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CHINA UNIVERSITY OF GEOSCIENCES

SCHOOL OF ENVIROMENTAL STUDIES
WUHAN, HUBEI, CHINA 430074

Dr. Quanrong Wang, Endowed CUG Scholar in Hydrogeology
Tel: +86 15927169156
Email: wangqr@cug.edu.cn

July 18, 2025
To: Dr. Heng Dai, Editor of Hydrology and Earth System Sciences
Subject: Revision of Paper # EGUSPHERE-2024-4145

Dear Editor:

Upon the recommendation, we have carefully revised Paper # EGUSPHERE-2024-4145 entitled “Improving
heat transfer predictions in heterogeneous riparian zones using transfer learning techniques” after
considering all the comments made by the reviewers. The following is the point-point response to all the
comments.

Response to Reviewer #1:

Overview:

Thank you for submitting your manuscript addressing the comments previously made. This new version of
the manuscript is in better shape. | only have a few comments and one technical correction that are presented
below.

Reply: Thanks for your constructive comments. We have carefully revised Paper # EGUSPHERE-2024-4145.

Specific Comments:

(1) Itis still not clear how the authors find the prescribed values for Darcy’s fluxes (g, and g) in the analytical
solution. The authors argue in their response (lines 91 to 96 in the response document) that the groundwater
flow and heat transfer models are coupled through g,, and g, which they prescribed in the analytical solution.
The numerical model has two boundary conditions where a constant head is set (Figure S2). Did the authors
calculate the Darcy’s fluxes using the difference between these heads throughout the domain and the given
hydraulic conductivity, or did they use the Darcy'’s flux simulated results for a given cell within the domain? |
recommend providing further clarification on this.

Reply: Implemented. In the analytical model of Shi et al. (2023), the thermal front velocities v, and v, are
directly prescribed, please see Egs.(1)-(10).

T =A(x,z,t) [fom fOL EAn)B(x —A4,z—n,t)dAdn + fotg(f)c(x, 7t — T)d‘[] ()
A(x, z,t) = iexp [_ UZ(V:;;ZZ) _ vx(v:;;zx) 2

st 110 = i len -2 e [ S52)

{exp [— (x_l)z] + exp [— (x_l)z]} (3)
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One can find that v, and v, are directly prescribed in the analytical model, which can be transformed into

the Darcy’s fluxes through Egs.(9)-(10).

For heterogeneous scenarios (numerical model), the boundary conditions of groundwater flow model are
applied to generate two-dimensional nonuniform flow fields. The Darcy’s fluxes are calculated using the
difference between these heads throughout the domain The settings of initial and boundary conditions are
shown in Figure S2.

(2) The main objective of the manuscript is to propose a novel physics-informed deep transfer learning (PDTL)
approach to improve the accuracy of spatiotemporal temperature distribution predictions. The manuscript, as
it is, works towards that goal and presents a promising methodology. My only concern is the use of the
location in the domain as the only input variable for the machine learning model. This limits the transferability
of the model to other potential locations and disconnects the association of the model to measurable physical
variables, such as the temperature at the surface and the fluxes of water from the river to the underlying
aquifer. Some of these limitations are already presented in the discussion, but | encourage the authors also
to discuss the limitations of their selected input variables.

Reply: We agree that using locations as inputs may limit the model’s transferability to other sites and weaken
its direct connection to measurable physical variables. We have added further discussion on this limitation in
the revised manuscript. Future work will incorporate additional physically measurable parameters, such as
surface temperature, river-aquifer fluxes, or hydraulic gradients, to enhance the model’s generalizability and
physical relevance. Please see Lines 335-339.

Technical Correction:

(1). The text in the axes of Figures 5, 6, and 9 is difficult to read. Consider increasing the fonts. Also, include
the units of the variables plotted.

Reply: Implemented. We have increased the fonts and added the units of the variables in Figures 5, 6, and
9.

Response to Reviewer #3:

Overview:

Thank you for the opportunity to review this thoroughly revised manuscript. The authors present a novel
hybrid framework that combines simple analytical solutions for homogeneous systems with transfer learning
techniques to address heterogeneous heat transfer problems in riparian zones. The topic is timely and of
broad interest, and the methodology, which leverages well understood analytical models to inform data driven
learning, represents a creative and potentially widely applicable approach. The revised manuscript is
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significantly improved in organization, clarity, and technical depth compared to the previous version, and |
recommend acceptance after a few clarifications and minor edits.
Reply: Thanks for your constructive comments. We have carefully revised Paper # EGUSPHERE-2024-4145.

General Comments:

(1) First, the rationale for using both analytical and numerical models to generate training data and
benchmarks would benefit from a more explicit explanation. Although the hybrid strategy intuitively combines
the interpretability and low-cost evaluation of analytical solutions with the flexibility of numerical simulations,
the manuscript would be stronger if it contrasted this approach against purely numerical or purely statistical
alternatives. For example, how does the introduction of analytical physics reduce the required volume of high-
fidelity simulations and how does it improve generalization to untested heterogeneous conditions? A brief
discussion of these tradeoffs and any computational savings or improved convergence properties observed
would help readers appreciate the advantages of the proposed framework.

Reply: Implemented. We have added explicit rationale for employing both analytical and numerical models
to generate training data and benchmarks. Please see Lines 171-176.

In this study, we focus on the physical principles transferred from homogeneous to heterogeneous streambed
using transfer learning techniques. Accordingly, the source and target datasets are spatiotemporal
distributions of temperature fields in homogeneous and heterogeneous streambeds, respectively. The
analytical model developed by Shi et al. (2023) is employed to provide training dataset for pre-training.
However, for the heterogeneous streambed, the analytical model is not available; therefore, numerical
models are employed to generate the fine-tuning dataset and serve as the benchmarks to evaluate the
performance of the proposed PDTL model.

We also conducted the comparative discussion between the hybrid approach (PDTL model) and or pure
data-driven method (DNN model). Results indicate that the PDTL model significantly outperforms the DNN
model in scenarios with scarce training data. Furthermore, increasing streambed heterogeneity and
observation noise levels raises the mean MSE values of the PDTL and DNN models, with the PDTL model
exhibiting greater robustness than the DNN model, highlighting its potential for practical applications in
riparian zone management. Please see Section 3.2-3 4.

(2) Second, the choice of Shi et al. (2023) as the benchmark analytical model deserves further justification.
The literature contains numerous analytical expressions for subsurface heat transport in riparian contexts;
explaining why this formulation was selected (for example, because of its balance of simplicity and fidelity,
its treatment of boundary conditions, or its previous validation against field data) would clarify its role in the
study. If other models were considered but found less suitable, a sentence or two outlining those comparisons
would reinforce confidence in the benchmark’s relevance.

Reply: Implemented. We have added a justification for selecting the analytical model of Shi et al. (2023) as
the benchmark in our revised manuscript. Specifically, we clarified that this model offers a balanced trade-off
between analytical simplicity and accuracy, particularly in representing boundary conditions relevant to heat
transport between surface water and groundwater. Moreover, this model has been validated against field
data, further enhancing its credibility. Please see S1-“Analytical solution of the 2D heat transfer process in
homogeneous streambed” in the Supplement.

(3) Third, the description of the transfer learning workflow indicates that some network layers were frozen
while others remained trainable, but the manuscript does not specify which layers were selected nor the
criteria guiding these decisions. Since layer freezing can critically affect the retention of low-level physical
features versus high level adaptation to heterogeneous data, please detail which layers were frozen, which
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were fine-tuned, and why. Were early convolutional filters preserved to encode general diffusion patterns
while later dense layers were adapted to capture heterogeneity? Clarifying this architecture will help readers
reproduce the experiments and understand how transfer learning choices influence model performance.
Reply: Implemented. The difference in weights and biases between the two pre-training models with different
hydraulic conductivities is evaluated using the relative change rate (RCR):

RCR = 125M (11)
1 91,:

where 6;; and 6,; are parameter matrixes in two pre-training models, respectively, I is the number of
elements in the parameter matrix. For enhanced comparability and credibility, each of the two pre-training
models undergoes 20 training processes. Figure 1 presents the average RCR of weights and biases across
all layers for two per-training models over 20 trials. The RCR of biases shows consistent stability across all
layers, except for layer 3. In contrast, variations in weights are more prominent, particularly in layers 1, 2,
and 3, which underscores the heightened sensitivity of these layers to hydraulic conductivity. Consequently,
layers 1, 2, and 3 of the pre-training models are marked as trainable, while the remaining layers are held
frozen in the following analysis. Please see Section 3.1.
25

T T T T T T
- Weights
- Bias

RCR (*100%)

Layerl Layer2 Layer3 Layer4 Layer5 Layer6

Figure 1. The average relative change rate (RCR) of weight between pre-training neural network with
different K values.

(4) Fourth, the results demonstrate that transfer learning informed by analytical solutions performs
remarkably well, even in heterogeneous systems that deviate from the homogeneous assumptions
underlying the analytical form. It would be valuable to discuss potential reasons for this robustness: for
instance, do the analytical solutions capture the dominant modes of heat propagation that persist under
moderate heterogeneity? Is there a particular physical principle or scaling law embedded in the base model
that remains valid across a range of conductivity contrasts? A short analysis of what features the network
retains from the analytical initialization and how those guide learning in more complex settings would deepen
insight into why the approach succeeds.

Reply: Implemented. The proposed PDTL model integrates advantages of analytical solutions, deep learning
models, and transfer learning techniques. The analytical model is used to efficiently produce physically
consistent heat distribution patterns and data in homogeneous riparian zones, which serve as the training
data for the pre-training deep learning model. Subsequently, the weights and biases learned from the pre-
training model are transferred to a new deep learning model under heterogeneous scenarios through transfer
learning. Furthermore, we have discussed how the transferred physical knowledge impacts the parameters
of deep learning model. Results indicate that the hydraulic conductivity primarily influences the parameters
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of the shallow layers (Layers 1-3) in the DNN model. Therefore, layers 1, 2, and 3 of the pre-training models
are marked as trainable, while the remaining layers are held frozen in the following analysis. Please see
Lines 192-215.

Specific Suggestions:
(1) In Lines 65-73 “DL” should be “deep learning”
Reply: Implemented. We have revised “DL” to “deep learning”. Please see Lines 65-73.

(2) In Line 87, “transfer learning” should be “transfer learning techniques”.
Reply: Implemented. We have revised “transfer learning” to “deep learning techniques”. Please see Line 87.

(3) In Line 91, “power” should be “capability”.
Reply: Implemented. We have revised “power” to “capability”. Please see Line 92.

(4) In Line 106, L=0.32m is used in Section 2.1 or in all cases?
Reply: Implemented. L = 0.32m is used in all cases.

(5) In Lines 138, 151 and 152, “physical information” should be “physical principles”.
Reply: Implemented. We have revised “physical information” to “physical principles”. Please see Lines 138-
152.

(6) In Lines 207-208, add references to support this point.
Reply: Implemented. We have added some references to support our point to restrict the number of epochs
in the model training process.

Reference:

[1] Wang, N., Chang, H., and Zhang, D. (2021). Deep-learning-based inverse modeling approaches: A
subsurface flow example [J]. Journal of Geophysical Research: Solid Earth, 126, €2020JB020549.

[2] Zhang J, Liang X, Zeng L, et al. Deep transfer learning for groundwater flow in heterogeneous aquifers
using a simple analytical model [J]. Journal of Hydrology, 2023, 626: 130293.

If you have any further questions about this revision, please contact me.

Sincerely Yours,
Quanrong Wang, PhD, PG. W’ﬁ/
Professor and

Holder of Endowed CUG Scholar in Hydrogeology



