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Abstract:

The mathematical algorithm to derive geophysical information from remote sensing observations is called a retrieval. The
mathematics of many retrieval problems is ill-posed, and thus a priori information is used to help constrain the derived
geophysical variable to realistic values. One quantity of interest, therefore, is the information content of the observation.
Perfect information content in the observation would be achieved if the retrieval is able to capture any perturbation in the
desired geophysical variable with the proper magnitude.

Many new data products can be derived by combining geophysical variables retrieved from multiple different remote
sensors. This paper explores, for the first time, how to derive the information content of these derived products. The
approach uses traditional error propagation techniques to derive the uncertainty of the derived field twice, both when the
observations are used in the retrieval and also when only the a priori information from each remote sensor is propagated.
These two uncertainties are then used to provide an estimate of the information content of the derived geophysical variable.
This study demonstrates how to propagate the uncertainties from six different instruments to provide the information content
for water vapor and temperature advection. A multi-month analysis demonstrates that, in a mean sense, the information
content for temperature advection is nearly unity for all heights below 700 m while the information content for water vapor

advection is somewhat more variable but still larger than 0.6 in the convective boundary layer.

1 Introduction

Observations are absolutely essential for science and understanding nature. They can serve both as the source of ideas (e.g.,
“This is an interesting observation; I wonder what it means?”’) and means to evaluate hypotheses (e.g., “My model suggests
this is true; can I make an observation that confirms that the model is correct?”). In both of these cases, it is critical to
understand the uncertainty in the observation in order to both correctly interpret the result.

Observations used in the natural sciences take advantage of many different physical principles. Some of these instruments

are considered ‘in-situ’; in other words, the instrument makes its measurement of the desired geophysical variable at the
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point of interest. Other instruments are remote sensors, where the instrument is displaced some distance from the location of
interest. Remote sensors come in two general types: (a) active remote sensors, wherein the instrument transmits some signal
such as electromagnetic energy or sound towards the measurement volume and analyzes the portion of the energy that is
scattered from the volume towards the detector; and (b) passive remote sensors, which observe scattered or emitted signals
(typically electromagnetic radiation) from the measurement volume.

Seldom do we measure the actual geophysical variable that we desire; instead, virtually all instruments measure a signal that
provides information that is related by some physical process to the variable we desire (Maahn et al. 2020). For example, a
simple mercury-based thermometer provides a measure of temperature as the depth of the mercury in a vacated tube is
directly proportional to the temperature due to the thermal expansion of the mercury in the reservoir; characterizing the
measurement uncertainty for instruments like this is reasonably straightforward.

Deriving geophysical variables from the observations made by remote sensors is more challenging. Generally, we have a
physically-based “forward model” (denoted as F) that relates the geophysical variable we want to observe with our actual
measurement; thus, the retrieval problem is essentially deriving the inverse F' to map from the observation to our desired
geophysical variables. However, deriving the geophysical variables of interest from observations made by passive remote
sensors often is a mathematically ill-posed problem; i.e., there are often many possible values for the geophysical variables
that would map through F to our observation, especially given that there is always uncertainty in the observation. Thus, we
use additional a-priori information (i.e., information collected before the observation is made) to constrain the retrieval. This
is not a new endeavor: scientists have been retrieving information from passive remote sensors for many decades (e.g., Smith
et al. 1970), with the mathematical development of these “inverse methods” preceding it (e.g., Twomey 1966). A good high-
level overview of different retrieval methods is given by Maahn et al. (2020), but there exists a large number of detailed texts
that explore the retrieval, or inverse theory (e.g., Tarantola 2005; Rodgers 2000).

The challenge with retrievals from passive remote sensors is not only understanding the uncertainty in the retrieval, but also
the information content that is offered by the observation itself given that there is also some contribution from the a-priori
constraint. Westwater and Strand (1968) provide a concise definition for information content vis-a-vis retrievals: “The
information content...is defined as a reduction in the uncertainty in the (retrieval) after the (observations) are introduced.”
The information content of a remote sensing measurement is not a new concept, but is an important one as it allows the user
of the retrieval to understand how many independent pieces of information are in the observation itself and how that
information is distributed among the geophysical variables that are retrieved.

Often, geophysical variables retrieved from remote sensors are used to derive estimates of other geophysical variables. An
example of this is deriving convective available potential energy (CAPE) from a ground-based passive remote sensor from
which thermodynamic profiles are retrieved. Blumberg et al. (2017) demonstrated how to use Monte Carlo sampling of the
posterior covariance matrix of the retrieved profile to estimate a large number of profiles that would technically satisfy the
radiance observation, computed CAPE from each profile, and then estimated the uncertainty in CAPE by looking at the

distribution of the CAPE values provided by the Monte Carlo sampling. Monte Carlo sampling is a computational approach
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to estimate uncertainties, but a more traditional error propagation approach could have also been adopted (e.g., the “error
analysis” chapter in Bevington and Robinson 2003).

However, there are times when geophysical variables are derived using multiple remote sensors, each with their own
uncertainties and information contents. In this paper, we explore the idea of propagating uncertainties and information
content from multiple instruments through the derivation equation to provide uncertainties and information content of the
derived quantity. To our knowledge, this is the first time this has been demonstrated for information content.

We chose the recent work by Wagner et al. (2022) that derives the profiles of horizontal water vapor and temperature
advection using a network of ground-based instruments to illustrate this approach. This paper will first explain our method
to propagate the information content, perform a detailed examination of a single case, and then provide a more statistical

description of the information content in the derived advection products.

2. Observations used to compute advection

Horizontal advection occurs when there is a spatial gradient in a scalar variable over and upwind of desired region, which is
then advected over the region. Wagner et al. (2022) used the network of profiling ground-based remote sensors at the
Department of Energy’s Atmospheric Radiation Measurement (ARM; Turner and Ellingson 2016) Southern Great Plains
(SGP; Sisterson et al. 2016) site in north-central Oklahoma. At each of the network sites, there are two instruments: an
Atmospheric Emitted Radiance Interferometer (AERI; Knuteson et al. 2004) and a Doppler wind lidar (DL; Pearson et al.
2009). The AERI is a passive infrared spectrometer, and thus the “TROPoe” algorithm is used to retrieve thermodynamic
profiles above the instrument (Turner and Léhnert 2014; Turner and Blumberg 2019). The DL is an active remote sensor
that measures radial velocities along the direction of the outgoing laser beam, and by scanning the lidar in a velocity azimuth
display (VAD; Browning and Wexler 1968) manner (i.c., making measurements at a number of different azimuth directions
at a constant elevation angle), profiles of horizontal winds can be derived (e.g., Newsom et al. 2017). Key to this study is
that we have a full error covariance matrix for all data used in the analysis. We will first describe the two datasets, then

discuss how advection is derived from them.

2.1 Temperature, humidity, and wind retrievals

The thermodynamic and wind profiles were both retrieved using physical-iterative retrieval methods that are based upon
Gaussian statistics; this is usually referred to colloquially as ‘optimal estimation’. Optimal estimation approaches provide an
error covariance matrix, denoted Sy, which embodies the uncertainty for each retrieval. In this study, temperature and
humidity retrievals use the TROPoe algorithm, which was explained in Turner and Lohnert (2014). These retrievals were
done at 5-min resolution. Two separate studies have reframed the derivation of the horizontal winds from VAD scans using

a retrieval approach, thereby constraining the derived winds with a-priori information (Baidar et al. 2023; Gebauer and Bell
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2024). We elected to use the Baidar et al. (2023) wind retrievals, which we will refer to as “DLoe.” While the Gebauer and
Bell algorithm allows for the inclusion of non-Doppler lidar observations into the wind profile retrieval, in the absence of
those additional observations the approach essentially defaults to that of Baidar et al. The temporal resolution of the DLoe
data was 15-min. Therefore, we do not expect the results shown here to have any significant dependence on which DL
retrieval algorithm was used.
Following the nomenclature of Rodgers (2000), we will represent the covariance of the a-priori information as S., the
uncertainty in the observations as the covariance matrix Su, and the sensitivity of the forward model F as K = 0F /Bx, where
x is the geophysical variables we are retrieving. The posterior covariance matrix of the retrieval of x is then

S = (KTS;}K + S,;l)’l Eq1l
as given by Equation 3.31 in Rodgers (2000), where the superscript 7 in this context denotes matrix transpose. Most
practitioners only show the square root of the diagonal of S, as this represents the 1-c uncertainties at that level for that
variable; however, the off-diagonal elements of S: represent the covariance in the uncertainties between levels and/or
variables, and will be important for this study.
The averaging kernel of the retrieval provides a wealth of information about the retrieved quantities. Again, following
equation 3.28 in Rodgers (2000), the averaging kernel of the retrieval is computed as

A= S.KTS;'K Eq2
The diagonal of the 4 is extremely important, as it provides a measure of the degrees of freedom for signal (DFS) that the
observations provide to the retrieval for each variable (and as we are working with profiles here, each element of the
diagonal is for a specific height above the ground), with the sum of the diagonal (i.e., the trace of A) being the total DFS for
the entire retrieval. The DFS at a given height ranges from 0 (i.e., there is no information in the observations) to 1 (i.e., there
is perfect information content in the observations). The latter implies that, if there was a perturbation to the state vector (i.e.,
the true atmospheric values of the variables we are retrieving), then the retrieval would perfectly capture the magnitude of

that perturbation. In other words, the DFS quantifies the information content for each variable that is being retrieved in the

vector x. Other definitions of information content are possible that are related to the DFS. For example, the Shannon

information content (Shannon 1948) is related to the decrease in entropy between the a-priori estimate (S.) and the estimate

after the measurement (i.e., Sv). In this work, however we limit to the analysis of DFS, which we will discuss in more detail

in Section 3,

The AERI instruments have diminishing information content on the thermodynamic profile above 1 km, with very little
information above 3 km. However, as illustrated in Turner and Blumberg (2019), observations from other instruments can
be added as part of the observation vector to improve the retrieved solution (and thus increase its information content). The
TROPoe retrievals used for this work, which were processed by the ARM data center, included AERI radiance data,
microwave radiometer brightness temperatures at 23.8 and 31.4 GHz, surface met observations of temperature and relative
humidity, and temporally interpolated profiles of temperature and water vapor mixing ratio from the radiosondes launched

roughly every 6 hours at the SGP C1 facility as part of the observation vector. However, to prevent overfitting to the C1
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radiosondes, the uncertainties in the radiosonde temperature profiles were assumed to be 20 °C and 5 g kg™ at the surface,
decreasing linearly to 4.5 °C and 1 g kg™' at 3 km, to allow the algorithm to place more emphasis on the high-time resolution
remote sensors as part of the retrieved profile. The uncertainties in the collocated microwave radiometer brightness
temperatures were assumed to be 0.3 K for each frequency. Thus, virtually all of the information content in the TROPoe
retrievals below 1.5 km is from the AERI instruments, but the MWR and radiosondes start to have more influence above 2

km (especially on the retrieved water vapor profile).

2.2 Case Study: 13 June 2019

For this study, we will only use the “down” triangle (Fig 1) discussed in Wagner et al. (2022); namely, the triangle that is
created by the site near Waukomis, OK (E37; located at 36.311 N, 97.928 W), the central facility (C1; located at 36.606 N,
97.485 W), and the site near Morrison, OK (E39; located at 36.374 N, 97.069 W). Note that the distances from E37 to C1,
Cl1 to E39, and E39 to E37 are approximately 50, 45, and 78 km, respectively.

MISSOURI

SGP 537@

0o 9

SGP E39
OKLAHOMA

ARKANSAS

Figure 1: A satellite image of north central Oklahoma, showing the locations of the three sites used in this analysis
(extracted from Google Earth). The inset shows the three sites, including the distances between them, where the background

color indicates the elevation across the domain.
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Figure 2 provides an example of the retrieved temperature (7} panels al, a2, a3) and water vapor (g; panels bl, b2, and b3)
profiles over the SGP site for 13 June 2019 at the E37, C1, and E39 sites. Similarly, the DLoe-retrieved winds are shown in
Fig 2, with u (panels cl, c¢2, and c3) and v (panels dl, d2, and d3) winds from the three sites, respectively. The
thermodynamic and kinematic evolution looks qualitatively very similar across the three sites over this day; however, there
are small variations in the retrieved profiles that affect the calculated advection (shown in the next subsection).

Note that for TROPoe, the algorithm simultaneously retrieves both 7 and ¢ (i.e., x = [T, q]T) so that the posterior covariance
matrix Sy, (computed using Eq 1) includes the level-to-level covariances of temperature to temperature, water vapor to water
vapor, and temperature to water vapor. Similarly, the DLoe algorithm simultaneously retrieves the # and v wind components
(ie,x = W V]T), and thus its posterior covariance matrix S. includes the cross-correlated errors between u and v. For
TROPoe, Si» was approximated as a diagonal matrix from the AERI radiance uncertainties (Turner and Blumberg 2019). For
DLoe, S» was specified as a diagonal matrix based upon the DL’s signal-to-noise ratio at each height (Baidar et al. 2023).
The uncertainties in the retrieved 7 and ¢, and « and v winds, were derived from the square root of the diagonals of Sy, and

Swv respectively, and are shown in Fig 3.
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Figure 2: Time-height cross-sections of temperature and humidity retrieved from the AERIs (rows a and b),
and u and v winds retrieved from the DLs (rows c and d), at the E37 (column 1), CI (column 2), and E39
(column 3) sites for 13 June 2019. The derived temperature advection and water vapor advection fields are

in panels e and f; respectively. The time (x-axis) is UTC; local time is UTC - 5.
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Figure 3: Same as Fig 2, but showing the I1-o uncertainties of the various products, which were computed as

the square root of the diagonal of the posterior covariance matrices.

The temperature retrievals show very small uncertainties, less than 0.5 C, below 500 m but increase to nearly 1.5 C near 2
km above ground level (Fig 3 panels al, a2, and a3). Note that differences in the noise characteristics among the AERIs will
result in differences in the retrieval uncertainties; this is also true for the Doppler lidar systems. High frequency variation is
seen in the uncertainties for the C1 temperature retrieval (Fig 3 panel a2), which is a result of temporal variation in the
uncertainties in the downwelling infrared radiation observations in the temperature sensitive spectral region observed by the
AERI at that site. The water vapor uncertainty data is qualitatively very similar across the three sites, with again the lowest
uncertainties below 500 m (Fig 3 panels bl, b2, and b3). The uncertainties in the # and v winds from the DLs are relatively

low below about 1.5 km, but above that height the uncertainties increase drastically due to the poor signal-to-noise ratio in



170

175

180

185

190

195

the DL radial velocity observations above 1.5 km due to a relative lack of aerosols. However, Fig 3 (panels cl and d1) also
demonstrates that the DL at the E37 site has much poorer data quality (i.e., higher instrument noise levels) relative to the
DLs at the other two sites (Fig 3 panels c2, ¢3, d2, and d3), with the uncertainties in the retrieved winds from the E37 DL
being much larger than for the other two DLs (Fig 3, panels c2, ¢3, d2, d3), especially above 1 km. It is important to note
here that the a-priori information used for TROPoe and DLoe was identical at the three sites; thus, the variability across the
three sites in the derived uncertainties and information is due to the differences in the instrument uncertainties at the different

locations.

2.3 Advection

Michael (1994) demonstrated that the horizontal advection of a scalar ¢ (¢) is computed as a line integral around the
network of observations that outlines a polygon in space. Wagner et al. (2022) extended this to vertical remote sensors to get
profiles of horizontal advection. For this work here, we used observations at three sites (the triangle shown in Fig 1), and the
advection was computed as

—y3 -
Y1 q;(uAy vAx) Eq 3

= Atriangle

where A¢rigngie is the area of the triangle (in m?), the summation is over each leg of the triangle, the averaged quantities (¢,
#, and v) are computed from the two vertices that make up that leg, and Ax, Ay are the distances between the two vertices of
that leg in the zonal and meridional directions (in m) (Wagner et al. 2022). Using Eq 3 as the forward model F, we compute
the profiles of advection of T and g simultaneously as

* = F(XE37' Xc1 XE39, WE37, We1 WE39) Eq4
T . .
where % = (;), x = (q)’ andw = (z), where T, g, u, and v are all profiles that have been interpolated to the same vertical

grid (as defined by the TROPoe retrievals of 7 and g).

Temperature and water vapor advection fields calculated for 13 June 2019 are shown in Fig. 2 (panels e and f, respectively).
Perhaps the most notable feature seen in this example is the deep layer of cold air advection that ends 1200 UTC (Fig 2¢)
when the meridional wind direction changes from northerly to southerly (Fig 2 panels d1, d2, and 3), which corresponds
nicely with the change in the synoptic pattern (Fig 4). Also, there are small pulses of positive water vapor advection at 0300
and 1500 UTC (Fig 2f) that are associated with the onset and demise of the easterly component of the wind (seen in Fig 2
panels cl, ¢2, and c3).

The advantage of this formulation (Eq 4) is that the uncertainties in the advection of 7" and ¢ (i.e., 0,.) can be easily estimated

using standard error propagation techniques (e.g., Bevington and Robinson 2003) as
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since there are no correlated errors between any of the six different instruments. Writing this in terms of covariance
matrices, we get
Se = Kip37SuparKazsr + Kic1Sec1Kecr + KipaoSepaoKyzso +

KIE,E37SW,E37KW,E37 + K;,Cls ,CIKW,Cl + KIE,E395W,ES9KW,E39 Eq 6
where K is the Jacobian of F for both x and w, computed at the three different sites, and the superscript 7 in this context
represents matrix transpose. Note the translation of Eq 5 to Eq 6 uses the fact that K, = 0F /Bx and that the covariance of x
can be written both as g2 or as the matrix S,.
Using this approach, the uncertainties in the retrieved thermodynamic and wind profiles were propagated to provide the
uncertainties in the temperature and moisture advection (i.e., S,,) for the observations on 13 June 2019 using Eq 6. Time-
height cross-sections of the 1-c uncertainties of the temperature and moisture advection are shown in Fig 3, panels e and f,
respectively. The uncertainties in the both the temperature and water vapor advection for this day are small near the surface
(less than 0.3 K hr! and 0.5 g kg! hr'!, respectively), and generally increase with height. In particular, the uncertainty in the
magnitude of the temperature advection above 1.2 km from 0000 to 0700 UTC is quite large (larger than 1.5 K hr'),
suggesting that the cold air advection shown in this time period (Fig 2e) has a lot of uncertainty. However, there are
particularly low uncertainties in the derived temperature and water vapor advection from approximately 0900 to 1500 UTC
from the surface to nearly 1500 m that seem associated with the change in the synoptic pattern (i.e., the change in direction

of the low-level winds shown in Fig 4).
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Fig 4: Surface synoptic maps at 0600 (a) and 1800 (b) on 13 June 2019. The yellow dot indicates the
approximate location of the ARM C1 site. From the NOAA Weather Prediction Center map archive at

https.://www.wpc.ncep.noaa.gov/archives/web_pages/sfc/sfc_archive.php

3. Information content propagation

For retrievals, the concept of information content is used to express how much information we are gaining through the
measurements over our prior knowledge. Information content heavily depends on the instrument’s noise level and the
sensitivity of the forward model. It is known that the information content in the AERI thermodynamic retrievals is not large
and that it decreases rapidly with height above the surface (e.g., Turner and Lohnert 2014; Turner and Lohnert 2021); the
sum of the total information content from the surface to 3 km (i.e., 2;:3 km DFS (Z)) is approximately 5 for 7(z) and between
3-to-5 for g(z). The DL generally has high information content (near unity for each height level) where there is sufficient
aerosol concentration to provide the backscattered signal (which is usually only within the atmospheric boundary layer). The
question we want to address here is how does the information content in individual instruments translate to information
content for the derived advection that require using data from multiple instruments?

For this, we need to look at the averaging kernel in more detail. The averaging kernel 4 (Eq 2) can also be expressed as:

A= KTSplk

KTsplk+szt

_ KTsplK+sgt-sgt

T KTsplk+sgt
Sat

KTSplk+Szt

4
= 5 Eq7

This was also shown by Cadeddu et al. (2017), where I is the identity matrix. The prior covariance matrix S, illustrates the
climatological “volume” of state vector, and posterior covariance matrix Sy is the “volume™ of that space that results after the
retrieval is performed and the information from the observations are included. If there is no information about the state
vector from the observations, then Sx will be approximately Sz, and thus A4 is approximately 0. If there is a lot of information
in the observations, then Sx will be markedly smaller than S, and thus 4 will be approximately 1. This matches the high-level
definition of information content provided by Westwater and Strand (1968) well.

From Eq 7, we see that if we can obtain S, ,. (the advection prior covariance) and S, (the advection posterior covariance)
then we can estimate the information content of the derived advection that we are gaining through the measurements. We
have already demonstrated that S,. can be obtained through error propagation using Eq 6, since the AERI and DL retrievals
provide posterior covariance matrices. To get S, ., we again use Eq 6, but instead replace the posterior covariance matrices

S, and S, with the prior covariance matrices used in the TROPoe (S, ) and DLoe (S,,,) retrievals, respectively. Note that

11



245

250

255

260

270

275

the three facilities (E37, C1, and E39) use identically the same prior covariance matrix in TROPoe, and the same is true for

DLoe; these have been derived using 20 years of summertime radiosonde data launched at the SGP central facility.

4. Example

To compute the information content (DFS) for the temperature and water vapor advection, the prior and posterior covariance
matrices from the observations were propagated through the forward model using Eq 6, and then the averaging kernel 4 was
computed using Eq 7. The diagonal of 4 provides a profile of DFS for both temperature and water vapor advection, which
are shown in Fig 5 (panels e and f, respectively). There is a striking similarity to the spatial patterns of the 1-c uncertainties
(Figs 3e and 3f) and the DFS (Figs Se and 5f) time-height cross-sections. Generally speaking, the DFS and 1-c uncertainties
are anti-correlated, with higher DFS values being associated with lower 1-c uncertainties. In the region of cold air advection
above 1.2 km from 0000 to 0700 UTC, the DFS is very small for temperature advection (Fig 5e) suggesting that there is no
information in that region and thus those advection values should not be trusted. However, the DFS figures also suggest that
the information content on advection can often be near unity at heights approaching 2 km (Fig 5, panels e and f), even
though the AERI’s information content is very limited with DFS < 0.05 at any height above 50 m for 7"and DFS < 0.3 for ¢
(Fig 5, panels al-a3 and bl-b3); this is because the advection is essentially an evaluation of spatial gradients, which the
AERI is able to determine even with its limited information content in the vertical. The DL at the E37 site also is clearly the
outlier of the three DLs from an information content perspective, which can be seen by comparing the c1 and d1 panels with
the ¢2, ¢3, d2, and d3 panels in Fig 5, due to the larger instrument noise level in the E37 DL.

There are several natural questions that could be asked to better understand the information content results. For example, are
the site-to-site differences in the posterior covariances (as evidenced by the changes in the 1-c uncertainty profiles shown in
Fig 5 for a given variable like T or u) impactful on the advection DFS profiles? To test this, we performed two tests: use the
posterior covariance matrix from the C1 retrieval as the posterior for the E37 and E39 retrievals for both (a) 7 and ¢, and (b)
u and v. In both of these tests, there was relatively little change to the resulting time-height profile of DFS for temperature
and moisture advection (DFS differences were less than 0.1, not shown). We found this surprising, especially since the E37
DL has much larger uncertainties in # and v above 1 km than the other two sites; however, if we used the E37 DL posterior
for all three sites, then the information content decreased nearly 0.1 uniformly above 1.2 km (not shown). Another sensitivity
test performed was to inflate the TROPoe posterior covariances by a factor of 2. The new DFS time-height cross-section for
the temperature and advection data is shown in Fig 6 (panels a and b, respectively). Comparing these DFS results with the
baseline (Fig 5, panels ¢ and f) shows a qualitatively similar evolution of the DFS profiles, but also a decrease in the DFS for
temperature and moisture advection by approximately 0.2 to 0.4 along the top contour (Fig 6, panels ¢ and d). Interestingly,
inflating the DLoe posterior covariance matrices by a factor of 2 had little effect (DFS differences less than 0.1) below 2 km,
with some DFS differences approaching 0.3 around 2.5 km (not shown). Presumably, this is because advection is a spatial

calculation, and that the uncertainties at the vertices has relatively little impact on the derived advection. However, this
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result likely would depend on the size of the polygon used for the calculation; Wagner et al. (2022) demonstrated that the
current spacing of the C1, E37, and E39 facilities is close to optimal in minimizing both the random and sampling error in

the calculation.
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Figure 5: Same as Fig 2 with the three columns denoting E37, C1, and E39 (for panels a, b, ¢, and d), but
showing the DFS of the various products.

So far, we have focused on the diagonal elements of the covariance matrices, as the square root of the diagonal provides the
1-o profile of uncertainties. Figure 7 shows the 1-c profiles derived from the advection’s prior covariance (i.e., S, ,.) and the
mean 1-c profile from the advection’s posterior covariance (i.e., from S,.) for the 13 June 2019 case. Clearly, the addition of

the observations is adding information, as the posterior uncertainty profile is smaller. However, it is important to realize that
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the information content profile is not 1 minus the ratio of these two profiles; instead, as illustrated in Eq 8, the off-diagonal

285 elements also play a role.
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Fig 6: The time-height cross-section of DFS for temperature and moisture advection (panels a and b,
respectively) for 13 June 2019, where the posterior covariance matrices from the TROPoe retrievals of T and
q were inflated by a factor of 2. Panels ¢ and d show the time-height cross-section of the differences of the

DEFS from Fig 5 (panels e and f) with panels a and b here.
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Fig 7: The I-o profiles for temperature (a) and water vapor (b) advection, derived from the prior (blue) and

posterior (red) covariance matrices for 13 June 2019. The posterior profile is the mean at each height over
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300

the day, with the error bars showing the standard deviation at each height over that day.

The off-diagonal elements from both S, ,. and S,, are shown in Fig 8, where the covariance matrices were converted to
correlation matrices for display purposes. Since these covariance matrices are symmetric, only half of each is shown with
the prior shown below the diagonal and the posterior above the diagonal. Note the large magnitude of the level-to-level
correlation in the advection of temperature with itself (Fig 8a), water vapor with itself (Fig 8b), and the cross-correlation of
temperature and water vapor advection (Fig 8c). However, after the retrieval, both the magnitude of the diagonal (Fig 7) and
the magnitude of the off-diagonal terms are markedly reduced. There are some negative correlations seen between two
different levels (e.g., the correlation of temperature advection with itself at 300 and 900 m is approximately -0.3 — see Fig
8a); these features are similar to the structure of the correlation matrices in the TROPoe covariance matrices but much

weaker (see Turner and Blumberg 2019, Fig 10 for an example).
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Fig 8: The level-to-level correlations between the advection of temperature/temperature (a), water vapor/water
vapor (b), and temperature/water vapor (c) for 13 June 2019. The prior correlations are shown below the

diagonal, and the posterior correlations are above the diagonal.

5. Statistical summary

The example on 13 June 2019 shown in Figs 2, 3, and 5 provides an illustration of the derived advection profiles, its
uncertainties, and its information content, which uses retrievals from 6 independent instruments in the derivation. This
particular example was chosen because there was marked temporal variability in the 24-hour period. However, we are
interested in more general statements about the uncertainty and information content in the derived advection. Recently,
nearly 2 years of advection data were derived from the SGP observations (Jan 2018 to Sep 2019) using the Wagner et al.

(2022) approach; however, that analysis did not include a description of the information content. Here, we analyse that same

dataset to provide a sense of the average magnitude of the information content in both the temperature and water vapor
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advection, how that information content varies both over the diurnal cycle and as a function of height, over two 4-month

periods. Table 1 indicates the number of days of data that were available for each month in the 2-year record, and the

310 number of cases in the “cool” and “warm” seasons.

315

Table 1: Number of days per month between 14 Jan 2018 and 17 Sep 2019 used in the

analysis for the two seasons

“Cool Season” “Warm Season”

Month Number of Days Month Number of Days
February 27 June 27

March 54 July 31

April 28 August 25

May 43 September 15

Total 152 Total 98

Time-height cross-sections of the mean information content for temperature advection and water vapor advection for the
cool season are shown in the top row of Fig 9. Note that the TROPoe algorithm has a minimum boundary layer height of
300 m; thus, the nocturnal boundary layer heights are largely this value. The standard deviation of the DFS data for each
time and height are shown in the bottom row of Fig 9, and provide a measure of the variability in the DFS across the nearly

150 days in this cool season analysis.
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Figure 9: The mean diurnal information content (top row) for temperature advection (left) and water vapor advection

(right) for the “cool season” (table 1). The variability of the information content, represented as the standard deviation,
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330

over this four-month period is shown in the bottom row. The black dots illustrate the mean depth of the atmospheric
boundary layer, which is derived from the TROPoe retrievals using a parcel method (e.g., similar to that used in Nielsen-
Gammon et al. 2008), with the error bars indicating the variability of this height for each time over the days included in

the analysis. The single bar on the right side of all four panels shows the value averaged over the entire diurnal cycle.

As can be seen, the information content for temperature advection (Fig 9, left column) is above 0.9 (with a standard
deviation less than 0.15) for most heights below 700 m, decreasing to mean value 0.8 by 1000 m. The standard deviation of
the temperature DFS increases to about 0.4 at altitudes above 900 m, implying that there is marked variability in the DFS
above this height from case-to-case. The mean DFS in the water vapor (Fig 9, right column) has smaller values, with mean
values between 0.5 to 0.7 in the lower-to-middle part of the daytime boundary layer (i.e., between 1400 to 2400 UTC), with
the mean DFS decreasing to 0.4 to 0.5 at and above the top of the boundary layer. The standard deviation of the water vapor
advection DFS is approximately 0.3 to 0.4, regardless of time of day or height.

Figure 10 shows the same statistics for the warm season. There is little difference in the mean DFS or its standard deviation
for the temperature advection over the diurnal cycle or vertically between the cool season (Fig 9, left column) and warm
season (Fig 10, left column). However, there is a marked difference in the water vapor information content between the two
seasons. The mean information content is much larger in the daytime boundary layer during the warm season, with mean
values of 0.7 to 0.8 in the warm season vs 0.5 to 0.6 in the cool season. The variability in the DFS for water vapor advection
is also about 50% smaller in the daytime boundary layer in the warm season vs the cool season. There is also an increase in
the mean water vapor advection DFS above 2 km in the warm season, which is primarily contributed by the use of the
radiosondes data in the TROPoe retrievals with a smaller contribution from the microwave radiometer brightness

temperature observations, both of which are having a larger impact due to the overall wetter conditions in the warm season.
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Figure 10: Same as Fig 8, but for the “warm season” (Table I).

6. Conclusions

To properly interpret remote sensing observations, which are often constrained using a-priori information, it is important to
understand its uncertainties and its information content. Some geophysical variables are derived from remote sensing
observations, and thus the uncertainties and information content need to be propagated through the derivation equation. This
work demonstrates how to propagate information content from multiple remote sensors through a derivation equation for a
new quantity. The key is to propagate the uncertainties from each individual retrieval through the derivation equation
simultaneously, then propagate the uncertainties from the a-priori constraints through the same equation in the same manner,
and look at the ratio of the covariance matrices derived from the two datasets.

We illustrated this approach using a network of remote sensors to derive the horizonal advection. To derive advection, we
needed to have (at least) three non-colinear sites that measure profiles of the quantity of interest (in this case, temperature
and humidity) with wind profiling at the same locations. In our case, we had six separate instruments, with three providing
thermodynamic profiles (using the same a-priori information) and three providing kinematic profiles (again, using the same
a-priori information for all three). However, because of differences in the noise characteristics of the different instruments,
the uncertainties and information content derived from each individual instrument varied. The posterior covariance matrices
(i.e., the individual retrieval uncertainties) were used to derive uncertainties and information content profiles for the derived
temperature advection and water vapor advection profiles.

A statistical analysis of the information content profiles demonstrates that there is nearly perfect information content (i.e.,
DFS close to 1) for temperature advection below 700 m. This suggests that if there is a true change in the temperature
advection below that level that the observed temperature advection would capture the magnitude that change at the right
level. The associated information content for water vapor advection is different though; it is a strong function of height,
time-of-day, and season. Nonetheless, the daytime mean information content for water vapor advection in the boundary
layer in the warm season is above 0.7, suggesting that the magnitude any true perturbation in the water vapor advection
would be largely captured by this instrument suite.

This work demonstrates how to derive the information content of an observation that is derived from multiple remote sensing
datasets. The key aspect is to frame the individual derivations as retrievals, so that both prior and posterior covariance
matrices are available. Propagating information content, as was illustrated here, can inform the user of the derived data on
where the signal-to-noise is the best, and potentially reduce the opportunity to misuse the data. However, it has been shown
that a single microwave radiometer making azimuth scans can identify spatial gradients of water vapor (Schween et al.
2011). If this was paired with an instrument measuring horizontal wind profiles, potentially water vapor advection could be

derived, but the propagation of uncertainties and information content could be performed the same way as shown here.
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