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Abstract.  

Data-driven deep learning models usually perform well in terms of improving computational efficiency for predicting heat 

transfer processes in heterogeneous riparian zones. However, traditional deep learning models often suffer from accuracy when 

data availability is limited. In this study, a novel physics-informed deep transfer learning (PDTL) approach is proposed to 15 

improve the accuracy of spatiotemporal temperature distribution predictions. The proposed PDTL model integrates the 

physical mechanisms described by an analytical model into the standard Deep Neural Networks (DNN) model using a transfer 

learning technique. To test the robustness of the proposed PDTL model, we analyse the influence of the number of observation 

points at different locations, streambed heterogeneity (𝜎𝑙𝑛𝐾
2 =0, 0.2, 0.5, and 1.0), and observation noise levels (𝜎𝑁𝑜𝑖𝑠𝑒 =0.025, 

0.05, 0.075) on the MSE values between the observed and predicted temperature fields. Results indicate that the PDTL model 20 

significantly outperforms the DNN model in scenarios with scarce training data, and the mean MSE values decrease with 

increasing observation points for both PDTL and DNN models. The mean MSE values for both the DTL and DNN models 

approach zero as the number of observation points increases to 200, indicating that both DTL and DNN models perform 

satisfactorily. Furthermore, increasing 𝜎𝑙𝑛𝐾
2  streambed heterogeneity and observation noise levels𝜎𝑁𝑜𝑖𝑠𝑒  raises the mean MSE 

values of the PDTL and DNN models, with the PDTL model exhibiting greater robustness than the DNN model, highlighting 25 

its potential for practical applications in riparian zone management. 
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1 Introduction 

Understanding heat transfer processes in riparian zones is critical for evaluating physical and biochemical 

processes during surface water-groundwater interactions, such as contaminants transport (Elliott and 30 

Brooks, 1997; Schmidt et al., 2011), water resources management (Bukaveckas, 2007; Fleckenstein et al., 

2010) and aquatic ecosystems regulation (Ren et al., 2018; Halloran et al., 2016). As a primary source of 

uncertainty in riparian zone modeling, the inherent heterogeneity of the streambed stands out as a pivotal 

factor in accurately modeling groundwater flow and heat transfer processes (Karan et al., 2014; Brunner 

et al., 2017). However, given the intricacies of streambed heterogeneity, data acquisition in heterogeneous 35 

riparian zone is often time-consuming and costly (Zhang et al., 2023; Kalbus et al., 2006). Consequently, 

achieving accurate predictions of heat transfer processes in heterogeneous riparian zones with limited 

observation data remains challenging. 

Over the past few decades, there has been a substantial increase in efforts toward simulating heat transfer 

processes in riparian zones, which can be categorized into two groups: physics-based models and data-40 

driven models (Barclay et al., 2023; Feigl et al., 2021; Heavilin and Neilson, 2012). Typically, the 

physics-based models employ partial differential equations to characterize heat transfer dynamics within 

riparian zones, like the convection-diffusion equation (Chen et al., 2018; Keery et al., 2007), which aims 

to simulate and forecast temperature variations within riparian zones. Resolving the convection-diffusion 

equation generally involves two approaches: analytical and numerical models. Analytical models provide 45 

a precise mathematical representation of heat transfer dynamics and offer fundamental insights into 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/aquatic-ecosystem
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physical processes within riparian zones, but their applicability is often limited to rather simplified and 

idealized scenarios (Keery et al., 2007; Bandai and Ghezzehei, 2021; Zhou and Zhang, 2022). Numerical 

models, which rely on discretizing governing equations and solving them iteratively, are able to handle 

more intricate scenarios and address unsteady flows effectively (Cui and Zhu, 2018; Ren et al., 2019; Ren 50 

et al., 2023). Nevertheless, numerical models are constrained by the uncertainties of model structures and 

the prerequisites of streambed characteristic parameters (Heavilin and Neilson, 2012; Shi et al., 2023). 

Data-driven models, unlike physics-based models, can create a direct mapping between input and output 

variables without explicit knowledge of underlying physical processes governing the system (Zhou and 

Zhang, 2023; Callaham et al., 2021). In recent years, data-driven models have achieved significant 55 

advancements and emerged as a successful alternative in hydrological and environmental modeling (Zhou 

et al., 2024; Cao et al., 2022; Wade et al., 2023). However, their deficiency in incorporating physical 

principles restricts their capability to delineate explicit computational processes as physics-based models, 

posing a challenge to achieve enhanced extrapolation capabilities (Read et al., 2019; Cho and Kim, 2022). 

Meanwhile, data-driven models typically require massive amounts of data for training and may yield 60 

results that defy established physical laws due to the lack of physical principles (Read et al., 2019; Xie et 

al., 2022). The strengths and weaknesses inherent in both data-driven and physically-based models are 

evident across various research domains (Kim et al., 2021; Wang et al., 2023). Consequently, there is an 

increasing inclination towards integrating physical processes into data-driven models, which enables 

these models to extract patterns and laws from both observation data and underlying physical principles 65 

(Zhao et al., 2021; Karpatne et al., 2017).  
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Typically, several methods exist to integrate two divergent models: one is to employ a DL framework 

to substitute either a submodule or an intermediary parameter in physically-based models (Jiang et 

al., 2020; Zhao et al., 2019; Cho and Kim, 2022; Arcomano et al., 2022), and the other involves 

integrating physical models to furnish additional constraints or penalizations to the DL framework 70 

(Kamrava et al., 2021; Raissi et al., 2019; Yeung et al., 2022). Additionally,  

tTransfer learning provides a feasible approach for integrating analytical and DL models, where 

knowledge is transferred from a distinct but relevant source domain to enhance the efficacy of the target 

domain (Zhang et al., 2023; Chen et al., 2021). This approach can diminish the requirement for extensive 

training data in the target domain, which is considered as a major barrier of DL applications. By 75 

leveraging knowledge gained from pre-training models, it accelerates the learning process and enhances 

model performance (Guo et al., 2023; Jiang and Durlofsky, 2023). Recently, the use of the transfer 

learning technique has gained attention in the field of hydrological modeling (Zhang et al., 2023; Cao et 

al., 2022; Chen et al., 2021; Vandaele et al., 2021; Willard et al., 2021). For example, Xiong et al. (2022) 

developed an Long-short term memory (LSTM) model of daily dissolved inorganic nitrogen 80 

concentrations and fluxes in the coastal watershed located in southeastern China. They retrained this 

model using multi-watershed data and successfully applied it to seven diverse watersheds through transfer 

learning approach. Zhang et al. (2023) used the transfer learning technique to integrate the deep learning 

model and analytical models for predicting groundwater flow in aquifers and obtained satisfactory 

prediction performance for complex scenarios. 85 

In this study, we introduce a novel physics-informed deep transfer learning (PDTL) approach that 

incorporates physical information from analytical models into a deep learning framework using the 
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transfer learning technique. The proposed PDTL model is implemented to predict the spatiotemporal 

temperature distribution in heterogeneous riparian zones by leveraging analytical solutions, deep learning 

models, and transfer learning. The analytical model is used to efficiently produce physically consistent 90 

heat distribution patterns and data in homogeneous riparian zones, which serve as the training data for the 

pre-training deep learning model. Subsequently, the weights and biases learned from the pre-training 

model are transferred to a new deep learning model under heterogeneous scenarios through transfer 

learning. By integrating insights from analytical models with the approximation power of deep learning 

models, the PDTL model achieves improved efficiency and performance. Notably, the newly proposed 95 

approach demonstrates significant performance improvement, even with scarce observational data. This 

innovative approach provides for accurate and efficient modeling of complex heat transfer processes in 

heterogeneous environments, even with limited observation data. 

2 Methods 

2.1 Conceptual model 100 

The two-dimensional (2D) conceptual model of the heat transfer process in a heterogeneous streambed is 

depicted in Figure 1. The coordinate system originates at the center of the river, with the x-axis orientated 

horizontally from left to right along the streambed. The 𝑧-axis is located vertically downward along the 

left inlet boundary of the system and perpendicular to the 𝑥-axis. It is postulated that the thermal and 

hydraulic properties of the streambed are  uniformmaintain uniformity. The river has a width of 2𝐿. Heat 105 

originated from the river, with its temperature represented by an arbitrary function. The initial and 
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boundary conditions are depicted in Figure 1. An initial temperature of 20 °C is prescribed. The boundary 

conditions on the left, right, and bottom sides are all specified as no heat fluxow boundaryboundaries. 

The top boundary condition at 0 ≤ 𝑥 ≤ 𝐿  (𝐿 = 0.32 𝑚  in this study) is represented by a sinusoidal 

temperature signal ranging between 19 and 21 °C (i.e., 𝑓(𝑡) = 20 + 𝑠𝑖𝑛(2𝜋𝑡) °𝐶). Meanwhile, the top 110 

boundary condition at 𝑥 > 𝐿  is held constant at a temperature of 20 °C. The initial and boundary 

conditions are adopted from Shi et al. (2023). For this conceptual framework, two modelling approaches 

are employed. The analytical model provides exact solutions for heat transfer in homogeneous streambeds 

with uniform hydraulic conductivity and thermal properties (Shi et al., 2023). It generates physically 

consistent temperature distributions efficiently for the pre-training phase of our PDTL model. Meanwhile, 115 

the numerical model extends this solution to heterogeneous streambeds with spatially variable hydraulic 

conductivity, accommodating complex flow paths created by streambed heterogeneity. The details of the 

analytical solution for the homogeneous streambed and the numerical solution for the heterogeneous 

streambed are available in the Supplement. 

2.2 Deep neural network (DNN) 120 

The deep neural network (DNN) is a multi-layer feed-forward network with an input layer, multiple 

hidden layers, and an output layer. The backpropagation algorithm is utilized to minimize the mean error 

of the output and has been proven to be crucial in enhancing convergence (Jin et al., 2024). Assuming the 

presence of 𝑚 hidden layers, the input and output vectors are denoted by 𝑋 and 𝑂, respectively. The 

forward equations of the DNN model can be represented as follows: 125 

𝐻1 = 𝑡𝑎𝑛ℎ(𝑊1𝑋 + 𝑏1)          (1a) 
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𝐻2 = 𝑡𝑎𝑛ℎ(𝑊2𝑋 + 𝑏2)          (1b) 

𝐻𝑚 = 𝑡𝑎𝑛ℎ(𝑊𝑚𝑋 + 𝑏𝑚)         

 (1c)𝐻𝑖 = 𝑡𝑎𝑛ℎ(𝑊𝑖𝑋 + 𝑏𝑖), 𝑖 = 1, … , 𝑚       

  (1a) 130 

𝑂 = 𝑡𝑎𝑛ℎ(𝑊𝑚+1𝑋 + 𝑏𝑚+1)          (1bd) 

where 𝐻𝑖 represents the output of the 𝑖-th hidden layer; 𝑊 and 𝑏 represent the weight matrices and bias 

vectors, respectively. Typically, 𝑊 and 𝑏 can amalgamate as the parameter set 𝜃 = {𝑊𝑖, 𝑏𝑖}𝑖=1
𝑚+1, 𝑡𝑎𝑛ℎ 

refers the 𝑡𝑎𝑛ℎ activation function. These parameters can be estimated by minimizing the following loss 

function: 135 

𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜃∗

1

𝑛
∑ |𝑁𝑁(𝑋, 𝜃) − 𝑦𝑖|

2𝑛
𝑖=1         (2) 

To mitigate the impact of dimensionality during the training process, the temperature field dataset is 

normalized to [−1,1] through the following equation in the pre-training process:  

𝐷𝑛𝑜𝑟𝑚 = 2
𝐷−𝐷𝑚𝑖𝑛

𝐷𝑚𝑎𝑥−𝐷𝑚𝑖𝑛
− 1          (32) 

where 𝐷 denotes data utilized in the DNN model, 𝐷𝑚𝑎𝑥 and 𝐷𝑚𝑖𝑛 denote the maximum and minimum 140 

values and are computed with reference to the training samples exclusively. The same values of 𝐷𝑚𝑎𝑥 

and 𝐷𝑚𝑖𝑛 are employed to normalize the testing samples to prevent data leakage (Zuo et al., 2020). 
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2.3 Deep collocation method 

The collocation technique uses a collection of randomly distributed points to minimize the loss 

function while adhering to a specified set of constraints. This method demonstrates a degree of immunity 145 

against instabilities, such as explosion or vanishing gradients encountered in DNNs, offering a feasible 

strategy for training DNNs (Guo et al., 2023). By incorporating the collocation points throughout the 

model domain, along with the physical information of the boundary and initial conditions, the learning 

process aims to minimize the following loss functions: 

𝐿(𝜃) = 𝑀𝑆𝐸𝐷 + 𝑀𝑆𝐸𝐵𝐶 + 𝑀𝑆𝐸𝐼𝐶         (3a) 150 

𝑀𝑆𝐸𝐷 =
𝜉𝐷

𝑁𝐷
∑ ‖𝑇𝑁(𝑥𝑖, 𝑦𝑖, 𝑡𝑖; 𝜃) − 𝑇(𝑥𝑖, 𝑦𝑖, 𝑡𝑖)‖2𝑁𝐼𝐶

𝑖=1        (3b) 

𝑀𝑆𝐸𝐵𝐶 =
𝜉𝐵𝐶

𝑁𝐵𝐶
∑ ‖𝑇𝑁(𝑥𝑖, 𝑦𝑖, 𝑡𝑖; 𝜃) − 𝐺(𝑥𝑖, 𝑦𝑖 , 𝑡𝑖)‖2𝑁𝐵𝐶

𝑖=1       (3c) 

𝑀𝑆𝐸𝐼𝐶 =
𝜉𝐼𝐶

𝑁𝐼𝐶
∑ ‖𝑇𝑁(𝑥𝑖 , 𝑦𝑖, 0; 𝜃) − 𝑇(𝑥𝑖 , 𝑦𝑖, 0)‖2𝑁𝐼𝐶

𝑖=1        (3d) 

where L(𝜃) refers to the total loss, 𝑀𝑆𝐸𝐷 , 𝑀𝑆𝐸𝐵𝐶  and 𝑀𝑆𝐸𝐼𝐶  represent the mean square error of the 

model domain, boundary conditions and initial conditions, respectively; 𝑁𝐷 , 𝑁𝐵𝐶 , and 𝑁𝐼𝐶  are the 155 

numbers of data points for different terms; 𝜉𝐷, 𝜉𝐵𝐶, and 𝜉𝐼𝐶 are scaling factors to normalize loss terms. 

According to the study of He and Tartakovsky (2021), the values of 𝜉𝐷, 𝜉𝐵𝐶, and 𝜉𝐼𝐶 in this study are set 

to 1, 10 and 10, respectively. 𝑇𝑁(𝑥𝑖, 𝑦𝑖, 𝑡𝑖) represent the values estimated by the DNNL model; 𝑇(𝑥, 𝑦, 𝑡) 

is the solution of the 2D analytical model with boundary conditions 𝐺(𝑥, 𝑦, 𝑡)  and initial condition 

𝑇(𝑥, 𝑦, 0). The objective is to find the parameter set 𝜃 that minimizes the loss function 𝐿(𝜃) considers 160 

the constraints of physical information and imposes penalties for initial and boundary conditions. It allows 

the neural networks to learn the underlying physical information, boundary and initial conditions rather 
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than simply memorizing the training data, thus improving the efficiency and accuracy (He and 

Tartakovsky, 2021; Raissi et al., 2020; Tartakovsky et al., 2020). 

2.43 Transfer learning 165 

As depicted in Figure 2, traditional deep learning models are allocated to distinct learning tasks, which 

require each model to be trained independently from scratch, leading to high computational demands and 

the need for substantial amounts of training data for each task. In contrast, the transfer learning technique 

offers an efficient alternative. By employing a pre-trained model that is then fine-tuned for predicting 

heat transfer in heterogeneous streambeds, transfer learning can significantly reduce the computational 170 

burden and the need for large datasets. This is achieved by leveraging the knowledge gained from the 

source domain and applying it to the target domain, thereby accelerating the learning process and 

improving the model performance. 

The transfer learning technique involves training a model to establish a mapping between the input vector 

𝑋  and the observed data 𝑂  derived from a target dataset 𝐷 = {(𝑋𝑥𝑖, 𝑂𝑜𝑖)𝑖=1
𝑛 , 𝑋𝑥𝑖 ∈ 𝑋, 𝑂𝑜𝑖 ∈ 𝑂} . It 175 

assumes that both the source and the target tasks share similar parameters or prior distributions of the 

hyperparameters. The pre-training model is established utilizing the dataset from the source tasks 𝐷𝑠 =

{(𝑥𝑋𝑠, 𝑂𝑜𝑠)𝑠=1
𝑛 , 𝑋𝑥𝑠 ∈ 𝑋, 𝑂𝑜𝑠 ∈ 𝑂} which is generated through analytical or numerical models. In this 

study, the source and target datasets are spatiotemporal distributions of temperature fields in 

homogeneous and heterogeneous streambeds, respectively. The hyperparametersparameters 𝜃𝑇  for the 180 

fine-tuning model is acquired through the optimization of the loss function delineated by: 

𝜃𝑇 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜃𝑇

∑
1

𝑛∗
𝑛∗

𝑖=1 |𝑓𝑡𝑓(𝑋𝑥𝑡; 𝜃𝑇) − 𝑂𝑜𝑡|2        (4) 
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where 𝑛∗ denotes the number of training datasets employed to fine tune the pre-training model, 𝑓𝑡𝑓() 

denotes the predictive function of the fine-tuning model.  

The flowchart of the newly proposed framework is summarized in Figure 3: the PDTL model is developed 185 

by initially generating an input dataset using the analytical model for heat transfer in homogeneous 

streambeds. The dataset is subsequently employed to pre-train a DNN model with physical constraints, 

focusing on learning the weights and biases of the fully connected layer. Next, the data of the observation 

points in the corresponding numerical model for heat transfer in heterogeneous streambeds is utilized to 

fine-tune the pre-trained DNN model by transferring the learned insensitive layers (i.e., freezing their 190 

weights and biases) and retraining the learnable parameters of the remaining layers. Finally, the 

effectiveness of the PDTL model is evaluated by comparing its performance against a traditional DNN 

model with different amount of observation points, which evaluates the model's ability to predict the 

spatiotemporal temperature distribution in heterogeneous streambeds. 

3 Results 195 

3.1 Pre-training process 

In this study, the pre-training model is a DNN model with 6 hidden layers, each containing 16 neurons. 

To evaluate the sensitivity of weights and biases to hydraulic conductivity and to identify which layers 

should be trainable or remain frozen, two pre-training models with identical structures but varying 

hydraulic conductivities are constructed. Both datasets consist of a 100 × 100 grid with 100-time steps 200 

generated by the 2D analytical model, where 80% of the dataset is utilized for training and the remaining 
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20% for testing. 𝑞𝑥 and 𝑞𝑧 depend on hydraulic conductivities in 𝑥 and 𝑧 directions. In this section, 𝑞𝑥 

and 𝑞𝑧 are set to 0.2𝑚/𝑑, 0.3𝑚/𝑑 and 0.6𝑚/𝑑, 0.9𝑚/𝑑 for these two models, respectively. The input 

data consist of spatial locations (𝑥, 𝑦) and time 𝑡, while the output data is the corresponding temperature. 

Results indicate that the predictions of the two pre-training models closely align with the analytical model 205 

with average MSE values of 1.2𝐸 − 6 and 1.5𝐸 − 6, respectively. Similar to the works of Hu et al. (2020) 

and Zhang et al. (2023), the difference in weights and biases between the two pre-training models is 

evaluated using the relative change rate (RCR): 

𝑅𝐶𝑅 =
1

𝐼
∑

|𝜃1𝑖−𝜃2𝑖|

𝜃1𝑖

𝐼
𝑖            (5) 

where 𝜃1𝑖  and 𝜃2𝑖  are parameter matrixes in two pre-training models, respectively, 𝐼 is the number of 210 

elements in the parameter matrix. For enhanced comparability and credibility, each of the two pre-training 

models undergoes 20 training processes. Figure 4 presents the average RCR of weights and biases across 

all layers for two per-training models over 20 trials. The RCR of biases shows consistent stability across 

all layers, except for layer 3. In contrast, variations in weights are more prominent, particularly in layers 

1, 2, and 3, which underscores the heightened sensitivity of these layers to hydraulic conductivity. 215 

Consequently, layers 1, 2, and 3 of the pre-training models are marked as trainable, while the remaining 

layers are held frozen in the following analysis. Notably, the convergence criteria are defined as a 

threshold of 3000 iterations with a minimum gradient alteration of 5𝐸 − 6 throughout the training phase. 

3.2 Spatial and temporal performance for homogeneous scenario 

The spatiotemporal distribution of temperature in homogeneous streambeds is obtained by the analytical 220 

model. In this study, we use 1, 5, 10, 20, 50, and 100 observation points, each with 100-time steps. The 
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hydrological parameters are set at 𝑞𝑥 = 0.4 𝑚/𝑑  and 𝑞𝑧 = 0.6 𝑚/𝑑 , with all other parameters being 

consistent with those presented in Figure 1. The temperature data from these observation points are used 

as training data for PDTL and DNN, respectively. The reference temperature field on 0.5𝑑 (i.e., the 50𝑡ℎ 

time step) is employed as testing data. Figure 5 illustrates the absolute errors of the PDTL and DNN 225 

models for the homogeneous riparian zone. The results suggest that the PDTL model aligns well with the 

reference temperature field, whereas the DNN model tends to struggle in accurately capturing the 

reference temperature field. This highlights the significant improvement in the performance of the DL 

model facilitated by prior knowledge of the analytical solution and physical information. The pre-training 

model incorporates physical knowledge to provide superior initial parameters (weights and biases), which 230 

narrows the search space during the fine-tuning process. In contrast, the DNN model randomly initializes 

these parameters and requires more training points to explore the entire parameter space. To further 

demonstrate the predictive performance of the proposed model in time series, Figure 6 shows the 

temperature time series predicted by the PDTL and DNN models at a given observation point (𝑥 = 0.5𝑚, 

𝑦 = 0.5𝑚 ). Results indicate that the PDTL model predicts the temperature fluctuation trend better 235 

compared to the DNN model. Especially for the sparse dataset with a few observation points, the average 

𝑀𝑆𝐸 of the PDTL model with 5 observation points is approximately 3.2 times lower than that of the DNN 

model. As shown in Figure S2 in the Supplement, there is no significant difference in the performance of 

the PDTL and DNN models when the number of observations point increases to 200. Notably, the 

performance of the PDTL model appears to be less sensitive to the amount of observation points. We 240 

attribute this phenomenon to two factors: (1) randomly selected observation points lead to optimal 

performance when the observation points are in proximity to the test point, and vice versa; (2) the PDTL 
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model demonstrates the capacity to integrate substantial information from the analytical model, which 

diminishes the requirement for the number of observation points.  

The choice of observation points can influence the outcomes of the proposed PDTL model. To mitigate 245 

the effect of their positions, each observation point is randomly generated 200 times. The distributions of 

the average 𝑀𝑆𝐸 for both the PDTL and the DNN models across diverse amount of observation points 

are illustrated in Figure 7. Results reveal that both the interquartile range and mean values of MSE for the 

PDTL model are considerably smaller than those of the DNN model. As an illustration, when considering 

10 observation points, the average MSE for the PDTL model is approximately 0.1211, whereas that for 250 

the DNN model is 0.54. Furthermore, there is a significant reduction in both interquartile range and mean 

values of MSE of the PDTL model, and the interquartile range and mean values of MSE of the PDTL 

model tend to stable as the amount of observation points exceeds 50. On the contrary, the interquartile 

range and mean values of 𝑀𝑆𝐸 of the DNN model consistently decrease with an increasing amount of 

observation points, displaying a consistent pattern as observed in Figure 6. It should be emphasized that 255 

the PDTL model can still produce satisfactory results even with sparse data. Even with more than 50 

observation points, the DNN model still underperforms the PDTL model, which can be attributed to the 

following reasons: (1) due to the lack of prior physical knowledge, the DNN model may require more 

data to learn relatively complex patterns; (2) both the PDTL and the DNN model follow the identical 

convergence criterion with a restricted number of epochs during the fine-tuning process, which may result 260 

in incomplete training for the DNN model. 
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3.3 Effects of nonuniform flow on heat transfer 

In this section, we evaluate the performance of the PDTL model in predicting the spatiotemporal 

temperature distribution in heterogeneous streambeds. The heterogeneous 𝑙𝑛𝐾 field is generated by the 

exponential covariance function with mean 𝜇 = 0 , correlation length 𝑙 = 0.1𝑚  in both the 𝑥  and 𝑧 265 

directions, variance 𝜎𝑙𝑛𝐾
2 = 0.2, 0.5 and 1.0, respectively. Accordingly, three scenarios with low to high 

heterogeneity are created. Figure 8 depicts the random 𝑙𝑛𝐾 fields and references flow fields of three 

scenarios. The other parameters remain consistent with those of the homogeneous streambed. The 

temperature distribution in the heterogeneous streambed is estimated using the numerical model. 

Temperature time series of 1, 5, 10, 20, 50 and 100 observation points are extracted to fine tune both the 270 

PDTL and DNN models.  

To mitigate the impacts of random sampling during the fine-tuning process, 200 stochastic simulations 

are performed. The distribution of the average MSE for both the PDTL and DNN models in three distinct 

heterogeneous streambeds from low to high heterogeneity are shown in Figure 9. One can find that the 

average MSE of the PDTL model is consistently minimal and significantly lower than that of the DNN 275 

model. Besides, with the same number of observation points, a decrease in 𝜎𝑙𝑛𝐾
2  corresponds to a 

reduction in average MSE. These findings can be explained by the fact that the proposed PDTL model 

exhibits a strong ability to transfer knowledge between two datasets with similar structures or features. A 

decreased 𝜎𝑙𝑛𝐾
2  indicates less heterogeneity in the 𝑙𝑛𝐾 field, resulting in a temperature field that more 

closely resembles those generated by the analytical model. We attribute this improvement in the PDTL 280 

model to the enhanced initial parameters of the DNN model through the incorporation of physical 

knowledge during the fine-tuning process. For both the PDTL and DNN models, the interquartile ranges 
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and mean values of MSE decrease as the amount of observation points increases. Notably, by leveraging 

the insights from the analytical model, the PDTL model can effectively predict the temperature 

distribution in heterogeneous streambeds, even with sparse observation points (e.g., 5 observation points). 285 

In contrast, while the DNN model exhibits improved performance with an increased amount of 

observation points, its performance heavily relies on this factor, showing unsatisfactory outcomes with 

fewer observation points. When the amount of observation points reaches 50, the interquartile range and 

mean MSE of the PDTL model exhibit marginal changes, but the interquartile range and mean MSE of the 

DNN model still decrease significantly. Furthermore, there is no significant difference in the performance 290 

of the PDTL and DNN models in heterogeneous scenarios when the number of observation points 

increases to 200, as shown in Figures S3 and S4 in the Supplement. The average MSE of the PDTLDNN 

model is approximately 2.8 to 18.4 times smaller than that of the PDTLDNN model with the same 

observation points, which further demonstrates the capability of the PDTL model to transfer knowledge 

from homogeneous environments in heterogeneous environments.  295 

3.4 Effects of river temperature uncertainty 

In this section, we evaluate the effectiveness of the PDTL model in the context of river temperature 

observation noises, which may arise from suboptimal field conditions or sensor resolution limitations 

(Chen et al., 2022; Shi et al., 2023). Specifically, the white Gaussian noise is introduced at the top 

boundary: 300 

𝑓(𝑡) = 20 + 𝑠𝑖𝑛(2𝜋𝑡) + 𝑛𝑜𝑟𝑚𝑟𝑛𝑑(𝜑𝑁𝑜𝑖𝑠𝑒 , 𝜎𝑁𝑜𝑖𝑠𝑒)       (6) 
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where 𝜑𝑁𝑜𝑖𝑠𝑒  and 𝜎𝑁𝑜𝑖𝑠𝑒  denote the mean and variance of white Gaussian noise, respectively, and 

𝑛𝑜𝑟𝑚𝑟𝑛𝑑() denotes the Gaussian distribution. In this section, 𝜑𝑁𝑜𝑖𝑠𝑒 is set to 0°C and 𝜎𝑁𝑜𝑖𝑠𝑒 is set to 

0.025°C, 0.05°C and 0.075°C, respectively, as shown in Figure 10. Similarly, the heterogeneous 𝑙𝑛𝐾 field 

of streambed is generated by the exponential covariance function with 𝜇 = 0, 𝑙 = 0.1𝑚 in both 𝑥 and 𝑧 305 

directions and 𝜎𝑙𝑛𝐾
2 = 0.5. The temperature time series from diverse numbers of observation points (1, 5, 

10, 20, 50, and 100) are utilized as training datasets for both PDTL and DNN models. Additionally, 200 

stochastic simulations are conducted to mitigate the influence of random sampling of observation points 

during the fine-tuning process. 

Figure 11 shows the distributions of the average 𝑀𝑆𝐸 for both the PDTL and DNN models under different 310 

noise levels. It is observed that that the PDTL and DNN models exhibit sensitivity to noise, and the 

elevated noise levels result in diminished model performance. Nevertheless, the PDTL model is less 

impacted by river temperature uncertainty compared to the DNN model. For instance, in cases of 10 

observation points, the average MSE of the DNN model varies from 0.59 to 0.45 as 𝜎 decreases from 

0.075 to 0.025. In contrast, the average MSE of the PDTL model ranges only from 0.112 to 0.089 under 315 

the same conditions, demonstrating the superior robustness of the PDTL model over the DNN model. 

4 Discussions 

This study investigates the effects of streambed heterogeneity, temperature observation noises, and the 

number of observation points at different locations on the performance of the proposed PDTL model. 

Results indicate that the proposed PDTLtransfer learning model exhibits robust prediction performance 320 

with significantly reduced interquartile range and mean MSE, particularly in scenarios with sparse data. 
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These findings suggest that integrating analytical knowledge effective decrease of model uncertainties. 

Compared to conventional data-driven models, which often require extensive training data, the PDTL 

model leverages analytical knowledge to improve accuracy while reducing uncertainty. This highlights 

its potential advantages in environmental and hydrological studies where data collection is often 325 

constrained. A key strength of this framework is its transferability to other applications beyond heat 

transfer in riparian zones. By integrating analytical knowledge with data-driven approach, it can be 

extended to solute transport processes and heat transfer in other heterogeneous porous media, such as 

groundwater contaminant migration and CO2 geological storage. This versatility highlights the 

framework's potential for broader applications across various fields within environmental and 330 

hydrological studies. However, scientists should carefully consider the choice of training data and the 

assumptions underlying the analytical solutions when applying this framework to different settings.These 

findings suggest that integrating analytical knowledge enables effective decrease of model uncertainties. 

It is worthwhile to point out that the framework developed in this study is not limited to heat transfer in 

riparian zones: it can also be applied to mass transport and heat transfer in other heterogeneous porous 335 

media. This versatility highlights the framework's potential for broader applications across various fields 

within environmental and hydrological studies. Future research will systematically explore the difference 

between transfer learning-based models and conventional models for modeling heat transfer under 

uncertain conditions.  

Despite its advantagesHowever, it is imperative to recognize several constraints associated with the PDTL 340 

model proposed in this study. Firstly, the incapacity for extrapolation of the PDTL model restricts its 

applicability. As it lacks observation points outside the training domain, the PDTL model tends to face 
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limitations concerning extrapolative tasks. Secondly, this study centerscentres on modeling heat transfer 

problems in heterogeneous riparian zones, and the effectiveness of the PDTL model may be influenced 

by the selection of the 𝐾 value. Finally, analytical models usually require regular spatial domains, while 345 

real-world study areas (e.g., watersheds) often feature irregular spatial domains. The effectiveness of the 

PDTL model may be influenced by discrepancies between the temperature field in the real-world area 

and the simplified analytical solution, especially near the boundary. All these issues should be 

investigated separately in the future.Future research should systematically compare transfer learning-

based models with conventional models regarding computational efficiency, predictive accuracy, and 350 

adaptability to diverse hydrological settings. Additionally, efforts should focus on improving the 

framework’s ability to handle irregular spatial domains through coordinate transformations, domain 

padding, or hybrid numerical-analytical datasets, and on refining its extrapolation capabilityies. 

Addressing these challenges will further enhance the applicability of the PDTL model in environmental 

and hydrological research. 355 

5. Conclusions 

In this study, we propose a novel physics-informed deep transfer learning (PDTL) approach, which 

enhances DNN models by integrating physical mechanisms described by an analytical model using 

transfer learning technique. The proposed PDTL model is tested against the DNN model under different 

heterogeneous streambeds and observation noise levels. Results indicate that the PDTL model 360 

significantly improves the robustness and accuracy in predicting the spatiotemporal temperature 

distribution in heterogeneous streambeds by incorporating knowledge transferred from pre-trained DNN 
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models. Importantly, the PDTL model maintains satisfactory performance even with sparse training data 

and high uncertainties in geological conditions and observations, making it a promising tool for practical 

applications in riparian zone management. This is particularly relevant in situations where data acquisition 365 

is often challenging and costly, highlighting the potential impact of our research. The main conclusions 

are summarized as follows:  

(1) The hydraulic conductivity primarily influences the parameters of the shallow layers in the DNN 

model, rendering it visible to use transfer learning approach in predicting spatiotemporal temperature 

distribution in heterogeneous streambeds; 370 

(2) The accuracy of predicted temperature fields for both the PDTL and DNN models improves with an 

increased number of observation points, and the PDTL model significantly outperforms the DNN model 

for both homogeneous and heterogeneous scenarios； 

(3) The PDTL model demonstrates stronger robustness in dealing with observation noise compared to the 

DNN model and performs satisfactorily even with sparse training data; 375 

(4) The successful application of the PDTL model for predicting the spatiotemporal temperature 

distribution in heterogeneous streambeds indicates its pronounced advantages and prospects for 

estimating surface water and groundwater interaction fluxes in such heterogeneous riparian zones.  

Data availability  

The Python codes of the PDTL and DNN models are made available for download from a public 380 

repository at: https://github.com/Ahjin-CUG/TL. 
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Figure Captions 
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Figure 1. Schematic diagram of the temperature distribution in the riparian zones. 570 
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Figure 2. Schematic diagram of the pre-training and fine-tuning methods in the transfer learning model 

(Revised from (Guo et al., 2023)). (a) Traditional machine learning method; (b) Transfer learning method. 575 
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Figure 3. Proposed PDTL framework used in this study. The framework consists of a pre-training module, 580 

a transfer learning module, and an evaluation module. 
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Figure 4. The average relative change rate (𝑅𝐶𝑅) of weight between pre-training neural network with 585 

different 𝐾 values. 
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Figure 5. Absolute errors between the predicted temperature field and reference temperature field using 

PDTL and DNN models for homogeneous streambed.  590 



35 

 

 

Figure 6. Comparisons of the predicted temperature (blue curves) and reference temperature (red curves) 

using PDTL and DNN models for homogeneous streambed.  
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Figure 7. 𝑀𝑆𝐸  distribution of normalized results from PDTL and DNN models plotted against the 595 

number of observation points for homogeneous streambed. (a) PDTL model; (b) DNN model. 
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Figure 8. Heat map and the contours of hydraulic head, temperature field and streamlines for different 

𝐾-fields. (a1) - (c1) show the heat map of 𝐾-fields, and (a2) - (c2) show the contours of hydraulic head 600 

and streamlines at 0.5𝑑 and (a3) - (c3) show the contours of temperature field and streamlines at 0.5𝑑 for 

𝜎𝑙𝑛𝑘
2 = 0.2, 0.5, and 1.0, respectively. 
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Figure 9. 𝑀𝑆𝐸  distribution of normalized results from PDTL and DNN models plotted against the 605 

number of observation points for different heterogeneous streambeds. (a1) - (c1) show the PDTL model 

and (a2) - (c2) show the DNN model for 𝜎𝑙𝑛𝑘
2 = 0.2, 0.5, and 1.0, respectively. 
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Figure 10. Time series diagram of river temperature under different observation noises. (a) 𝜎 = 0.025℃; 610 

(b) 𝜎 = 0.05℃; (c) 𝜎 = 0.075℃. 
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Figure 11. 𝑀𝑆𝐸  distribution of normalized results from PDTL and DNN models plotted against the 

number of observation points for different observation noises. (a1) - (c1) show the PDTL model and (a2) 

- (c2) show the DNN model for 𝜎 = 0.025℃, 0.05℃, and 0.075℃, respectively. 615 

 


