Reviewer comments are in plain black text.
Our author responses are in blue italics.

Cuts from the manuscript are in green italics.

Response to reviewer 1:

This is my first review of the manuscript Forecasting Agricultural Drought: The Australian
Agriculture Drought Indicators by Andrew Schepen et al. The paper is well-written, clear,
and highly relevant to the journal. The topic is timely, as forecasting agricultural
droughts is a critical area of research with significant implications.

However, | have a few moderate concerns, outlined below:

1. The study primarily focuses on the sensitivity of seasonal forecasting system
performance in relation to crop production and farm profit, rather than
assessing the system’s ability to predict crop growth. This is because the
observations used are not real but rather derived from the same system, forced
by ground data. While | do not see this as a weakness, | believe the authors
should clarify this distinction when presenting the paper and discussing the
results. Additionally, if this study is more of a sensitivity analysis of forecast
errors, it would be beneficial to explore the relationship between
meteorological forecast errors and crop yield errors. This could provide
valuable insights into conditions where the system may struggle to predict crop
yield accurately.

RESPONSE: The reviewer is correct that our forecasts are evaluated against pseudo-
observations, a concept which we introduce in lines 66-69. We completely agree about
the importance of further comparing AADI predictions compare to real-world data. We
have tweaked our discussion to make this clearer:

“Of course, there remain some discrepancies between the forecasts of drought
indicators, which occur in model space, and what occurs on the ground. The
relationships between the AADI drought indicators and real-world outcomes, like yield
and socio-economic data, are addressed by Hughes et al. (2024a). Nevertheless,
studies like the current one are needed to evaluate indicators, like pasture, for which
there is no real observed data. As such, the AADI indicators user-interface, used by the
drought analysts, will present the results of both studies and indicate ‘forecast skill;, i.e.
ensemble forecast verification against pseudo-observations in the model world, and
‘indicator skill, which is cross-correlations with a multitude of real-world indicators.”

2. The dataset description is not sufficiently detailed. | suggest providing more
information to improve clarity and transparency.



RESPONSE: We appreciate that the descriptions of the datasets are quite brief.

Therefore, to provide more clarity on the datasets and how they are used, we have

included a new table, identifying key datasets, their purpose, and spatial and temporal

coverage in Table 1:

Table 1: Key datasets used for AADI forecast verification, description of their purpose, spatial resolution, and time periods.

Dataset

Purpose

Spatial resolution

Time period used

ACCESS-S2 hindcasts

Input - ensemble
forecasts to drive AADI
models

Native ~60 km grid
downscaled to 5 km

1981-2018

SILO climate grids

Input - Forcing of
baseline model runs;
and

downscaling of
ACCESS-S2 forecasts

5 km grid

1960-2018

Australian Agricultural and
Grazing Industry Survey

Input - training
farmpredict and
defining grid cell
characteristics

Point data and regridded
to 5km

1992-2022

Soil type data, derived
from the National Generic
Soil Group.

Input - regional
optimisation of APSIM

Interpolated to 5km

Static

Farm profit

Output — simulated
financial year profit
(Jun-Jul)

5 km grid

1990-2018

Wheat potential yield

Output — simulated
harvest yield (final
yield typically occurs
Sep-Jan)

5 km grid limited to
wheat zones

1990-2018

Sorghum potential yield

Output — simulated
harvest yield (final
yield typically occurs
Mar-Jun)

5 km grid limited to
sorghum zones

1990-2018

Pasture growth

Output - average
growth over financial
year (Jun-Jul).

5 km grid

1990-2018

3. The AADI system should be described more thoroughly. For example, it is

unclear whether irrigation is considered and how water limitations are
accounted for. Additionally, what would be the impact of these factors? Given
that some crops in Australia are irrigated, a discussion on this aspect would
enhance the study’s practical relevance.

RESPONSE: We agree that additional detail about the AADI system can be included.
Currently, AADI produces water-limited yield, which represents the yield that can be




achieved using current best practices, technology and genetics for rainfed crops. We
have updated to the introduction to read:

“Here, we connect climate forecasts from the Bureau of Meteorology’s ACCESS-S2
seasonal model to farmpredict, crop models and a pasture model, considering only
rainfed systems.”

Furthermore, the section 2.3 is updated to provide more detail on APSIM and
farmpredict:

“APSIM simulates potential crop yield under different climatic conditions. For each
hindcast year, APSIM is initialized with 15 years of historical weather data to establish
equilibrium conditions, then run forward with SILO observations or ACCESS-S2
forecasts. Wheat simulations use cultivars optimised for yield in each grid cell, with
specific management rules for sowing and fertilization tailored to three regional zones.
Sowing typically occurs between April and July, with nitrogen applied based on soil
deficits and crop growth stages. Sorghum uses the ‘Buster’ variety with optimised
density. Currently, AADI produces water-limited yield, which represents the yield that
can be achieved using current best practices, technology and genetics for rainfed
crops.”

“Farmpredict uses a statistical micro-simulation approach to model Australian
broadacre farms, leveraging Australian Agricultural and Grazing Industry Survey (AAGIS)
data and machine learning (xgboost). It links farm characteristics, climate, and
commodity prices to predict farm outputs and financial outcomes, including profit (July
to June financial years). For example, farmpredict increases Australian fodder price and
widens the Australian grain price basis (relative to global prices) when drought occurs.
Trained on 45,000 AAGIS observations from 1991-2022, farmpredict integrates
geocoded farm data with SILO historical climate data to produce simulations of farm
performance under different climatic and economic scenarios.”

We also refer to the companion Hughes et al study, also being revised for NHESS, which
describes the system in more detail:
https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3731/.

4. Has the system been tested without post-processing? If so, what is the impact?
Including this analysis would provide valuable recommendations for the
development of simpler systems in other regions.

RESPONSE: Omitting the climate forecast post-processing step is virtually certain to
lead to poor performance due to climate model biases. Rather than updating our study
to include simple post-processing methods, we lean on our previous studies and
expertise in forecast post-processing to understand that failure to consider formal


https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3731/

calibration of ensemble forecasts will lead to unpredictable and often poor results. We
have updated the first paragraph of our discussion to read:

“Climate forecast post-processing is an essential step to prepare raw climate forecast
ensembles from a dynamical climate model for ingestion into the downstream
biophysical and agro-economic models. Climate forecast skill is generally available for
one month ahead across a set of climate variables (temperature, rainfall, radiation,
evaporation and vapour pressure), with widespread CRPS skill scores up to 30% (Figure
3). Beyond the first month, limited skill is available in temperature, vapour pressure and
evaporation forecasts, with little or no skill in rainfall and radiation forecasts. However,
because calibrated climate forecasts have little or no bias (except rainfall forecasts in
dry regions can show moderate percentage bias) and high reliability in ensemble
spread, the forecasts provide suitable forcings for the downstream models even where
skill is limited. While we have not tested raw forecasts or simple bias correction of
climate forecasts, formal calibration ensures that forecast ensembles resemble Silo
observations, which is vital for maintaining spatial, temporal and intervariable
characteristics between forecasts and baselines.”

Overall, the study is strong, but addressing these points would improve its clarity and
impact.

Response to reviewer 2:

The manuscript titled "Forecasting Agricultural Drought: the Australian Agriculture
Drought Indicators" presents a novel ensemble-based drought forecasting system that
integrates post-processed seasonal climate predictions from the ACCESS-S2 model
with biophysical and economic models. The authors address a topic of great
significance in Australia, where forecasting drought is a primary concern for numerous
stakeholders. The topic is presented in an excellent manner, and the manuscript
includes a commendable literature review. The authors tackle a critical issue by
evaluating forecast performance for four key drought-related indicators: wheat yield,
sorghum yield, pasture growth, and farm profit over a historical hindcast period (1990 -
2018). The manuscript is methodologically robust, highly relevant, and well-written.
However, some clarifications and refinements are needed. The following are
suggestions for improvement:

1. The Introduction would benefit from an expanded discussion of major historical
drought events in Australia, including impacts on agriculture. This sets the
context more clearly for the need and relevance of AADI.

RESPONSE: We agree that additional scene-setting regarding major historical drought
events will help justify the need and relevance of AADI. At present, we discuss historical



events in detail in section 4.6. We have updated the first paragraph of our introduction to
read:

“Droughtis a recurrent and significant challenge in Australia, which affects water
resources, agriculture and ecosystems (Van Dijk et al., 2013; Devanand et al., 2024;
Holgate et al., 2020, Lindesay, 2005). Two major droughts in recent decades are the
Tinderbox Drought (2017-2020) and the Millenium Drought (2001-2009), which both had
major impacts on industry and the environment. Even outside of drought periods,
industries such as cropping and livestock are exposed to risks from high seasonal
climate variability, long term declines in cool season rainfall (Mckay et al., 2023) and
decadal monsoon variability (Heidemann et al., 2023). Historically, government
responses to drought impacts in the agriculture sector have been informed by
meteorological drought indicators such as rainfall deficits. However, a long history of
practice has demonstrated that rainfall indicators are often poor flawed proxies for
agricultural and economic drought impacts (Hughes et al., 2022a; Das et al., 2023;
Stagge etal., 2015; Wang et al., 2022). In the absence of accurate assessments of
agricultural impacts, government drought responses can be poorly directed, and overly
reactive to media narratives (Rutledge-Prior and Beggs, 2021). Addressing these
challenges requires not only monitoring of drought conditions but also forecasting of
drought evolution, including both onset and recovery. (Das et al., 2023; Stagge et al.,
2015; Wang et al., 2022).”

2. While the manuscript describes the datasets used, it would be helpful to include
a consolidated table summarizing the key datasets, variables, spatial resolution,
and time periods. This could be placed in the Methods section or as a
supplement.

RESPONSE: We appreciate that the descriptions of the datasets are quite brief.
Therefore, to provide more clarity on the datasets and how they are used, we have
included a new table, identifying key datasets, their purpose, and spatial and temporal
coverage in Table 1:

Table 2: Key datasets used for AADI forecast verification, description of their purpose, spatial resolution, and time periods.

Dataset Purpose Spatial resolution Time period used
Input - ensemble N .
ACCESS-S2 hindcasts forecasts to drive AADI Native ~60 km grid 1981-2018

downscaled to 5 km
models

Input - Forcing of
baseline model runs;

SILO climate grids and 5 km grid 1960-2018
downscaling of
ACCESS-S2 forecasts
Input - training
Australian Agricultural and | farmpredict and Point data and regridded
. _ . 1992-2022
Grazing Industry Survey defining grid cell to 5km

characteristics




Soil type data, derived
from the National Generic
Soil Group.

Input - regional

P Interpolated to 5k Stati
optimisation of APSINM | T ETPOIAtea to Skm atic

Output — simulated
Farm profit financial year profit 5 km grid 1990-2018
(Jun-Jul)

Output — simulated
harvest yield (final 5 km grid limited to
yield typically occurs wheat zones

Sep-Jan)

Wheat potential yield 1990-2018

Output — simulated
harvest yield (final 5 km grid limited to
yield typically occurs sorghum zones

Mar-Jun)

Sorghum potential yield 1990-2018

Output - average
Pasture growth growth over financial 5 km grid 1990-2018
year (Jun-Jul).

3. Was there any explicit quality control or filtering applied to the input data (e.g.,
rainfall, temperature) before simulation? If so, briefly describe this process.
Otherwise, consider referencing previous studies that confirms the reliability of
the datasets used.

RESPONSE: Regarding the observed climate data, the SILO gridded dataset of rainfall
and temperature is a high-quality, managed dataset used widely in studies throughout
Australia. We have updated section 2.1 to read:

“SILO is a gridded dataset of climate data, mostly constructed from real measurements,
that is used as the observational data. It is interpolated and infilled to give continuous
coverage across Australia at 5 km resolution (Jeffrey et al., 2001), which makes it highly
suitable for large simulation studies. In addition, it is already integrated with the
AussieGRASS and APSIM simulation systems. SILO is an operational product of the
Queensland Government and is therefore continuously monitored and updated for
quality.”

4. Considerincluding a flowchart that visually summarizes the overall methodology
(not only for the AADI system). A brief caption accompanying the figure would
support reader comprehension.

RESPONSE: We have replaced the AADI schematic with visually simplified yet more
complete description of the hindcasting workflow, including cross-validation, model
simulations and forecast verification. See the new Figure 2:
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Figure 1: Schematic of the workflows for 1) generating and verifying climate forecasts under leave one
year out cross-validation and 2) subsequently generating and verifying profit, yield and pasture growth
forecasts.

5. Iltwould be better to clarify the spatial analysis methodology used when
aggregating or averaging forecast data across Australia. Explain whether area-
weighted averaging or other geostatistical techniques were applied to spatially
aggregated time series.

RESPONSE: Averaging the forecasts across Australia for Figure 8 uses simple averaging.
Section 4.6 has been updated to read:

“To analyse how the retrospective forecasts evolve over time at a national scale, the
percentiles of spatially averaged farm profit are plotted against the forecast issue month
for each hindcast year, along with the final farm profit and, as a reference indicator,
percentiles of 12-month observed rainfall deficits. All grid cells are weighted equally in
the averaging. Although the rainfall deficit percentiles do not directly correspond to final
farm profit, their evolution can offer insights how such a lagging indicator, currently used
for drought assessments, behaves in comparison with the forecast indicator.”

6. The study focuses on model-based skill evaluation using pseudo-observations.
Please address the rationale for this choice in more detail. How do the authors
justify relying on model-to model comparison without validating forecasts
against real ground-truth data?



RESPONSE: The reviewer is correct that our forecasts are evaluated against pseudo-
observations, a concept which we introduce in lines 66-69. We completely agree about
the importance of further comparing AADI predictions compare to real-world data. We
have tweaked our discussion to make this clearer:

“Of course, there remain some discrepancies between the forecasts of drought
indicators, which occur in model space, and what occurs on the ground. The
relationships between the AADI drought indicators and real-world outcomes, like yield
and socio-economic data, are addressed by Hughes et al. (2024a). Nevertheless,
studies like the current one are needed to evaluate indicators, like pasture, for which
there is no real observed data. As such, the AADI indicators user-interface, used by the
drought analysts, will present the results of both studies and indicate ‘forecast skill’, i.e.
ensemble forecast verification against pseudo-observations in the model world, and
‘indicator skill’, which is cross-correlations with a multitude of real-world indicators.”

7. Explainthe rationale for using ACCESS-S2 exclusively. If alternatives (e.g.,
ECMWEF, SEAS5, NMME) were considered, briefly note why ACCESS-S2 was
selected.

RESPONSE: One of the reasons for selecting ACCESS-S2 was the availability of real-
time forecasts at the commencement of the project. Section 2.2 now reads:

“Climate forecasts are sourced from ACCESS-S2, selected as the model for real-time
forecasting due to daily updates supporting timely forecast release. For this
retrospective testing, raw hindcasts of ACCESS-S2 (Wedd et al., 2022) are available for
initialisation dates between 1981-01-01 and 2018-12-31.”

8. Inthe Discussion section, please consider addressing the uncertainties
associated with the input datasets and how these may affect the reliability of the
forecast outputs.

RESPONSE: We have provided some discussion around input errors and potential
sources of errors, however we have expanded this discussion, which now reads:

“Some moderate biases exist in farm profit, sorghum and pasture in central-eastern
parts of Australia. Sometimes, such as with farm profit, these vanish shorter lead times.
Such discrepancies between historical runs and hindcast simulations, especially after
convergence is expected (e.g.Figure 6), highlight potential differences in configuration or
input data when historical simulations and hindcasts were run on different computing
infrastructure. In contrast, the wheat indicator is largely bias free across all lead times.
Future work will focus on running all simulations on the same infrastructure to ensure
consistency across both datasets to improve the reliability of the predictions and
minimise bias.



Although month-to-month pasture results are not shown, they exhibit larger forecast
biases compared to seasonal or annual averages. In AussieGRASS, the
parameterisation related to the soil water index, which controls plant growth onset and
cessation, contributes to non-linear responses to rainfall. This sensitivity can amplify
small biases in rainfall forecasts, leading to significant transient errors in modelled
pasture growth. Ongoing refinement or recalibration of Aussie GRASS parameters will
aim to address this issue.

Although farmpredict takes yields and pasture as inputs, biases observed in farm profit
predictions at longer lead times, particularly in areas just beyond the edge of the
cropping zone, could be partially explained by the interpolation method used for input
data (Hughes et al., 2024b). Farm input data interpolation was applied separately for
rangelands and cropping zones, resulting in higher interpolation errors near their
borders. Addressing this known issue will involve refining the interpolation method to
reduce errors at the interface between these land-use types. Other errors may existin
input data such as SILO, however, these data errors are accounted for in calibrating
climate forecasts to the SILO target. Soil type data is optimised on a grid cell basis and
therefore may deviate from very local conditions at a paddock scale, and therefore itis
not recommended to interpret the forecasts at a finer scale.”

Response to Reviewer 3

The paper addresses an important and timely topic of drought forecasting for
agricultural enterprises, going beyond rainfall indices. Its main objective is to assess the
forecasting performance of multiple drought indictors within the AADI system. The
results show that farm profit indicator has a high forecasting skill in comparison to
rainfall indices. Assessment of historical events shows the usefulness of this indicator
in predicting drought impacts. Overall, the manuscript is well written, but some
clarifications and improvements will be useful for the readers.

General Comments

1. There appears to be some inconsistency in abstract and introduction regarding
what is being assessed. From the abstract, | thought the paper will use
commodity prices (along with crop growth) to forecast occurrence of droughts.
Butthenin lines 52-53, it appears the goal is to forecast farm enterprises
financial performance i.e. impacts of droughts using farmpredict model. And
then again in line 70, there is mention of using farm profit as drought indicator. It
would be helpful if the introduction consistently explains whether the paper
aims to forecast drought via farm profit or to evaluate farm profit for drought
impact assessment. Additionally, the introduction will also benefit with an
explicit statement of its main aims, such as: “The aim of this study is...”



RESPONSE: We agree that there are some inconsistencies in the wording which can be
improved. AADI forecasts seasonal and annual outlooks of agriculturally relevant
drought indicators, of which farm profit is one indicator in addition to crop yield and
pasture growth. We have modified the first part of the abstract to make it clearer that we
are building a forecasting system rather than an attribution system:

“Drought is a recurrent and significant driver of stress on agricultural enterprises in
Australia. Historically, rainfall indices have been used to identify drought and inform
government responses. However, rainfall indicators may not fully reflect agricultural or
economic drought conditions and are a lagging indicator. To address these
shortcomings, AADI (Australian Agriculture Drought Indicators) was recently developed
to monitor and forecast drought for upcoming seasons using biophysical and agro-
economic models, including crop yields, pasture growth, and farm profit at ~5 km2
resolution. Here, we evaluate the skill of drought indicator forecasts driven by the
ACCESS-S2 dynamical global climate model over a hindcast period from 1990-2018.”

2. ltwould help to specify the months, fiscal year boundaries, or assumptions that
go into your farm profit calculations, so Section 4.2 can be understood without
needing to reference other works.

RESPONSE: We agree that the results should be interpretable without heavily relying on
other works. We have now added Table 1, which describes the relevant target months
and/or financial year boundaries for each target variable. We have also expanded the
description of farmpredict in section 2.3 (see response to #5 below). However, we are
revising two papers simultaneously for publication in NHESS, so we need to strike a
balance with the level of detail that can be found in
https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3731/.

Table 3: Key datasets used for AADI forecast verification, description of their purpose, spatial resolution, and time periods.

Dataset Purpose Spatial resolution Time period used
Input - ensemble R .

ACCESS-S2 hindcasts forecasts to drive Aapj | Netive “60 km grid 1981-2018

downscaled to 5 km

models
Input - Forcing of
baseline model runs;

SILO climate grids and 5 km grid 1960-2018
downscaling of
ACCESS-S2 forecasts
Input - training

Australian Agricultural and | farmpredict and Point data and regridded

. _ . 1992-2022

Grazing Industry Survey defining grid cell to 5km
characteristics

Soil type data, derived Input - regional

from the National Generic p. . g Interpolated to 5km Static

. optimisation of APSIM
Soil Group.



https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3731/

Output — simulated
Farm profit financial year profit 5 km grid 1990-2018
(Jun-Jul)

Output — simulated
harvest yield (final 5 km grid limited to
yield typically occurs wheat zones
Sep-Jan)

Output — simulated
harvest yield (final 5 km grid limited to
yield typically occurs sorghum zones
Mar-Jun)

Output - average
Pasture growth growth over financial 5 km grid 1990-2018
year (Jun-Jul).

Wheat potential yield 1990-2018

Sorghum potential yield 1990-2018

3. Over the hindcast period, the farm profit indicator is shown to have a good
predictive skill as presented in section 4.6. However, the performance is
assessed for historically declared droughts. It doesn’t become immediately clear
to me how such prediction will be used in real-time forecasting to attribute
changes in farm profits to droughts. | assume from the information provided in
section 5 about inclusion of factors like soil moisture (Lines 383-385) within the
AADI system, however, such information is not presented in the methods section
and should be included briefly despite the reference to Hughes et al. (2024a).

RESPONSE: The purpose is not to strictly attribute changes in farm profit to drought, but
to provide early warning of where agricultural enterprises may be impacted by the
climate, antecedent conditions, economics or some combination of these. In this
sense, AADI has broader application in seasonal outlooks although drought is the
central focus.

4. From the manuscript, it doesn’t become completely clear to me how the paper
addresses the stated shortcoming of drought propagation (line 14-15) and
drought evolution (Line 36-37) in the drought forecasts.

RESPONSE: The statements about drought propagation and evolution are more
criticisms of standard practice to use lagged rainfall indicators as a measure of drought.
AADI is a fully integrated system that takes weather forecasts and integrates them
through a suite of agricultural and economic models, to predict future conditions that
may include the onset or conclusion of drought, through an agricultural lens. For
example, itis quite possible that high soil moisture stores sustain a high yielding crop,
despite low rainfall. However, as noted in our response above, we have modified the
abstract to no longer mention propagation. We have also changed the first paragraph of
the introduction, which no longer mentions drought evolution and adds more context on
historical droughts:




“Droughtis a recurrent and significant challenge in Australia, which affects water
resources, agriculture and ecosystems (Van Dijk et al., 2013; Devanand et al., 2024;
Holgate et al., 2020; Lindesay, 2005). Two major droughts in recent decades are the
Tinderbox Drought (2017-2020) and the Millenium Drought (2001-2009), which both had
major impacts on industry and the environment. Even outside of drought periods,
industries such as cropping and livestock are exposed to risks from high seasonal
climate variability, long term declines in cool season rainfall (Mckay et al., 2023) and/or
decadal monsoon variability (Heidemann et al., 2023). Historically, government
responses to drought impacts in the agriculture sector have been informed by
meteorological drought indicators such as rainfall deficits. However, a long history of
practice has demonstrated that rainfall indicators are often flawed proxies for
agricultural and economic drought impacts (Hughes et al., 2022a; Das et al., 2023;
Stagge etal., 2015; Wang et al., 2022). In the absence of accurate assessments of
agricultural impacts, government drought responses can be poorly directed, and overly
reactive to media narratives (Rutledge-Prior and Beggs, 2021). Addressing these
challenges requires not only monitoring of drought conditions but also forecasting of
drought onset and recovery. (Das et al., 2023; Stagge et al., 2015; Wang et al., 2022).”

5. Drought can raise or lower commodity prices. Is this aspect captured in your
profit-based indicator, or are prices assumed exogenous? Please clarify.

RESPONSE: Yes. Our section 2.3 now reads:

“Farmpredict uses a statistical micro-simulation approach to model Australian
broadacre farms, leveraging Australian Agricultural and Grazing Industry Survey (AAGIS)
data and machine learning (xgboost). It links farm characteristics, climate, and
commodity prices to predict farm outputs and financial outcomes, including profit (July
to June financial years). For example, farmpredict increases Australian fodder price and
widens the Australian grain price basis (relative to global prices) when drought occurs.
Trained on 45,000 AAGIS observations from 1991-2022, farmpredict integrates
geocoded farm data with SILO historical climate data to produce simulations of farm
performance under different climatic and economic scenarios.”

6. The Discussion should reference related work on drought forecasting indicators
in agriculture to help place your results in wider context.

RESPONSE: Our introduction sets the scene for our work in the context of agricultural
drought indicators, particularly in Australia. However, to tie up the global context in our
discussion, we have added the following paragraph:

“In the global context, Oyarzabal et al. (2025) reviewed drought forecasting, albeit with a
focus on machine learning. It was found that the vast majority of drought prediction



studies focus on meteorological drought and rainfall prediction, with relatively small
focus on agricultural drought (13%). Moreover, most studies focussed on drought
prediction indices such as SPl and SPEI. AADI has demonstrated, that in data-rich
environments, it is feasible to develop a system of drought prediction that covers
meteorological, agricultural and economic drought using hybrid approaches combining
machine learning and process-based methods. However, we do see gains in developing
ML based emulators and error models improve forecast accuracy relative to ground
truth data and to overcome the problem of the crop models being computationally
expensive, and which opens up greater opportunity to expand forecasts into data sparse
regions.”

Specific comments

1. Lines 62-63: “..policy planners might be interested in outlook for winter and
summer crops...”Do you mean total production and not only yields? Please
clarify.

RESPONSE: We clarified this refers to potential yield in our context, although interest in
both is possible: “Indeed, in addition to farm profit outlooks, drought analysts and policy
planners can also be interested in the potential yield outlooks for winter and summer
crops, or pasture availability for livestock.”

Line 72-73: Please give examples for threshold and categorical forecasts.

RESPONSE: We have given terciles as an example. “Often, drought system performance
is evaluated using threshold or categorical forecasts (e.g. bottom tercile).”

2. Line 95: It would be useful for the readers to start with a brief introduction to
ACCESS-S2 climate model.

RESPONSE: We have added a brief description: “ACCESS-S2, a global dynamical
climate model from the Australian Bureau of Meteorology that provides forecast
ensembles up to 6 months ahead”

3. Line 138: “MOF” used without definition

RESPONSE: Thank you, put MOF after the definition of the previous line: “Then, the
method of fragments (MOF)...”

4. Line 231-233: “..... indicating skill in some regions in the Austral Spring."It is not
clear how you reached this result. Either mention in text that this is not shown or
add reference figure.

RESPONSE: As perline 229, the percentiles are calculated on spatial pooling, and
therefore the conclusion about skill occurring in some regions follows naturally.



5. Line 245: IDR instead of interdecile range

RESPONSE: Corrected, thank you.



