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 4 

Dear Editor: 5 

Upon the recommendation, we have carefully revised Paper # EGUSPHERE-2024-4145 entitled “Improving 6 

heat transfer predictions in heterogeneous riparian zones using transfer learning techniques” after 7 

considering all the comments made by the reviewers. The following is the point-point response to all the 8 

comments. 9 

 10 

Response to Reviewer #1: 11 

Overview: 12 

Thank you for submitting your manuscript addressing the comments previously made. This new version of 13 

the manuscript is in better shape. I only have a few comments and one technical correction that are presented 14 

below.  15 

Reply: Thanks for your constructive comments. We have carefully revised Paper # EGUSPHERE-2024-4145. 16 

 17 

Specific Comments: 18 

(1) It is still not clear how the authors find the prescribed values for Darcy’s fluxes (𝑞𝑥 and 𝑞𝑧) in the analytical 19 

solution. The authors argue in their response (lines 91 to 96 in the response document) that the groundwater 20 

flow and heat transfer models are coupled through 𝑞𝑥 and 𝑞𝑧, which they prescribed in the analytical solution. 21 

The numerical model has two boundary conditions where a constant head is set (Figure S2). Did the authors 22 

calculate the Darcy’s fluxes using the difference between these heads throughout the domain and the given 23 

hydraulic conductivity, or did they use the Darcy’s flux simulated results for a given cell within the domain? I 24 

recommend providing further clarification on this. 25 

Reply: Implemented. In the analytical model of Shi et al. (2023), the thermal front velocities 𝑣𝑥 and 𝑣𝑧 are 26 

directly prescribed, please see Eqs.(1)-(10). 27 
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One can find that 𝑣𝑥 and 𝑣𝑧 are directly prescribed in the analytical model, which can be transformed into 39 

the Darcy’s fluxes through Eqs.(9)-(10). 40 

For heterogeneous scenarios (numerical model), the boundary conditions of groundwater flow model are 41 

applied to generate two-dimensional nonuniform flow fields. The Darcy’s fluxes are calculated using the 42 

difference between these heads throughout the domain The settings of initial and boundary conditions are 43 

shown in Figure S2. 44 

 45 

(2) The main objective of the manuscript is to propose a novel physics-informed deep transfer learning (PDTL) 46 

approach to improve the accuracy of spatiotemporal temperature distribution predictions. The manuscript, as 47 

it is, works towards that goal and presents a promising methodology. My only concern is the use of the 48 

location in the domain as the only input variable for the machine learning model. This limits the transferability 49 

of the model to other potential locations and disconnects the association of the model to measurable physical 50 

variables, such as the temperature at the surface and the fluxes of water from the river to the underlying 51 

aquifer. Some of these limitations are already presented in the discussion, but I encourage the authors also 52 

to discuss the limitations of their selected input variables. 53 

Reply: We agree that using locations as inputs may limit the model’s transferability to other sites and weaken 54 

its direct connection to measurable physical variables. We have added further discussion on this limitation in 55 

the revised manuscript. Future work will incorporate additional physically measurable parameters, such as 56 

surface temperature, river-aquifer fluxes, or hydraulic gradients, to enhance the model’s generalizability and 57 

physical relevance. Please see Lines 335-339. 58 

 59 

Technical Correction: 60 

(1). The text in the axes of Figures 5, 6, and 9 is difficult to read. Consider increasing the fonts. Also, include 61 

the units of the variables plotted. 62 

Reply: Implemented. We have increased the fonts and added the units of the variables in Figures 5, 6, and 63 

9. 64 

Response to Reviewer #3: 65 

Overview: 66 

Thank you for the opportunity to review this thoroughly revised manuscript. The authors present a novel 67 

hybrid framework that combines simple analytical solutions for homogeneous systems with transfer learning 68 

techniques to address heterogeneous heat transfer problems in riparian zones. The topic is timely and of 69 

broad interest, and the methodology, which leverages well understood analytical models to inform data driven 70 

learning, represents a creative and potentially widely applicable approach. The revised manuscript is 71 
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significantly improved in organization, clarity, and technical depth compared to the previous version, and I 72 

recommend acceptance after a few clarifications and minor edits. 73 

Reply: Thanks for your constructive comments. We have carefully revised Paper # EGUSPHERE-2024-4145. 74 

 75 

General Comments: 76 

(1) First, the rationale for using both analytical and numerical models to generate training data and 77 

benchmarks would benefit from a more explicit explanation. Although the hybrid strategy intuitively combines 78 

the interpretability and low-cost evaluation of analytical solutions with the flexibility of numerical simulations, 79 

the manuscript would be stronger if it contrasted this approach against purely numerical or purely statistical 80 

alternatives. For example, how does the introduction of analytical physics reduce the required volume of high-81 

fidelity simulations and how does it improve generalization to untested heterogeneous conditions? A brief 82 

discussion of these tradeoffs and any computational savings or improved convergence properties observed 83 

would help readers appreciate the advantages of the proposed framework. 84 

Reply: Implemented. We have added explicit rationale for employing both analytical and numerical models 85 

to generate training data and benchmarks. Please see Lines 171-176. 86 

In this study, we focus on the physical principles transferred from homogeneous to heterogeneous streambed 87 

using transfer learning techniques. Accordingly, the source and target datasets are spatiotemporal 88 

distributions of temperature fields in homogeneous and heterogeneous streambeds, respectively. The 89 

analytical model developed by Shi et al. (2023) is employed to provide training dataset for pre-training. 90 

However, for the heterogeneous streambed, the analytical model is not available; therefore, numerical 91 

models are employed to generate the fine-tuning dataset and serve as the benchmarks to evaluate the 92 

performance of the proposed PDTL model. 93 

 94 

We also conducted the comparative discussion between the hybrid approach (PDTL model) and or pure 95 

data-driven method (DNN model). Results indicate that the PDTL model significantly outperforms the DNN 96 

model in scenarios with scarce training data. Furthermore, increasing streambed heterogeneity and 97 

observation noise levels raises the mean 𝑀𝑆𝐸 values of the PDTL and DNN models, with the PDTL model 98 

exhibiting greater robustness than the DNN model, highlighting its potential for practical applications in 99 

riparian zone management. Please see Section 3.2-3.4. 100 

 101 

(2) Second, the choice of Shi et al. (2023) as the benchmark analytical model deserves further justification. 102 

The literature contains numerous analytical expressions for subsurface heat transport in riparian contexts; 103 

explaining why this formulation was selected (for example, because of its balance of simplicity and fidelity, 104 

its treatment of boundary conditions, or its previous validation against field data) would clarify its role in the 105 

study. If other models were considered but found less suitable, a sentence or two outlining those comparisons 106 

would reinforce confidence in the benchmark’s relevance. 107 

Reply: Implemented. We have added a justification for selecting the analytical model of Shi et al. (2023) as 108 

the benchmark in our revised manuscript. Specifically, we clarified that this model offers a balanced trade-off 109 

between analytical simplicity and accuracy, particularly in representing boundary conditions relevant to heat 110 

transport between surface water and groundwater. Moreover, this model has been validated against field 111 

data, further enhancing its credibility. Please see S1-“Analytical solution of the 2D heat transfer process in 112 

homogeneous streambed” in the Supplement. 113 

 114 

(3) Third, the description of the transfer learning workflow indicates that some network layers were frozen 115 

while others remained trainable, but the manuscript does not specify which layers were selected nor the 116 

criteria guiding these decisions. Since layer freezing can critically affect the retention of low-level physical 117 

features versus high level adaptation to heterogeneous data, please detail which layers were frozen, which 118 
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were fine-tuned, and why. Were early convolutional filters preserved to encode general diffusion patterns 119 

while later dense layers were adapted to capture heterogeneity? Clarifying this architecture will help readers 120 

reproduce the experiments and understand how transfer learning choices influence model performance. 121 

Reply: Implemented. The difference in weights and biases between the two pre-training models with different 122 

hydraulic conductivities is evaluated using the relative change rate (𝑅𝐶𝑅): 123 

𝑅𝐶𝑅 =
1

𝐼
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𝜃1𝑖

𝐼
𝑖           (11) 124 

where 𝜃1𝑖  and 𝜃2𝑖  are parameter matrixes in two pre-training models, respectively, 𝐼  is the number of 125 

elements in the parameter matrix. For enhanced comparability and credibility, each of the two pre-training 126 

models undergoes 20 training processes. Figure 1 presents the average 𝑅𝐶𝑅 of weights and biases across 127 

all layers for two per-training models over 20 trials. The 𝑅𝐶𝑅 of biases shows consistent stability across all 128 

layers, except for layer 3. In contrast, variations in weights are more prominent, particularly in layers 1, 2, 129 

and 3, which underscores the heightened sensitivity of these layers to hydraulic conductivity. Consequently, 130 

layers 1, 2, and 3 of the pre-training models are marked as trainable, while the remaining layers are held 131 

frozen in the following analysis. Please see Section 3.1.  132 

 133 

Figure 1. The average relative change rate (𝑅𝐶𝑅) of weight between pre-training neural network with 134 

different 𝐾 values. 135 

 136 

(4) Fourth, the results demonstrate that transfer learning informed by analytical solutions performs 137 

remarkably well, even in heterogeneous systems that deviate from the homogeneous assumptions 138 

underlying the analytical form. It would be valuable to discuss potential reasons for this robustness: for 139 

instance, do the analytical solutions capture the dominant modes of heat propagation that persist under 140 

moderate heterogeneity? Is there a particular physical principle or scaling law embedded in the base model 141 

that remains valid across a range of conductivity contrasts? A short analysis of what features the network 142 

retains from the analytical initialization and how those guide learning in more complex settings would deepen 143 

insight into why the approach succeeds. 144 

Reply: Implemented. The proposed PDTL model integrates advantages of analytical solutions, deep learning 145 

models, and transfer learning techniques. The analytical model is used to efficiently produce physically 146 

consistent heat distribution patterns and data in homogeneous riparian zones, which serve as the training 147 

data for the pre-training deep learning model. Subsequently, the weights and biases learned from the pre-148 

training model are transferred to a new deep learning model under heterogeneous scenarios through transfer 149 

learning. Furthermore, we have discussed how the transferred physical knowledge impacts the parameters 150 

of deep learning model. Results indicate that the hydraulic conductivity primarily influences the parameters 151 
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of the shallow layers (Layers 1-3) in the DNN model. Therefore, layers 1, 2, and 3 of the pre-training models 152 

are marked as trainable, while the remaining layers are held frozen in the following analysis. Please see 153 

Lines 192-215.  154 

 155 

Specific Suggestions:  156 

(1) In Lines 65-73 “DL” should be “deep learning” 157 

Reply: Implemented. We have revised “DL” to “deep learning”. Please see Lines 65-73. 158 

 159 

(2) In Line 87, “transfer learning” should be “transfer learning techniques”. 160 

Reply: Implemented. We have revised “transfer learning” to “deep learning techniques”. Please see Line 87. 161 

 162 

(3) In Line 91, “power” should be “capability”. 163 

Reply: Implemented. We have revised “power” to “capability”. Please see Line 92. 164 

 165 

(4) In Line 106, L=0.32m is used in Section 2.1 or in all cases? 166 

Reply: Implemented. 𝐿 = 0.32𝑚 is used in all cases. 167 

 168 

(5) In Lines 138, 151 and 152, “physical information” should be “physical principles”. 169 

Reply: Implemented. We have revised “physical information” to “physical principles”. Please see Lines 138-170 

152. 171 

 172 

(6) In Lines 207-208, add references to support this point. 173 

Reply: Implemented. We have added some references to support our point to restrict the number of epochs 174 

in the model training process. 175 

 176 

Reference: 177 

[1] Wang, N., Chang, H., and Zhang, D. (2021). Deep-learning-based inverse modeling approaches: A 178 

subsurface flow example [J]. Journal of Geophysical Research: Solid Earth, 126, e2020JB020549. 179 

[2] Zhang J, Liang X, Zeng L, et al. Deep transfer learning for groundwater flow in heterogeneous aquifers 180 

using a simple analytical model [J]. Journal of Hydrology, 2023, 626: 130293. 181 

 182 

 183 

If you have any further questions about this revision, please contact me. 184 

Sincerely Yours,  185 

Quanrong Wang, PhD, PG. 186 

Professor and 187 

Holder of Endowed CUG Scholar in Hydrogeology 188 


