes,
or hydraulic gradients, to enhance the model’s generalizability and physical relevance. Finally, analytical
models usually require regular spatial domains, while real-world study areas (e.g., watersheds) often
feature irregular spatial domains. The effectiveness of the PDTL model may be influenced by
discrepancies between the temperature field in the real-world area and the simplified analytical solution,
especially near the boundary. Future research should systematically compare transfer learning-based
models with conventional models regarding computational efficiency, predictive accuracy, and
adaptability to diverse hydrological settings. Additionally, efforts should focus on improving the

framework’s ability to handle irregular spatial domains through coordinate transformations, domain
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padding, or hybrid numerical-analytical datasets, and on refining its extrapolation capability. Addressing
these challenges will further enhance the applicability of the PDTL model in environmental and

hydrological research.

5. Conclusions

In this study, we propose a novel physics-informed deep transfer learning (PDTL) approach, which
enhances DNN models by integrating physical mechanisms described by an analytical model using
transfer learning technique. The proposed PDTL model is tested against the DNN model under different
heterogeneous streambeds and observation noise levels. Results indicate that the PDTL model
significantly improves the robustness and accuracy in predicting the spatiotemporal temperature
distribution in heterogeneous streambeds by incorporating knowledge transferred from pre-trained DNN
models. Importantly, the PDTL model maintains satisfactory performance even with sparse training data
and high uncertainties in geological conditions and observations, making it a promising tool for practical
applications in riparian zone management. This is particularly relevant in situations where data acquisition
is often challenging and costly, highlighting the potential impact of our research. The main conclusions

are summarized as follows:

(1) The hydraulic conductivity primarily influences the parameters of the shallow layers in the DNN
model, rendering it visible to use transfer learning approach in predicting spatiotemporal temperature

distribution in heterogeneous streambeds;
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(2) The accuracy of predicted temperature fields for both the PDTL and DNN models improves with an
increased number of observation points, and the PDTL model significantly outperforms the DNN model

for both homogeneous and heterogeneous scenarios;

(3) The PDTL model demonstrates stronger robustness in dealing with observation noise compared to the

DNN model and performs satisfactorily even with sparse training data;

(4) The successful application of the PDTL model for predicting the spatiotemporal temperature
distribution in heterogeneous streambeds indicates its pronounced advantages and prospects for

estimating surface water and groundwater interaction fluxes in such heterogeneous riparian zones.
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Author contributions

Methodology, Software, Visualization, Writing - original draft: AJ. Methodology, Validation, Writing -
review & editing: WS. Conceptualization, Validation, Writing - review & editing: JD. Conceptualization,
Validation, Writing - review & editing: RZ. Validation, Writing - review & editing: HZ. Writing - review
& editing: YH. Conceptualization, Writing - review & editing, Funding acquisition, Project

administration: QW. Writing - review & editing: XG.

19



385

390

395

Competing interests:

The contact author has declared that neither they nor their co-authors have any competing interests.

Acknowledgments

This research was partially supported by the Joint Funds of the National Natural Science Foundation of
China (Grant No. U24A20596); the National Natural Science Foundation of China (grant no. 42222704);
the Hainan Province Science and Technology Special Fund (grant no. ZDYF2024GXJS037); the Guangxi
Science and Technology Major Program (grant no. AB25069394); and the Natural Science Foundation
of Hubei Province (grant no. 2025AFB012). The authors thank the Editor and three anonymous reviewers

for their constructive comments that help us improve the quality of the manuscript.

References

Arcomano, T., Szunyogh, 1., Wikner, A., Pathak, J., Hunt, B. R., and Ott, E.: A hybrid approach to

atmospheric modeling that combines machine learning with a physics-based numerical model, Journal of

Advances in Modeling Earth Systems, 14, €2021MS002712, https://doi.org/10.1029/2021MS002712,
2022.

Bandai, T. and Ghezzehei, T. A.: Physics-informed neural networks with monotonicity constraints for
Richardson-Richards equation: Estimation of constitutive relationships and soil water flux density from

volumetric water content measurements, Water Resources Research, 57, e2020WR027642,

https://doi.org/10.1029/2020WR 027642, 2021.

20


https://doi.org/10.1029/2021MS002712
https://doi.org/10.1029/2020WR027642

400

405

410

415

Barclay, J. R., Topp, S. N., Koenig, L. E., Sleckman, M. J., and Appling, A. P.: Train, inform, borrow, or
combine? Approaches to process-guided deep learning for groundwater-influenced stream temperature

prediction, Water Resources Research, 59, €2023WR035327, https://doi.org/10.1029/2023WR035327,

2023.
Brunner, P., Therrien, R., Renard, P., Simmons, C. T., and Franssen, H.-J. H.: Advances in understanding

river-groundwater interactions, Reviews of Geophysics, 55, 818-854,

https://doi.ore/10.1002/2017RG000556, 2017.

Bukaveckas, P. A.: Effects of channel restoration on water velocity, transient storage, and nutrient uptake
in a channelized stream, Environmental Science & Technology, 41, 1570-1576,

https://doi.ore/10.1021/es061618x, 2007.

Callaham, J. L., Koch, J. V., Brunton, B. W., Kutz, J. N., and Brunton, S. L.: Learning dominant physical
processes  with  data-driven  balance = models, Nature = Communications, 12, 1016,

https://doi:10.1038/s41467-021-21331-z, 2021.

Cao, H., Xie, X., Shi, J., Jiang, G., and Wang, Y.: Siamese network-based transfer learning model to
predict geogenic contaminated groundwaters, Environmental Science & Technology, 56, 11071-11079,

https://doi.org/10.1021/acs.est.1c08682, 2022.

Chen, K., Zhan, H., and Wang, Q.: An innovative solution of diurnal heat transport in streambeds with
arbitrary initial condition and implications to the estimation of water flux and thermal diffusivity under

transient condition, Journal of Hydrology, 567, 361-369, https://10.1016/j.jhydrol.2018.10.008, 2018.

Chen, K., Chen, X., Song, X., Briggs, M. A., Jiang, P., Shuai, P., Hammond, G., Zhan, H., and Zachara,

J. M.: Using ensemble data assimilation to estimate transient hydrologic exchange flow under highly

21


https://doi.org/10.1029/2023WR035327
https://doi.org/10.1002/2017RG000556
https://doi.org/10.1021/es061618x
https://doi:10.1038/s41467-021-21331-z
https://doi.org/10.1021/acs.est.1c08682
https://10.0.3.248/j.jhydrol.2018.10.008

420

425

430

435

440

dynamic flow conditions, Water Resources Research, 58, €2021WRO030735,

https://doi.org/10.1029/2021 WR030735, 2022.

Chen, Z., Xu, H., Jiang, P., Yu, S., Lin, G., Bychkov, 1., Hmelnov, A., Ruzhnikov, G., Zhu, N., and Liu,
Z.: A transfer Learning-based LSTM strategy for imputing large-scale consecutive missing data and its
application in a water quality prediction system, Journal of Hydrology, 602, 126573,

https://doi.ore/10.1016/j.jhydrol.2021.126573, 2021.

Cho, K. and Kim, Y.: Improving streamflow prediction in the WRF-Hydro model with LSTM networks,

Journal of Hydrology, 605, 127297, https://doi.org/10.1016/j.jhydrol.2021.127297, 2022.

Cui, G. and Zhu, J.: Prediction of unsaturated flow and water backfill during infiltration in layered soils,

Journal of Hydrology, 557, 509-521, https://doi.org/10.1016/j.jhydrol.2017.12.050, 2018.

Elliott, A. H. and Brooks, N. H.: Transfer of nonsorbing solutes to a streambed with bed forms: Laboratory

experiments, Water Resources Research, 33, 137-151, https://doi.org/10.1029/96WR02783, 1997.

Feigl, M., Lebiedzinski, K., Herrnegger, M., and Schulz, K.: Machine-learning methods for stream water
temperature  prediction, Hydrology = and Earth  System  Sciences, 25, 2951-2977,

https://doi.ore/10.5194/hess-25-2951-2021, 2021.

Fleckenstein, J. H., Krause, S., Hannah, D. M., and Boano, F.: Groundwater-surface water interactions:
New methods and models to improve understanding of processes and dynamics, Advances in Water

Resources, 33, 1291-1295, https://doi.org/10.1016/j.advwatres.2010.09.011, 2010.

Guo, H., Zhuang, X., Alajlan, N., and Rabczuk, T.: Physics-informed deep learning for melting heat
transfer analysis with model-based transfer learning, Computers & Mathematics with Applications, 143,

303-317, https://doi.org/10.1016/j.camwa.2023.05.014, 2023.

22


https://doi.org/10.1029/2021WR030735
https://doi.org/10.1016/j.jhydrol.2021.126573
https://doi.org/10.1016/j.jhydrol.2021.127297
https://doi.org/10.1016/j.jhydrol.2017.12.050
https://doi.org/10.1029/96WR02783
https://doi.org/10.5194/hess-25-2951-2021
https://doi.org/10.1016/j.advwatres.2010.09.011
https://doi.org/10.1016/j.camwa.2023.05.014

445

450

455

460

Halloran, L. J. S., Rau, G. C., and Andersen, M. S.: Heat as a tracer to quantify processes and properties
in the vadose zone: A review, Earth-Science Reviews, 159, 358-373,

https://doi.ore/10.1016/j.earscirev.2016.06.009, 2016.

He, Q. and Tartakovsky, A. M.: Physics-informed neural network method for forward and backward
advection-dispersion equations, Water Resources Research, 57, €2020WR029479,

https://doi.org/10.1029/2020WR 029479, 2021.

Heavilin, J. E. and Neilson, B. T.: An analytical solution to main channel heat transport with surface heat

flux, Advances in Water Resources, 47, 67-75, https://doi.org/10.1016/j.advwatres.2012.06.006, 2012.

Hu, J., Tang, J., and Lin, Y.: A novel wind power probabilistic forecasting approach based on joint quantile
regression  and  multi-objective  optimization, =~ Renewable  Energy, 149, 141-164,

https://doi.ore/10.1016/j.renene.2019.11.143, 2020.

Jiang, S. and Durlofsky, L. J.: Use of multifidelity training data and transfer learning for efficient
construction of subsurface flow surrogate models, Journal of Computational Physics, 474, 111800,

https://doi.ore/10.1016/1.jcp.2022.111800, 2023.

Jiang, S., Zheng, Y., and Solomatine, D.: Improving Al system awareness of geoscience knowledge:
Symbiotic integration of physical approaches and deep learning, Geophysical Research Letters, 47, 733-

745, https://doi.org/10.1029/2020GL088229, 2020.

Jin, A., Wang, Q., Zhan, H., and Zhou, R.: Comparative performance assessment of physical-based and
data-driven machine-learning models for simulating streamflow: A case study in three catchments across

the US, Journal of Hydrologic Engineering, 29, 05024004, https://doi:10.1061/JHYEFF.HEENG-6118,

2024.

23


https://doi.org/10.1016/j.earscirev.2016.06.009
https://doi.org/10.1029/2020WR029479
https://doi.org/10.1016/j.advwatres.2012.06.006
https://doi.org/10.1016/j.renene.2019.11.143
https://doi.org/10.1016/j.jcp.2022.111800
https://doi.org/10.1029/2020GL088229
https://doi:10.1061/JHYEFF.HEENG-6118

465

470

475

480

Kalbus, E., Reinstorf, F., and Schirmer, M.: Measuring methods for groundwater-surface water

interactions: a review, Hydrology and Earth System Sciences, 10, 873-887, https://doi.org/10.5194/hess-

10-873-2006, 2006.
Kamrava, S., Sahimi, M., and Tahmasebi, P.: Simulating fluid flow in complex porous materials by

integrating the governing equations with deep-layered machines, npj Computational Materials, 7, 127,

https://doi.org/10.1038/s41524-021-00598-2, 2021.

Karan, S., Engesgaard, P., and Rasmussen, J.: Dynamic streambed fluxes during rainfall-runoff events,

Water Resources Research, 50, 2293-2311, https://doi.org/10.1002/2013WR014155, 2014.

Karpatne, A., Atluri, G., Faghmous, J. H., Steinbach, M., Banerjee, A., Ganguly, A., Shekhar, S.,
Samatova, N., and Kumar, V.: Theory-guided data science: A new paradigm for scientific discovery from
data, IEEE Transactions on Knowledge and Data Engineering, 29, 2318-2331,

https://doi.org/10.1109/TKDE.2017.2720168, 2017.

Keery, J., Binley, A., Crook, N., and Smith, J. W. N.: Temporal and spatial variability of groundwater-
surface water fluxes: Development and application of an analytical method using temperature time series,

Journal of Hydrology, 336, 1-16, https://doi.org/10.1016/j.jhydrol.2006.12.003, 2007.

Kim, T., Yang, T., Gao, S., Zhang, L., Ding, Z., Wen, X., Gourley, J. J., and Hong, Y.: Can artificial
intelligence and data-driven machine learning models match or even replace process-driven hydrologic
models for streamflow simulation?: A case study of four watersheds with different hydro-climatic regions

across the CONUS, Journal of Hydrology, 598, 126423, https://doi.org/10.1016/j.jhydrol.2021.126423,

2021.

24


https://doi.org/10.5194/hess-10-873-2006
https://doi.org/10.5194/hess-10-873-2006
https://doi.org/10.1038/s41524-021-00598-2
https://doi.org/10.1002/2013WR014155
https://doi.org/10.1109/TKDE.2017.2720168
https://doi.org/10.1016/j.jhydrol.2006.12.003
https://doi.org/10.1016/j.jhydrol.2021.126423

485

490

495

500

Raissi, M., Perdikaris, P., and Karniadakis, G. E.: Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equations,

Journal of Computational Physics, 378, 686-707, https://doi.org/10.1016/1.jcp.2018.10.045, 2019.

Raissi, M., Yazdani, A., and Karniadakis, G. E.: Hidden fluid mechanics: Learning velocity and pressure

fields from flow visualizations, Science, 367, 1026-1030, https://doi.org/10.1126/science.aaw4741, 2020.

Read, J. S., Jia, X., Willard, J., Appling, A. P., Zwart, J. A., Oliver, S. K., Karpatne, A., Hansen, G. J. A,
Hanson, P. C., Watkins, W., Steinbach, M., and Kumar, V.: Process-guided deep learning predictions of
lake water temperature, Water Resources Research, 55, 9173-9190,

https://doi.org/10.1029/2019WR024922, 2019.

Ren, J., Zhang, W., Yang, J., and Zhou, Y.: Using water temperature series and hydraulic heads to quantify
hyporheic exchange in the riparian zone, Hydrogeology Journal, 27, 1419-1437,

https://doi.ore/10.1007/s10040-019-01934-7z, 2019.

Ren, J., Zhuang, T., Wang, D., and Dai, J.: Water flow and heat transport in the hyporheic zone of island
riparian: A field experiment and numerical simulation, Journal of Coastal Research, 39, 848-861,

https://doi.org/10.2112/JCOASTRES-D-22-00120.1, 2023.

Ren, J., Wang, X., Shen, Z., Zhao, J., Yang, J., Ye, M., Zhou, Y., and Wang, Z.: Heat tracer test in a riparian
zone: Laboratory experiments and numerical modelling, Journal of Hydrology, 563, 560-575,

https://doi.ore/10.1016/j.jhydrol.2018.06.030, 2018.

Schmidt, C., Martienssen, M., and Kalbus, E.: Influence of water flux and redox conditions on
chlorobenzene concentrations in a contaminated streambed, Hydrological Processes, 25, 234-245,

https://doi.ore/10.1002/hyp.7839, 2011.

25


https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1126/science.aaw4741
https://doi.org/10.1029/2019WR024922
https://doi.org/10.1007/s10040-019-01934-z
https://doi.org/10.2112/JCOASTRES-D-22-00120.1
https://doi.org/10.1016/j.jhydrol.2018.06.030
https://doi.org/10.1002/hyp.7839

505

510

515

520

Shi, W., Zhan, H., Wang, Q., and Xie, X.: A two-dimensional closed-form analytical solution for heat
transport with nonvertical flow in riparian zones, Water Resources Research, 59, €2022WR034059,

https://doi.org/10.1029/2022WR034059, 2023.

Tartakovsky, A. M., Marrero, C. O., Perdikaris, P., Tartakovsky, G. D., and Barajas-Solano, D.: Physics-
informed deep neural networks for learning parameters and constitutive relationships in subsurface flow

problems, Water Resources Research, 56, e2019WR026731, https://doi.org/10.1029/2019WR026731,

2020.
Vandaele, R., Dance, S. L., and Ojha, V.: Deep learning for automated river-level monitoring through

river-camera images: an approach based on water segmentation and transfer learning, Hydrology and

Earth System Sciences, 25, 4435-4453, https://doi.org/10.5194/hess-25-4435-2021, 2021.

Wade, J., Kelleher, C., and Hannah, D. M.: Machine learning unravels controls on river water temperature

regime dynamics, Journal of Hydrology, 623, 129821, https://doi.org/10.1016/].jhydrol.2023.129821,

2023.
Wang, N., Chang, H., and Zhang, D.: Deep-Learning-Based Inverse Modeling Approaches: A Subsurface

Flow Example, 126, €2020JB020549, https://doi.org/10.1029/2020JB020549, 2021.

Wang, Y., Wang, W., Ma, Z., Zhao, M., Li, W., Hou, X., Li, J.,, Ye, F., and Ma, W.: A deep learning
approach based on physical constraints for predicting soil moisture in unsaturated zones, Water Resources

Research, 59, €2023WR035194, https://doi.org/10.1029/2023WR035194, 2023.

Willard, J. D., Read, J. S., Appling, A. P., Oliver, S. K., Jia, X., and Kumar, V.: Predicting water
temperature dynamics of unmonitored lakes with meta-transfer learning, Water Resources Research, 57,

€2021WR029579, https://doi.org/10.1029/2021WR029579, 2021.

26


https://doi.org/10.1029/2022WR034059
https://doi.org/10.1029/2019WR026731
https://doi.org/10.5194/hess-25-4435-2021
https://doi.org/10.1016/j.jhydrol.2023.129821
https://doi.org/10.1029/2020JB020549
https://doi.org/10.1029/2023WR035194
https://doi.org/10.1029/2021WR029579

525

530

535

540

Xie, W., Kimura, M., Takaki, K., Asada, Y., lida, T., and Jia, X.: Interpretable framework of physics-
guided neural network with attention mechanism: Simulating paddy field water temperature variations,

Water Resources Research, 58, €2021 WR030493, https://doi.org/10.1029/2021WR030493, 2022.

Xiong, R., Zheng, Y., Chen, N., Tian, Q., Liu, W.,, Han, F., Jiang, S., Lu, M., and Zheng, Y.: Predicting
dynamic riverine nitrogen export in unmonitored watersheds: Leveraging insights of Al from data-rich

regions, Environmental Science & Technology, 56, 10530-10542, https://doi.org/10.1021/acs.est.2c02232,

2022.
Yeung, Y.-H., Barajas-Solano, D. A., and Tartakovsky, A. M.: Physics-informed machine learning method

for large-scale data assimilation problems, Water Resources Research, 58, e2021WR031023,

https://doi.org/10.1029/2021WR031023, 2022.

Zhang, J., Liang, X., Zeng, L., Chen, X., Ma, E., Zhou, Y., and Zhang, Y.-K.: Deep transfer learning for
groundwater flow in heterogeneous aquifers using a simple analytical model, Journal of Hydrology, 626,

130293, https://doi.org/10.1016/j.jhydrol.2023.130293, 2023.

Zhao, C., Yang, L., and Hao, S.: Physics-informed learning of governing equations from scarce data,

Nature Communications, 12, 6136, https://doi:10.1038/s41467-021-26434-1, 2021.

Zhao, W. L., Gentine, P., Reichstein, M., Zhang, Y., Zhou, S., Wen, Y., Lin, C., Li, X., and Qiu, G. Y.:
Physics-Constrained Machine Learning of Evapotranspiration, Geophysical Research Letters, 46, 14496-

14507, https://doi.org/10.1029/2019GL085291, 2019.

Zhou, R. and Zhang, Y.: On the role of the architecture for spring discharge prediction with deep learning

approaches, Hydrological Processes, 36, e14737, https://doi.org/10.1002/hyp.14737, 2022.

27


https://doi.org/10.1029/2021WR030493
https://doi.org/10.1021/acs.est.2c02232
https://doi.org/10.1029/2021WR031023
https://doi.org/10.1016/j.jhydrol.2023.130293
https://doi:10.1038/s41467-021-26434-1
https://doi.org/10.1029/2019GL085291
https://doi.org/10.1002/hyp.14737

Zhou, R. and Zhang, Y.: Linear and nonlinear ensemble deep learning models for karst spring discharge

545 forecasting, Journal of Hydrology, 627, 130394, https://doi.org/10.1016/].jhydrol.2023.130394, 2023.

Zhou, R., Zhang, Y., Wang, Q., Jin, A., and Shi, W.: A hybrid self-adaptive DWT-WaveNet-LSTM deep
learning architecture for karst spring forecasting, Journal of Hydrology, 634, 131128,

https://doi.org/10.1016/j.jhydrol.2024.131128, 2024.

Zuo, G., Luo, J., Wang, N., Lian, Y., and He, X.: Two-stage variational mode decomposition and support
550 vector regression for streamflow forecasting, Hydrology and Earth System Sciences, 24, 5491-5518,

https://doi.org/10.5194/hess-24-5491-2020, 2020.

Figure Captions

Land surface

High
T = 20 + sin(2mt) '|
\/

~,
oo
S~

River

0 I
s
......... &
g g
z B g
i
——
nl n Il l000)w A |
Hetemgeneoui streambed L
oW

555 Figure 1. Schematic diagram of the temperature distribution in the riparian zones.

28


https://doi.org/10.1016/j.jhydrol.2023.130394
https://doi.org/10.1016/j.jhydrol.2024.131128
https://doi.org/10.5194/hess-24-5491-2020

@ o (b)
Generate collocation points
based on analytical model Generate collocation points Generate collocation points

based on analytical model based on analytical model

EeEs 0000
LA 00O

@ Knowledge Transfer:
Deep learning model 3 VYeights an.d bias
{§} Optimal architectures
. Deep learning model 2 l:> g%

Deep learning model 1 Pre-training model Fine-tune model

9

Figure 2. Schematic diagram of the pre-training and fine-tuning methods in the transfer learning model

560 (Revised from (Guo et al., 2023)). (a) Traditional machine learning method; (b) Transfer learning method.



P— 5 Weights and biases Loss function
>
bn . 2 Retrainable Frozen
= Analytical Model 3 O [ Model domain |
$ l E O ’ [ Initial conditions ]
@ &
ﬁ;: InPUt LCREE) =: O 4 [ Boundary conditions ]
=
—
po—— Transferring Transferring
|
s
=
= Numerical Model Freeze Retrain
: e e
“g Tuning Dataset Insensitive Layers Learnable Parameters
5]
Testing dataset
Benchmark Deep < > Deep Transfer Learning

Neural Network Model - — Model

Effectiveness of the proposed deep transfer learning model

Evaluation

565 Figure 3. Proposed PDTL framework used in this study. The framework consists of a pre-training module,

a transfer learning module, and an evaluation module.

30



25 I . I & I 2 I I s I
I Weights
[ Bias
20
15
S
S
x
&
& 10
5
0

Layerl Layer2 Layer3 Layer4 Layer5 Layer6

570 Figure 4. The average relative change rate (RCR) of weight between pre-training neural network with

different K values.

31



X(m)

X(m)
0.0 0.2 0.4 0.6 08 1.0
ook 02 04 06 08 10 1 g 1 00 g
1 1 -
0.2 0.2
1 . 1 -
1 1o § 1 1.0 ;
. ~ 0.4 1 s} 1 04 Pt
1 observation £ o i e i E )
oint N = N =
p 0.6 1 s Z 1 3 ;E
<
0.8 : . : 0.8
0 1 ] R
0.0 10 0.0
Observation points 1 1 X(m)
X(m) 1 1 0.0 0.2 X ! i 1.0
00 02 04 0.6 08 15 L5
0.0 1 - ]
° S ] 1
0.2
02 ° 1 = 1 =
1 108 1 10 g
04 S 1 04 S
Sobservation £ ! 2 2
. N = =
points N6 1 3 ! ]
1 052 1 052
< <
08 1 1 0.8
1 1
1.0 1 1 0
Observation points i L 1 - L
X(m) X(m)
0 02 04 06 08 10 1 ! 00 02 04 0.6 08 10
0.0 > 1 15 1 0.0 L5
1 1
°
U & 1 1 0.2
= =
1 s 1 s
04 © o i 1 0.4 -
o 1 = =
10 observation £ ° e 1 @
N N 1 ] ]
points 0.6 o o 1 = 1 0.6 S
052 1 052
0. 1 < <
-8 o 1 1 0.8
1
o 5 g ! 0.0 1 10 0.0
Observation points |
X(m) 1 1 X(m)
0 02 04 06 08 10 1 00 02 04 0.6 08 10
0.0 | 15 0.0 L5
» o 1 1
024 © o 1 1 0.2
o ) H B
3 1 1o £ ! 102
0.4 . 1 S 1 3
. = . =
20 observation E o 1 2 1 <
B E s
points Nosdo o ) 1 = 1 iy =
052 052
L° o 1 = | =
G8T 1 IS o ° 1 1 0.8
°
1 1
10 1 0.0 1 1.0 0.0
Observation points
X(m) 1 - X(m)
0 02 04 06 08 L0 1 1 0o 4 06 08 L
0.0 1 L5 1 15
o o o o ©
° ° °%q 1 !
02 o 1 0.2
° = =
. ° 1 E . 5
° ° o 1 o0 E Lo E
0.4 o” o 0.4
. = o o [=] 1 =
50 observation £ o o N 1 e i )
. NI o = E]
points Noos o 1 s 0.6 s
o o 1 052 I 052
000 © 1 < 1 Z
0.8 % o P 1 0.8
9 °
0© ° ! I
1.0 1 0.0 10 0.0
Observation points 1 1
X(m) 1 X(m) 1 X(m)
00 02 04 06 08 0 X 2 04 06 08 L0 1 00 02 04 06 08 10
0.0 1 1.5 0.0 15
) o o L) 1
0g® o % 1
° °
024, ° o ° oo 1 I 0.2
o © o o 1 s 1 5
04 o g 0 © 1 LoE 1 - 10 =
. 0. o o [=] ~ 0. =
100 obs.ervatlon = .o 8% 0g0 i r 1 A r
oints NS 00 o = NI 1
P 06 o 08000 ® o 1 S 1 N 3
SO © 052 1 052
90 o °o o 1 < <
0.8 % @ o & 1 | 0.8
o 00 oo 1
©5 00 0,°¢ 1
Lolo - 0.0 ° L 0.0

Observation points

PDTL DNN

Figure 5. Absolute errors between the predicted temperature field and reference temperature field using

575 PDTL and DNN models for homogeneous streambed.

32



X"“%» 1 1
o002 04 6 08 1.0 1 L - 1 o
1 vdicid Tomparseers 1
02 1 ~ 050 I 5 0s0
13 1 51
1 observation 0.4 1 ] 1 ]
. E = 0.00 s 000
point 5 o 1 g 1 g
0.6- I £ I g
& 050 & 050
0.8- I I —— Actusl Temperature
1 1 = = Predicted Temperature.
1. -1.00
1.0, 1 00 02 o4 o6 o8 1o | 00 02 04 06 08 10
Observation points 1 Time(d) 1 Time(d)
X(m)
e .0 0.2 0.4 (¢ )0.6 0.8 10 I I
’ B " I b —=r— I B
2 I == Predicted Temperature I
0.y o
1 5 oso 1 o5 s
: 1oE 1 3
5observation - ¥ s s
A E 1 = 0.00 1 S 000
points N H 5
0.6] 1 2 1 2
H £
1 &£ -0.50 1 & 050
0.84
1 1 — Actun Temperatue
== Prdicied Tempersure
L o 1 1. 1 SY
Observation points 1 LU 00 02 04 06 03 10
) 1 Time(d)
0 02 04 06 8 10
0. I I 1.00
° 1 | X
0.2] ° °© 1 |
Fey -~ 050
1 o 1 )
. - 04 © 2 £
10 observation  E ° = | s
N N o 1 K | 5 000
points 0.6 o o 2 2
1 £ 1 £
1 & 1 & -0.50
0.8 o Actual Temperature.
1 g 1
I -1.00
1.0. 1 00 02 04 06 08 ! [X
Observation points Time(d) 1
X(m) 1 I
0.0 02 04 06 08 10
0. 1 1 1 1.
° e 1 I
02{ © 1 1
o ° o o 080 5 0s0
0.4f . 3 ! T
20 observation E ° 1 ] I :
= ° | Z om0 )
points 06do o o g 1 s
1 £ 1 £
o o ° 1 & -0.50 1 & -0.50
° °
L [ ° (—— Actesl Tempersture I Temperature \
o 1 Predicted Tompersure 1 et Tempersure
1. -1.00
L N N I 0.0 0.2 0.4 0.6 0.8 | 0.0 0.2 0.4 0.6 0.8 Lo
Observation points ] Time(d) 1 Time(d)
X(m) 1 1
0 0.2 0.4 0.6 0.8 1.0
o 1 3 I
° ° °
° % o00° 1 1
“l e " g |
o ~ 05 ~
9 9)
0s © ° ° %0 . 5] 1 7
n = 0 o = H
50 observation E ° 0 1 =N 1 E
points N S ° ° 1 H 1 5
0.6. o = &
o 1 H 1 B
° q & 050 K
009 © 1 1
0.8- % o o = Actual Temperature —— Actual Temperature —
o 0% 1 e | T2 bt empere
00 1. -1.00
1.0. ° o 1 00 02 04 06 08 10 1 00 02 04 06 08 10
Observation points 1 Time(d) 1 Time(d)
X(m) 1 1
00 02 04" 06 08 o
0. 1 1. 1 1.00
& ° © oo o
o o ° ° 1 |
° o ° o
0.2 0 ¢f 1 ~ 050 1 = 050
o 0 ° 1 o 3)
° = $
. P 0 © 1 = I £
100 observation B 0g © = 0.00 1 B
points & ° 1 g | 5
o800 ® o 1 £ g
O & -0.50 1 & -0.50
°
8 1 — 1 — r— .
w0 00 1 ) i i P e
60 0, 0@ -1 K
o I 0.0 0.2 0.4 0.6 08 1.0 I 0.0 0.2 0.4 0.6 0.8 Lo
Observation points 1 Time(d) 1 Time(d)
PDTL ) DNN

Figure 6. Comparisons of the predicted temperature (blue curves) and reference temperature (red curves)

using PDTL and DNN models for homogeneous streambed.
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(a): PDTL model (b): DNN model
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580 Figure 7. MSE distribution of normalized results from PDTL and DNN models plotted against the

number of observation points for homogeneous streambed. (a) PDTL model; (b) DNN model.
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Figure 8. Heat map and the contours of hydraulic head, temperature field and streamlines for different
585 K-fields. (al) - (c1) show the heat map of K-fields, (a2) - (c2) show the contours of hydraulic head and
streamlines at 0.5d and (a3) - (c3) show the contours of temperature field and streamlines at 0.5d for

02, = 0.2, 0.5, and 1.0, respectively.
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590 Figure 9. MSE distribution of normalized results from PDTL and DNN models plotted against the
number of observation points for different heterogeneous streambeds. (al) - (c1) show the PDTL model

and (a2) - (c2) show the DNN model for o = 0.2, 0.5, and 1.0, respectively.
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595 Figure 10. Time series diagram of river temperature under different observation noises. (a) ¢ = 0.025°C;

(b) & = 0.05°C; (c) & = 0.075°C.
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Figure 11. MSE distribution of normalized results from PDTL and DNN models plotted against the

number of observation points for different observation noises. (al) - (c1) show the PDTL model and (a2)
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- (c2) show the DNN model for o = 0.025°C, 0.05°C, and 0.075°C, respectively.
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