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 4 

Dear Editor: 5 

Upon the recommendation, we have carefully revised Paper # EGUSPHERE-2024-4145 entitled “Improving 6 

heat transfer predictions in heterogeneous riparian zones using transfer learning techniques” after 7 

considering all the comments made by the reviewers. The following is the point-point response to all the 8 

comments. 9 

 10 

Response to Reviewer #1: 11 

Overview: 12 

This manuscript proposes a Deep Transfer Learning (DTL) approach to improve the accuracy of 13 

spatiotemporal temperature distribution predictions in heterogeneous riparian zones. Using transfer learning, 14 

the authors integrate analytical solution outputs for a homogeneous medium into a Deep Neural Network 15 

(DNN) and employ a 2D numerical model output for a heterogeneous medium as their synthetic data. They 16 

tested their approach by comparing the DTL to a DNN trained solely on synthetic data across various 17 

heterogeneous media and noise levels. Their findings indicate that the DTL model outperforms the DNN 18 

model in scenarios with limited training data and demonstrates greater robustness to data noise, which may 19 

have practical applications in riparian zone management. 20 

The current version of the manuscript requires significant work. Essential information regarding the physical-21 

based models used to train the DTL and DNNs is missing, as well as clarifications on the input and output 22 

variables of the machine learning models needed for testing and reproducing the work presented. Additionally, 23 

the authors should include the reasoning behind their sampling criteria and how it is linked to the physical 24 

process they are modeling, as well as highlight how their novel framework differs or adds from work done by 25 

previous authors. With the latter in mind, I cannot accept the manuscript in its current form. 26 

Below, I have listed comments and suggestions, hoping they may help improve the manuscript’s quality. 27 

Reply: Thanks for your constructive comments. We have carefully revised Paper # EGUSPHERE-2024-4145. 28 

 29 

Specific Comments: 30 

The physics-based models need further clarification. 31 

(1) The authors based their analytical and numerical models on previous work performed by Shi et al. (2023) 32 

and they present some of the equations and boundary conditions in the manuscript and the supplementary 33 

information. However, the manuscript does not clarify the actual domain of the system. Are they using the 34 

model's domain as the conceptual model presented in Figure 1? If so, why are the modeling results presented 35 

in a square? Is this an inset of the larger domain? If so, where is the inset located for the whole model? If it 36 

is not an inset, is the domain different from the one presented by Shi et al. (2023)? If so, why is its extent 37 
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shorter than that of the original study? A clear description of the conceptual model and its boundary conditions 38 

should be included in the main manuscript to aid in the understanding of the physical process. 39 

Reply: Implemented. Please see Lines 98-115 and section S1-“Analytical solution of the 2D heat transfer 40 

process in homogeneous streambed” and S2-“Numerical solution of the 2D heat transfer process in 41 

heterogeneous streambed” in the Supplement. 42 

Figure 1 is the schematic of the conceptual model illustrating heat transfer induced by surface water-43 

groundwater interactions. Similar to Shi et al. (2023), the square domain used in this study represents a 44 

simplified case of the conceptual model. The groundwater flow model and heat transfer model are coupled 45 

through 𝑞𝑥 and 𝑞𝑧, which are directly defined in the analytical model used in this study. Therefore, only the 46 

boundary conditions of the heat transfer model need to be considered in the analytical model. For 47 

heterogeneous scenarios (numerical model), the boundary conditions of groundwater flow model are applied 48 

to generate two-dimensional nonuniform flow fields, which are used to create fine-tuning and testing samples 49 

under heterogeneous streambed conditions. The settings of initial and boundary conditions are shown in 50 

Figure S2. 51 

To improve simulation accuracy and avoid boundary effects in numerical model, the semi-infinite geometry 52 

size was replaced by a finite range, and two infinite element domains were added at 𝑥 = 1 m and 𝑧 = 1 m 53 

to represent the infinite boundary on the 𝑥- and 𝑧-directions, respectively. Therefore, the model's domain 54 

size does not influence the accuracy of either the analytical or numerical solutions, and Figure S1 further 55 

validates the accuracy of the proposed numerical model. 56 

 57 

Figure S1. Comparison of temperature-time curves at three locations using the numerical solution (circle 58 

symbols) and the analytical solution of this study (solid curves). 59 
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 60 

Figure S2. Conceptual model of 2D numerical model with streambed sediment, initial and boundary 61 

conditions. The red color zone represents the streambed with a half width of 0.32.  62 

 63 

(2) Additionally, the groundwater flow model and its boundary conditions are not mentioned. Is this the same 64 

model as the one used in Shi et al. (2023)? This should be included and clarified in the manuscript for an 65 

integral understanding of the process that the data-driven models are trying to reproduce.  66 

Reply: Implemented. Similar to Shi et al. (2023), the groundwater flow model and heat transfer model are 67 

coupled through 𝑞𝑥 and 𝑞𝑧. In the analytical model, 𝑞𝑥 and 𝑞𝑧 are directly prescribed; therefore, only the 68 

boundary conditions of the heat transfer model need to be considered in the analytical model. 69 

For heterogeneous scenarios (numerical model), the boundary conditions of groundwater flow model are 70 

applied to generate two-dimensional nonuniform flow fields, which are used to create fine-tuning and testing 71 

samples under heterogeneous streambed conditions. The settings of initial and boundary conditions are 72 

shown in Figure S2. 73 

 74 

(3) Incidentally, part of the work looks into heterogeneity, and the authors present their heterogeneous fields. 75 

Nonetheless, there is no mention of which hydraulic conductivity value is used for the homogeneous case. 76 

The authors only mention variations in the Darcy’s fluxes (𝑞𝑥 and 𝑞𝑧) in line 167. How are these fluxes 77 

calculated? What values are used for head gradients? Are the variations of these Darcy’s fluxes related to 78 

boundary conditions or fluxes through the domain? I suggest including the Darcy flux equation and leaving 79 

the variations only to hydraulic conductivity to be consistent with the heterogeneous cases. 80 

Reply: The groundwater flow model and heat transfer model are coupled through 𝑞𝑥 and 𝑞𝑧. In the analytical 81 

solution, 𝑞𝑥  and 𝑞𝑧  are directly prescribed. For the homogeneous case, we use two pairs of 𝑞𝑥  and 𝑞𝑧 82 

values-(0.2 m/d, 0.3 m/d) and (0.6 m/d, 0.9 m/d)-to represent variations in hydraulic conductivity. The 83 

corresponding mathematical expressions are as follows: 84 

𝑞𝑥 = −𝐾𝑥
𝜕𝐻

𝜕𝑥
           (1) 85 

𝑞z = −𝐾𝑧
𝜕𝐻

𝜕𝑧
           (2) 86 
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𝑣𝑥 =
𝐶𝑤

𝐶𝑠
𝑞𝑥 = −𝐾𝑥

𝐶𝑤

𝐶𝑠

𝜕𝐻

𝜕𝑥
         (3) 87 

𝑣z =
𝐶𝑤

𝐶𝑠
𝑞z = −𝐾𝑧

𝐶𝑤

𝐶𝑠

𝜕𝐻

𝜕𝑧
         (4) 88 

𝐶𝑠 = (1 − 𝜃)𝜌𝑠𝑐𝑠 + 𝜃𝜌𝑤𝑐𝑤         (5) 89 

where 𝐻 is the hydraulic head [L]; 𝑞𝑥 and 𝑞𝑧 are streambed water flux [LT−1] components of the streambed 90 

on the 𝑥 and 𝑧-axes, respectively; 𝐾𝑥 and 𝐾𝑧 are the hydraulic conductivities [LT−1] on the 𝑥 and 𝑧-axes, 91 

respectively; 𝑣𝑥 and 𝑣z are thermal front velocity [LT−1] components of the streambed on the x- and z-axes, 92 

respectively; 𝐶𝑤  is specific volumetric heat capacity [J/(m3･° C)] of water; 𝐶𝑠  is specific volumetric heat 93 

capacity [J/(m3･° C)] of streambed; 𝜌𝑠 and 𝜌𝑤 are densities [ML-3] of porous media and fluid, respectively; 94 

𝑐𝑠 and 𝑐𝑤 are specific heat capacities [J/(kg･° C)] of porous media and fluid, respectively. Please see section 95 

S1-“Analytical solution of the 2D heat transfer process in homogeneous streambed” in the Supplement. 96 

 97 

(4) The authors only present the fields for hydraulic conductivity and absolute errors, and there is no plot of 98 

the temperature field they are trying to reproduce. Are these fields different from each other? How does the 99 

heterogeneous domain affect the temperature distributions? I suggest adding a figure with the temperature 100 

fields for the analytical and the numerical solutions so that the reader can understand how these fields vary 101 

throughout the domain and what the data-driven models are missing. 102 

Reply: Implemented. The transient temperature field is plotted in Figure 8. As mentioned in Section 3.1, the 103 

transient temperature field consists of 100-time steps, resulting in 100 corresponding temperature field 104 

figures. In this study, we selected the temperature field at 0.5𝑑 (i.e., the 50𝑡ℎ time step) as the reference 105 

field to calculate the absolute errors. We have added the reference temperature fields at 0.5𝑑 (i.e., the 50𝑡ℎ 106 

time step) in Figure 8 to further demonstrated how heterogeneous hydraulic conductivity affect the 107 

temperature distributions. Note that the selection of 0.5𝑑 is rather arbitrary for the demonstration purpose 108 

and can be replaced by other time steps. 109 

 110 

With respect to the machine learning models 111 

(1) The authors mention in line 15 that this work “[proposes] a novel Deep Transfer Learning (DTL) approach 112 

[…] to improve the accuracy of spatiotemporal temperature distribution predictions.” However, a similar 113 

approach has been explored in Zhang et al. (2023) for the prediction of hydraulic heads in heterogeneous 114 

aquifers. The authors should clearly specify the improvements or modifications made to the framework 115 

compared to Zhang et al. (2023), beyond the difference in application. 116 

Reply: First, while Zhang et al. (2023) focused on one-dimensional groundwater flow, our study addresses 117 

heat transfer in two-dimensional heterogeneous riparian zones. This involves fundamentally different 118 

governing equations (convection-diffusion) than the groundwater flow equations in Zhang et al. (2023), more 119 

complex physical processes (coupled flow and heat transport), and significantly higher computational 120 

demands. Second, we incorporate physical constraints and impose penalties for violations of initial and 121 

boundary conditions in the pre-trained DNN model by implementing an enhanced loss function. This 122 

approach ensures that our model adheres to fundamental heat transfer principles. These innovations 123 

collectively advance the application of deep transfer learning in environmental modeling beyond what was 124 

presented in Zhang et al. (2023), with particular emphasis on heat transport processes in riparian zones and 125 

a systematic evaluation of model robustness under various uncertainties. Please see Lines 133-154. 126 

 127 

 128 
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(2) In line 222, the authors mention that they restricted the number of epochs in the model training. Is there 129 

a reason why these models cannot be trained with different epochs until they reach the same convergence? 130 

Also, what about the other hyperparameters of the DNN models (i.e., number of nodes, number of layers, 131 

epochs, and activation functions, among others), have the authors considered testing a range of these 132 

parameters to get the best set of DNN? 133 

Reply: We limited the number of epochs during model training primarily to reduce computational cost and 134 

prevent overfitting. In addition, we employed an early stopping strategy to prevent overfitting by monitoring 135 

the validation loss during training, thereby ensuring the model's generalization ability. This training strategy 136 

is widely used in Wang et al. (2021), Zhang et al. (2023) and Wang et al. (2023), and their works have 137 

demonstrated 3,000 epochs are sufficient for the DNN model to converge.  138 

In addition, the other hyperparameters of the DNN models are selected after multiple trials. Results indicate 139 

that the predictions of the two pre-trained models closely align with the analytical model, with average MSE 140 

values of 1.2E-6 and 1.5E-6, respectively. This further demonstrates that the hyperparameters of the DNN 141 

model are suitable. 142 

 143 

Reference: 144 

[1] Wang, N., Chang, H., and Zhang, D. (2021). Deep-learning-based inverse modeling approaches: A 145 

subsurface flow example [J]. Journal of Geophysical Research: Solid Earth, 126, e2020JB020549. 146 

[2] Zhang J, Liang X, Zeng L, et al. Deep transfer learning for groundwater flow in heterogeneous aquifers 147 

using a simple analytical model [J]. Journal of Hydrology, 2023, 626: 130293. 148 

[3] Wang, N., Chang, H., and Zhang, D. (2023). Inverse modeling for subsurface flow based on deep learning 149 

surrogates and active learning strategies [J]. Water Resources Research, 59, e2022WR033644. 150 

 151 

(3) Part of using these data-driven approaches is leveraging the current available data to predict variables 152 

that are difficult, expensive, or impractical to measure. With this in mind, the authors should be clear about 153 

what variables they are using as input to predict the temperature fields. Are they using the hydraulic heads 154 

and temperature of the stream? Are they using variables related to the geology of the site? Or are they using 155 

temperature data from previous timesteps? All of this is important because if we were to use these models 156 

to predict the temperature in a given field site, we would need to know what variables we should measure to 157 

be able to have an accurate prediction. 158 

Reply: Implemented. This study focuses on improving heat transfer predictions in a heterogeneous 159 

streambed using a deep transfer learning approach. We are concerned with the spatiotemporal thermal 160 

distributions of the streambed. Therefore, we do not use previous hydraulic head, temperature, or geological 161 

variables as input parameters. In this study, the input data consists of spatial locations (𝑥, 𝑦) and time 𝑡, 162 

with dimensions of 100 × 100 × 100. The output data is the corresponding temperature. We have clarified 163 

that in the manuscript. Please see Lines 193-194. 164 

 165 

 166 

 167 

 168 

 169 

 170 

 171 

 172 

 173 
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(4) Furthermore, the authors should link their sampling criteria to the physical process they are trying to 174 

reproduce with data-driven approaches. For instance, grabbing more than 50 samples in a 1-meter cross-175 

section with some spaced less than 0.1 meters horizontally is impractical and inefficient. I suggest the authors 176 

approach the sampling criteria as they were placed in the field, and are tasked to maximize the location of 177 

their thermistors or other measuring devices. This reviewer believes this approach can benefit the scientific 178 

community and add value to the manuscript. 179 

Reply: Implemented. We agree that linking our sampling approach to realistic field deployment scenarios 180 

would enhance the manuscript's practical relevance. 181 

In Section 3.3, our study deliberately evaluated various observation point densities (1, 5, 10, 20, 50, and 100) 182 

to analyze the minimum monitoring requirements for effective model performance. Our results demonstrate 183 

that the proposed PDTL model exhibits robust performance even with sparse data (fewer than 10 observation 184 

points), which outperforms the traditional DNN approach under heterogeneous streambed conditions and 185 

with observation noise. Please see Figures 5, 6, 7, 9, 11. 186 

To establish statistically sound sampling criteria, we employed random sampling with 200 realizations for 187 

each scenario, following established practices in field hydrology (Holmes et al., 2006; Ali et al., 2009). This 188 

approach ensures unbiased sampling where every possible measurement location has an equal chance of 189 

being selected, which is critical for comprehensive model evaluation. Similar sampling criteria have been 190 

widely adopted in many recent studies (Goswami et al., 2022; Zhang et al., 2023). 191 

 192 

Reference: 193 

[1] Holmes, K. W., et al. (2006). Designs for marine remote sampling: a review and discussion of sampling 194 

methods, layout, and scaling issues, Task 2.1 Milestone Report Published by the Cooperative Research 195 

Centre for Coastal Zone, Estuary and Waterway Management (Coastal CRC). 196 

[1] Ali, G.A. and Roy, A.G. (2009), Revisiting Hydrologic Sampling Strategies for an Accurate Assessment of 197 

Hydrologic Connectivity in Humid Temperate Systems. Geography Compass, 3: 350-374. 198 

[1] Goswami, S., Kontolati, K., Shields, M.D.et al. Deep transfer operator learning for partial differential 199 

equations under conditional shift. Nature Machine Intelligence, 2022, 1155-1164. 200 

[2] Zhang J, Liang X, Zeng L, et al. Deep transfer learning for groundwater flow in heterogeneous aquifers 201 

using a simple analytical model [J]. Journal of Hydrology, 2023, 626: 130293. 202 

 203 

(5) Consider including an additional paragraph or sentences that describe other approaches to create 204 

physics-informed machine learning models (e.g., Arcomano et al., 2022; M. Raissi et al., 2019; Maziar Raissi 205 

& Karniadakis, 2018; Yeung et al., 2022). 206 

Reply: Implemented. We have added the paragraph to describe the physics-informed machine learning 207 

models. Please see Lines 65-69. 208 

 209 

Reference: 210 

[1] Arcomano, T., Szunyogh, I., Wikner, A., Pathak, J., Hunt, B. R., & Ott, E. (2022). A hybrid approach to 211 

atmospheric modeling that combines machine learning with a physics-based numerical model. Journal of 212 

Advances in Modeling Earth Systems, 14(3), e2021MS002712. 213 

[2] Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning 214 

framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal 215 

of Computational Physics, 378, 686–707.  216 

[3] Jiang, S., Zheng, Y., and Solomatin, D (2020). Improving AI system awareness of geoscience knowledge: 217 

Symbiotic integration of physical approaches and deep learning, Geophysical Research Letters, 47, 733-745. 218 
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[4] Kamrava, S., Sahimi, M., and Tahmasebi, P (2021). Simulating fluid flow in complex porous materials by 219 

integrating the governing equations with deep-layered machines, npj Computational Materials, 7, 127. 220 

[5] Arcomano, T., Szunyogh, I., Wikner, A., Pathak, J., Hunt, B. R., & Ott, E. (2022). A hybrid approach to 221 

atmospheric modeling that combines machine learning with a physics-based numerical model. Journal of 222 

Advances in Modeling Earth Systems, 14(3), e2021MS002712. 223 

[6] Yeung, Y.-H., Barajas-Solano, D. A., & Tartakovsky, A. M. (2022). Physics-informed machine learning 224 

method for large-scale data assimilation problems. Water Resources Research, 58(5), e2021WR031023.  225 

[7] Zhao, W. L., Gentine, P., Reichstein, M., et al (2019). Physics-constrained machine learning of 226 

evapotranspiration, Geophysical Research Letters, 46, 14496-14507. 227 

[8] Cho, K. and Kim, Y.(2022). Improving streamflow prediction in the WRF-Hydro model with LSTM networks. 228 

Journal of Hydrology, 605, 127297. 229 

 230 

(6) I suggest the authors add more information in the discussion section. Where they highlight the importance 231 

of their work and how it relates to other approaches. I suggest also highlighting the transferability of this 232 

framework to other settings, as well as things that scientists should take into account. 233 

Reply: Implemented. We have highlighted the transferability of our framework to other settings in the 234 

discussion section. Please see Lines 308-322. 235 

 236 

Technical Corrections: 237 

(1) Lines 17-20 are difficult to read and contain variables that are not previously defined 238 

Reply: Implemented. We have reorganized Lines 17-20 and removed the variables that are not previously 239 

defined. Please see Line 18-24. 240 

 241 

(2) The sentence in lines 22-23 is redundant, so consider removing it. 242 

Reply: Implemented. We have removed Lines 22-23. 243 

 244 

(3) Grammar in line 89 “Newly proposed demonstrates” 245 

Reply: Implemented. We have revised the “newly proposed demonstrates” to “newly proposed approach 246 

demonstrates”. Please see Line 92. 247 

 248 

(4) In line 294 should be “centers” instead of “centres” 249 

Reply: Implemented. We have revised the “centres” to “centers”. Please see Line 326. 250 

 251 

(5) What do you mean by “it is postulated that the thermal and hydraulic properties of the streambed maintain 252 

uniformity”? (Lines 98-99). Are you referring to the fact that these variables remain constant throughout the 253 

simulation? Please clarify. 254 

Reply: Implemented. It has been rephrased to provide better clarification. In fact, we want to express that 255 

the thermal properties are homogeneous of the streambed. However, for hydraulic properties, i.e., hydraulic 256 

conductivity, we considered both the homogeneous and heterogeneous scenarios. Please see Lines 101-257 

102. 258 

 259 

(6) It should be “no heat flux boundary” in line 102. 260 

Reply: Implemented. We have revised it to “no heat flux boundary”. Please see Line 105. 261 
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 262 

(7) I recommend collapsing equations (1a) through (1c) to a single equation with a subscript i that is later 263 

described. 264 

Reply: Implemented. We have collapsed equations (1a) through (1c) to a single equation with a subscript 𝑖. 265 

Please see equation (1a). 266 

 267 

(8) Line 144 states that “The hyperparameters 𝜃𝑇  for the fine-tuning model is acquired through the 268 

optimization of the loss function delineated by…” By definition, a hyperparameter cannot be estimated with 269 

model training. They are set by the user. I think that you mean “The parameters” instead of “The 270 

hyperparameters.” 271 

Reply: Implemented. We have revised the “hyperparameters 𝜃𝑇” to “parameters 𝜃𝑇”. Please see Lines 170. 272 

 273 

(9) Some variables, such as 𝑞𝑥 and 𝑞𝑧, are not defined in the main manuscript. Since the manuscript should 274 

be self-contained, these variables should be specified in the text. 275 

Reply: Implemented. We have defined 𝑞𝑥 and 𝑞𝑧 in the Supplement. Please see S1-“Analytical solution of 276 

the 2D heat transfer process in homogeneous streambed” in the Supplement. 277 

 278 

(10) Remember to add the units of the Mean Square Error (MSE) values. 279 

Reply: To mitigate the impact of dimensionality during the training process, the temperature field dataset is 280 

normalized to [−1,1], and the temperature field dataset becomes dimensionless. Please see Lines 120-126. 281 

 282 

(11) The text in Figures 5, 6, and 10 is difficult to read. Consider increasing the fonts. Also, include the units 283 

of the variables plotted. 284 

Reply: Implemented. We have increased the fonts and units of the variables in Figures 5, 6, and 10. Please 285 

see Figures 5, 6, and 10. 286 

 287 

(12) Consider using the same y-scale for Figures 7, 9, and 11. This would aid in the comparison. 288 

Reply: Implemented. We have used the same y-scale for Figures 7, 9, and 11 for better comparison. Please 289 

see Figure 7, 9, and 11. 290 

  291 
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Response to Reviewer #2: 292 

Overview: 293 

The manuscript presents a novel Deep Transfer Learning (DTL) framework for improving the prediction of 294 

spatiotemporal temperature fields in heterogeneous riparian zones. The authors leverage analytical solutions 295 

in homogeneous domains to pre-train a DNN model, and subsequently fine-tune it for heterogeneous cases, 296 

thereby addressing the challenge of limited observational data. The study is well-motivated and addresses 297 

an important problem in hydrological modeling. The methodology is clearly described, and the results are 298 

well-documented through a series of comprehensive experiments. I find the manuscript suitable for 299 

publication in Hydrology and Earth System Sciences after minor revisions. Below are my specific comments 300 

and suggestions for improving the manuscript. 301 

Reply: Thanks for your constructive comments. We have carefully revised Paper # EGUSPHERE-2024-4145. 302 

 303 

General Comments: 304 

(1) While the manuscript briefly mentions physics-informed neural networks (PINNs), a more direct 305 

comparison or a deeper discussion of how DTL differs from or complements PINNs would strengthen the 306 

manuscript. This would better situate the DTL approach within the broader landscape of hybrid modeling 307 

techniques. 308 

Reply: Implemented. In the revised manuscript, we also integrate multiple loss functions considers the 309 

constraints of physical information and imposes penalties for initial and boundary conditions for the pre-310 

trained DNN model. Subsequently, the transfer learning technique is used to fine-tune the pre-trained model. 311 

Therefore, our model integrated the strength of PINNs and transfer learning technique .Please see Lines 312 

133-154. 313 

 314 

(2) The paper focuses on model performance but does not explore the interpretability of the DTL model. A 315 

short discussion on whether the transferred physical knowledge can be traced or interpreted in the model 316 

outputs would be beneficial. Furthermore, although the authors mention possible extensions to solute 317 

transport or other applications, this is not demonstrated or discussed in detail. 318 

Reply: Implemented. In fact, we have discussed how the transferred physical knowledge impacts the 319 

parameters of deep learning model. Results indicate that the hydraulic conductivity primarily influences the 320 

parameters of the shallow layers in the DNN model. Please see Lines 196-202. Although a full interpretability 321 

analysis is beyond the current scope, we agree it is an important direction for future work and have noted 322 

this accordingly. Furthermore, we have discussed the extension of the proposed PDTL model to solute 323 

transport or other applications. Please see Lines 308-322. 324 

 325 

(3) The authors acknowledge the limitation that analytical models assume regular geometries. This is an 326 

important point and could be expanded to discuss whether coordinate transformation, domain padding, or 327 

hybrid numerical-analytical datasets could mitigate this issue in future work. 328 

Reply: Implemented. We have expanded this point in the discussion section. In future work, efforts should 329 

focus on improving the framework’s ability to handle irregular spatial domains through coordinate 330 

transformations, domain padding, or hybrid numerical-analytical datasets, and on refining its extrapolation 331 

capability. Please see Lines 333-337. 332 

 333 

 334 

 335 

 336 
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Specific Suggestions:  337 

(1) Section 2.2: Clarify why the tanh activation function is used rather than alternatives like ReLU. This choice 338 

may influence convergence and generalization. 339 

Reply: Implemented. The tanh activation function was selected primarily due to its bounded and symmetric 340 

output range (-1 to 1), which helps in centering the data and can lead to faster convergence during training, 341 

especially when the inputs have been normalized. In our case, since the model learns from inputs that include 342 

both positive and negative physical feature, 𝑡𝑎𝑛ℎ  facilitates smoother gradient flow across layers. 343 

Furthermore, the tanh activation function is widely used in hydrological problems, e.g., An et al. (2022), Zhang 344 

et al. (2023). 345 

 346 

References: 347 

[1] An, Y., Yan, X., Lu, W. et al. An improved Bayesian approach linked to a surrogate model for identifying 348 

groundwater pollution sources. Hydrogeology Journal, 2022, 601-616. 349 

[2] Zhang J, Liang X, Zeng L, et al. Deep transfer learning for groundwater flow in heterogeneous aquifers 350 

using a simple analytical model [J]. Journal of Hydrology, 2023, 626: 130293. 351 

 352 

(2) Equation (2): Notation should be consistent with Equation (4). Clarify the definition of n (number of training 353 

samples). 354 

Reply: Implemented. We have incorporated the collocation points throughout the model domain, along with 355 

the physical information of the boundary and initial conditions to minimize the loss functions. Please see 356 

Equations (3a)-(3d). 357 

 358 

(3) Consider including results for 200 observation points in the main figures, rather than relegating them to 359 

the Supplement, since these are discussed prominently in the text. 360 

Reply: Considering data acquisition in heterogeneous riparian zones is often time-consuming and costly, this 361 

study focuses on the performance of the proposed PDTL model under limited data availability. There is no 362 

significant difference between the PDTL and DNN model when the number of observation points increases 363 

to 200, therefore we relegate them to the Supplement. 364 

 365 

If you have any further questions about this revision, please contact me. 366 

Sincerely Yours,  367 

Quanrong Wang, PhD, PG. 368 

Professor and 369 

Holder of Endowed CUG Scholar in Hydrogeology 370 

https://link.springer.com/journal/10040

