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Abstract. Traditional hydrological modeling simulates rainfall-runoff process dynamics using process-based models (PBMs);

whieh-. PBMs are grounded in physical laws and therefore highly interpretable. Due-to-environmental-systems—being-As
environmental systems are highly complex, though, sub-preeesses-subprocesses are sometimes hard or even impossible to
identify and quantify. Alternatively;-data-driven-Data-driven approaches, like deep-artificial neural networks (BNINs);-ANNs),
m&gml}gican automatlcally discover hidden relationships within the data;-which-often-leads—to

e-. As a result, superior model performance may be achieved.
However, the uncovered relationships are hard to investigate-analyze within black-box ANNs and often fail to respect phys-
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ical laws. Differentiable-modeling Differentiable modeling calls for knowledge discovery by combining both approacheste
benefit-, benefiting from their respective advantages. In this work, we present a physically inspired, fully differentiable, and

fully distributed model, which we term DRRAINN (Distributed Rainfall-Runoff Artlficial Neural Network);-a-targeted-neurat
network-architecture-thatsueeessfutty-. DRRAINN is a neural network model that estimates river discharge based on meteoro-
logical forcings and elevationin-. Focusing on the Neckar river basin;relying-en-catchment in Southwest Germany, DRRAINN
is trained to predict daily water discharge measurements from-onty-using data from 17 stations —We-evaluate-our-model-against
the-and from ten meteorological years only. DRRAINN's performance is compared to the performance of the European Flood
Awareness System (EFAS) reanalymsefrfhe«Nede&ﬁfwe%ea{ehmeﬁPmSeﬂﬂwesPGefmmw—whef% Some instances of
our model outperform EFAS at lead times of over
50 days in terms of the applied metrics for model performance. As DRRAINN is fully differentiable and fully distributed--This
combination-enablesthe-use-of, efficient source allocation algorithms -which-help-us-tdentify-the-water-can be used to identify
the precipitation sources responsible for the water discharge dynamics at specific gauging stations. In-the-future-this-approach

Besides DRRAINN’s potential to forecast upcoming water discharge dynamics, its full differentiability could be utilized to 5
e-g--infer erosion sites from turbidity data, particularly when integrated with an appropriate erosion model.

1 Introduction

Accurate water flow forecasting plays a critical role in mitigating short-term flood impacts, such as preventing loss of life and

reducing economic damage (Pilon, 2002). For example, simulating river discharge empowers-us-to-make-informed-deeisions
is a prerequisite for flood inundation modeling (Hunter et al., 2007) and enables informed decision-making in water manage-
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ment such as dam operations (Valeriano et al., 2010). Accuracy is not everything though. Geed-hydrelegical-models—should
Hydrological models that respect physical laws to-be-able-to-are more likely to generalize well to new situations s-and to offer

insights into the underlying processes that govern water movement. A solid understanding of the dynamics of water systems is
necessary to estimate the impacts of environmental planning and to improve infrastructure design (Palmer et al., 2008; Bharati
et al., 2011). It also enables a better assessment of how climate change might-may alter existing ecosystems in the future
(Palmer et al., 2008; Van Vliet et al., 2013; Al Hossain et al., 2015). Additionally, models that respect physical laws can be
used to infer the origins of observed discharge, thereby further facilitating the development of policies that mitigate the dam-

ages caused by floods. On-a-practicalHevelFrom a practical perspective, a good model should be-easity-tuned-allow efficient
calibration and perform well even if data is-are sparse, which is often the case for river discharge.

v-Traditionally, these challenges have been addressed
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using physically based approaches that explicitly encode domain knowledge. These process-based models (PBMs) that-describe
physical processes with mathematical equations derived from physical laws and observations (Brutsaert, 2023). Thisrenders

Real-world-proeesses-can-be-veryecomplexwith-lets-of Environmental hydrological processes are highly complex, involvin,
numerous interacting variables that make the overall process highly heterogeneous (Margais and de Dreuzy, 2017). Recent

advances, such as the Multiscale Parameter Regionalization MPR)framework (Samaniego et al., 2010) and scalable transfer
function approaches (Imhoff et al., 2020) have focused on improving parameterization and capturing spatial heterogeneity
in distributed-hydrological-models-PBMs to alleviate these issues. To reduce uncertainty and initialize PBMs adequately,
data assimilation incorporates concrete observations into running models (Liu et al., 2012; Camporese and Girotto, 2022;
Montzka et al., 2012). Advaneements-Such advancements in data assimilation can improve performance beth-in-in both lumped
(Moradkhani et al., 2005; Liu and Gupta, 2007; Liu et al., 2012) as-weH-as-and distributed models (Rakovec et al., 2012).
Nevertheless-usually, not-alk-involved-sub-proeesses_However, significant challenges remain, as the involved processes and
their interactions are knewn-in_most cases only partially understood (Hrachowitz et al., 2013), leading to high uncertainty
and biases —Even if a sub-process—isknown——thotgh;,—process is known well in detail, certain input variables may simply
be unobservable, such as underground topography. Additionally, the-seales—ef—real-world-processes—may-be—very-different

eompared-to-tab-environmental processes often occur at scales that differ substantially from those observed under laborato
conditions (Hrachowitz et al., 2013; Shen, 2018; Nearing et al., 2021).
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Complementary to PBMs, data-driven models have gained traction in recent years, driven by the increasing amount of

available hydrological data (Sit et al., 2020). Artificial neural networks (ANNGs) are data-driven models that automatically learn
relationships from large datasets. Given the superior performance of early data-driven approaches in hydrology, there-isreason

to-assume-that-the-it is likely that the full potential of data-driven approaches has—by—ﬂefneaﬁs—beeﬂ—ftﬂ}ye*p}eﬁed—yeﬁemams
grl@EpggV(Shen 2018; Nearlng et al., 2021). However, i

despite achievin

strong predictive performance, ANNSs often fail to respect physical laws due to their purely data-driven nature. This calls for
measures tde-such as hybrid or physics-informed models that bias data-driven approaches toward physical plausibility.

is-often-—eriticizedthatMl-medelers-Furthermore, it is often criticized that developers of machine learning (ML) models
do not put enough effort into the interpretation of their developed systems, failing to gain a better understanding of their-the

system’s internal dynamics (Mufioz-Carpena et al., 2023). As-mentioned-above

One promising avenue to overcome these limitations involves leveraging ML to infer latent variables that are otherwise
inaccessible to direct measurement. To give an example, a considerable amount-of-runoffis—situated-betow-the-ground-and
therefore-not-observableportion of total discharge originates from subsurface flow. It is not yet possible to see-through-the
i directly measure subsurface flow, making underground topography a
latent driver of hydrological behavior (Shen, 2018) We believe that these latent variables are-the-reason-that-models-often

may contribute to poor model generalization




— : ~ - i i sk—support hydrological modeling in such cases, because the

iven observation dynamics (Butz et al., 2019; Otte et al., 2020). This motivates

allow to infer latent variables retrospectivel

a key question we address in this paperisi—_Given the-observed dynamics, in which areas did precipitation contribute to the

measured discharge?

100

Similar to subsurface flow, evapotranspiration cannot be directly measured and must also be inferred indirectly. Model
inversions of NN (Sit et al., 2020) may therefore help to extend our understanding of the water cycle with ML. For a eomprehensive
review-of modern-MIbroader overview of ML applications in hydrology, we refer the reader to Shen (2018) and Sit et al. (2020

105 A combination of the-abeve-mentioned-PBMs and ML-based approaches could leverage the advantages of both worlds. I
pursted-When combined with the goal of knowledge discovery, this combination—wasrecentlyeoined-approach is referred

to as “differentiable modeling” (Shen et al., 2023). It could result in well-performing interpretable models that automati-
cally find new relationships in the data, respect physical laws&né%hefefefegeﬁeﬁﬂﬁewveﬂfmdﬂeeek Wm
different settings, and require comparatlvely little data.

110

rom the ML perspective, known relationships can be
incorporated into already-differentiable models as constraints s-or inductive biases. Fhese-inductive-biases-introduee-Inductive

115 biases encode prior assumptions about the data-generating process, effectively constraining the model’s solution space. By
doing so, they can improve performance, enhance generalization, and make learning more efficient. Furthermore, they help
guide the model towards discovering meaningful-interpretable structures in the data, aligning its behavior with established
principles (Butz et al., 2024).




140 attribution—methods—within DPRRAINN{ind and incorporate those biases that restrict the solution space as much as possible
without introducing incorrect or unjustified assumptions and without restricting the self-organizing power of NNs.

2 Related-Werk

In their seminal work, Kratzert et al. sueeesstullyuse-=STMs-have successfully used a long short-term memory (LSTM
(Hochreiter and Schmidhuber, 1997) for rainfall-runoff modeling on-a—daily—seale(Kratzert-et-al52648)at the basin scale

145 (Kratzert et al., 2018), demonstrating that purely data-driven models can exceed traditional methods. Since then, numerous
studies have emerged, applying basieally-largely the same model to various data sets (Sit et al., 2020). Notably, signifi-

cant advancements to the model have also been made, including the incorporation of physical constraints (Kratzert et al.,

2019; Hoedt et al., 2021), uncertainty estimation (Klotz et al., 2022), and the extension of modeling to multiple timescales

(Gauch et al., 2021). Hybrid models such as neural ODEs, where differential equations of conceptual hydrological models
150 are replaced by neural networks, were also applied in this setting (Hoge et al., 2022). All of the abeve-mentioned-medels
W@mm%ﬁyﬁ&hmpﬂmdﬁ%feﬂemg&wm@& are @WW spa-

tially aggregated over th
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Semi-distributed models partially leverage river network topology, providing a compromise between lumped and fully
distributed representations. These include purely data-driven graph-based models (Xiang and Demir, 2020; Moshe et al., 2020; Sit et al., 2(
».as well as hybrid approaches that integrate domain knowledge — for example, by using a differentiable Muskingum-Cunge
subbasins connected via the river network, enabling limited spatial interaction. Within each sub-basinsubbasin, however,
foreing are-again-spatiatly aggregated-forcings are still spatially aggregated, similar to lumped models.




In contrast, fully distributed models directly operate on a grid-without-any-spatial-aggregation—Even-though-spatial grid.
While there is a call for more fully distributed data-driven models for rainfall-runoff modeling (Nearing et al., 2021), rotmany

165 approaches-existin-theliterature—

es-most existing approaches remain limited in critical ways.
Some hybrid models operate on a grid b ighbori i ible-d-but restrict cell-to-cell
communication to the direction of WWW&WW This
strong assumption essentialty-turns-effectively transforms the grid into a sparser-graph—Fhe-directed graph, excluding physically
170 WMM%%CNN LSTMspmeﬁe%éGed&e%al—Z@%—Pekh&ekm&d&%ey%O%%—bte%ﬂ—E@%
as-process gridded input data without explicit assumptions about flow.

directions (Ueda et al., 2024; Pokharel and Roy, 2024b; Li et al., 2022). However, fhe—IrSJEMs—afHaet—&pphed—ﬂﬁvefy—gﬁeLeeH

Tn-(Sehmidtet-al;2020);the-authors-applied-these models separate spatial and temporal processing by flattening the convolutional
175 neural network (CNN) outputs before passing them to an LSTM. As a result, spatial dependencies are not maintained across
time steps. This limitation is addressed in Oddo et al. (2024), were a ConvLSTM (Shi et al., 2015) and-found-thatit-dees

ing-is used to jointly model space and
mmme outputs of all eeH&befem—feedmg«fhamﬁe—&hﬁeaHayei%mhfb#
grid cells are flattened into a single feature vector
and passed through a fully connected layer. Similar global aggregation strategies can be found elsewhere (Zhu et al., 2023: Tyson et al., 202
-Moving a step closer to physical plausibility, Longyang et al. (2024) combined a ConvI.STM with ridge regression to determine

180

_—

earn which erid cells
185 should contribute to discharge estimation at each station. This allowed the reconstruction of plausible underground flow paths

between subbasins. Since all of these distributed models aggregate the outputs of the spatial component globally over space,

the-modelHaeks-the-whether weighted or not, they lack the incentive to propagate water across the landscape —We-therefoere
astnsin a physically plausible wa
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work builds on differentiable modeling to combine both process-based and data-based modeling, and to address the challenges
and latent variable inference. We present DRRAINN (Distributed Rainfall-Runoff
Artficial Neural Network), a physics-inspired, fully differentiable, fully distributed rainfall-runoff model. Our spatio-temporal
ANN architecture estimates river discharge at gauging stations from gridded precipitation, solar radiation, elevation, and past
discharge. DRRAINN is fully distributed in the sense that it internally operates on a grid. However, its outputs are point-wise
river discharge measurements at given gauging station locations, Its full differentiability allows gradients to flow seamlessly
through the entire system, enabling end-to-end optimization of all its components with sparse discharge measurements being
the only target variable. To avoid overfitting, and to improve interpretability and generalization, we incorporated several
physics-inspired inductive biases into DRRAINN. These include the modularization into a spatially fully distributed rainfall-runoff
model and the utilization of a graph-based river discharge data—Prelimi ' i
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of physical plausibility, interpretabilit
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model, Additional architectural choices precondition
DRRAINN to encode distinct processes, such as lateral propagation of water across the landscape and local evapotranspiration.
As aresult, DRRAINN turns into a gray-box deep learning model. Its model design encourages the development of sub-modules,

which model surface and sub-surface water flow, water inflow into a river network, and --mere importantly;-as-the only-target

manually—We-then-try-to-snap-the-stationloeations-te-the-water flow and discharge across the river network.

Thanks to DRRAINN's fully distributed and fully differentiable architecture, it is possible to answer spatially resolved guestions,
such as: Where is the true catchment area, including contributions from underground flows? In other words, DRRAINN
enables source allocations using gradient-based attribution methods like integrated gradients (Sundararajan et al., 2017). These
techniques can help to examine and understand internal model dynamics, enabling knowledge discovery.

2 Methods

We present DRRAINN, a spatio-temporal artificial-neural-network-ANN architecture that estimates river discharge from
static attributes and meteorological forcings in a distributed manner. We evaluate DRRAINN’s estimation abilities, physical

lausibility, and the necessity of its architectural design choices. We demonstrate its performance in a real-world setting on
the Neckar River in Southwest Germany, comparing it to simulations from the European Flood Awareness System (EFAS

Mazzetti et al. (2023)). DRRAINN achieves higher KGE and NSE values than EFAS for lead times of up to 50 days and
rovides interpretable source attributions that enable the reconstruction of effective catchment areas from modeled dynamics.

21 Model
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DRRAINN’s structure is grounded in the following data and structural information sources. The locations L; = (z;,y;) for
estimations of discharge in the river network are determined by discharge measurement-gauging stations that provide observed

discharge @); ; for time ¢ in 24h-24 h periods. The connectivity of stations, determined by the river network, is encoded in an
adjacency matrix A; ;. Static maps S, , and meteorological forcings F}. ,, ; for hourly time points ¢ are encoded on a grid that
spans the whole catchment area of the river network. Given static maps S. ., meteorological forcings F . 4., +7 over the whole
duration (¢¢...ts +T) in hours, and past discharge ); ,.;, over the tune-in period (to...ts) in days, DRRAINN f-estimates
futtre-estimates discharge (); ¢, +1:.¢,+7 over a temporal future horizon of 1" days via a function f, representing the learned
spatio-temporal mapping implemented by the model:

Qitorrtart = F(S s Footorturt Qintort,) (1)

fsubsurface-and-Since surface and subsurface flow differ from river flow dynamics behave-differently-as described above,
we model these sub-processes-subprocesses separately. Therefore, DRRAINN consists of two components, the rainfall-runoff

model and the discharge model. The rainfall-runoff model operates recurrently on a grid, rendering it fully distributed. It is sup-
posed to model surface /subsurface-flowand subsurface flow, and evapotranspiration. The discharge model operates recurrently
on a graph and-is-suppesed-to model river flow inside of channels -

DRRAINN_processe Me—_carie n tha follavwing mannar. )y

and output

estimated discharge () at the station locations. While DRRAINN is fully distributed in its internal computation over a spatial

grid, its outputs are only available at selected gauging stations.

At each time step, DRRAINN processes the sequence in an auto-regressive loop by first invoking the rainfall-runoff model,
which-is-implemented-by-arecurrent-convolutional-ANN;-and-followed by the discharge model;-which-is-implemented-by-a
recurrent-graph-ANN. The rainfall-runoff model receives static-tandseapefeatures-gridded static maps S and meteorological
forcings I as input to estimate-runeff-model the catchment on a grid. It is primed to medel-two-impertant-sub-processes
separatelydistinguish between two important subprocesses, namely surface fand subsurface flow, which is mainly driven by
topography, and evapotranspiration, which is mainly driven by solar radiation. Even-though-itcannot-direetly-be-interpreted-as
sueh;-we-ealtits-output It produces a latent representation, which we term runoff embeddingsinee-thisis-the-main-driver for
the-discharge-model:-The-estimated-runoff-is-collected-, extracted at station locations and sent-used as input to the discharge

model. Despite being the main driver of discharge, it cannot be directly interpreted as runoff due to its self-organizing nature.
The discharge model additionally receives an adjacency matrix A that describes the connectivity between stations, static river

segment features, and the (potentially estimated) discharge (). ;,_; from the previous time step. It estimates-diseharge-then
estimates discharge () for each station, from which the training loss is computed.

We implement DRRAINN in pytorch (Paszke et al., 2019). In the following, we provide a more detailed description of
DRRAINN’s components. See Fig. 1 for a depiction of the overall model.



Rainfall-Runoff model

Elevation [h, w] ————< CNN DWConv

MLP PWConv1

Solar radiation [h, w] <:—

MLP PWConv2

hidden

[, w, c]
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Figure 1. A-detailed-view-Schematic overview of the DRRAINN architecture. The gridded rainfall-runoff model “s-task-is-has two main tasks:
to propagate-model the reeetvedredistribution of precipitation ever-across the landscapeaceording-to-the-elevation-, and to model evapotran-
spiration based on solar radiation. It receives precipitation as its main input to the-a point-wise LSTM, whose hidden state-is-modified-by-the
states, but not cell states, are updated using a ConvNeXtBlock. The ConvNeXtBlock “s-weights are not statie-fixed but predueced-dynamically
generated by etherneural-networkshypernetworks (indicated by red arrows). The depth-wise convolution s<(DWConv), responsible for
lateral water propagation, receives its weights are-produced-by-from a eonvolutional-neuralnetwork-CNN that has-takes elevation as input
and shares the same receptive field butreeceives—elevation-as input—tts—main—purpose-is—to—mode eral-propagation—of-water-over-the
tandseapeDWConv. The point-wise convolutions “(PWConv1 and PWConv2), used to model local evapotranspiration processes, receive
their weights are-produced-by-a-mutti-layer-pereeptron-from an MLP that reeeives-takes solar radiation as input. s-main-purpose-is-to-modet
evapotranspiration-a-process-thatislocatinspace—Before-the The LSTM hidden state is sent-to-the-discharge-model-itisfurther processed
by a stmple-linear layer before being passed to the discharge model. Fhe-This graph-based discharge model then—receives-the-proeessed
state-of-the—rainfall-runoff-model-aggregates information at the measurement-gauging stations™lecations-and-processes—it-together-with-,

incorporating the last (potentiaty-possibly inferred) discharge aceording-to-the-adjacency-of-the-stationsvalues, their-elevation differences i
altitudesbetween stations, and the-river segment lengthsbetween-the-stations. Its output is the estimated discharge at each station.

10
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2.1.1 Rainfall-Runoff Model

The rainfall-runoff model consists of a position-wise

{ENN--LSTM and a CNN that are called in aﬁema&eﬂmgg This renders the rainfall-runoff model local in space and
time:-Only-neighbering-and-past. Only spatially local and temporally previous information is used to update internal states.

2.1.2 Moedeling-tempeoral-dynamies

The position-wise LSTM (PWLSTM) is responsible for modeling the temporal relationships in the data and therefore maintains

a hidden and a cell state for each grid cell. The gating mechanism ef-the ESTM-ean-shield-theeellstatesfromunwanted-updates:
Ttthus-allows-to-maintain-infermation-everdongregulates when and how the cell state is updated, allowing the model to retain
information over extended time periods. This can be particularly useful to-imphieitly-modek-e-g-for implicitly modeling slow

hydrological processes such as soil moisture or groundwater levels, which exhibit-slower-dynamies-evolve more gradually than
overland flow. The LSTM receives precipitation as input to update its hidden and cell states. It has a hidden size of 4 (see

Appendix B for hidden sizes 2 and 6). Importantly, the weights of the LSTM are shared throughout the gridded area. As a
result, while the LSTM at each grid cell maintains individual hidden and cell state values, the temporal processing principle
is identical everywhere. The assumption is that the unfolding physics is the same everywhere, although they may be locally

parameterized.

2.1.3 Moedeling-spatial- dynamies

~The CNN models spatial relationships such as the propagation

of water flow ever-across the landscape and evapotranspiration. It receives and updates the hidden state h of the PWLSTM

+to model spatial interactions, while leaving the PWLSTM’s cell states untouched to preserve temporal memory. Surface
and subsurface flow are spatially extended processes, whereas evapotranspiration is primarily a local phenomenon, occurring
independently at each grid cell. To reflect this distinction, we separate the CNN's treatment of these processes using different
convolution types and input sources, introducing an inductive bias into the architecture. Note-that surface/subsurface flow-isa

More precisely, the CNN is given-by-based on a modified ConvNeXt block (Liu et al., 2022). A ConvNeXt block con-
sists of three layers, namely a depth-wise convolutional layer (DWConv) with kernel size 7 x 7 followed by a position-wise
inverted bottleneck given by two linear layers (PWConvl and PWConv2). This way, ConvNeXt disentangles-horizontal-and
vertieal-decouples spatial and channel-wise information flow. We use-apply the SiLU activation function between-all-after the
convolutional and between the linear layers (Hendrycks and Gimpel, 2016). In contrast to its original formulation, the weights
of our ConvNeXt block are not static —Rather-they-but location-dependent. They are parameterized by other neural networks,
turning this network component into a hypernetwork (Traub et al., 2024a). This means that the ConvNeXt block can behave

11
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differently at each location on the grid. Calling DWConv results in the following operation:

3 3
Yije = E E Wi jmyn,c* Titm,j+n,cs ()

m=—3n=—3
where y is the output, x the input, w are the weights produced by the hypernetwork, c is the considered channel, and ¢ and j

are coordinates. Note-that-we-We can still call this operation a convolution if we regard the input variables together with the

weight-generating networks as the kernel. Calling PWConv1 and PWConv?2 results in the following operation:

Yigocon = Zwmc( “Tijcins 3)
We-parameterize—the-differenttayers—Each layer of the ConvNeXt block with-different-weight-generating networks—that

recetve-different-inputsis parameterized by a distinct hypernetwork, tailored to the type of process it represents. The weights
of DWConv are produced by a simple-CNN that has the same kernel size as DWConv itself. The weights for PWConv1 and

PWConv2 are produced by simple-position-wise MEPsmulti-layer perceptions (MLPs). By using different input variables for
the different hypernetworks, we can distinguish between local and spatially extended processes. How water propagates over
across the landscape depends mainly on the topography, which is why we generate the weights of DWConv from elevation.
Before feeding the elevation into the hypernetwork, we subtract the elevation of the center cell from the elevations of all other
cells within each receptive field ;-since-we-are-interested-in-slopes-and-not-as relative elevation is more informative for flow
direction than absolute elevation. Evapotranspiration, on the other hand, is a very-local process and should-therefore-be-modeled
is therefore best captured by the position-wise components. This is why we generate the weights for PWConv1 and PWConv2

from solar radiation. See Fig. 2 for an illustration.

2.14 Adapter

Lastly, the hidden-statesrunoff embeddings are extracted at the station locationsare-celleeted, fed through a single linear layer,
and sent the-the-to the river discharge model. Collecting-and-summing-up-Aggregating the hidden states of all cells on the

corresponding upstream river segment showed a tendency to everfitting-overfit in preliminary experiments.
2.1.5 Discharge Model

Our discharge model is a recurrent graph neural network called DISTANA (Karlbauer et al., 2019), with the graph struc-
ture determined-defined by the actual river network and the stations. #DISTANA maintains two types of kernels;recurrent
units; station and segment kernels, both ef-which-are-implemented as Gated Recurrent Units (GRUs)«(Cho-etal52044)-,

Cho et al. (2014)) with a hidden size of 8 (see Appendix B for hidden sizes 4 and 16, and a version in which the GRUs
are replaced with LSTMs). Station kernels sit-on-the-discharee-measurementstations—sesmentkernels—sit-on-thesesments

between-those-stations—They—are placed at the gauging stations, while segment kernels are located on segments between
stations. These kernels communicate with each other via lateral connections that-have-with 4 channels (Fig. 1). The-station
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Figure 2. Illustration of the hypernetworks used in DRRAINN. Fhe-In both panels, the dark gray cells represent locations whose hidden
states are updated based on information from the values-of-the-light gray cells. The weights for these updates are produced-generated by
other-separate neural networks that have-share the same receptive field but leek-at-another-type receive different types of input data. Left:
Fhe-A CNN takes elevation as input and produces the weights for the depth-wise convolutionare-produced-by-a-convolutional-neunral-network
weights for the point-wise convolutionare-produced-by-a-mutti-tayerpereeptron-that receivessotar radiation-asinput, which models localized

evapotranspiration.

estimates the-discharge-at thatstationln each time step, the segment kernels are updated first, followed by the station kernels,
which then estimate the discharge @) at their respective locations, The segment kernel-additionatly receives the difference-in
upstream station kernels with static river segment attributes — specifically the altitude difference and segment length. After
applying the GRU, the output is multiplied by the adjacency matrix, which is derived from the river segment that it models:

and station positions. The segment kernels
thereby sum up information from upstream station kernels. The output of the seement kernels serves as input for the station

work topology -

kernelsare-ecaled—Eachkernelf oncatenate atie-dynamie-andJateral-nputs-and-then-apphes-the GRUInthe-ease-o
the last (potentially inferred) discharge and the output of the GRU-is-muitiplied by the-adjaceney-matrix; thereby summing up
incoming informati e rainfall-runoff model. After applying the GRU, the
output is split into fe- sthe estimated discharge @ and the input for the segment kernels in the next time

step.
Even-though-wefeed-Although DRRAINN receives hourly meteorological forcings into-DRRAINN-we-only-produce-daily

discharge-estimates—F, it produces discharge estimates at a daily resolution. During the initial 10 days-day tune-in phase of

ARHA naorm o1 A A m A o A o
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each sequence, we thereforefeed the same observed discharge value 1

DRRAINN for each hourly step within the day.

375 2.2 Data

The input data for DRRAINN consists of radar-based precipitation, elevation for above-ground topography, solar radiation,
and river discharge data. Preliminary experiments showed no improvement when including temperature; therefore, we exclude
it following Occam’s razor.
For precipitation, we use the radar-based precipitation product RADOLAN provided by the Deutsche Wetterdienst (RADOLAN, 2016).
380 . The data domain is a 900 km x 900 km pixel grid with a resolution of 1 km x 1 km that covers all of Germany and a temporal
resolution of 1 h. This grid defines the spatial resolution at which our model operates. RADOLAN data is log-standardized
before being sent to the model due to its long-tail distribution. Specifically, we add 1 and take the logarithm, then compute

the mean and standard deviation of the transformed data to standardize it. We replace missing values with zeros, which is the
standardized mean.

385 For static topography information we use the digital elevation model (DEM) EU-DEM v1.1 provided by the Copernicus
Land Monitoring Service of the European Environment Agency (EU-DEM, 2016). We also use the DEM to compute the

differences in altitudes between adjacent discharge gauging stations. Elevation values and derived difference are standardized
before being sent to the model, i.e., we subtract their mean and divide by their standard deviation.
For solar radiation, we use surface short-wave downward radiation (SSRD) from the ERAS data set (Hersbach et al., 2018)
390 . It comes with a temporal resolution of 1 h and a relatively coarse spatial resolution of 0.25° x 0.25°. Like the precipitation
data, solar radiation data is log-standardized. We use rasterio (Gillies and others, 2013) to transform and reproject the DEM
and solar radiation data to match the RADOLAN coordinate reference system.
The topography of our river network is determined by the AWGN data set (AWGN, 2023). We use it to compute the
adjacency matrix that describes which stations are connected via river segments and the corresponding river segment lengths.
395  Finally, we use discharge measurement data to tune in the discharge model and, more importantly, as the only target variable
to train, validate, and test our model. We use data collected and provided by the German Federal Institute of Hydrology via
the Global Runoff Data Centre (GRDC, 2024). The data set contains observed daily river discharge from gauging stations
worldwide, including those in Germany. Since the location information of the discharge gauging stations is partially wrong, we
corrected them manually. We then align the station locations to the nearest river segment (snapping). If the correction exceeds
400  a predefined threshold, the station is excluded. If two stations are very close to each other, one of them is discarded. Due to its
long:tail distribution, discharge data is log-standardized on a per-station basis before being sent to the model. We add 1 and
take the logarithm, then standardize the data using station-wise means and standard deviations. We replace missing values with
zeros, which is the standardized mean of the corresponding station.

Our choice of input datasets was guided by temporal resolution, data provenance, and practical availability. Although the
405 European Flood Awareness System (EFAS) employs EMO-1 for precipitation input, we opted for RADOLAN due to important
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differences: EMO-1 offers a coarser 6 hresolution and is interpolated from sparse station data, in contrast to RADOLAN’s
direct radar-based observations. Although we expect only minor differences in performance in some settings, radar-derived
datasets like RADOLAN provide finer spatial and temporal resolution, which is advantageous for distributed models. Similarly,
we chose ERAS for solar radiation data due to its gridded format and hourly resolution. Alternative datasets, such as those
provided by DWD, are either available only as station-wise hourly data, which lack the required grid format, or as gridded
data aggregated monthly, which does not meet our temporal requirements. Daily datasets like EOBS may suffice if subdaily
temporal patterns are encoded separately, but this would require additional preprocessing. A transition toward operation flood
forecast would place increased importance on the choice of precipitation forecast products (Imhoff et al., 2022). Ultimately,
all data products entail inherent uncertainties and errors, and our choices reflect a balance between data availability, temporal
resolution, and the specific requirements of our model.

23 Studysite

The Neckar river network in Southwest Germany spans a catchment area of 14 000 km? with a mean elevation of 460 m.
According to ERAS, temperatures in this region ranged from —25 °C to 40 °C during our training period. Our dataset includes
measurements from 17 gauging stations distributed across the river network (see Fig. 3). At the most downstream station in

3 /s t0 1690 m?

The catchment features a highly heterogeneous landscape, including narrow and wide valleys, diverse geology (¢.g., limestone,
sandstone), different soil textures (e.g.. clay, marl), and subsurface structures such as karst systems and pore water aquifers. This
makes the modeling of the Neckar River network a challenging endeavor. To give a concrete example, there are underground
flows south of Pforzheim that route water toward the east, while the elevation model suggests a different flow direction.
(Ufrrecht, 2002). This relationship cannot be inferred from a digital elevation model alone. Latent underground structures route
the water in a different direction than the elevation model alone would suggest.

By restricting the domain to the Neckar river network, we end up with an area of size 200 km x 200 km. Following the
transformations described above, all gridded data is reduced from a 1 km > 1 km grid to a 4 km x 4 km grid by taking the
mean. This results in a 50 x 50 grid covering the study area. We train our model on hydrological years 2006 — 2015, validate
on 2016 — 2018, and test on 2019, Forcings I are provided at hourly resolution, while discharge is provided at daily resolution.

s with a mean of 133.3 m?3/s.

2.4 Experimental setup

We train DRRAINN on sequences of 20 days -with-(480 hourly steps), using the first 10 days serving-as a warm-up phase.

During this phase, we feed the model observed discharge values are-assimile alize-to initialize and

align its hidden states and-align-themwith-the-system’s-with the true system dynamics. This appreach-is-akin—te-procedure

resembles data assimilation in traditional hydrological models, where observations are used to update model states and reduce

uncertainty. In machinelearning;this-closed-leopsetap-is-called-ML terms, this corresponds to teacher forcing. The warm-up
phase allows the rainfall-runoff component of DRRAINN to petentially-estimate-quantitiestike-infer latent hydrological states
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Figure 3. The study area used in this work is the Neckar River catchment in Southwest Germany.
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such as soil moisture or aquifer rechargewi

physieal state-of the system-before-transitioning to-, through its hidden state representations. This alignment helps the model
transition smoothly to predictive, open-loop mode, where future discharge is estimated without access to ground-truth values.
FeHowing-After the warm-up phase, DRRAINN transitions into an-open-loop mode for the remaining 10 days of the-each
sequence. In this predictive mode, the discharge model feeds its own discharge-estimations-into-previous discharge estimations
as inputs for subsequent time steps. The rainfall-runoff modelon-the-other-hand-continues—to-beprovided-with-historical-,
in contrast, continues to receive observed precipitation and solar radiation —Fhis-is-net-arealistiesetting for-operational-as
Wmmmme
forecasting. Precipitation
forecasting, in particular, remains a major challenge. Currently no algorithm can accurately predict precipitation 10 days inte
the-future-on-a-ahead at a spatial resolution of 4 km x 4 kmseale. However, this setup is useful-well suited for knowledge

dlscovery concerning hydrologic processes, which is fheﬁaiﬁfeeu&e%ﬂﬂ&papef rimary focus in this work. We leave the

sevaluation of DRRAINN under realistic, forecast-based

conditions for future work.

We use the mean squared error (MSE) eﬁ—%h&g(\)/r\l;lﬂ/l\t/w station-wise standardized dlscharge data as both the training

and validation loss.

magnitadesStandardization ensures that stations with larger discharge values do not dominate the loss, promoting a balanced
learning across all stations. Tralmng is eeﬂdueteéwlﬁkpgrfmmiwv\g%mncated backpropagatlon through time (TBPTT),

mmmmmmmmml day —Nete-that-our-model-operates-on-an-hourly-time
sequences (24 time steps) to help DRRAINN
W(W%thmmg, we increase the truncation length,
thereby-allewing-enabling the model to learn i in-timelonger-term dependencies. The
truncation length schedule --whieh-is shown in +;-was-determined-empirically—-We-adjust-Table 1. We adapt the batch size sueh
that training ean-take ptace-on-a-single (o fit the model within the memory constraints of a single NVIDIA A100 graphieseard:
GPU, with total training time remaining under 8 h. A forward simulation of a 20 day sequence takes approximately 4 s..

To improve generalization and account for model variability due to random initialization, we train five independent instances
of DRRAINN fer-each-per experiment, each initialized with a different seedfor-the-randomnumber-generator—Results-are
reported—. We report test results based on the three seeds—runs with the lowest validation loss ;—a—practice-we-consistenthy
apply-out of five seeds. This selection procedure is applied consistently to both the primary model and its-ablationsall ablation
variants. We use Ranger(Wright; 2019)-with-the-learning rate-set-to-the Ranger optimizer (Wright, 2019) with a learning rate
of 0.0025 to optimize the 36-600-30 600 parameters in DRRAiINN;-which-takes-about-7-heurs—We-, To stabilize training, we

clip the gradient if its norm exceeds lto-aveid-largejumps-at-steepregions-in-, thereby preventing large parameter updates in
steep regions of the loss surface. We use hydra to manage eur-experiment configurations (Yadan, 2019).
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Table 1. Truncation length schedule in days for TBPTT

#Epochs  Truncation length ~ Batch size

10 1 256
4 2 128
2 4 64
1 10 32
1 20 32

To increase the size of the training data set and improve generalization, we performrapply data augmentation. The symmetry

group of the square contains eight symmetries; namely-identityelements: the identity, rotations by 90°, 180°, and 270°, retation
by-006,180;-and-276-degrees;-and reflection in the X, y, and the-two-both diagonal axes. For each g@w&sequence we apply a
uniformly sampled symmetry to the felewing-spatial variables in each time step:
the-mask-thatis-used-to-translate from-grid-to-graph-. We ensure physical consistency by tapping into the runoff embeddings at
the transformed station locations. The river discharge model’s graph structure remains unchanged by this augmentation.

2.5 Benchmark model: European Flood Awareness System

To provide context for PRRAINNs-DRRAINN'’s performance, we compare it to the European Flood Awareness System
(EFAS), an established and operational distributed process-based model. Sinee-We use publicly available EFAS reanalysis
dataisreadity-available-for downtoad;-we-do-nethave-, which eliminates the need to tune EFAS ourselves. This avoids potential
biases arising-from-unequal-effort-in-tuning-that could arise from allocating unequal tuning effort to the benchmark model
versus %heﬁelrf-deve}epeekour own model. While DRRAINN achieves higher performance than EFAS in many scenarios, our
i trg-primary aim is to demonstrate the potential of distributed

neural networks for river discharge estimation, rather than merely outperforming EFAS.
EFAS simulates runoff on an approximately 1.5 km x 1.5 km grid with a temporal resolution of 6 hi-whieh-is-similarto-our

setup. It receives as inputs static maps describing topography, river networks, soil, and vegetation, as well as meteorological

forcings such as precipitation, temperature, and potential evaporation.
While EFAS serves as a useful benchmark, the comparison to DRRAiNN is not perfectly fair due to fundamental differences
in the input and output variables. Both models receive gridded meteorological forcings, but DRRAINN additionally receives

discharge measurements during the tune-in period. In contrast, EFAS does not use discharge measurements as input —Instead;
W@Wmodel calibration. Furthermore, DRRAINN estimates-discharge

sproduces discharge

estimates only at gauging station locations, whereas EFAS generates discharge predictions across the entire spatial grid. EFAS
also relies on additional input variables not used by DRRAINN, such as soil type, vegetation, temperature, and potential
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a powerful tool, it also limits its applicability in regions lacking such detailed input dataef-thiskind-might-be-unavailable.
Another difference lies in the precipitation data used: EFAS usesrelies on EMO-1, a 6-heurly-6 mathrmh product interpolated

from weather station data, whereas DRRAINN uses RADOLAN, a radar-derived-dataset-with-finerradar-based dataset offerin
higher spatial and temporal resolution. As a result, a direct comparison between EFAS and DRRAINN is not valid. Nonetheless,
the-EFAS-data-ean-serve-EFAS serves as a baseline and-an-orientationfor-the maneeregime-we-sh be-able-to-matehto

contextualize the expected performance range of DRRAINN. We thus emphasize that our goal is not to directly compare
performance but to provide a baseline that allows us to place the principled quality of DRRAiINN’s performance with respect

to alternative state-of-the-art forecasting approaches.

2.6 Evaluation

Besides the-depiction-of-hydrographs-atsome-of the-medeled-visualizing hydrographs for selected gauging stations, we employ

he-folowing-evaluation-metriesto-assess—the-performance-of PRRAINN-evaluate DRRAINN using four standard metrics in
hydrology: Kling-Gupta efficiency (KGE, (Gupta et al., 2009)), Nash-Sutcliffe efficiency (NSE, (Nash and Sutcliffe, 1970)),

Pearson’s correlation coefficient (PCC), and the mean absolute error (MAE). We report all of-these-metries-because-they-are

widely-used-in-the-hydrelogical seienees-and-because-there-is-four metrics because each highlights different aspects of model

performance, and no single metric t
v-discharge and directl
uantities the average deviation between predictions and observations. However, because it lacks normalization, stations with

larger discharges—The PCCshews-how-much—variation-is-shared-discharge magnitudes contribute disproportionately to the
overall MAE. PCC quantities the strength of linear association between the observed and estimated discharges;-hewever-it

dees-not-aceountfor-, While it captures shared variability, it is insensitive to systematic differences in scale or bias. To also
capture the scale, the NSE was developed, which can be seen as a mean squared error that is weighted by the variance of
the observed discharge. The NSE also does not account for bias, though, which is why the KGE was intreduced-to-capture
developed to jointly evaluate correlation, bias, and vartaneevariability. When computing KGE and NSE values, we use station-
wise means and variances calculated from the training data setas-done-in(IKratzertetal 2649}, following the approach in
Kratzert et al. (2019). For KGE, NSE, and PCC, higher values are-better-with-indicate better performance, with a maximum of
1 eorresponding to-a-perfeetfitFor MAErepresenting a perfect match. In contrast, lower values are-better-of MAE are better,
with 0 eorresponding-to-indicating a perfect fit.

When-performing-During open-loop inference, we also-evaluate metrics separately for the-differentnumber-oef-ecach open-
loop steps-performed-(step, where the first one-should-be-similar-to-step resembles closed-loop estimation)-This-way-we-ecan-see
to-which-extentperformanee-drops-. This allows us to assess how model performance degrades with increasing lead times. Even
though-Although DRRAINN was only trained on sequences that span 20 days, we always-evaluate-on—100-evaluate it on 50
day sequences to see-whether-our-model-can-generalize-withregards-totead-timeinvestigate its ability to generalize beyond the



training horizon. Additionally, we will plot the performance of the models against the mean discharge of the different stations

to see-whether-we-find-systematie-relationships-between-thesequantitiesidentify potential systematic dependencies between
535 flow magnitude and model accuracy. In all cases, we remeve-exclude the initial 10 days tune-in period before calculating

metrics and producing plots.

metries—With knowledge discovery being the main motivation of this work, we will-also test DRRAINN en-for physical
plausibility. A physically implausible model might learn spurious relationships in the data. It could, for example, exploit the

lead to gains or losses of
water not driven by meteorological forcings. By retrospectively inferring catchment areas from observed dynamics, we assess

540 DEM to encode local biases that e

whether the rainfall-runoff model successfully propagates water ever-across the landscape. The procedure is as follows: After

a forward pass, we compute saliency maps by taking the gradient of the tast-timestep-output-final discharge estimate with

respect to the precipitation input—Theresultis-aso-ealled-salieney-map-which-tells-inputs. These maps tell us to which extent
545 the model’s output depends on the precipitation in each grid cell and time step. We multiply this gradient by the precipitation

itself to focus the analysis on cells in which precipitation occurred. By-doing-To examine how the attributions change over

time, we split the sequence into subsequences of 5 days over which we take the mean. We do this for each station separately

and visualizing-visualize the resulting attributions ;-we-ean-see-which-areas-on-the-map-contribute-to-the-to identify which areas

contribute most to discharge estimation at the-corresponding-each station. To reduce noise, we do-this-for-every-sequence-in
550 our-validation-data-setrepeat this process across all test sequences and average the euteomesresulting attribution maps.

We compare the resulting attributions with catchment areas delineated from elevation data ;-as-those-are-commonly-used-in
hydrologyusing standard hydrological techniques, which are widely used in the field. To evaluate their agreement quantitatively,
we employ the following measure when comparing DRRAINN to the ablated models: For each station, the attributions are
first-standardized to lie between 0 and +-1 using min-max scaling. We then compute the Wasserstein distance between the

555 attributions within-values inside the delineated catchment area and those outside of-it. A higher Wasserstein distance indicates
better alignment between the attributions and the catchment areas delineated from elevation data. This quantitative measure
complements the qualitative comparison, providing stronger evidence for our model’s ability to propagate water over-across
the landscape in a physically plausible way. Specifically, it stggests-indicates that the model has fearned-from-the-observed
dynamies-atone-that-water-flows-downwardimplicitly learned the topographic structure of flow direction — i.e.. that water

560 generally flows downhill - solely from observed discharge dynamics.

3 Results

Ferevaluating To evaluate DRRAINN, we first provide-present hydrographs and compare performance with EFAS to contextualize
DRRAINN’s results. We furthermore show that DRRAINN has-the-potential-to-infercatchment-areas;-thus-highlighting-the
systemr's-potential-due-to-its full-differentiability-can retrospectively infer catchment-like structures, thus demonstrating how.
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Figure 4. Hydrographs ef-showing observed discharge, discharge-simulated-by-EFAS simulations, and discharge-inferred-bypredictions
from one of eur-five DRRAINN model instances eut-of-five-with-for lead times of up to +66-50 days. Fhey-eorrespond-to-The four panels
show the stations with the lowest (a) --and highest (d) mean discharge, as well as to-thesestations-with-the best KGE-performanee-of stations
where EFAS (b) -and our modet on-averaze DRRAINN (¢) s respeetivelyachieve the best KGE performance on average on the validation set

We-chose-those-sequeneesFor each station, we selected the sequence from eurvalidation-data-the test set thathave-with the largest-variance
i-highest discharge variance, as variance likely aets-serves as a proxy for prediction difficulty.

3.1 Hydrographs

EFAS produces hydrographs that match both the shape and
magnitude of observed discharge, rendering it a strong contestant (Fig. 4). As EFAS produces gridded outputs, it is necessary

top he-correct-grid-cells-to-compare-the-model-outputs-at-the-speetficstations—\ y-che 0 85
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to the station locations in order to make meaningful comparisons.
Seeead«ﬂiefesu}ts—skxew—fha%DRMrNNeaifpfedﬂeeDRRAlNN also produces plausible hydrographs that closely match the

observed discharges . This includes both low flows (Fig. 4a) as

well-as-and high flows (Fig. 4d)wtth—ne—appafei% No systematic difference in performance Jtheﬁgheu{—ﬂﬁte—}GOdays—heweve%

DRRAINN operates autoregressively :
Hsﬁﬁfeﬁed»dﬁc—lﬁfgem using its own discharge estimates as input in the next time step —Therefore;the-error-accumulates

at— error can

accumulate over time, leading to gradual decline in accuracy. Nonetheless, it is W in general able to

hit peaks even after ¢

meodels;indicating-a-bias-towardstower-valaes—almost 50 days, despite being trained only on 20 day sequences.

3.2 Performance

Overall, DRRAINN m@em%ﬁm&ﬁm%y%fﬁmﬁmﬁeﬂmﬁ%ﬂowwmm considered
metrics (Fig. 5). Ple
of EFAS-is-Since EFAS does not incorporate discharge values during inference, we report its mean performance over lead
times as constant. As w%mmW@M%AﬁMWMMMW%

causes etrors to accumulate over time,
a gradual decline in performance at longer lead times.

The KGE plot (Fig. 5a) i
DRRAINN is able to maintain strong performance over time. Averaged over the seeds, starting with a KGE of about 6-76;-t
takes-about48-days-before-(.71, our model’s estimations beeome-worse-than-stay above those of EFAS en-average;even-though

DPRRAi{NN-was-only-ever-trained-during the entire estimation horizon of 50 days, despite having been trained only on 20 day
tstanee model-cantkee h even-afte he-In contrast, the NSE plot (Fig. 5b)

aysindicates that

soradual decline in performance

over time with a decrease from 0.72 to 0.62 over the estimation horizon. Regardless, even after 50 days, all seeds show higher
NSE values than EFAS. The PCC plot (Fig. 5c) shows a strong linear relationship between the-observed-and-inferred-discharge

vatues-with-a-observed and estimated discharges, with an average value of about 0.9 en-average-at-the-beginning—Here;-at the
start. DRRAINN captures this relationship better than EFAS during-the-first-40-daysover the entire estimation horizon. Note

that the linear correlation is also part of KGE and NSE. As the MAE allows direct interpretation, its plot (Fig. 5d) shows
that EFAS is off by about 5-7m2s=-6.5 m® s ! on average, while DRRAINN with 3:3m%5=3.9 m® s~' on average on the
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Figure 5. Performances based-on—different-metries—of the best three out of five DRRAINN model instances, compared to EFAS across
different metrics and BPRRANN-with-lead times up to +66-50 days. Fheresutts Results are averaged everthe-across all stations;-and-the

differentseeds-of DPRRAINN-are-depieted-with-different-, Each line stylesstyle corresponds to a distinct DRRAINN instance.
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first day produces a considerable smaller error. After about 40-25 days, EFAS proeduces-betterresults-yields a lower MAE on
average.

All

metrics reveal differences in performance across the

model instances trained with different random seeds. However, the relative ranking of model instances varies depending on
the specific metric and lead time. Some seeds perform better during the initial days, while others are better with greater lead

fﬂeaﬂmgfhat—sefneiﬂsfaﬂee&For example, in the KGE plot (Fig. 5a), the ranking changes after about 42 days. The difference
between instances are due to random weight initialization and the order of batches only. These stochastic factors may lead

some instances to start the training with a larger bias towards capturing short-termand-others-, while others start with a larger
bias towards capturing long-term relationships in the data.

The erratie-tines-plots in Fig. 6 show that

—some stations consistently yield more accurate discharge estimates

than others. This observation holds across all evaluation metrics. Which stations are harder to estimate, however, is different
across the metricsst

interestingly,alse-EFAS-agree-, reflecting the distinct sensitivities each metric has, as discussed previously. Interestingly, both
the different DRRAINN instance and EFAS show partial agreement on which stations are harderto-estimate-to-some-extent-—The

more difficult to model. For example, the KGE values in Fig. 6a ;-e-g5-show that Altensteig ;- Rettwei-andKirchentelinsfurt
mﬁ&%&bﬂmﬁﬂ%ﬂﬁmﬁg@&g&ﬁm while Oppenweﬂer Bad Imnau, and Murr

further-are among the most challenging. The reasons for this discrepancy — such as differences in catchment size, land cover.
or upstream complexity — could be analyzed in future work.

The regression lines h

predictabilityindicate whether model performance correlates with average discharge levels across stations. We performed linear
regressionhere;-and-; the regression lines are-enty-appear exponential due to the logarithmic scaling of the x-axis. The KGE-plot

{Fig—6a)rshows-All metrics, except MAE, show that both models tend to perform better at stations with higher mean-discharges.
This effect is more pronounced in EFAS, while our model exhibits a more balanced behavior. This-is-even-mere-the-case—if

W(Eg 6a yand-NSE-plots(Fig—6and b) show that the models have different biases for the different stations, since

KGE accounts for both bias and variability, while
NSE only captures variance. Both DRRAiINN and EFAS -produce significantly larger MAEs with increased mean discharge

(Fig. 6d). This is expected —though;-as-since MAE does not account for the stations’ mean discharges or their variability in

discharge, unlike the other metrics.

24



102

T

JaANgSUI[STASTIITS]

urelg
E_wxsg.&.

wreysotis®h )i

(b) NSE

I

weysa i8ISy

10!

(d) MAE

T

[1om330%Y

sopomuaddQ

S109sUSIY
B1eqsq

Jiopusius (g

“““““““ P bl

0.8 4

100

102

uopyier]

T

ﬁ:ﬁ&:uﬂﬂ.’&ﬂ.

wWaYZIofd
WIoYSa1i8 103U )

(a) KGE

wWaYsaIFL

(c) PCC

10!

100

/
/
102

LI

uaSuIfsoid

urelg
wreyzioy g

JIOPITEE
JPeISTEN

JINLJAL
[1oM330%T

neuw] peg

sopromunddQ)

B103sUSH
YoeqsoN
FIOPUSHUS
o
T T T — S
[} o o o
[ap) [a\] —
(s/gut) AVIN
neusi 50y * [ BN
™
o
—

LI

werg @A e —

wrouzIcey,
L)

10!
Mean of stations’ discharges

neuw] peg @

zerremuadd () -
S103sUSIY

100

across different

log-mean discharge and the-correspondin

Mean of stations’ discharges
== = EFAS reg

AR

-axis denotes—shows the logarithmic means-of-the-stattons—dischargesmean discharge at each
The-blueshadow-depiets-Blue vertical lines depict the standard deviation ever-the-different-across DRRAINN seeds. The-dashed

== = DRRAINN reg
25

EFAS

® DRRAINN

N~

Figure 6. Performances of the best three out of five DRRAINN model instances and EFAS en-at a 1 day lead time based-on-

Dashed lines represent a-linear regresston-onregressions between the

metric.

metrics at-the—different-and stations. The x

station.



Days 16 - 20

All days ays | Days 6 - 10 Days 11 - 15

Pforzheim Murr Oppenweiler

Lauffen

River network - Gauging station *  Gauging station of interest —— DEM-delineated

Figure 7. Attribution maps of precipitation for discharge estimation at selected stations and time intervals, averaged over all validation
test set sequences. Brighter-Darker colors indicate grid cells where precipitation has a stronger influence on the estimated discharge at the
corresponding station. For comparison, the-traditional catchment areas delineated from elevation data are outlined in red. This juxtaposition
highlights the agreement between data-driven attributions and physically derived catchment boundaries. The attribution method #sed-to
compute-these-attributionsis described in detail in Subseetion-Subsect. 2.6 of the main text.

3.3 Catchment area inference

We ean-sueeesstully-reconstraet-observe that DRRAINN implicitly infers physically plausible catchment areasthat DRRAINN
640 must-have-inferred—imphieitly <, as shown in Fig. 7). Lighter areas show-higher—+impeortanee-indicate regions with higher
importance of precipitation for estimating discharge at the corresponding station. These areas-correlate-attribution patterns
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spatially overlap with the catchment areas depieteekmfed—whtehﬂfeﬂellneated from elevation alone —The-results-arenot

a—(depicted in red). The first four columns visualize
attributions for subsequences of 5 days length to illustrate temporal changes in spatial influence. There is a tendency of the
area of influence to increases in size the further we look into the past. This suggests that DRRAINN propagates encoded water
quantities along the landscape in a manner that aligns, at least to some extent, with physical flow processes. The last column
shows attributions averaged over the whole 20 day sequences.

In the case of Pforzheim(Fig—7b); DRRAiNN-missed-, DRRAINN assigns low importance to an area in the lower right
partthaﬁ%—eeﬂ%tdefedp&ﬁe# Wthe delineated catchment area. This eould-be-explained-by-underground

known underground flows near Pforzheim, as reported in Ufrecht (2002). In the absence of subsurface flows, water would be

expected to pass through Pforzheimifne-underground-lowsexisted;instead-flows-; however, due to the presence of underground
flow paths, it instead moves towards the southeast, entering the Neckar River network in-a-different-channetvia an alternative

route. Our results might-be-evidence-that DRRAINN-suggests that DRRAINN may have detected these unobservable under-

ground flows from precipitation and discharge dynamics;-however,~. However, this hypothesis arguably needs more investiga-

tion in the future.

Note +-that these results fnﬂm}yLEgrvnvavrglserve as a proof of pr1n01ple We eﬂer—pfeseﬂt—ﬁie—fesu}ts—ef—ﬂ&e—best—seed—hefe—”Phts

—present results from the seed producing the
clearest attributions; others yielded qualitatively worse results. However, it is important to keep in mind that DRRAINN is
trained on daily discharge measurements. Learning sharp catchment delineations would require the training data set to contain
sequences in which it rained within the area, but not outside of it, over the extent of a 24 h period. As precipitation is very.
dynamic on this time scale, the chances for this are relatively low. In the future, we expect sharper results if we go from daily
to hourly discharge data.

34 Ablations

To assess both the physical plausibility and contributions of specific architectural components, we conducted a series of
ablations on DRRAINN (Appendix A). First, we showed that DRRAINN can exploit the DEM as a positional encoding by
training, validating, and testing it on a rotated DEM. However, it did result in slightly worse performance and less physically
plausible behavior (Appendix Al). Next, we evaluated the model’s inductive bias in distinguishing between spatially extended
and local processes (Appendix A2). Last, we removed the hypernetworks to examine their impact (Appendix A3). Both
ablations led to performance degradation across most metrics and lead times. However, the differences were not always
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significant. Importantly, neither ablated model was able to produce physically realistic catchment areas, as demonstrated both
ualitatively and quantitatively.

4 Discussion

In-this-werk;—we-present-We _introduce DRRAINN, a fully differentiable, fully distributed neural network architecture that

sueeesstully-estimatesfor estimating river discharge from past discharge,
gridded elevation maps, and gridded precipitation and solar radiation. Individual-instanees-of DPRRAINN-can-produce-better
KGE-DRRAINN demonstrates better performance than EFAS with-on lead times of up to +06-50 days. This shews-indicates
that DRRAINN can produce reasonable-valid estimations far into the future even-though-it-was-only-trained-on-despite it being
trained on sequences of only 20 W&@mmmmw@wm&@m

Our analysis reveals that i
of discharge estimation varies across gauging stations. Interestingly, both DRRAINN and EFAS tend-to-identify-consistently.
struggle with the same stationsas—challenging—to-prediet, suggesting that the dlfﬁculty is intrinsic to the stations and their

associated data rather than specific to the model architecture.

factors—Stations-influeneed-Several factors likely contribute to this variability. For example, stations affected by unobserved

variables like-such as complex subsurface topography, land cover heterogeneity, or anthropogenic factors (e.g., dam operations)

may pese-greaterchallengesfor-both-medelsbe inherently harder to model. Furthermore, spatial variations in the quality of

input data could contribute to discrepancies in performance. Future investigations empteying-using attribution techniques

could offer deeper insights into these station-specific variations and guide the development of architectural modifications or

regularizationsregularization to address these challenges effectively.

Our ablation studies highlight-the-impertanee—show the benefits of distinguishing between spatially extended and local
processes, as—wel-as-the-ineorporation—of-and of incorporating hypernetworks. The inabitity—of-reduced performance and

failure of the ablated models to produce realistic catchment areas suggests that these components encode crucial hydrological
processes, such as water movement ever-across complex topographies. This finding-indicates-that-certain-inductive-biases-not
onby-suggests that incorporating appropriate inductive biases can both improve model interpretability but-atse-prevent-and
reduce the risk of learning spurious correlations.
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Interestingly, the model instance

performanee-metries—This-highlights—that produces the most physically plausible attribution maps is not the one with the
best predictive performance. This points to a trade-off between optimizing for predictive accuracy and ensuring-the-model

the-training-datathey-encouraging physically realistic model behavior. This suggests that conventional performance metrics
while effective at evaluating predictive accuracy, may not fully eapture-the-alignment-with-reflect whether the model adheres
to underlying physical principles.

Amnrinerease-in-Increasing the amount of training data is-always-benefieialin-machine-learninggenerally enhances performance
in ML. Currently, PBDRAINN-DRRAINN is not designed for scalability, as its application is expected to require retrain-
ing for-in each specific context. A first-step-towards—improving-itsnatural step toward improving adaptability would be to
train-DDRAiNN-training DRRAINN on hourly discharge data. We-antieipate-this—would-yield-performance-improvements
and-qualitatively-better attributions—potentiatlyeven-eapturing-the-This could improve performance and attribution quality,
@WMOH@HS of individual peaks-in-the-hydrographs—To-explore-the-model’s-spatial

As-traditional process-based-models-make-use-ef-many-mere-discharge peaks. Since traditional PBMs rely on a wider range
of input variables, feeding them as additional inputs could also lead to performance improvements in DRRAiNNas-wett. This

includes land cover, geelogy;soeilparent material, soil texture, vegetation, temperature, and potential evapotranspiration among
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others. Interpretability methods can then be used to perform a sensitivity analysis, revealing which input variables are important

when and, due to our model being fully distributed, where. These methods may also provide insights into the model’s internal
representations, potentially uncovering links to real-world hydrological variables.

even-weeks before tFraub-et-al;2024b)-Several strategies can be employed to investigate DRRAINN's spatial generalization
capabilities. One approach is to leave out individual stations within a river network during training to evaluate generalization
within hydrologically connected regions. A more demanding test of generalization would involve training and testing on
different river networks. By testing it on catchments that are not part of the training data, we can systematically assess its
ability to generalize to unseen regions. Ultimately, we aim to apply DRRAINN to diverse catchments across Germany, Europe,
or globally. Due to DRRAINN's data-driven nature, discharge measurements will always be needed for training. However,

recent advances in remote sensing may enable the application of DRRAINN to ungauged river networks (Gigi et al., 2019).

30



780

785

790

795

800

805

5 Conclusions

In this stadypaper, we introduced DRRAINN, a fully distributed neural network architecture that estimates river discharge
from precipitation, solar radiation, elevation maps, and past discharge measurements from gauging stations. Despite being
trained on sparse target data ;— namely daily discharge observations from enly—7-stations—-17 stations over ten years —
DRRAINN outperforms the operational benchmark model EFAS in terms of KGE and NSE across various lead times. Beyond
its predictive accuracy, DRRAINN provides physically interpretable attributions, enabling the identification of precipitation
sources contributing to discharge at specific stations. Our analyses highlight the importance of incorporating hydrologically
meaningful constraints, or inductive biases. These biases not only enhance interpretability but also ensure-the-model-adheres
to-help the model align more closely with physical principles, as evidenced by its ability to delineate realistic catchment areas.
With its predictive performance, interpretability, and physical consistency, DRRAiNN represents a promising step forward in

the application of neural networks to distributed hydrological modeling.

Code and data availability. The preprocessed data sets can be found at Scholz et al. (2024a). The code can be found at Scholz et al. (2024b).

Appendix A: Ablations

Al Rotated elevation map

We want-to-check-whether DRRAINN-makes-plausible-use-of-aim to assess whether DRRAINN utilizes the elevation map in
a physically plausible way — specifically, to propagate water downwards-over-downhill across the landscape. An alternative

would be that DRRAINN uses-theelevation-leverages the elevation map primarily as a positional encoding, allowing it to
orient itself in

location-specific biases. In practice, both mechanisms are likely at play to some degree.
To examine this, we here—trainand—validate DPRRAINN—with-train, validate, and test DRRAINN using the same elevation

map as before, but rotated by %ﬁegmes—ﬁm«ha&fhe—adwﬁg& 80°. This setup preserves the statistics of the elevation

map

el’lSLlI'll’l a fair comparison.

For most metrics and lead times,

DRRAINN performs better when trained and tested on the orlgmal elevation map in-eontrastcompared to the rotated one (Fig.

Al). r-Nonetheless, its continued superior performance

relative to EFAS — even with the rotated DEM — supports the hypothesis that DRRAINN leverages elevation as a positional
encoding. However-in-this-case;-we-are-not-able-Remarkably, this still enables it to reconstruct plausible catchment areas to

some extent (Fig. A2);-which-is-underlined-by-our-quantitative-measure-. However, our quantitative analysis (Fig. A3) —This
is-evidenee-shows that catchment areas are more accurately reconstructed when DRRAINN is executed on the original DEM.
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Figure Al. Performances based-on-different-metries-of EFAS the best three out of five DRRAINN -model instances and DRRAINN model
instances on a rotated elevation mapwith-, compared to EFAS across different metrics and lead time-times up to +66-50 days. Fheresults

Results are averaged over-the-across all stations;—an
corresponds to a distinct DRRAINN instance.
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Days 11 - 15

Days 16 - 20

All days Days 1 -5 Days 6 - 10

Oppenweiler

Murr

Pforzheim

Lauffen

River network - Gauging station *  Gauging station of interest —— DEM-delineated

Figure A2. Attribution maps of precipitation for discharge estimation at selected stations aggregated-and time intervals, averaged over all

validation-test set sequences with a rotated elevation map. Fhe-brighter-the-color-of-Brighter colors indicate grid cells where precipitation

has a pixet-stronger influence on the more-importantis-preeipitation-in-that-grid-cel-forestimated discharge estimation-at the corresponding
station. Fhe-For comparison, traditional catchment areas inferred-delineated from elevation atene-data are shown-outlined in red.



Attributions within vs outside of DEM-delineated catchment
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Figure A3. Wasserstein distanee-distances between normalized attributions within-inside and outside of-the catchment areas delineated from
the digital elevation model. A higher distance peints-towards-a-indicates better agreement between inferred and delineated catchment areas,
and-therefore-a-suggesting more physically realistic behavior-of-the-model behavior. The-depieted-standard-Standard deviations are computed

over-across the different gauging stations.

This suggests that our original modelmakes—suitable-’s use of the elevation map that-gees-beyond-positional-encodinggoes
beyond mere positional encoding, incorporating hydrologically meaningful information.

A2 AIILSTM

One-A key inductive bias in DRRAINN is the explicit distinetion-separation between spatially extended processes and local
810 processes. Thelateral-propagation-of-water-over-Lateral water movement across the landscape is a spatially extended process
that-is-mainly-primarily driven by elevation. Evapotranspiration, on the other hand, is a local process that is mainty-driven
largely influenced by solar radiation. We ireorperate-this-encode this distinction into DRRAINN by mapping-these processeson

the- DWConv-and-the PWConv-components-within-assigning these processes to different components of the ConvNeXt block-:
the DWConv is parameterized by a CNN that receives elevation as input, while PWConv1 and PWConv2 are parameterized by

815 an MLP that receives solar radiationas-input. In this ablation, we discard this bias by feeding the elevation and solar radiation
togetherwith-the preeipitation— together with precipitation — directly into the PWLSTM. FherefereConsequently, the relativity
bias, realized by subtracting the elevation of the center cell from the elevations of all other cells within each receptive field of
the hypernetwork, is disearded-here-as-welalso removed.

We find-observe a significant performance drop in-earlierlead-times-for all metrics except MAE (Fig. A4). Furthermoreln

820 addition, the inferred catchment areas do-notlook—physicallyplausible-appear less plausible compared to those produced
by DRRAINN (Fig. AS), which-is-underlined-a finding that is supported quantitatively (Fig. A6). Thisshews-thatthe-explieit
Pt e sub-processesisadvantageousfor-DF ININ--beth-These results demonstrate that explicitly distinguishin
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Figure A4. Performances based-on-different-metries-of EFAS the best three out of five DRRAINN ;-model instances and abtated-DRRAINN
model instances where all forcings are fed into the PWLSTMwith-, compared to EFAS across different metrics and lead times up to +66-50
days. Fheresutis-Results are averaged over-the-across all stations;and-the-differentseeds-of-ourmodetare-depicted-with-different-, Each line

stylesstyle corresponds to a distinct DRRAINN instance.
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Figure AS. Attribution maps of precipitation for discharge estimation at selected stations aggregated-and time intervals, averaged over all
validation-test set sequences when all forcings are fed into the PWLSTM. Fhe-brighter-the-eolor-of-Brighter colors indicate grid cells where

precipitation has a pixel-stronger influence on the meore-tmportantisprecipitation-in-that-grid-ceH-for-estimated discharge estimation-at the
corresponding station. Fhe-For comparison, traditional catchment areas inferred-delineated from elevation atene-data are shewn-outlined in

red.
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Figure A6. Wasserstein distanee-distances between normalized attributions within-inside and outside of-the catchment areas delineated from
the digital elevation model. A higher distance peints-towards-a-indicates better agreement between inferred and delineated catchment areas,
and-therefore-a-suggesting more physically realistic behavior-of-the-model behavior. The-depieted-standard-Standard deviations are computed

over-across the different gauging stations.

between spatially extended and local processes benefits DRRAINN in terms of aeeuraey—and-both predictive accuracy and
physical plausibility.

A3 No hypernetworks

Here, we train DRRAINN without hypernetworks to examine-their-usefulnessassess their contribution. To stay close to the
original architecture, we wantto-maintain-the-preserve inductive bias that distinguishes between the spatially extended process
of propagating-water-over-the-landseape-water propagation and the local process of evapotranspiration. ThereforeSpecifically,
the elevation map is concatenated with the hidden state, fed-into-passed through a position-wise linear layer, and eaty-then fed
into the DWConv. This is-neeessary-as-step is necessary because DWConv requires the aumber-ef-input and output channels to
be the-same—Thereforeof equal size. As a result, the relativity bias, realized by subtracting the elevation of the center cell from
the elevations of all other cells within each receptive field of the hypernetwork, is discarded-here-as—well—Selarradiation;on
the-otherhand;is-coneatenated-also removed. For solar radiation, we concatenate it with the hidden state and direetly-fed-feed
the result directly into PWConvl.

Removing the hypernetworks from DRRAINN leads-to-a-significant-deerease-inresults in decreased performance for KGE
especially-during-thefirst-days-and NSE (Fig. A7a )—Fer NSE-this-effect-islesspronounced-(Fig—and A7b);—while-, For
PCC and MAE, we do not observe a systematic difference inPEC-and-MAE-(Fig. A7c and A7d). The ablated model does

net-produce-plausible-attribution-maps-produces less plausible attributions maps compared to DRRAINN (Fig. AS8), whieh-is
underlined-a finding that is supported quantitatively (Fig. A9).
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Figure A7. Performances based-on-differentmetries-of EFAS the best three out of five original DRRAINN -model instances and DRRAINN

model instances without the-hypernetworkswith-, compared to EFAS across different metrics and lead time-times up to +66-50 days. Fhe

resutts Results are averaged ever-the-across all stations;-and-the

corresponds to a distinct DRRAINN instance.
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Figure A8. Attribution maps of precipitation for discharge estimation at selected stations aggregated-and time intervals, averaged over all
validation-test set sequences without hypernetworks. Fhe-brighter-the-eolor-of Brighter colors indicate grid cells where precipitation has

a pixel-stronger influence on the mere-important-is-preeipitationin-that-grid-eelt-for-estimated discharge estimation-at the corresponding
station. Fhe-For comparison, traditional catchment areas inferred-delineated from elevation atene-data are shown-outlined in red.
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Figure A9. Wasserstein distanee-distances between normalized attributions within-inside and outside of-the catchment areas delineated from
the digital elevation model. A higher distance peints-towards-a-indicates better agreement between inferred and delineated catchment areas,
and-therefore-a-suggesting more physically realistic behavior-of-the-model behavior. The-depieted-standard-Standard deviations are computed

over-across the different gauging stations.

840 Appendix B: Alternative hyperparameters

In this appendix, we report the performance of DRRAINN under alternative hyperparameters settings. In the default configuration,
the LSTM in the rainfall-runoff model has a hidden size of 4, and the GRU in the discharge model has a hidden size of 8.
Here, we examine DRRAINN’s performance using both smaller and larger hidden sizes. Additionally, we assess the impact of
replacing the GRUs in the discharge model with LSTMs.

845 B1 Rainfall-runoff model with hidden size 2

Figure B1 shows that reducing the hidden size of the rainfall-runoff model from 4 to 2 still yields a competitive model. On
average, it performs slightly worse during the initial days. However, due to the variance in performance across different seeds
additional experiments are required to draw a more definitive conclusion.

B2 Rainfall-runoff model with hidden size 6

850 Figure B2 shows that increasing the hidden size of the rainfall-runoff model from 4 to 6 slightly decreases performance on the
NSE and PCC metrics, while KGE remains largely unaffected. Since no significant improvement is observed, we argue that
the smaller model should be preferred, following Occam’s razor.

B3 Discharge model with hidden size 4
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Figure B1. Performances of the best three out of five original DRRAINN model instances and DRRAINN model instances with a hidden

size of 2 in the rainfall-runoff model, compared to EFAS across different metrics and lead times up to 50 days. Results are averaged across

all stations. Each line style corresponds to a distinct DRRAINN instance.
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Figure B2. Performances of the best three out of five original DRRAINN model instances and DRRAINN model instances with a hidden

size of 6 in the rainfall-runoff model, compared to EFAS across different metrics and lead times up to 50 days. Results are averaged across

all stations. Each line style corresponds to a distinct DRRAINN instance.
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Figure B3. Performances of the best three out of five original DRRAINN model instances and DRRAINN model instances with a hidden

size of 4 in the discharge model, compared to EFAS across different metrics and lead times up to 50 days. Results are averaged across al

stations. Each line style corresponds to a distinct DRRAINN instance.
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Figure B4. Performances of the best three out of five original DRRAINN model instances and DRRAiINN model instances with a hidden

size of 16 in the discharge model, compared to EFAS across different metrics and lead times up to 50 days. Results are averaged across all

stations. Each line style corresponds to a distinct DRRAINN instance.

Figure B3 shows that reducing the hidden size of the discharge model from 8 to 4 significantly reduces performance across all

855 metrics and lead times.

B4 Discharge model with hidden size 16

Figure B4 shows that increasing the hidden size of the discharge model from 8 to 16 leads to mixed results. While KGE appears
to deteriorate, NSE and PCC show slight improvements, particularly at longer lead times. Since no significant improvement
can be observed, we argue that opting for the smaller model align better with Occam’s razor.

44



0.75 -

0.70

0.65 —

KGE
NSE

0.60 —

0.55 —

0.90

0.85

= 0.80

0.75 —

0.70 —

DRRAINN —— EFAS = Discharge LSTM

Figure B5. Performances of the best three out of five original DRRAINN model instances and DRRAINN model instances with LSTMs

instead of GRUs in the discharge model, compared to EFAS across different metrics and lead times up to 50 days. Results are averaged

across all stations. Each line style corresponds to a distinct DRRAINN instance.

860 B5 Discharge model with LSTM

Figure BS shows that replacing the GRUs in the discharge model with LSTMs significantly reduces performance across

all metrics and almost all lead times. This suggests that model complexity should reflect the complexity of the underlying.

dynamics: river flow tends to follow simpler dynamics than surface and subsurface flow, which we model with an LSTM.

Moreover, water typically resides in channels for shorter periods compared to its residence time below ground. This may
865  explain the superior performance of GRUs in the discharge model, though further investigation is warranted.
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