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Abstract. Traditional hydrological modeling simulates rainfall-runoff
::::::
process

:
dynamics using process-based models (PBMs),

which .
::::::
PBMs

:
are grounded in physical laws and therefore highly interpretable. Due to environmental systems being

::
As

:::::::::::
environmental

::::::::
systems

:::
are highly complex, though, sub-processes

::::::::::
subprocesses

:
are sometimes hard or even impossible to

identify and quantify. Alternatively, data-driven
:::::::::
Data-driven

:
approaches, like deep

:::::::
artificial

:
neural networks (DNNs),

:::::::
ANNs),

::::
offer

::
an

::::::::::
alternative.

:::::
Such

:::::::::
approaches

:
can automatically discover

::::::
hidden

:
relationships within the data, which often leads to5

superior performance. Due to DNNs’ complexity, however, these .
:::
As

:
a
::::::

result,
:::::::
superior

::::::
model

::::::::::
performance

::::
may

:::
be

::::::::
achieved.

::::::::
However,

:::
the

:::::::::
uncovered relationships are hard to investigate

::::::
analyze

:::::
within

:::::::::
black-box

::::::
ANNs and often fail to respect phys-

ical laws. Differentiable modeling
::::::::::::
Differentiable

::::::::
modeling

:
calls for knowledge discovery by combining both approachesto

benefit
:
,
::::::::
benefiting

:
from their respective advantages. In this work, we present

:
a

::::::::
physically

::::::::
inspired,

::::
fully

::::::::::::
differentiable,

::::
and

::::
fully

:::::::::
distributed

::::::
model,

:::::
which

:::
we

::::
term

:
DRRAiNN (Distributed Rainfall-Runoff ArtIficial Neural Network), a targeted neural10

network architecture that successfully .
::::::::::
DRRAiNN

:
is
::
a
:::::
neural

:::::::
network

::::::
model

:::
that

:
estimates river discharge based on meteoro-

logical forcings and elevationin .
::::::::
Focusing

::
on

:
the Neckar river basin, relying on

::::::::
catchment

::
in

:::::::::
Southwest

::::::::
Germany,

::::::::::
DRRAiNN

:
is
::::::
trained

::
to
::::::
predict

:
daily water discharge measurements from only

:::::
using

::::
data

::::
from 17 stations . We evaluate our model against

the
:::
and

::::
from

:::
ten

:::::::::::::
meteorological

::::
years

:::::
only.

:::::::::::
DRRAiNN’s

::::::::::
performance

::
is
:::::::::
compared

::
to

:::
the

::::::::::
performance

::
of

:::
the

:
European Flood

Awareness System (EFAS) reanalysison the Neckar river catchment in Southwest Germany, where some .
::::::

Some instances of15

our model outperform EFAS at lead times of over 100 days . Our model architecture is physically inspired, fully differentiable ,

::
50

::::
days

::
in

:::::
terms

::
of

:::
the

::::::
applied

:::::::
metrics

:::
for

:::::
model

:::::::::::
performance.

:::
As

:::::::::
DRRAiNN

::
is
::::
fully

::::::::::::
differentiable and fully distributed. This

combination enables the use of
:
, efficient source allocation algorithms , which help us identify the water

:::
can

::
be

::::
used

::
to

:::::::
identify

::
the

:::::::::::
precipitation

:
sources responsible for the water discharge dynamics at specific gauging stations. In the future, this approach

::::::
Besides

:::::::::::
DRRAiNN’s

::::::::
potential

::
to

:::::::
forecast

::::::::
upcoming

:::::
water

:::::::::
discharge

::::::::
dynamics,

:::
its

:::
full

:::::::::::::
differentiability

:
could be utilized to ,20

e.g., infer erosion sites from turbidity data,
::::::::::
particularly when integrated with an appropriate erosion model.

1 Introduction

Accurate water flow forecasting plays a critical role in mitigating short-term flood impacts, such as preventing loss of life and

reducing economic damage (Pilon, 2002). For example, simulating river discharge empowers us to make informed decisions

:
is
::
a
::::::::::
prerequisite

:::
for

::::
flood

:::::::::
inundation

:::::::::
modeling

:::::::::::::::::
(Hunter et al., 2007)

:::
and

::::::
enables

::::::::
informed

::::::::::::::
decision-making

:
in water manage-25
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ment such as dam operations (Valeriano et al., 2010). Accuracy is not everything though. Good hydrological models should

:::::::::::
Hydrological

::::::
models

:::
that

:
respect physical laws to be able to

::
are

:::::
more

:::::
likely

::
to

:
generalize well to new situations , and to offer

insights into the underlying processes that govern water movement. A solid understanding of the dynamics of water systems is

necessary to estimate the impacts of environmental planning and to improve infrastructure design (Palmer et al., 2008; Bharati

et al., 2011). It also enables a better assessment of how climate change might
::::
may alter existing ecosystems in the future30

(Palmer et al., 2008; Van Vliet et al., 2013; Al Hossain et al., 2015). Additionally, models that respect physical laws can be

used to infer the origins of observed discharge, thereby further facilitating the development of policies that mitigate the dam-

ages caused by floods. On a practical level
::::
From

::
a

:::::::
practical

::::::::::
perspective, a good model should be easily tuned

:::::
allow

:::::::
efficient

:::::::::
calibration and perform well even if data is

::
are

:
sparse, which is often the case for river discharge.

To address some of these challenges , hydrologists traditionally employ
::::::::::
Traditionally,

:::::
these

:::::::::
challenges

::::
have

::::
been

:::::::::
addressed35

::::
using

:::::::::
physically

:::::
based

:::::::::
approaches

::::
that

::::::::
explicitly

::::::
encode

::::::
domain

::::::::::
knowledge.

:::::
These process-based models (PBMs) that describe

physical processes with mathematical equations derived from physical laws and observations (Brutsaert, 2023). This renders

PBMs inherently interpretable, allowing researchers to ask specific questions by probing them. Some components of PBMs

might be inferred from experiments in a laboratory, such as Darcy’s law (Darcy, 1856). Others are based on simplifications of

more general physics equations.40

To simplify models further, sometimes lumped approaches are employed. Here, meteorological forcings like precipitation are

averaged over time and space on the basin scale. Therefore, the outline of the basin must be available a priori for this approach

to be feasible. The outline is usually inferred from a digital elevation model, thereby potentially disregarding underground

flows and pipes.

Real-world processes can be very complexwith lots of
::::::::::::
Environmental

::::::::::
hydrological

::::::::
processes

:::
are

::::::
highly

::::::::
complex,

::::::::
involving45

::::::::
numerous

:::::::::
interacting

:
variables that make the overall process highly heterogeneous (Marçais and de Dreuzy, 2017). Recent

advances, such as the Multiscale Parameter Regionalization (MPR) framework (Samaniego et al., 2010) and scalable transfer

function approaches (Imhoff et al., 2020) have focused on improving parameterization and capturing spatial heterogeneity

in distributed hydrological models
:::::
PBMs

:
to alleviate these issues. To reduce uncertainty and initialize PBMs adequately,

data assimilation incorporates concrete observations into running models (Liu et al., 2012; Camporese and Girotto, 2022;50

Montzka et al., 2012). Advancements
::::
Such

::::::::::::
advancements in data assimilation can improve performance both in

:
in

::::
both

:
lumped

(Moradkhani et al., 2005; Liu and Gupta, 2007; Liu et al., 2012) as well as
:::
and distributed models (Rakovec et al., 2012).

Nevertheless, usually, not all involved sub-processes
::::::::
However,

:::::::::
significant

:::::::::
challenges

:::::::
remain,

::
as

:::
the

::::::::
involved

::::::::
processes

:
and

their interactions are known
:
in

:::::
most

:::::
cases

::::
only

:::::::
partially

::::::::::
understood

:
(Hrachowitz et al., 2013), leading to high uncertainty

and biases . Even if a sub-process is known , though,
::::::
process

::
is
::::::
known

:::::
well

::
in

:::::
detail,

:
certain input variables may simply55

be unobservable, such as underground topography. Additionally, the scales of real-world processes may be very different

compared to lab
:::::::::::
environmental

::::::::
processes

:::::
often

:::::
occur

::
at

:::::
scales

::::
that

:::::
differ

:::::::::::
substantially

::::
from

:::::
those

::::::::
observed

:::::
under

:::::::::
laboratory

conditions (Hrachowitz et al., 2013; Shen, 2018; Nearing et al., 2021).

As is the case for many sciences, the amount of available data for hydrology is increasing significantly (Sit et al., 2020).

But even with abundant data, PBMs struggle to fully exploit them: Only little data is used to adapt their parameters, which60
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nevertheless is a lengthy and costly process since it is often done manually by experts (Shen et al., 2023). Since the parameters

are usually calibrated for a specific basin only, these tuned models do not generalize well to other basins with different

properties (Hrachowitz et al., 2013; Nearing et al., 2021). This is especially problematic for countries of the Global South for

which no detailed land surface and subsurface measurements are available but where intelligent water management might be

even more important.65

The discovery of relationships in huge amounts of data is a challenging task for which ANNscan be a remedy. In contrast to

PBMs, ANN approaches are mainly data-driven, allowing them to automatically find relationships in the training data.

:::::::::::::
Complementary

::
to

::::::
PBMs,

::::::::::
data-driven

:::::::
models

::::
have

::::::
gained

:::::::
traction

:::
in

:::::
recent

::::::
years,

::::::
driven

::
by

::::
the

:::::::::
increasing

::::::
amount

:::
of

:::::::
available

:::::::::::
hydrological

:::
data

::::::::::::::
(Sit et al., 2020).

::::::::
Artificial

:::::
neural

::::::::
networks

:::::::
(ANNs)

:::
are

:::::::::
data-driven

:::::::
models

:::
that

:::::::::::
automatically

:::::
learn

::::::::::
relationships

:::::
from

::::
large

:::::::
datasets.

:
Given the superior performance of early data-driven approaches in hydrology, there is reason70

to assume that the
:
it

::
is

:::::
likely

:::
that

:::
the

:::
full

:
potential of data-driven approaches has by no means been fully exploited, yet

:::::::
remains

:::::::
untapped

:
(Shen, 2018; Nearing et al., 2021). However, the relationships found by ANNs often remain latent due to their high

complexity. ANNs contain huge amounts of parameters and states that usually do not directly relate to real-world quantities.

Training them is feasible only due to gradient descent via automatic differentiation. This process is lengthy and costly. Once

an ANN is trained, though, inference is very fast and cheap. Their high complexity also often leads to neural networks not75

respecting physical laws despite very good performance, in turn leading to bad generalization capabilities
:::::
despite

:::::::::
achieving

:::::
strong

:::::::::
predictive

:::::::::::
performance,

:::::
ANNs

:::::
often

:::
fail

::
to
:::::::

respect
:::::::
physical

::::
laws

::::
due

::
to

::::
their

::::::
purely

:::::::::
data-driven

::::::
nature. This calls for

measures that guide
::::
such

::
as

::::::
hybrid

::
or

:::::::::::::::
physics-informed

::::::
models

:::
that

::::
bias

:
data-driven approaches toward physical plausibility.

While other Earth sciences started to adopt machine learning (ML) techniques, hydrology seems to lag behind (Shen, 2018)

. There is a significant amount of distrust in the community toward non-physical models (Blöschl et al., 2019). But this is not80

the only reason: In line with the above-mentioned lack of coordination, the field is missing benchmarks that are easy to access

and enable a fair comparison between models (Hrachowitz et al., 2013; Sit et al., 2020; Nearing et al., 2021), although there

are some recent efforts (Kratzert et al., 2023). Nevertheless, the amount of available data is steadily increasing. This is exactly

where ML techniques offer great potential. They can be trained on vast amounts of data and infer relationships in the data

automatically. It was already shown that ML often outperforms traditional approaches with regards to accuracy (Shen, 2018).85

It is often criticized , that ML modelers
::::::::::
Furthermore,

::
it
::
is

:::::
often

:::::::
criticized

::::
that

:::::::::
developers

::
of

::::::::
machine

:::::::
learning

::::
(ML)

:::::::
models

do not put enough effort into the interpretation of their developed systems
:
,
:::::
failing

:
to gain a better understanding of their

:::
the

:::::::
system’s internal dynamics (Muñoz-Carpena et al., 2023). As mentioned above

:::
One

:::::::::
promising

::::::
avenue

:::
to

::::::::
overcome

:::::
these

:::::::::
limitations

::::::::
involves

:::::::::
leveraging

::::
ML

::
to

::::
infer

:::::
latent

::::::::
variables

::::
that

:::
are

:::::::::
otherwise

::::::::::
inaccessible

::
to

:::::
direct

::::::::::::
measurement.

:::
To

::::
give

::
an

::::::::
example, a considerable amount of runoff is situated below the ground and90

therefore not observable
::::::
portion

::
of

::::
total

::::::::
discharge

:::::::::
originates

:::::
from

:::::::::
subsurface

::::
flow. It is not yet possible to see through the

ground, rendering the underground topography latent
::::::
directly

::::::::
measure

:::::::::
subsurface

:::::
flow,

::::::
making

:::::::::::
underground

::::::::::
topography

::
a

::::
latent

::::::
driver

::
of

:::::::::::
hydrological

::::::::
behavior (Shen, 2018). We believe that these latent variables are the reason that models often

generalize poorly to other basins. However, this is another problem where
::::
may

:::::::::
contribute

::
to

:::::
poor

::::::
model

::::::::::::
generalization

:::::
across

::::::
basins.

:
ML and especially ANNs can help since latent variables can be inferred retrospectively from observations95
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(Butz et al., 2019; Otte et al., 2020). One question we will ask
::::::
support

:::::::::::
hydrological

::::::::
modeling

::
in
:::::

such
:::::
cases,

::::::::
because

::::
they

::::
allow

:::
to

::::
infer

:::::
latent

::::::::
variables

::::::::::::
retrospectively

:::::
given

::::::::::
observation

::::::::
dynamics

:::::::::::::::::::::::::::::
(Butz et al., 2019; Otte et al., 2020).

::::
This

:::::::::
motivates

:
a
:::
key

::::::::
question

:::
we

::::::
address

:
in this paperis: :

:
Given the observed dynamics, in which areas did precipitation contribute to the

measured discharge? A similar argument can be made for evapotranspiration, which is not directly observable as well. This

kind of model inversion (Sit et al., 2020) therefore renders another possibility100

::::::
Similar

::
to

::::::::::
subsurface

::::
flow,

::::::::::::::::
evapotranspiration

::::::
cannot

:::
be

::::::
directly

:::::::::
measured

:::
and

:::::
must

::::
also

:::
be

:::::::
inferred

:::::::::
indirectly.

::::::
Model

::::::::
inversions

::
of

::::
NNs

::::::::::::::
(Sit et al., 2020)

:::
may

::::::::
therefore

::::
help to extend our understanding of the water cycle with ML. For a comprehensive

review of modern ML
::::::
broader

:::::::
overview

:::
of

:::
ML

::::::::::
applications in hydrology, we refer the reader to Shen (2018)

:::
and

:::::::::::::
Sit et al. (2020)

.

A combination of the above-mentioned
:::::
PBMs

::::
and

:::::::::
ML-based approaches could leverage the advantages of both worlds. If105

pursued
:::::
When

::::::::
combined

:
with the goal of knowledge discovery, this combination was recently coined

::::::::
approach

::
is

:::::::
referred

::
to

::
as

:
“differentiable modeling” (Shen et al., 2023). It could result in well-performing interpretable models that automati-

cally find new relationships in the data, respect physical lawsand therefore generalize well and need ,
:::::::::
generalize

::::
well

::::::
across

:::::::
different

:::::::
settings,

:::
and

:::::::
require comparatively little data. It offers two different perspectives: Coming from traditional modeling

approaches, the incorporation of differentiable model parts allows to automatically close knowledge gaps. This could manifest110

in various ways, such as estimating unknown parameters or representing entire sub-processes using approaches like artificial

neural networks.

Coming from the ML side, relationships that are known to be true
::::
From

:::
the

::::
ML

::::::::::
perspective,

::::::
known

:::::::::::
relationships can be

incorporated into already differentiable models as constraints , or inductive biases. These inductive biases introduce
::::::::
Inductive

:::::
biases

::::::
encode

:
prior assumptions about the data-generating process, effectively constraining the model’s solution space. By115

doing so, they can improve performance, enhance generalization, and make learning more efficient. Furthermore, they help

guide the model towards discovering meaningful
::::::::::
interpretable

:
structures in the data, aligning its behavior with established

principles (Butz et al., 2024).

Our work builds on differentiable modeling, presenting DRRAiNN (Distributed Rainfall-Runoff ArtIficial Neural Network),

a physics-inspired, fully differentiable, fully distributed rainfall-runoff model. Our targeted spatio-temporal artificial neural120

network (ANN) architecture estimates river discharge at given measurement stations from gridded precipitation, solar radiation,

elevation, and past discharge. This approach poses a severe challenge
::
A

::::::
crucial

::::::::
challenge

:::
for

:::
the

:::::::
modeler

::
is
:
to ANN-based

learning approaches, though: the targeted river discharge data is very sparse. To avoid overfitting and to improve interpretability

and generalization, we had to incorporate several physics-inspired inductive biases into DRRAiNN. One of these biases is the

modularization into a spatially fully distributed rainfall-runoff model and a graph-based river discharge model. Another one125

preconditions DRRAiNN to represent the sub-processes of lateral propagation of water over the landscape and evapotranspiration

in certain sub-components. With this, we hope to show that deep learning approaches must not necessarily be perceived as

purely black boxes. Instead, they can be designed to contain meaningful components that correspond to sub-processes of the

overall real-world process. To a certain extent, their inner workings can be interrogated with interpretability methods to show

what their estimations are based on.130
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We thus focus on successfully designing and training such a fully differentiable model. We evaluate the DRRAiNN’s

estimation abilities, physical plausibility, and the need for our main design choices. We showcase its performance in a real-world

setting on the Neckar River in Southwest Germany, comparing it with simulations from the European Flood Awareness System

(EFAS, Mazzetti et al. (2023)). DRRAiNN outperforms EFAS with lead times of up to 45 days. Due to DRRAiNN being

fully distributed and fully differentiable, our approach allows us to answer ‘where’ questions, such as : What is the true135

catchment area, including underground flows? That is, DRRAiNN opens up the possibility for performing source allocations

using gradient-based techniques like integrated gradients (Sundararajan et al., 2017). These techniques can help in examining

and understanding internal model dynamics, potentially leading to knowledge discovery and thereby further repealing the

black box perspective. We show reconstructed catchment areas from observed dynamics, demonstrating the feasibility of

attribution methods within DRRAiNN
:::
find

::::
and

::::::::::
incorporate

:::::
those

:::::
biases

::::
that

::::::
restrict

:::
the

:::::::
solution

::::::
space

::
as

:::::
much

::
as
::::::::

possible140

::::::
without

::::::::::
introducing

:::::::
incorrect

:::
or

:::::::::
unjustified

::::::::::
assumptions

:::
and

:::::::
without

:::::::::
restricting

::
the

:::::::::::::
self-organizing

::::::
power

::
of

::::
NNs.

2 Related Work

In their seminal work, Kratzert et al. successfully use LSTMs
::::
have

::::::::::
successfully

:::::
used

:
a
:::::

long
:::::::::
short-term

:::::::
memory

::::::::
(LSTM)

(Hochreiter and Schmidhuber, 1997) for rainfall-runoff modeling on a daily scale (Kratzert et al., 2018)
::
at

:::
the

:::::
basin

:::::
scale

:::::::::::::::::
(Kratzert et al., 2018)

:
,
::::::::::::
demonstrating

::::
that

:::::
purely

::::::::::
data-driven

:::::::
models

:::
can

::::::
exceed

:::::::::
traditional

::::::::
methods. Since then, numerous145

studies have emerged, applying basically
:::::
largely

:
the same model to various data sets (Sit et al., 2020). Notably, signifi-

cant advancements to the model have also been made, including the incorporation of physical constraints (Kratzert et al.,

2019; Hoedt et al., 2021), uncertainty estimation (Klotz et al., 2022), and the extension of modeling to multiple timescales

(Gauch et al., 2021).
:::::
Hybrid

:::::::
models

::::
such

:::
as

:::::
neural

::::::
ODEs,

::::::
where

:::::::::
differential

:::::::::
equations

::
of

:::::::::
conceptual

:::::::::::
hydrological

:::::::
models

::
are

::::::::
replaced

:::
by

:::::
neural

:::::::::
networks,

:::::
were

::::
also

::::::
applied

:::
in

:::
this

::::::
setting

::::::::::::::::
(Höge et al., 2022)

:
. All of the above-mentioned models150

have in common that they are lumpedmodels, i.e., forcings
:::::::::::::
aforementioned

::::::
models

:
are

::::::
lumped,

::::::::
meaning

:::
that

::::::
inputs

:::
are spa-

tially aggregated over the catchmentarea which was inferred from a digital elevation model. This practice is so prevalent that

it is often not even mentioned in the papers. In semi-distributed modeling, models make limited use of the river topology

(Xiang and Demir, 2020; Moshe et al., 2020; Sit et al., 2021; Kratzert et al., 2021). Here, the catchment area is divided into

multiple sub-basins that can communicate with each other
:::
each

::::::::::
catchment.

:::::
These

::::::::::
catchments

:::
are

::::::::
typically

:::::::::
delineated

:::::
using155

:::::
digital

::::::::
elevation

:::::::
models.

:::::::::::::
Semi-distributed

:::::::
models

:::::::
partially

::::::::
leverage

::::
river

::::::::
network

::::::::
topology,

:::::::::
providing

:
a
:::::::::::

compromise
::::::::
between

::::::
lumped

::::
and

:::::
fully

:::::::::
distributed

:::::::::::::
representations.

:::::
These

::::::
include

:::::
purely

::::::::::
data-driven

::::::::::
graph-based

::::::
models

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Xiang and Demir, 2020; Moshe et al., 2020; Sit et al., 2021; Kratzert et al., 2021; Sun et al., 2022; Chen et al., 2022)

:
,
::
as

::::
well

::
as

::::::
hybrid

::::::::::
approaches

:::
that

::::::::
integrate

::::::
domain

::::::::::
knowledge

:
–
:::
for

::::::::
example,

:::
by

:::::
using

:
a
::::::::::::
differentiable

::::::::::::::::
Muskingum-Cunge

::::::
routing

::::::
model

::::::::::::::::::::::::::::::::
(Bindas et al., 2024; Zhong et al., 2024)

:
.
:::::
These

:::::::
models

::::::::
typically

::::::
divide

:::
the

::::::
overall

:::::::::
catchment

::::
into

::::::::
multiple160

::::::::
subbasins

:::::::::
connected

:::
via

:::
the

:::::
river

::::::::
network,

:::::::
enabling

:::::::
limited

::::::
spatial

:::::::::
interaction. Within each sub-basin

:::::::
subbasin, however,

forcing are again spatially aggregated.
:::::::
forcings

:::
are

:::
still

:::::::
spatially

::::::::::
aggregated,

::::::
similar

::
to

:::::::
lumped

::::::
models.

:
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In contrast, fully distributed models
::::::
directly

:
operate on a grid without any spatial aggregation. Even though

:::::
spatial

:::::
grid.

:::::
While there is a call for more fully distributed data-driven models for rainfall-runoff modeling (Nearing et al., 2021), not many

approaches exist in the literature.165

The model presented in (Xiang and Demir, 2022) indeed operates
::::
most

:::::::
existing

:::::::::
approaches

::::::
remain

:::::::
limited

::
in

::::::
critical

:::::
ways.

:::::
Some

:::::
hybrid

::::::
models

:::::::
operate on a grid , but communication between neighboring cells is only possible in

:::
but

::::::
restrict

:::::::::
cell-to-cell

::::::::::::
communication

:::
to

:
the direction of the steepest descent

::::::
steepest

:::::::
descent

::::::::::::::::::::::::::::::::::::
(Xiang and Demir, 2022; Wang et al., 2024). This

strong assumption essentially turns
:::::::::
effectively

::::::::
transforms

:
the grid into a sparser graph. The

::::::
directed

::::::
graph,

::::::::
excluding

:::::::::
physically

:::::::
plausible

:::::::::::
underground

::::
flows

::
in
:::::
other

:::::::::
directions. CNN-LSTMs presented in (Ueda et al., 2024; Pokharel and Roy, 2024a; Li et al., 2022)170

operate on a grid without any assumption of flow directions
::::::
process

::::::
gridded

:::::
input

::::
data

::::::
without

:::::::
explicit

::::::::::
assumptions

:::::
about

::::
flow

::::::::
directions

:::::::::::::::::::::::::::::::::::::::::::::::::
(Ueda et al., 2024; Pokharel and Roy, 2024a; Li et al., 2022). However, the LSTMs are not applied in every grid cell

but instead receive the flattened outputs of the CNNs, which renders the modeling of space and time completely separate.

In (Schmidt et al., 2020), the authors applied
::::
these

::::::
models

:::::::
separate

:::::
spatial

::::
and

:::::::
temporal

:::::::::
processing

:::
by

:::::::
flattening

:::
the

::::::::::::
convolutional

:::::
neural

:::::::
network

::::::
(CNN)

:::::::
outputs

:::::
before

:::::::
passing

:::::
them

::
to

::
an

:::::::
LSTM.

::
As

::
a
:::::
result,

::::::
spatial

::::::::::::
dependencies

:::
are

:::
not

:::::::::
maintained

::::::
across175

::::
time

:::::
steps.

::::
This

:::::::::
limitation

::
is

::::::::
addressed

:::
in

:::::::::::::::
Oddo et al. (2024),

:::::
were

:
a ConvLSTM (Shi et al., 2015) and found that it does

not make use of spatial patterns, which made it perform worse than a lumped approach. In contrast, (Oddo et al., 2024)

used a ConvLSTM to estimate river discharge with a one-hour lead time by flattening
::
is

::::
used

::
to

::::::
jointly

::::::
model

:::::
space

::::
and

::::
time.

::::
Yet,

::::::
before

:::
the

::::
final

:::::::::
discharge

:::::::::
prediction,

:
the outputs of all cells before feeding them into a linear layer. Similarly,

(Longyang et al., 2024) used a modified ConvLSTM architecture combined
:::
grid

::::
cells

:::
are

::::::::
flattened

:::
into

::
a
:::::
single

::::::
feature

::::::
vector180

:::
and

::::::
passed

::::::
through

:
a
:::::
fully

::::::::
connected

:::::
layer.

::::::
Similar

::::::
global

:::::::::
aggregation

::::::::
strategies

:::
can

:::
be

:::::
found

::::::::
elsewhere

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Zhu et al., 2023; Tyson et al., 2023; Pokharel and Roy, 2024b; Xu et al., 2022; Börgel et al., 2025)

:
.
::::::
Moving

:
a
::::
step

:::::
closer

::
to

:::::::
physical

::::::::::
plausibility,

:::::::::::::::::::
Longyang et al. (2024)

::::::::
combined

:
a
::::::::::
ConvLSTM

:
with ridge regression to determine

from which grid pixels the output should be aggregated to estimate discharge at the station. More examples of this kind can

be found in the literature (Zhu et al., 2023; Tyson et al., 2023; Pokharel and Roy, 2024b; Xu et al., 2022)
::::
learn

:::::
which

::::
grid

::::
cells

:::::
should

:::::::::
contribute

::
to

::::::::
discharge

:::::::::
estimation

::
at

::::
each

:::::::
station.

::::
This

::::::
allowed

:::
the

::::::::::::
reconstruction

:::
of

:::::::
plausible

:::::::::::
underground

::::
flow

:::::
paths185

:::::::
between

::::::::
subbasins. Since all of these

::::::::
distributed

:
models aggregate the outputs of the spatial component globally over space,

the model lacks the
:::::::
whether

::::::::
weighted

::
or

::::
not,

::::
they

::::
lack

:::
the incentive to propagate water across the landscape . We therefore

assume that these models behave physically unrealistic and generalize poorly to other basins
:
in
::
a
:::::::::
physically

:::::::
plausible

::::
way.

For a comprehensive list of applications and publications regarding machine learning and hydrology in general, we refer the

reader to (Sit et al., 2020).190

2 Methods

1.1 Study site

The Neckar river network in Southwest Germany has a catchment size of 14 000 km2 and exhibits a heterogeneous landscape:

It encompasses narrow and wide valleys, different kinds of rocks like limestone and sandstone, different types of soils like

clay and marl, underground topographies like karst, and formations like aquifers. This makes the modeling of the Neckar195
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River network a challenging endeavor. To give a concrete example, there are underground flows south of Pforzheim that route

water toward the east, while the elevation modelsuggests a different flow direction. (Ufrecht, 2002). This relationship cannot

be inferred from a digital elevation model alone: Latent underground structures route the water in a different direction than the

elevation model alone would suggest.

The Neckar and its sub-catchments were subject to multiple distributed hydrological studies in the past (Imhoff et al., 2020; Samaniego et al., 2010; Schalge et al., 2021)200

.

The study area used in this work is the Neckar River catchment in Southwest Germany.

1.1 Data

We use the following data as input for DRRAiNN: radar-based precipitation, elevation for above-ground topography,
:::
Our

::::
work

:::::
builds

:::
on

:::::::::::
differentiable

::::::::
modeling

::
to

:::::::
combine

::::
both

::::::::::::
process-based

::::
and

:::::::::
data-based

::::::::
modeling,

:::
and

::
to
:::::::
address

:::
the

:::::::::
challenges205

::
of

:::::::
physical

::::::::::
plausibility,

:::::::::::::
interpretability,

::::
and

:::::
latent

:::::::
variable

:::::::::
inference.

:::
We

:::::::
present

::::::::::
DRRAiNN

::::::::::
(Distributed

::::::::::::::
Rainfall-Runoff

:::::::
ArtIficial

::::::
Neural

:::::::::
Network),

:
a
::::::::::::::
physics-inspired,

::::
fully

::::::::::::
differentiable,

::::
fully

:::::::::
distributed

::::::::::::
rainfall-runoff

::::::
model.

::::
Our

:::::::::::::
spatio-temporal

::::
ANN

::::::::::
architecture

::::::::
estimates

:::::
river

::::::::
discharge

::
at

:::::::
gauging

::::::
stations

:::::
from

::::::
gridded

::::::::::::
precipitation, solar radiation,

::::::::
elevation,

:::
and

::::
past

::::::::
discharge.

::::::::::
DRRAiNN

::
is

::::
fully

:::::::::
distributed

::
in

:::
the

:::::
sense

:::
that

::
it
::::::::
internally

:::::::
operates

:::
on

:
a
:::::

grid.
::::::::
However,

::
its

:::::::
outputs

:::
are

:::::::::
point-wise

::::
river

::::::::
discharge

::::::::::::
measurements

::
at

:::::
given

:::::::
gauging

::::::
station

::::::::
locations.

:::
Its

:::
full

:::::::::::::
differentiability

::::::
allows

::::::::
gradients

::
to

::::
flow

::::::::::
seamlessly210

::::::
through

:::
the

:::::
entire

:::::::
system,

:::::::
enabling

::::::::::
end-to-end

::::::::::
optimization

:::
of

::
all

:::
its

::::::::::
components

::::
with

::::::
sparse

::::::::
discharge

::::::::::::
measurements

:::::
being

::
the

:::::
only

:::::
target

::::::::
variable.

:::
To

:::::
avoid

::::::::::
overfitting, and

::
to

:::::::
improve

:::::::::::::
interpretability

::::
and

::::::::::::
generalization,

:::
we

:::::::::::
incorporated

:::::::
several

:::::::::::::
physics-inspired

::::::::
inductive

:::::
biases

::::
into

:::::::::
DRRAiNN.

::::::
These

::::::
include

:::
the

::::::::::::
modularization

::::
into

:
a
:::::::
spatially

::::
fully

:::::::::
distributed

::::::::::::
rainfall-runoff

:::::
model

::::
and

:::
the

:::::::::
utilization

::
of
::

a
:::::::::::

graph-based
:
river discharge data. Preliminary experiments showed no improvement when

including temperature, therefore we exclude it following Occam’s razor. By restricting the domain to the Neckar River, we215

end up with an area of size 200 km2. After the transformations described in the paragraphs below, all gridded data is reduced

from a 1 km× 1 km gridto a 4 km× 4 km grid by taking the mean. This results in a 50× 50 pixel grid. We use the hydrological

years 2006 to 2015 for training and 2016 to 2018 for validation.

For precipitation, we use the estimated product RADOLAN by the Deutsche Wetterdienst (RADOLAN, 2016), which is

collected from radar stations that are distributed over Germany. The data domain is a 900km× 900km pixel grid with a220

resolution of 1km× 1km that covers all of Germany. This grid forms the basis of the grid our model operates on. RADOLAN

data is log-standardized before being sent to the model due to its long-tail distribution. This means we add 1, take the logarithm,

subtract the mean, and divide by the standard deviation. We replace missing values with 0s, which is the log-standardized mean.

We derive static topography features from the digital elevation model (DEM) EU-DEM v1.1 by the European Union225

Copernicus Land Monitoring Service European Environment Agency (EU-DEM, 2016). We use rasterio (Gillies and others, 2013)

to transform and reproject the data into the RADOLAN coordinate reference system. We also use the DEM to compute the

differences in altitudes between adjacent discharge measurement stations. All these variables are standardized before being

sent to the model, i.e., we subtract their mean and divide by their standard deviation.
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For solar radiation, we use surface short-wave (solar) radiation downwards (SSRD) from the ERA5 data set (Hersbach et al., 2018)230

. We use rasterio (Gillies and others, 2013) to transform and reproject the data into the RADOLAN coordinate reference

system. Like the precipitation data, solar radiation data is log-standardized.

The topography of our river network is determined by the AWGN data set (AWGN, 2023). We use it to compute the

adjacency matrix that describes which stations are connected via river segments and the corresponding river segment lengths.

Finally, we use discharge measurement data to tune in the discharge model
:::::
model.

:::::::::
Additional

:::::::::::
architectural

::::::
choices

:::::::::::
precondition235

:::::::::
DRRAiNN

::
to

::::::
encode

::::::
distinct

:::::::::
processes,

::::
such

::
as

::::::
lateral

::::::::::
propagation

::
of

:::::
water

:::::
across

:::
the

::::::::
landscape

::::
and

::::
local

::::::::::::::::
evapotranspiration.

::
As

:
a
::::::
result,

:::::::::
DRRAiNN

:::::
turns

:::
into

:
a
::::::::
gray-box

::::
deep

:::::::
learning

::::::
model.

::
Its

::::::
model

:::::
design

::::::::::
encourages

::
the

:::::::::::
development

::
of

:::::::::::
sub-modules,

:::::
which

:::::
model

:::::::
surface

:::
and

::::::::::
sub-surface

:::::
water

::::
flow,

:::::
water

::::::
inflow

::::
into

:
a
::::
river

::::::::
network, and , more importantly, as the only target

variable to train and validate our model. We use data collected and provided by the German Federal Institute of Hydrology via

the Global Runoff Data Centre (GRDC, 2024). The data set contains observed daily river discharge from measurement stations240

across the world. Since the location information of the discharge measurement stations is partially wrong, we corrected them

manually. We then try to snap the station locations to the
:::::
water

::::
flow

:::
and

::::::::
discharge

::::::
across

:::
the river network. If this correction

is larger than a certain threshold, the station is discarded. If two stations are very close to each other, one of them is discarded.

Discharge data is log-standardized station-wise before being sent to the model due to its long-tail distribution. This means we

add 1, take the logarithm, subtract the station-wise mean, and divide by the station-wise standard deviation. We replace missing245

values with 0s, which is the log-standardized mean of the corresponding station.

1.1 Model

::::::
Thanks

::
to

:::::::::::
DRRAiNN’s

::::
fully

:::::::::
distributed

:::
and

::::
fully

:::::::::::
differentiable

::::::::::
architecture,

::
it
::
is

:::::::
possible

::
to

::::::
answer

:::::::
spatially

:::::::
resolved

::::::::
questions,

::::
such

:::
as:

::::::
Where

::
is

:::
the

::::
true

:::::::::
catchment

:::::
area,

::::::::
including

::::::::::::
contributions

::::
from

:::::::::::
underground

::::::
flows?

:::
In

:::::
other

::::::
words,

::::::::::
DRRAiNN

::::::
enables

::::::
source

:::::::::
allocations

:::::
using

::::::::::::
gradient-based

::::::::
attribution

::::::::
methods

:::
like

:::::::::
integrated

:::::::
gradients

::::::::::::::::::::::
(Sundararajan et al., 2017)

:
.
:::::
These250

:::::::::
techniques

:::
can

::::
help

::
to

:::::::
examine

:::
and

::::::::::
understand

::::::
internal

::::::
model

:::::::::
dynamics,

:::::::
enabling

:::::::::
knowledge

:::::::::
discovery.

2
:::::::
Methods

We present DRRAiNN, a spatio-temporal artificial neural network
:::::
ANN architecture that estimates river discharge from

static attributes and meteorological forcings in a distributed manner.
:::
We

:::::::
evaluate

:::::::::::
DRRAiNN’s

:::::::::
estimation

:::::::
abilities,

::::::::
physical

:::::::::
plausibility,

::::
and

:::
the

::::::::
necessity

::
of

:::
its

::::::::::
architectural

::::::
design

:::::::
choices.

::::
We

::::::::::
demonstrate

:::
its

::::::::::
performance

:::
in

:
a
:::::::::
real-world

::::::
setting

:::
on255

::
the

:::::::
Neckar

:::::
River

::
in

:::::::::
Southwest

:::::::::
Germany,

:::::::::
comparing

::
it

::
to

::::::::::
simulations

::::
from

::::
the

::::::::
European

:::::
Flood

::::::::::
Awareness

::::::
System

:::::::
(EFAS,

:::::::::::::::::
Mazzetti et al. (2023)

:
).
::::::::::

DRRAiNN
::::::::
achieves

::::::
higher

::::
KGE

::::
and

:::::
NSE

:::::
values

:::::
than

:::::
EFAS

:::
for

::::
lead

:::::
times

:::
of

:::
up

::
to

:::
50

::::
days

::::
and

:::::::
provides

::::::::::
interpretable

::::::
source

::::::::::
attributions

:::
that

::::::
enable

:::
the

::::::::::::
reconstruction

::
of

:::::::
effective

:::::::::
catchment

:::::
areas

::::
from

:::::::
modeled

:::::::::
dynamics.

:

2.1
:::::
Model
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::::::::::
DRRAiNN’s

::::::::
structure

::
is

::::::::
grounded

::
in
::::

the
::::::::
following

::::
data

::::
and

::::::::
structural

::::::::::
information

:::::::
sources.

:
The locations Li = (xi,yi) for260

estimations of discharge in the river network are determined by discharge measurement
::::::
gauging

:
stations that provide observed

discharge Qi,t for time t in 24h
::::
24 h periods. The connectivity of stations, determined by the river network, is encoded in an

adjacency matrix Ai,j . Static maps Sx,y and meteorological forcings Fx,y,t for hourly time points t are encoded on a grid that

spans the whole catchment area of the river network. Given static maps S:,:, meteorological forcings F:,:,t0:ts+T over the whole

duration (t0 . . . ts +T ) in hours, and past discharge Qi,t0:ts over the tune-in period (t0 . . . ts) in days, DRRAiNN f estimates265

future
::::::::
estimates discharge Qi,ts+1:ts+T over a temporal future horizon of T days

::
via

::
a
:::::::
function

:::
f ,

::::::::::
representing

:::
the

:::::::
learned

:::::::::::::
spatio-temporal

:::::::
mapping

:::::::::::
implemented

::
by

:::
the

::::::
model:

Q̃i,ts+1:ts+T = f(S:,:,F:,:,t0:ts+T ,Qi,t0:ts) (1)

,

In contrast to most other neural networks in hydrology, DRRAiNN includes a rainfall-runoff model that is fully spatially270

distributed: We do not lump variables across space over basins, but our model operates on a grid instead. Since surface

/subsurface and
:::::
Since

::::::
surface

::::
and

:::::::::
subsurface

:::::
flow

:::::
differ

::::
from

:
river flow dynamics behave differently as described above,

we model these sub-processes
::::::::::
subprocesses

:
separately. Therefore, DRRAiNN consists of two components, the rainfall-runoff

model and the discharge model. The rainfall-runoff model operates recurrently on a grid, rendering it fully distributed. It is sup-

posed to model surface /subsurface flow
:::
and

:::::::::
subsurface

::::
flow,

:
and evapotranspiration. The discharge model operates recurrently275

on a graph and is supposed to model river flow inside of channels .

DRRAiNN processes a time series in the following manner: Over the whole sequence , we alternately call
:::
and

::::::
output

::::::::
estimated

::::::::
discharge

::
Q̃

::
at

:::
the

::::::
station

::::::::
locations.

::::::
While

:::::::::
DRRAiNN

::
is
:::::
fully

:::::::::
distributed

::
in

::
its

:::::::
internal

::::::::::
computation

::::
over

::
a
::::::
spatial

::::
grid,

::
its

:::::::
outputs

::
are

::::
only

::::::::
available

::
at

:::::::
selected

:::::::
gauging

:::::::
stations.

:

::
At

::::
each

::::
time

::::
step,

::::::::::
DRRAiNN

::::::::
processes

:::
the

::::::::
sequence

::
in

::
an

:::::::::::::
auto-regressive

::::
loop

:::
by

:::
first

::::::::
invoking the rainfall-runoff model,280

which is implemented by a recurrent convolutional ANN, and
:::::::
followed

:::
by the discharge model, which is implemented by a

recurrent graph ANN. The rainfall-runoff model receives static landscape features
::::::
gridded

:::::
static

:::::
maps

::
S and meteorological

forcings
::
F

:
as input to estimate runoff

:::::
model

:::
the

:::::::::
catchment

:
on a grid. It is primed to model two important sub-processes

separately
:::::::::
distinguish

:::::::
between

::::
two

::::::::
important

:::::::::::
subprocesses, namely surface /

:::
and

:
subsurface flow, which is mainly driven by

topography, and evapotranspiration, which is mainly driven by solar radiation. Even though it cannot directly be interpreted as285

such, we call its output
::
It

::::::::
produces

:
a
:::::
latent

:::::::::::::
representation,

:::::
which

:::
we

::::
term

:
runoff

:::::::::
embeddingsince this is the main driver for

the discharge model: The estimated runoff is collected ,
::::::::
extracted

:
at station locations and sent

:::
used

:::
as

::::
input

:
to the discharge

model.
::::::
Despite

:::::
being

:::
the

:::::
main

:::::
driver

::
of

:::::::::
discharge,

:
it
::::::
cannot

:::
be

::::::
directly

:::::::::
interpreted

:::
as

:::::
runoff

::::
due

::
to

::
its

:::::::::::::
self-organizing

::::::
nature.

The discharge model additionally receives an adjacency matrix
::
A that describes the connectivity between stations, static river

segment features, and the (potentially estimated) discharge
:::::
Q:,t−1:

from the previous time step. It estimates discharge
::::
then290

:::::::
estimates

:::::::::
discharge

::
Q̃ for each station, from which the

::::::
training

:
loss is computed.

We implement DRRAiNN in pytorch (Paszke et al., 2019). In the following, we provide a more detailed description of

DRRAiNN’s components. See Fig. 1 for a depiction of the overall model.
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Figure 1. A detailed view
:::::::
Schematic

:::::::
overview

:
of

:::
the DRRAiNN

::::::::
architecture. The gridded rainfall-runoff model ’s task is

::
has

:::
two

::::
main

:::::
tasks:

to propagate
:::::
model the received

::::::::::
redistribution

::
of

:
precipitation over

::::
across

:
the landscapeaccording to the elevation

:
, and to model evapotran-

spiration based on solar radiation. It receives precipitation as its main input to the
:
a point-wise LSTM, whose hidden state is modified by the

::::
states,

:::
but

:::
not

:::
cell

:::::
states,

::
are

::::::
updated

:::::
using

:
a ConvNeXtBlock. The ConvNeXtBlock ’s weights are not static

::::
fixed but produced

:::::::::
dynamically

:::::::
generated

:
by other neural networks

:::::::::::
hypernetworks

::::::::
(indicated

::
by

:::
red

::::::
arrows). The depth-wise convolution ’s

::::::::
(DWConv),

:::::::::
responsible

:::
for

::::
lateral

:::::
water

::::::::::
propagation,

::::::
receives

::
its

:
weights are produced by

::::
from a convolutional neural network

::::
CNN

:
that has

:::
takes

:::::::
elevation

::
as
:::::

input

:::
and

:::::
shares

:
the same receptive field but receives elevation as input. Its main purpose is to model lateral propagation of water over the

landscape
:::::::
DWConv. The point-wise convolutions ’

::::::::
(PWConv1

:::
and

:::::::::
PWConv2),

::::
used

::
to

:::::
model

::::
local

::::::::::::::
evapotranspiration

::::::::
processes,

::::::
receive

:::
their

:
weights are produced by a multi-layer perceptron

::::
from

::
an

::::
MLP

:
that receives

::::
takes solar radiation as input. Its main purpose is to model

evapotranspiration, a process that is local in space. Before the
:::
The

:::::
LSTM

:
hidden state is sent to the discharge model, it is

:::::
further

:
processed

by a simple linear layer
:::::
before

::::
being

::::::
passed

::
to

:::
the

:::::::
discharge

:::::
model. The

:::
This

:
graph-based discharge model then receives the processed

state of the rainfall-runoff model
::::::::
aggregates

:::::::::
information at the measurement

::::::
gauging

:
stations’ locations and processes it together with

:
,

::::::::::
incorporating the last (potentially

::::::
possibly

:
inferred) discharge according to the adjacency of the stations

::::
values, their

::::::
elevation

:
differences in

altitudes
::::::
between

::::::
stations, and the river segment lengthsbetween the stations. Its output is the

:::::::
estimated discharge at each station.
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2.1.1 Rainfall-Runoff Model

The rainfall-runoff model consists of a position-wise long short-term memory (LSTM ) and a convolutional neural network295

(CNN )
::::::
LSTM

:::
and

:
a
:::::
CNN

:
that are called in alternation

:::
each

::::
time

::::
step. This renders the rainfall-runoff model local in space and

time: Only neighboring and past
:
.
::::
Only

::::::::
spatially

::::
local

:::
and

::::::::::
temporally

:::::::
previous information is used to update internal states.

2.1.2 Modeling temporal dynamics

The position-wise LSTM (PWLSTM) is responsible for modeling the temporal relationships in the data and therefore maintains

a hidden and a cell state for each grid cell. The gating mechanism of the LSTM can shield the cell states from unwanted updates.300

It thus allows to maintain information over long
:::::::
regulates

:::::
when

:::
and

::::
how

:::
the

:::
cell

:::::
state

:
is
::::::::
updated,

:::::::
allowing

:::
the

::::::
model

::
to

:::::
retain

:::::::::
information

::::
over

::::::::
extended

::::
time

:
periods. This can be particularly useful to implicitly model, e.g.,

::
for

::::::::
implicitly

::::::::
modeling

:::::
slow

::::::::::
hydrological

::::::::
processes

::::
such

::
as

:
soil moisture or groundwater levels, which exhibit slower dynamics

:::::
evolve

:::::
more

::::::::
gradually than

overland flow. The LSTM receives precipitation as input to update its hidden and cell states. It has a hidden size of 4
:::
(see

::::::::
Appendix

::
B

:::
for

::::::
hidden

:::::
sizes

:
2
::::
and

::
6). Importantly, the weights of the LSTM are shared throughout the gridded area. As a305

result, while the LSTM at each grid cell maintains individual hidden
:::
and

::::
cell state values, the temporal processing principle

is identical everywhere. The assumption is that the unfolding physics is the same everywhere, although they may be locally

parameterized.

2.1.3 Modeling spatial dynamics

The CNN is responsible for modeling spatial relationships , i.e.,
::::::
models

:::::
spatial

:::::::::::
relationships

::::
such

:::
as the propagation of water310

flow over
:::::
across

:
the landscape and evapotranspiration. It receives and updates the hidden state h of the PWLSTM ,

:
to

::::::
model

:::::
spatial

:::::::::::
interactions,

:::::
while leaving the PWLSTM’s cell states untouched

:
to

::::::::
preserve

:::::::
temporal

::::::::
memory.

::::::
Surface

::::
and

:::::::::
subsurface

::::
flow

::
are

::::::::
spatially

:::::::
extended

:::::::::
processes,

:::::::
whereas

:::::::::::::::
evapotranspiration

::
is

::::::::
primarily

:
a
:::::
local

:::::::::::
phenomenon,

::::::::
occurring

::::::::::::
independently

::
at

::::
each

:::
grid

::::
cell.

:::
To

:::::
reflect

::::
this

:::::::::
distinction,

:::
we

:::::::
separate

:::
the

::::::
CNN’s

::::::::
treatment

::
of

:::::
these

::::::::
processes

:::::
using

:::::::
different

::::::::::
convolution

:::::
types

:::
and

:::::
input

:::::::
sources,

:::::::::
introducing

:::
an

::::::::
inductive

:::
bias

::::
into

:::
the

::::::::::
architecture. Note that surface/subsurface flow is a spatially extended315

process, while evapotranspiration is a local (though vertical) process that happens mostly independently of neighboring cells.

We incorporate this into our architecture as an additional inductive bias .

More precisely, the CNN is given by
:::::
based

:::
on a modified ConvNeXt block (Liu et al., 2022). A ConvNeXt block con-

sists of three layers, namely a depth-wise convolutional layer (DWConv) with kernel size 7× 7 followed by a position-wise

inverted bottleneck given by two linear layers (PWConv1 and PWConv2). This way, ConvNeXt disentangles horizontal and320

vertical
:::::::
decouples

::::::
spatial

::::
and

:::::::::::
channel-wise information flow. We use

::::
apply

:
the SiLU activation function between all

::::
after

:::
the

:::::::::::
convolutional

:::
and

:::::::
between

:::
the

:::::
linear

:
layers (Hendrycks and Gimpel, 2016). In contrast to its original formulation, the weights

of our ConvNeXt block are not static . Rather, they
:::
but

::::::::::::::::
location-dependent.

:::::
They are parameterized by other neural networks,

turning this network component into a hypernetwork (Traub et al., 2024a). This means that the ConvNeXt block can behave
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differently at each location on the grid. Calling DWConv results in the following operation:325

yi,j,c =

3∑
m=−3

3∑
n=−3

wi,j,m,n,c ·xi+m,j+n,c, (2)

where y is the output, x the input, w are the weights produced by the hypernetwork, c is the considered channel, and i and j

are coordinates. Note that we
:::
We

:
can still call this operation a convolution if we regard the input variables together with the

weight-generating networks as the kernel.
::::::
Calling

:::::::::
PWConv1

:::
and

:::::::::
PWConv2

:::::
results

:::
in

::
the

:::::::::
following

::::::::
operation:

:

yi,j,cout =
∑
cin

wi,j,cout,cin ·xi,j,cin ,

:::::::::::::::::::::::::

(3)330

We parameterize the different layers
::::
Each

:::::
layer of the ConvNeXt block with different weight-generating networks that

receive different inputs
:
is

::::::::::::
parameterized

::
by

::
a
::::::
distinct

:::::::::::::
hypernetwork,

::::::
tailored

::
to
:::
the

::::
type

:::
of

::::::
process

::
it
:::::::::
represents. The weights

of DWConv are produced by a simple CNN that has the same kernel size as DWConv itself. The weights for PWConv1 and

PWConv2 are produced by simple position-wise MLPs
:::::::::
multi-layer

::::::::::
perceptions

:::::::
(MLPs). By using different input variables for

the different hypernetworks, we can distinguish between local and spatially extended processes. How water propagates over335

:::::
across

:
the landscape depends mainly on the topography, which is why we generate the weights of DWConv from elevation.

Before feeding the elevation into the hypernetwork, we subtract the elevation of the center cell from the elevations of all other

cells within each receptive field , since we are interested in slopes and not
::
as

::::::
relative

::::::::
elevation

::
is

:::::
more

::::::::::
informative

:::
for

::::
flow

:::::::
direction

::::
than absolute elevation. Evapotranspiration, on the other hand, is a very local process and should therefore be modeled

:
is
::::::::
therefore

::::
best

:::::::
captured

:
by the position-wise components. This is why we generate the weights for PWConv1 and PWConv2340

from solar radiation. See Fig. 2 for an illustration.

2.1.4 Adapter

Lastly, the hidden states
:::::
runoff

::::::::::
embeddings

:::
are

:::::::
extracted

:
at the station locationsare collected, fed through a single linear layer,

and sent the the
:
to

:::
the

:
river discharge model. Collecting and summing up

::::::::::
Aggregating

:
the hidden states of all cells on the

corresponding upstream river segment showed a tendency to overfitting
:::::
overfit in preliminary experiments.345

2.1.5 Discharge Model

Our discharge model is a recurrent graph neural network
:::::
called

:::::::::
DISTANA

::::::::::::::::::::
(Karlbauer et al., 2019), with the graph struc-

ture determined
::::::
defined

:
by the actual river network and the stations. It

:::::::::
DISTANA maintains two types of kernels,

:::::::
recurrent

::::
units:

:
station and segment kernels, both of which are

:::::::::::
implemented

::
as

:
Gated Recurrent Units (GRUs) (Cho et al., 2014)

:
,

::::::::::::::
Cho et al. (2014))

:
with a hidden size of 8

:::
(see

:::::::::
Appendix

::
B
:::

for
:::::::

hidden
::::
sizes

::
4
::::
and

:::
16,

::::
and

:
a
:::::::
version

::
in

::::::
which

:::
the

::::::
GRUs350

::
are

::::::::
replaced

::::
with

::::::::
LSTMs). Station kernels sit on the discharge measurement stations, segment kernels sit on the segments

between those stations. They
::
are

::::::
placed

::
at
::::

the
:::::::
gauging

:::::::
stations,

::::::
while

:::::::
segment

::::::
kernels

::::
are

::::::
located

:::
on

::::::::
segments

::::::::
between

:::::::
stations.

:::::
These

::::::
kernels

:
communicate with each other via lateral connections that have

:::
with

:
4 channels (Fig. 1). The station

kernel additionally receives the output of the rainfall-runoff model, the last (potentially inferred) discharge, and, based on that,
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Figure 2. Illustration of the hypernetworks
::::
used

:
in
:::::::::

DRRAiNN. The
:
In

::::
both

::::::
panels,

::
the

:
dark

:::
gray cells

:::::::
represent

:::::::
locations

:::::
whose

::::::
hidden

::::
states

:
are updated based on

::::::::
information

::::
from

:
the values of the light

:::
gray cells. The weights for these updates are produced

:::::::
generated

:
by

other
::::::
separate

:
neural networks that have

::::
share the same receptive field but look at another type

:::::
receive

:::::::
different

::::
types

:
of

::::
input data. Left:

The
::
A

::::
CNN

::::
takes

:::::::
elevation

::
as

::::
input

:::
and

:::::::
produces

::
the

:
weights for the depth-wise convolutionare produced by a convolutional neural network

that receives elevation as input
:
,
::::
which

::::::
models

:::::
lateral

::::
water

:::::::::
propagation. Right: The

::
An

::::
MLP

::::
takes

::::
solar

:::::::
radiation

::
as

::::
input

:::
and

:::::::
produces

:::
the

weights for the point-wise convolutionare produced by a multi-layer perceptron that receives solar radiation as input,
:::::
which

::::::
models

:::::::
localized

:::::::::::::
evapotranspiration.

estimates the discharge at that station
::
In

::::
each

::::
time

::::
step,

:::
the

::::::::
segment

::::::
kernels

:::
are

:::::::
updated

::::
first,

:::::::
followed

:::
by

:::
the

::::::
station

:::::::
kernels,355

:::::
which

::::
then

:::::::
estimate

:::
the

:::::::::
discharge

::
Q̃

::
at

::::
their

:::::::::
respective

::::::::
locations. The segment kernel additionally receives the difference in

altitude between the corresponding stations as well as the length of the
::::::
kernels

::::
first

::::::::::
concatenate

:::
the

:::::::
previous

::::::
output

:::
of

:::
the

:::::::
upstream

::::::
station

:::::::
kernels

::::
with

:::::
static

::::
river

::::::::
segment

::::::::
attributes

:
–
::::::::::

specifically
:::
the

:::::::
altitude

:::::::::
difference

:::
and

::::::::
segment

::::::
length.

:::::
After

:::::::
applying

:::
the

:::::
GRU,

:::
the

::::::
output

::
is

:::::::::
multiplied

::
by

::::
the

::::::::
adjacency

::::::
matrix,

::::::
which

::
is

::::::
derived

:::::
from

:::
the

:
river segment that it models.

In general, both types of kernels work similarly except that the transition kernel receives an adjacency matrixaccording to360

which it aggregates data from upstream stations. The adjacency matrix is determined by the station locations and the river net-

work topology . In a single time step, first, the transition kernels and subsequently
::
and

::::::
station

:::::::::
positions.

:::
The

:::::::
segment

:::::::
kernels

::::::
thereby

::::
sum

:::
up

::::::::::
information

::::
from

::::::::
upstream

::::::
station

:::::::
kernels.

::::
The

:::::
output

:::
of

:::
the

:::::::
segment

::::::
kernels

::::::
serves

::
as

:::::
input

:::
for the station

kernelsare called. Each kernel first concatenates its static, dynamic, and lateral inputs and then applies the GRU. In the case of

the transition kernel, the .
::::
The

::::::
station

::::::
kernels

:::::
work

:::::::
similarly.

:::::
They

::::
first

::::::::::
concatenate

::
the

::::
last

:::::
output

::
of

:::
the

:::::::
segment

:::::::
kernels

::::
with365

::
the

::::
last

:::::::::
(potentially

::::::::
inferred)

::::::::
discharge

::::
and

:::
the output of the GRU is multiplied by the adjacency matrix, thereby summing up

incoming information from upstream station kernels. Afterward, the tensor
::::::::::::
rainfall-runoff

::::::
model.

::::
After

::::::::
applying

:::
the

:::::
GRU,

:::
the

:::::
output

:
is split into dynamic and lateral outputs

::
the

:::::::::
estimated

::::::::
discharge

::
Q̃

:::
and

:::
the

:::::
input

:::
for

::
the

::::::::
segment

::::::
kernels

::
in

:::
the

::::
next

::::
time

:::
step.

Even though we feed
::::::::
Although

:::::::::
DRRAiNN

:::::::
receives

:
hourly meteorological forcings into DRRAiNN, we only produce daily370

discharge estimates
::
F ,

::
it
::::::::
produces

::::::::
discharge

::::::::
estimates

::
at
::

a
:::::
daily

::::::::
resolution. During the initial 10 days

:::
day

:
tune-in phase of

13



each sequence, we therefore feed the same observed discharge value into DRRAiNN over one day. Additionally, we feed a

daily marker into the station kernel (not depicted in the figure), which informs DRRAiNN about when a new day begins
:
Q

::::
into

:::::::::
DRRAiNN

::::
for

::::
each

::::::
hourly

:::
step

::::::
within

:::
the

::::
day.

2.2
::::
Data375

:::
The

:::::
input

::::
data

:::
for

::::::::::
DRRAiNN

:::::::
consists

::
of

::::::::::
radar-based

:::::::::::
precipitation,

::::::::
elevation

:::
for

::::::::::::
above-ground

::::::::::
topography,

::::
solar

:::::::::
radiation,

:::
and

::::
river

::::::::
discharge

::::
data.

::::::::::
Preliminary

:::::::::::
experiments

::::::
showed

:::
no

:::::::::::
improvement

::::
when

::::::::
including

:::::::::::
temperature;

::::::::
therefore,

:::
we

:::::::
exclude

:
it
::::::::
following

::::::::
Occam’s

:::::
razor.

:::
For

:::::::::::
precipitation,

::
we

:::
use

:::
the

::::::::::
radar-based

::::::::::
precipitation

:::::::
product

::::::::::
RADOLAN

::::::::
provided

::
by

:::
the

::::::::
Deutsche

::::::::::
Wetterdienst

:::::::::::::::::
(RADOLAN, 2016)

:
.
:::
The

::::
data

::::::
domain

::
is

:
a
:::::::::::::::
900 km× 900 km

:::::
pixel

:::
grid

::::
with

::
a

::::::::
resolution

::
of

:::::::::::
1 km× 1 km

::::
that

:::::
covers

:::
all

::
of

::::::::
Germany

:::
and

:
a
::::::::
temporal380

::::::::
resolution

::
of

::::
1 h.

::::
This

::::
grid

::::::
defines

::::
the

:::::
spatial

:::::::::
resolution

::
at

::::::
which

:::
our

::::::
model

:::::::
operates.

:::::::::::
RADOLAN

::::
data

::
is

::::::::::::::
log-standardized

:::::
before

:::::
being

::::
sent

::
to

:::
the

::::::
model

::::
due

::
to

::
its

::::::::
long-tail

::::::::::
distribution.

::::::::::
Specifically,

:::
we

::::
add

::
1

:::
and

::::
take

:::
the

:::::::::
logarithm,

::::
then

::::::::
compute

::
the

:::::
mean

::::
and

:::::::
standard

::::::::
deviation

::
of

:::
the

::::::::::
transformed

::::
data

::
to
::::::::::
standardize

::
it.

:::
We

:::::::
replace

::::::
missing

::::::
values

::::
with

:::::
zeros,

::::::
which

::
is

:::
the

::::::::::
standardized

:::::
mean.

:

:::
For

:::::
static

:::::::::
topography

:::::::::::
information

:::
we

:::
use

:::
the

::::::
digital

::::::::
elevation

:::::
model

:::::::
(DEM)

::::::::
EU-DEM

::::
v1.1

::::::::
provided

:::
by

:::
the

::::::::::
Copernicus385

::::
Land

::::::::::
Monitoring

:::::::
Service

::
of

:::
the

:::::::::
European

:::::::::::
Environment

:::::::
Agency

:::::::::::::::
(EU-DEM, 2016).

::::
We

::::
also

:::
use

:::
the

::::::
DEM

::
to

::::::::
compute

:::
the

:::::::::
differences

::
in

:::::::
altitudes

:::::::
between

::::::::
adjacent

::::::::
discharge

:::::::
gauging

:::::::
stations.

::::::::
Elevation

::::::
values

:::
and

:::::::
derived

::::::::
difference

:::
are

:::::::::::
standardized

:::::
before

:::::
being

::::
sent

::
to

:::
the

::::::
model,

:::
i.e.,

:::
we

:::::::
subtract

::::
their

:::::
mean

:::
and

::::::
divide

::
by

::::
their

::::::::
standard

::::::::
deviation.

:

:::
For

::::
solar

::::::::
radiation,

:::
we

:::
use

:::::::
surface

:::::::::
short-wave

:::::::::
downward

::::::::
radiation

::::::
(SSRD)

:::::
from

:::
the

:::::
ERA5

::::
data

:::
set

:::::::::::::::::::
(Hersbach et al., 2018)

:
.
:
It
::::::
comes

::::
with

::
a

:::::::
temporal

:::::::::
resolution

::
of

:::
1 h

::::
and

:
a
::::::::
relatively

::::::
coarse

::::::
spatial

::::::::
resolution

:::
of

::::::::::::
0.25◦ × 0.25◦.

::::
Like

:::
the

:::::::::::
precipitation390

::::
data,

::::
solar

::::::::
radiation

::::
data

::
is

:::::::::::::::
log-standardized.

:::
We

:::
use

:::::::
rasterio

:::::::::::::::::::::
(Gillies and others, 2013)

::
to

::::::::
transform

::::
and

::::::::
reproject

:::
the

:::::
DEM

:::
and

::::
solar

::::::::
radiation

::::
data

::
to

:::::
match

:::
the

::::::::::
RADOLAN

:::::::::
coordinate

::::::::
reference

:::::::
system.

:::
The

::::::::::
topography

:::
of

:::
our

::::
river

::::::::
network

::
is

::::::::::
determined

:::
by

:::
the

:::::::
AWGN

::::
data

:::
set

:::::::::::::
(AWGN, 2023)

:
.
:::
We

:::
use

::
it
:::

to
:::::::
compute

::::
the

::::::::
adjacency

::::::
matrix

:::
that

::::::::
describes

::::::
which

::::::
stations

:::
are

:::::::::
connected

:::
via

::::
river

::::::::
segments

:::
and

:::
the

::::::::::::
corresponding

::::
river

:::::::
segment

:::::::
lengths.

:

::::::
Finally,

:::
we

:::
use

::::::::
discharge

:::::::::::
measurement

::::
data

::
to

::::
tune

::
in

:::
the

::::::::
discharge

:::::
model

::::
and,

:::::
more

::::::::::
importantly,

::
as

:::
the

::::
only

:::::
target

:::::::
variable395

::
to

::::
train,

::::::::
validate,

:::
and

::::
test

:::
our

::::::
model.

:::
We

::::
use

::::
data

:::::::
collected

::::
and

::::::::
provided

::
by

:::
the

:::::::
German

:::::::
Federal

:::::::
Institute

::
of

::::::::::
Hydrology

:::
via

::
the

:::::::
Global

::::::
Runoff

::::
Data

::::::
Centre

:::::::::::::
(GRDC, 2024)

:
.
:::
The

::::
data

:::
set

::::::::
contains

::::::::
observed

::::
daily

:::::
river

::::::::
discharge

:::::
from

:::::::
gauging

:::::::
stations

:::::::::
worldwide,

::::::::
including

:::::
those

::
in

::::::::
Germany.

:::::
Since

:::
the

:::::::
location

:::::::::
information

:::
of

::
the

:::::::::
discharge

::::::
gauging

:::::::
stations

::
is

:::::::
partially

::::::
wrong,

:::
we

:::::::
corrected

:::::
them

::::::::
manually.

:::
We

::::
then

:::::
align

:::
the

::::::
station

:::::::
locations

::
to
:::
the

:::::::
nearest

::::
river

:::::::
segment

::::::::::
(snapping).

:
If
:::
the

:::::::::
correction

:::::::
exceeds

:
a
:::::::::
predefined

::::::::
threshold,

:::
the

::::::
station

::
is

::::::::
excluded.

::
If

:::
two

:::::::
stations

:::
are

::::
very

:::::
close

::
to

::::
each

:::::
other,

:::
one

::
of

:::::
them

::
is

::::::::
discarded.

::::
Due

::
to

:::
its400

:::::::
long-tail

::::::::::
distribution,

::::::::
discharge

::::
data

::
is
::::::::::::::
log-standardized

:::
on

:
a
:::::::::
per-station

:::::
basis

::::::
before

:::::
being

::::
sent

::
to

:::
the

::::::
model.

:::
We

::::
add

:
1
::::
and

:::
take

:::
the

:::::::::
logarithm,

::::
then

:::::::::
standardize

:::
the

::::
data

:::::
using

::::::::::
station-wise

::::::
means

:::
and

:::::::
standard

:::::::::
deviations.

:::
We

:::::::
replace

::::::
missing

::::::
values

::::
with

:::::
zeros,

:::::
which

::
is

:::
the

::::::::::
standardized

:::::
mean

::
of
:::
the

::::::::::::
corresponding

:::::::
station.

:::
Our

::::::
choice

::
of

:::::
input

:::::::
datasets

::::
was

::::::
guided

::
by

::::::::
temporal

:::::::::
resolution,

::::
data

:::::::::::
provenance,

:::
and

::::::::
practical

:::::::::
availability.

:::::::::
Although

:::
the

::::::::
European

:::::
Flood

:::::::::
Awareness

::::::
System

:::::::
(EFAS)

:::::::
employs

::::::
EMO-1

:::
for

:::::::::::
precipitation

:::::
input,

::
we

:::::
opted

:::
for

::::::::::
RADOLAN

::::
due

::
to

::::::::
important405
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:::::::::
differences:

:::::::
EMO-1

:::::
offers

::
a
:::::::
coarser

:::::::::::
6 hresolution

:::
and

::
is
:::::::::::

interpolated
::::
from

::::::
sparse

::::::
station

::::
data,

:::
in

:::::::
contrast

::
to

::::::::::::
RADOLAN’s

:::::
direct

::::::::::
radar-based

:::::::::::
observations.

::::::::
Although

:::
we

::::::
expect

::::
only

:::::
minor

::::::::::
differences

::
in

:::::::::::
performance

::
in

:::::
some

:::::::
settings,

::::::::::::
radar-derived

::::::
datasets

::::
like

::::::::::
RADOLAN

::::::
provide

::::
finer

::::::
spatial

:::
and

::::::::
temporal

:::::::::
resolution,

:::::
which

::
is

:::::::::::
advantageous

:::
for

:::::::::
distributed

::::::
models.

:::::::::
Similarly,

::
we

::::::
chose

:::::
ERA5

:::
for

:::::
solar

::::::::
radiation

:::
data

::::
due

::
to

:::
its

:::::::
gridded

::::::
format

:::
and

::::::
hourly

:::::::::
resolution.

::::::::::
Alternative

:::::::
datasets,

:::::
such

::
as

:::::
those

:::::::
provided

:::
by

::::::
DWD,

:::
are

:::::
either

::::::::
available

::::
only

::
as

:::::::::::
station-wise

:::::
hourly

:::::
data,

::::::
which

::::
lack

:::
the

:::::::
required

::::
grid

::::::
format,

:::
or

::
as

:::::::
gridded410

:::
data

::::::::::
aggregated

:::::::
monthly,

::::::
which

::::
does

:::
not

:::::
meet

:::
our

::::::::
temporal

:::::::::::
requirements.

:::::
Daily

:::::::
datasets

::::
like

::::::
EOBS

::::
may

::::::
suffice

:
if
::::::::
subdaily

:::::::
temporal

:::::::
patterns

:::
are

:::::::
encoded

:::::::::
separately,

:::
but

::::
this

:::::
would

::::::
require

:::::::::
additional

::::::::::::
preprocessing.

::
A

::::::::
transition

::::::
toward

::::::::
operation

:::::
flood

::::::
forecast

::::::
would

:::::
place

::::::::
increased

::::::::::
importance

::
on

:::
the

::::::
choice

:::
of

::::::::::
precipitation

:::::::
forecast

::::::::
products

:::::::::::::::::
(Imhoff et al., 2022).

::::::::::
Ultimately,

::
all

::::
data

:::::::
products

:::::
entail

:::::::
inherent

:::::::::::
uncertainties

::::
and

:::::
errors,

::::
and

:::
our

:::::::
choices

:::::
reflect

:
a
:::::::

balance
:::::::
between

::::
data

::::::::::
availability,

::::::::
temporal

::::::::
resolution,

::::
and

:::
the

::::::
specific

:::::::::::
requirements

:::
of

:::
our

::::::
model.415

2.3
:::::
Study

:::
site

:::
The

:::::::
Neckar

::::
river

:::::::
network

:::
in

:::::::::
Southwest

::::::::
Germany

:::::
spans

:
a
:::::::::

catchment
::::

area
:::

of
::::::::::
14 000 km2

::::
with

::
a
:::::
mean

::::::::
elevation

::
of

:::::::
460 m.

::::::::
According

::
to
::::::
ERA5,

:::::::::::
temperatures

::
in

::::
this

:::::
region

::::::
ranged

::::
from

:::::::
−25 ◦C

::
to

::::::
40 ◦C

:::::
during

:::
our

:::::::
training

::::::
period.

::::
Our

::::::
dataset

:::::::
includes

:::::::::::
measurements

:::::
from

:::
17

:::::::
gauging

::::::
stations

:::::::::
distributed

::::::
across

:::
the

::::
river

::::::::
network

:::
(see

::::
Fig.

:::
3).

:::
At

:::
the

::::
most

:::::::::::
downstream

::::::
station

::
in

::::::::
Rockenau,

:::::::::
discharge

:::::
during

:::
the

:::::::
training

::::::
period

::::::
ranged

::::
from

:::::::::
29.5 m3/s

::
to

:::::::::
1690 m3/s

::::
with

::
a
:::::
mean

::
of

::::::::::
133.3 m3/s.420

:::
The

:::::::::
catchment

::::::
features

::
a
:::::
highly

::::::::::::
heterogeneous

:::::::::
landscape,

::::::::
including

::::::
narrow

:::
and

::::
wide

:::::::
valleys,

::::::
diverse

:::::::
geology

::::
(e.g.,

:::::::::
limestone,

:::::::::
sandstone),

:::::::
different

::::
soil

::::::
textures

:::::
(e.g.,

::::
clay,

:::::
marl),

:::
and

:::::::::
subsurface

::::::::
structures

::::
such

::
as

:::::
karst

::::::
systems

::::
and

::::
pore

::::
water

::::::::
aquifers.

::::
This

:::::
makes

:::
the

::::::::
modeling

::
of

:::
the

:::::::
Neckar

:::::
River

:::::::
network

:
a
::::::::::
challenging

::::::::
endeavor.

:::
To

::::
give

:
a
::::::::
concrete

:::::::
example,

:::::
there

:::
are

:::::::::::
underground

::::
flows

:::::
south

:::
of

:::::::::
Pforzheim

::::
that

:::::
route

:::::
water

::::::
toward

:::
the

:::::
east,

:::::
while

:::
the

::::::::
elevation

::::::
model

::::::::
suggests

:
a
::::::::

different
::::
flow

:::::::::
direction.

::::::::::::
(Ufrecht, 2002)

:
.
::::
This

::::::::::
relationship

::::::
cannot

::
be

:::::::
inferred

::::
from

::
a

:::::
digital

::::::::
elevation

:::::
model

::::::
alone.

:::::
Latent

:::::::::::
underground

::::::::
structures

:::::
route425

::
the

:::::
water

::
in
::
a
:::::::
different

::::::::
direction

::::
than

:::
the

:::::::
elevation

::::::
model

:::::
alone

:::::
would

:::::::
suggest.

:

::
By

:::::::::
restricting

:::
the

:::::::
domain

::
to

:::
the

:::::::
Neckar

::::
river

::::::::
network,

:::
we

:::
end

:::
up

::::
with

:::
an

::::
area

::
of

::::
size

::::::::::::::::
200 km× 200 km.

:::::::::
Following

:::
the

:::::::::::::
transformations

::::::::
described

::::::
above,

::
all

:::::::
gridded

::::
data

::
is

:::::::
reduced

:::::
from

:
a
::::::::::::
1 km× 1 km

:::
grid

:::
to

:
a
:::::::::::
4 km× 4 km

::::
grid

:::
by

::::::
taking

:::
the

:::::
mean.

::::
This

::::::
results

::
in

:
a
:::::::
50× 50

::::
grid

:::::::
covering

:::
the

:::::
study

:::::
area.

:::
We

::::
train

:::
our

::::::
model

::
on

:::::::::::
hydrological

:::::
years

:::::::::::
2006− 2015,

:::::::
validate

::
on

:::::::::::
2016− 2018,

:::
and

::::
test

::
on

:::::
2019.

:::::::
Forcings

::
F
:::
are

::::::::
provided

::
at

:::::
hourly

:::::::::
resolution,

:::::
while

::::::::
discharge

::
is

:::::::
provided

::
at
:::::
daily

:::::::::
resolution.430

2.4 Experimental setup

We train DRRAiNN on sequences of 20 days , with
::::
(480

:::::
hourly

::::::
steps),

:::::
using

:
the first 10 days serving as a warm-up phase.

During this phase,
::
we

::::
feed

:::
the

::::::
model observed discharge values are assimilated into the model to initialize

::
to

:::::::
initialize

::::
and

::::
align

:
its hidden states and align them with the system’s

::::
with

:::
the

::::
true

::::::
system dynamics. This approach is akin to

::::::::
procedure435

::::::::
resembles data assimilation in traditional hydrological models, where observations are used to update model states and reduce

uncertainty. In machine learning, this closed-loop setup is called
:::
ML

::::::
terms,

:::
this

::::::::::
corresponds

::
to

:
teacher forcing. The warm-up

phase allows the rainfall-runoff component of DRRAiNN to potentially estimate quantities like
::::
infer

:::::
latent

::::::::::
hydrological

::::::
states,
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Figure 3.
:::
The

::::
study

::::
area

::::
used

::
in

:::
this

::::
work

:
is
:::
the

::::::
Neckar

::::
River

::::::::
catchment

::
in

::::::::
Southwest

:::::::
Germany.

:
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::::
such

::
as soil moisture or aquifer rechargewithin its hidden states. It therefore allows the model to align the hidden states with the

physical state of the system before transitioning to
:
,
:::::::
through

::
its

::::::
hidden

::::
state

::::::::::::::
representations.

::::
This

::::::::
alignment

:::::
helps

:::
the

::::::
model440

::::::::
transition

::::::::
smoothly

::
to predictive, open-loop mode

:
,
:::::
where

:::::
future

::::::::
discharge

::
is
::::::::
estimated

:::::::
without

::::::
access

::
to

::::::::::
ground-truth

::::::
values.

Following
::::
After

:
the warm-up phase, DRRAiNN transitions into an open-loop mode for the remaining 10 days of the

::::
each

sequence. In this predictive mode, the discharge model feeds its own discharge estimations into
:::::::
previous

::::::::
discharge

::::::::::
estimations

::
as

:::::
inputs

:::
for

:
subsequent time steps. The rainfall-runoff modelon the other hand continues to be provided with historical

:
,

::
in

:::::::
contrast,

::::::::
continues

:::
to

::::::
receive

:
observed precipitation and solar radiation . This is not a realistic setting for operational

::
as445

:::::
inputs

:::::::::
throughout

:::
the

:::::::::
sequence.

::::::
While

::::::::::
informative,

::::
this

::::
setup

:::::
does

:::
not

::::::
reflect

:::::::
realistic

:::::::::
operational

:::::::::
conditions

:::
for

:
discharge

forecasting. Especially precipitation forecastingis a hard problem and currently no algorithm exists that could
::::::::::
Precipitation

:::::::::
forecasting,

::
in
:::::::::

particular,
:::::::
remains

:
a
::::::
major

::::::::
challenge.

:::::::::
Currently

::
no

::::::::
algorithm

::::
can accurately predict precipitation 10 days into

the future on a
:::::
ahead

::
at

:
a
::::::
spatial

:::::::::
resolution

::
of

:
4 km× 4 kmscale. However, this setup is useful

::::
well

:::::
suited

:
for knowledge

discovery concerning hydrologic processes, which is the main focus of this paper
::::::
primary

:::::
focus

:::
in

:::
this

:::::
work. We leave the450

operational evaluation of our model on historical precipitation forecasts
::::::::
evaluation

::
of

::::::::::
DRRAiNN

:::::
under

:::::::
realistic,

::::::::::::
forecast-based

::::::::
conditions

:
for future work.

We use the mean squared error (MSE) on the
::::::::
computed

:::
on station-wise standardized discharge data as

::::
both the training

and validation loss. This ensures that the training process does not disproportionately favor stations with higher discharge

magnitudes
:::::::::::::
Standardization

::::::
ensures

::::
that

:::::::
stations

::::
with

:::::
larger

::::::::
discharge

::::::
values

::
do

:::
not

::::::::
dominate

:::
the

:::::
loss,

:::::::::
promoting

:
a
::::::::
balanced455

:::::::
learning

:::::
across

:::
all

:::::::
stations. Training is conducted with

::::::::
performed

:::::
using

:
truncated backpropagation through time (TBPTT),

employing a scheduled truncation length . At the beginning of training, we let DRRAiNN learn relationships in the data that

are more local in time by backpropagating the loss over subsequences of
:::::
where

:::
the

:::::::::
truncation

::::::
length

:::::::
increases

::::::::::::
progressively

:::
over

::::
the

:::::
course

:::
of

:::::::
training.

:::::::
Initially,

:::
we

::::::::::::
backpropagate

:::
the

::::
loss

::::
over

:
1 day . Note that our model operates on an hourly time

scale, which means that a 1 day sequence consists of 24 time steps. Throughout
::::::::
sequences

:::
(24

::::
time

:::::
steps)

::
to

::::
help

::::::::::
DRRAiNN460

::::
focus

:::
on

:::::::::
short-term

:::::::
temporal

:::::::::::
relationships

:::
and

:::::::
stabilize

::::::::
learning.

::::
Over

:::
the

:::::
course

:::
of training, we increase the truncation length,

thereby allowing
:::::::
enabling the model to learn relationships that are increasingly distant in time

:::::::::
longer-term

::::::::::::
dependencies. The

truncation length schedule , which is shown in 1, was determined empirically. We adjust
::::
Table

::
1.

:::
We

:::::
adapt

:
the batch size such

that training can take place on a single
::
to

::
fit

:::
the

:::::
model

::::::
within

:::
the

:::::::
memory

:::::::::
constraints

::
of

:
a
::::::
single

:::::::
NVIDIA

:
A100 graphics card.

:::::
GPU,

::::
with

::::
total

::::::
training

::::
time

:::::::::
remaining

:::::
under

::::
8 h.

::
A

::::::
forward

:::::::::
simulation

:::
of

:
a
::
20

::::
day

::::::::
sequence

::::
takes

::::::::::::
approximately

::::
4 s.465

To improve generalization and account for model variability due to random initialization, we train five
::::::::::
independent instances

of DRRAiNN for each
::
per

:
experiment, each

::::::::
initialized

:
with a different seedfor the random number generator. Results are

reported
:
.
:::
We

::::::
report

:::
test

::::::
results

:
based on the three seeds

:::
runs

:
with the lowest validation loss , a practice we consistently

apply
:::
out

::
of

:::
five

:::::
seeds.

::::
This

::::::::
selection

:::::::::
procedure

:
is
:::::::
applied

::::::::::
consistently to both the primary model and its ablations

::
all

:::::::
ablation

::::::
variants. We use Ranger (Wright, 2019) with the learning rate set to

:::
the

::::::
Ranger

::::::::
optimizer

:::::::::::::
(Wright, 2019)

::::
with

:
a
:::::::
learning

::::
rate470

::
of 0.0025 to optimize the 30.600

::::::
30 600 parameters in DRRAiNN, which takes about 7 hours. We

:
.
::
To

::::::::
stabilize

:::::::
training,

:::
we

clip the gradient if its norm exceeds 1to avoid large jumps at steep regions in ,
:::::::
thereby

:::::::::
preventing

::::
large

:::::::::
parameter

:::::::
updates

::
in

::::
steep

::::::
regions

:::
of the loss surface. We use hydra to manage our

:::::::::
experiment configurations (Yadan, 2019).
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Table 1. Truncation length schedule in days for TBPTT

#Epochs Truncation length Batch size

10 1 256

4 2 128

2 4 64

1 10 32

1 20 32

To increase the size of the training data set and improve generalization, we perform
::::
apply

:
data augmentation. The symmetry

group of the square contains eight symmetries, namely: identity, rotation
::::::::
elements:

:::
the

:::::::
identity,

:::::::
rotations

:
by 90, 180, and 270475

degrees, and reflection in the x, y, and the two
:::
both

:
diagonal axes. For each

::::::
training

:
sequence, we apply a uniformly sampled

symmetry to the following
::::::
spatial variables in each time step: elevation, precipitation, solar radiation, and the mask that is

used to translate from grid to graph .
:::
We

::::::
ensure

:::::::
physical

::::::::::
consistency

::
by

:::::::
tapping

:::
into

:::
the

::::::
runoff

::::::::::
embeddings

::
at

:::
the

::::::::::
transformed

:::::
station

:::::::::
locations.

:::
The

::::
river

::::::::
discharge

:::::::
model’s

:::::
graph

::::::::
structure

:::::::
remains

:::::::::
unchanged

::
by

::::
this

:::::::::::
augmentation.

2.5 Benchmark model: European Flood Awareness System480

To provide context for DRRAiNNs
:::::::::::
DRRAiNN’s performance, we compare it to the European Flood Awareness System

(EFAS), an established and operational distributed process-based model. Since
:::
We

:::
use

::::::::
publicly

::::::::
available EFAS reanalysis

datais readily available for download, we do not have ,
:::::
which

:::::::::
eliminates

:::
the

::::
need

:
to tune EFAS ourselves. This avoids potential

biases arising from unequal effort in tuning
:::
that

::::::
could

::::
arise

:::::
from

::::::::
allocating

:::::::
unequal

::::::
tuning

:::::
effort

::
to

:
the benchmark model

versus the self-developed
:::
our

::::
own model. While DRRAiNN achieves higher performance than EFAS in many scenarios, our485

focus is not solely on outperforming EFAS but on demonstrating
::::::
primary

::::
aim

::
is

::
to

::::::::::
demonstrate

:
the potential of distributed

neural networks for river discharge estimation,
:::::
rather

::::
than

::::::
merely

:::::::::::::
outperforming

:::::
EFAS.

EFAS simulates runoff on an approximately 1.5 km× 1.5 km grid with a temporal resolution of 6 h, which is similar to our

setup. It receives as inputs static maps describing topography, river networks, soil, and vegetation, as well as meteorological

forcings such as precipitation, temperature, and potential evaporation.490

While EFAS serves as a useful benchmark, the comparison to DRRAiNN is not perfectly fair due to fundamental differences

in the input and output variables. Both models receive gridded meteorological forcings, but DRRAiNN additionally receives

discharge measurements during the tune-in period. In contrast, EFAS does not use discharge measurements as input . Instead,

these are used exclusively for
::
but

:::::
relies

:::
on

::::
them

:::
for

::::::
offline

:
model calibration. Furthermore, DRRAiNN estimates discharge

only at station locations where observations are available, while EFAS estimates discharge in all gridcells
::::::::
produces

::::::::
discharge495

:::::::
estimates

::::
only

::
at
:::::::
gauging

::::::
station

::::::::
locations,

:::::::
whereas

::::::
EFAS

::::::::
generates

::::::::
discharge

:::::::::
predictions

::::::
across

:::
the

:::::
entire

:::::
spatial

::::
grid. EFAS

also relies on additional input variables not used by DRRAiNN, such as soil type, vegetation, temperature, and potential

evapotranspiration. This makes EFAS particularly powerful but also less transferable to regions where
:::::
While

:::
this

::::::
makes

:::::
EFAS
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:
a
::::::::
powerful

::::
tool,

::
it

::::
also

:::::
limits

:::
its

::::::::::
applicability

:::
in

::::::
regions

:::::::
lacking

::::
such

:
detailed input dataof this kind might be unavailable.

Another difference lies in the precipitation data used: EFAS uses
::::
relies

::
on

:
EMO-1, a 6-hourly

:::::::::
6 mathrmh

:
product interpolated500

from weather station data, whereas DRRAiNN uses RADOLAN, a radar-derived dataset with finer
:::::::::
radar-based

::::::
dataset

:::::::
offering

:::::
higher

:
spatial and temporal resolution. As a result, a direct comparison between EFAS and DRRAiNN is not valid. Nonetheless,

the EFAS data can serve
::::
EFAS

::::::
serves as a baseline and an orientation for the performance regime we should be able to match

::
to

:::::::::::
contextualize

:::
the

::::::::
expected

:::::::::::
performance

:::::
range

::
of

::::::::::
DRRAiNN. We thus emphasize that our goal is not to directly compare

performance but to provide a baseline that allows us to place the principled quality of DRRAiNN’s performance with respect505

to alternative state-of-the-art forecasting approaches.

2.6 Evaluation

Besides the depiction of hydrographs at some of the modeled
:::::::::
visualizing

::::::::::
hydrographs

:::
for

:::::::
selected

::::::
gauging

:
stations, we employ

the following evaluation metrics to assess the performance of DRRAiNN
::::::
evaluate

::::::::::
DRRAiNN

:::::
using

::::
four

:::::::
standard

:::::::
metrics

::
in

::::::::
hydrology: Kling-Gupta efficiency (KGE, (Gupta et al., 2009)), Nash-Sutcliffe efficiency (NSE, (Nash and Sutcliffe, 1970)),510

Pearson’s correlation coefficient (PCC), and the mean absolute error (MAE). We report all of these metrics because they are

widely used in the hydrological sciences and because there is
:::
four

:::::::
metrics

:::::::
because

::::
each

::::::::
highlights

::::::::
different

::::::
aspects

::
of

::::::
model

:::::::::::
performance,

:::
and

:
no single metric that does not have any disadvantages (Gupta et al., 2009). One advantage of the MAE is

that it provides a direct and intuitivemeasure that shows to which extent the models’ estimations are off as it has
::
is

:::
free

:::::
from

:::::::::
limitations

::::::::::::::::
(Gupta et al., 2009).

:::::
MAE

::
is

::::::::::
particularly

:::::::
intuitive,

:::
as

:
it
::
is
:::::::::
expressed

::
in the same unit as the measured quantity. As515

no normalizationtakes place in its computation, though, this metric is disproportionately influenced by
::::::::
discharge

:::
and

:::::::
directly

::::::::
quantities

:::
the

::::::
average

::::::::
deviation

::::::::
between

:::::::::
predictions

:::
and

::::::::::::
observations.

::::::::
However,

:::::::
because

:
it
:::::
lacks

::::::::::::
normalization,

:
stations with

larger discharges. The PCC shows how much variation is shared
:::::::
discharge

::::::::::
magnitudes

:::::::::
contribute

:::::::::::::::
disproportionately

:::
to

:::
the

:::::
overall

::::::
MAE.

:::::
PCC

::::::::
quantities

:::
the

:::::::
strength

:::
of

:::::
linear

:::::::::
association

:
between the observed and estimated discharges, however, it

does not account for
:
.
:::::
While

::
it
:::::::
captures

::::::
shared

:::::::::
variability,

::
it
::
is

:::::::::
insensitive

::
to

:
systematic differences in scale or bias. To also520

capture the scale, the NSE was developed, which can be seen as a mean squared error that is weighted by the variance of

the observed discharge. The NSE also does not account for bias, though, which is why the KGE was introduced to capture

::::::::
developed

::
to

::::::
jointly

:::::::
evaluate correlation, bias, and variance

::::::::
variability. When computing KGE and NSE values, we use station-

wise means and variances
::::::::
calculated

:
from the training data setas done in (Kratzert et al., 2019)

:
,
::::::::
following

:::
the

::::::::
approach

:::
in

:::::::::::::::::
Kratzert et al. (2019). For KGE, NSE, and PCC, higher values are better with

::::::
indicate

:::::
better

::::::::::::
performance,

::::
with

:
a
:::::::::
maximum

::
of525

1 corresponding to a perfect fit. For MAE
:::::::::
representing

::
a
::::::
perfect

::::::
match.

::
In

:::::::
contrast, lower values are better

:
of

:::::
MAE

:::
are

::::::
better,

with 0 corresponding to
::::::::
indicating a perfect fit.

When performing
::::::
During open-loop inference, we also evaluate metrics separately for the different number of

::::
each open-

loop steps performed (
::::
step, where the first one should be similar to

:::
step

::::::::
resembles

:
closed-loop estimation). This way we can see

to which extent performance drops .
::::
This

::::::
allows

::
us

::
to

:::::
assess

::::
how

::::::
model

::::::::::
performance

::::::::
degrades with increasing lead times. Even530

though
::::::::
Although DRRAiNN was only trained on sequences that span 20 days, we always evaluate on 100

:::::::
evaluate

:
it
:::

on
:::
50

day sequences to see whether our model can generalize with regards to lead time
:::::::::
investigate

::
its

::::::
ability

::
to

::::::::
generalize

:::::::
beyond

:::
the
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::::::
training

:::::::
horizon. Additionally, we will plot the performance of the models against the mean discharge of the different stations

to see whether we find systematic relationships between these quantities
::::::
identify

::::::::
potential

:::::::::
systematic

:::::::::::
dependencies

::::::::
between

::::
flow

:::::::::
magnitude

:::
and

::::::
model

::::::::
accuracy. In all cases, we remove

::::::
exclude

:
the initial 10 days tune-in period before calculating535

metrics and producing plots.

As discussed above, we are interested in more than just good performance in terms of matching hydrographs and good

metrics. With knowledge discovery being the main motivation of this work, we will also test DRRAiNN on
::
for

:
physical

plausibility. A physically implausible model might learn spurious relationships in the data. It could, for example, exploit the

DEM to encode local biases that let water spawn or disappear without this process being driven by the
::::
lead

::
to

::::
gains

::
or

::::::
losses

::
of540

::::
water

:::
not

::::::
driven

:::
by meteorological forcings. By retrospectively inferring catchment areas from observed dynamics, we assess

whether the rainfall-runoff model successfully propagates water over
:::::
across the landscape. The procedure is as follows: After

a forward pass, we compute
::::::
saliency

:::::
maps

:::
by

:::::
taking

:
the gradient of the last time step output

::::
final

::::::::
discharge

:::::::
estimate

:
with

respect to the precipitation input. The result is a so-called saliency map which tells
:::::
inputs.

::::::
These

::::
maps

::::
tell us to which extent

the model’s output depends on the precipitation in each grid cell
:::
and

::::
time

::::
step. We multiply this gradient by the precipitation545

itself to focus the analysis on cells in which precipitation occurred. By doing
::
To

:::::::
examine

::::
how

::::
the

:::::::::
attributions

:::::::
change

::::
over

::::
time,

:::
we

::::
split

:::
the

::::::::
sequence

::::
into

:::::::::::
subsequences

::
of

::
5
::::
days

::::
over

::::::
which

::
we

::::
take

:::
the

::::::
mean.

:::
We

:::
do this for each station separately

and visualizing
:::::::
visualize the resulting attributions , we can see which areas on the map contribute to the

:
to

:::::::
identify

:::::
which

:::::
areas

::::::::
contribute

:::::
most

::
to discharge estimation at the corresponding

:::
each

:
station. To reduce noise, we do this for every sequence in

our validation data set
:::::
repeat

:::
this

:::::::
process

:::::
across

:::
all

:::
test

:::::::::
sequences and average the outcomes

:::::::
resulting

:::::::::
attribution

::::
maps.550

We compare the resulting attributions with catchment areas delineated from elevation data , as those are commonly used in

hydrology
:::::
using

:::::::
standard

::::::::::
hydrological

::::::::::
techniques,

:::::
which

:::
are

::::::
widely

::::
used

::
in

::
the

::::
field. To evaluate their agreement quantitatively,

we employ the following measure when comparing DRRAiNN to the ablated models: For each station, the attributions are

first standardized to lie between 0 and 1.
:
1
:::::
using

::::::::
min-max

:::::::
scaling.

:
We then compute the Wasserstein distance between the

attributions within
:::::
values

::::::
inside the delineated catchment area and those outside of it. A higher Wasserstein distance indicates555

better alignment between the attributions and the catchment areas delineated from elevation data. This quantitative measure

complements the qualitative comparison, providing stronger evidence for our model’s ability to propagate water over
:::::
across

the landscape in a physically plausible way. Specifically, it suggests
:::::::
indicates

:
that the model has learned from the observed

dynamics alone that water flows downward
::::::::
implicitly

::::::
learned

::::
the

::::::::::
topographic

::::::::
structure

::
of

::::
flow

::::::::
direction

::
–
::::
i.e.,

::::
that

:::::
water

:::::::
generally

:::::
flows

::::::::
downhill

:
–
::::::
solely

::::
from

::::::::
observed

::::::::
discharge

::::::::
dynamics.560

3 Results

For evaluating
::
To

:::::::
evaluate DRRAiNN, we first provide

:::::
present

:
hydrographs and compare performance with EFAS

::
to

:::::::::::
contextualize

::::::::::
DRRAiNN’s

::::::
results. We furthermore show that DRRAiNN has the potential to infer catchment areas, thus highlighting the

system’s potential due to its full differentiability
:::
can

::::::::::::
retrospectively

::::
infer

:::::::::::::
catchment-like

:::::::::
structures,

::::
thus

::::::::::::
demonstrating

::::
how

:::
full

:::::::::::::
differentiability

:::::::
supports

:::::::
physical

:::::::::::::
interpretability.565
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Figure 4. Hydrographs of
::::::
showing observed discharge, discharge simulated by EFAS

::::::::
simulations, and discharge inferred by

::::::::
predictions

:::
from

:
one of our

:::
five

::::::::
DRRAiNN

:
model instances out of five with

::
for lead times

::
of up to 100

::
50 days. They correspond to

:::
The

::::
four

:::::
panels

::::
show the stations with the lowest (a) , and highest (d)

:::
mean

::::::::
discharge, as well as to those stations with the best KGE performance of

::::::
stations

::::
where

:
EFAS (b) , and our model on average

::::::::
DRRAiNN (c) , respectively

::::::
achieve

::
the

::::
best

::::
KGE

:::::::::
performance

::
on

::::::
average

:::
on

::
the

::::::::
validation

::
set.

We chose those sequences
:::
For

::::
each

:::::
station,

:::
we

::::::
selected

:::
the

:::::::
sequence from our validation data

::
the

:::
test

:
set that have

:::
with

:
the largest variance

in
:::::
highest

:
discharge

::::::
variance,

:
as variance likely acts

::::
serves

:
as a proxy for

::::::::
prediction difficulty.

3.1 Hydrographs

First, EFAS produces well-matching and plausible hydrographs
:::::
EFAS

::::::::
produces

:::::::::::
hydrographs

:::
that

::::::
match

::::
both

:::
the

:::::
shape

::::
and

::::::::
magnitude

:::
of

:::::::
observed

:::::::::
discharge, rendering it a strong contestant (Fig. 4). As EFAS produces gridded outputs, it is necessary

to pick the correct grid cells to compare the model outputs at the specific stations. We likely chose the correct cells, since the
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reanalysis hydrographs produced by EFAS match the historical observations well for all considered stations. Within the low570

flow regime (Fig. 4a), it seems that EFAS tends to underestimate discharge
:::::
extract

:::::::
outputs

::::
from

:::::
EFAS

::::
grid

::::
cells

:::
that

::::::::::
correspond

::
to

:::
the

::::::
station

::::::::
locations

::
in

:::::
order

::
to

:::::
make

:::::::::
meaningful

:::::::::::
comparisons.

Second, the results show that DRRAiNN can produce
:::::::::
DRRAiNN

:::
also

::::::::
produces plausible hydrographs that

::::::
closely match the

observed dischargeswell, too, especially during the first few days of the estimation. This includes
::::
both low flows (Fig. 4a) as

well as
:::
and high flows (Fig. 4d)with no apparent

:
.
:::
No systematic difference in performance . Throughout the 100 days, however,575

the hydrographs tend to match the observed discharge less and less, which is expected as
::
is

:::::::
observed

::::::
across

::::
flow

:::::::
regimes.

:::::
Since

DRRAiNN operates autoregressively : After the closed-loop tune-in phase (which is not shown here), DRRAiNN receives its

last inferred discharge
:
–

:::::
using

::
its

::::
own

:::::::::
discharge

::::::::
estimates as input in the next time step . Therefore, the error accumulates

over time. However, considering that DRRAiNN was trained on 20 day sequences only, it is surprising to see that
:
–
::::
error

::::
can

:::::::::
accumulate

::::
over

:::::
time,

:::::::
leading

::
to

::::::
gradual

:::::::
decline

::
in

::::::::
accuracy.

:::::::::::
Nonetheless,

:
it is

::::::
notable

::::
that

:::
the

::::::
model

::
is in general able to580

hit peaks even after 80 days. The large peak on day 80 in Lauffen and Rockenau (Fig. 4b and 4d) is underestimated by both

models, indicating a bias towards lower values.
::::::
almost

::
50

:::::
days,

::::::
despite

:::::
being

::::::
trained

::::
only

::
on

:::
20

:::
day

:::::::::
sequences.

:

3.2 Performance

Overall, DRRAiNN can outperform EFAS in the initial days of the estimation horizon in
::::::::::
outperforms

:::::
EFAS

::
in

:
all considered

metrics (Fig. 5). Please note that, since discharge values are never fed into EFAS but only used for calibration, the performance585

of EFAS is
::::
Since

::::::
EFAS

::::
does

:::
not

::::::::::
incorporate

::::::::
discharge

::::::
values

::::::
during

:::::::::
inference,

:::
we

:::::
report

:::
its

:::::
mean

:::::::::::
performance

::::
over

::::
lead

::::
times

:::
as constant. As expected, the performance of DRRAiNNdecreases

::::::::
described

:::::
above,

:::::::::::
DRRAiNN’s

::::::::::::
autoregressive

::::::
nature

:::::
causes

:::::
errors

::
to
::::::::::
accumulate

:
over time, since its autoregressive nature leads to error accumulation as described above

::::::
leading

::
to

:
a
::::::
gradual

:::::::
decline

::
in

::::::::::
performance

::
at
::::::
longer

::::
lead

:::::
times.

The KGE plot (Fig. 5a) shows that DRRAiNN produces significantly better results during the initial days
:::::::
indicates

::::
that590

:::::::::
DRRAiNN

::
is

::::
able

::
to

::::::::
maintain

:::::
strong

:::::::::::
performance

::::
over

::::
time. Averaged over the seeds, starting with a KGE of about 0.76, it

takes about 48 days before
::::
0.71,

:
our model’s estimations become worse than

:::
stay

:::::
above

:
those of EFAS on average, even though

DRRAiNN was only ever trained
:::::
during

:::
the

::::::
entire

::::::::
estimation

:::::::
horizon

::
of

:::
50

:::::
days,

::::::
despite

::::::
having

::::
been

::::::
trained

::::
only

:
on 20 day

sequences. Two instances of our model can keep up with EFAS even after 100 days. The
:
In
::::::::

contrast,
:::
the

:
NSE plot (Fig. 5b)

shows our model starting with a value of about 0.81, again with EFAS beating it after about 45 dayson average. The fact that595

one of DRRAiNN’s instances intersects EFAS’ line earlier in the KGE plot than in the NSE plot points to a larger systematic

bias in this instance compared to EFAS, as this is the main difference between those two metrics
::::::
gradual

::::::
decline

::
in

:::::::::::
performance

:::
over

:::::
time

::::
with

:
a
:::::::
decrease

:::::
from

::::
0.72

::
to

::::
0.62

::::
over

:::
the

:::::::::
estimation

:::::::
horizon.

::::::::::
Regardless,

::::
even

::::
after

::
50

:::::
days,

:::
all

::::
seeds

:::::
show

::::::
higher

::::
NSE

:::::
values

::::
than

:::::
EFAS. The PCC plot (Fig. 5c) shows a strong linear relationship between the observed and inferred discharge

values with a
:::::::
observed

::::
and

::::::::
estimated

:::::::::
discharges,

::::
with

:::
an

:::::::
average value of about 0.9 on average at the beginning. Here,

::
at

:::
the600

::::
start.

:
DRRAiNN captures this relationship better than EFAS during the first 40 days

::::
over

:::
the

:::::
entire

:::::::::
estimation

:::::::
horizon. Note

that the linear correlation is also part of KGE and NSE. As the MAE allows direct interpretation, its plot (Fig. 5d) shows

that EFAS is off by about 5.7m3 s−1
:::::::::
6.5 m3 s−1

:
on average, while DRRAiNN with 3.3m3 s−1

:::::::::
3.9 m3 s−1

:
on average on the
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Figure 5. Performances based on different metrics of
::
the

:::
best

:::::
three

:::
out

::
of

:::
five

:::::::::
DRRAiNN

:::::
model

::::::::
instances,

::::::::
compared

::
to EFAS

:::::
across

::::::
different

::::::
metrics

:
and DRRAiNN with lead times up to 100

::
50 days. The results

::::::
Results are averaged over the

:::::
across

::
all

:
stations, and the

different seeds of DRRAiNN are depicted with different .
::::
Each

:
line styles

:::
style

::::::::::
corresponds

:
to
::

a
:::::
distinct

:::::::::
DRRAiNN

::::::
instance.
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first day produces a considerable smaller error. After about 40
::
25 days, EFAS produces better results

:::::
yields

:
a
:::::
lower

:::::
MAE

:
on

average.605

All considered metrics show that the individual model instances perform differently. The order, however, is not fixed but

depends on the considered metric and even more so on the considered
::::::
metrics

::::::
reveal

:::::::::
differences

::
in

:::::::::::
performance

::::::
across

:::
the

:::::
model

::::::::
instances

::::::
trained

::::
with

::::::::
different

:::::::
random

:::::
seeds.

::::::::
However,

:::
the

:::::::
relative

:::::::
ranking

::
of

::::::
model

::::::::
instances

:::::
varies

:::::::::
depending

:::
on

::
the

:::::::
specific

::::::
metric

:::
and

:
lead time. Some seeds perform better during the initial days, while others are better with greater lead

times: The best two instances, for example, switch after about 40 daysin KGE. The seeds differ in weight initialization only,610

meaning that some instances
::
For

::::::::
example,

::
in

:::
the

:::::
KGE

:::
plot

:::::
(Fig.

:::
5a),

:::
the

:::::::
ranking

:::::::
changes

::::
after

:::::
about

:::
42

::::
days.

::::
The

:::::::::
difference

:::::::
between

::::::::
instances

:::
are

:::
due

:::
to

::::::
random

::::::
weight

:::::::::::
initialization

::::
and

:::
the

:::::
order

::
of

:::::::
batches

::::
only.

::::::
These

::::::::
stochastic

:::::::
factors

::::
may

::::
lead

::::
some

::::::::
instances

::
to

:
start the training with a larger bias towards capturing short-termand others

:
,
:::::
while

:::::
others

::::
start

:
with a larger

bias towards capturing long-term relationships in the data.

The erratic lines
::::
plots in Fig. 6 show that stations vary in difficulty: Discharge of some stations is harder to estimate than615

that of others, regardless of which metric is considered.
:::::
some

::::::
stations

:::::::::::
consistently

::::
yield

:::::
more

:::::::
accurate

:::::::::
discharge

::::::::
estimates

:::
than

::::::
others.

:::::
This

:::::::::
observation

:::::
holds

::::::
across

:::
all

::::::::
evaluation

:::::::
metrics.

:
Which stations are harder to estimate, however, is different

across the metricssince the metrics focus on different aspects as discussed above. The different seeds of DRRAiNN , and more

interestingly, also EFAS , agree
:
,
::::::::
reflecting

:::
the

::::::
distinct

::::::::::
sensitivities

::::
each

::::::
metric

:::
has,

::
as

:::::::::
discussed

:::::::::
previously.

:::::::::::
Interestingly,

::::
both

::
the

::::::::
different

:::::::::
DRRAiNN

:::::::
instance

:::
and

:::::
EFAS

:::::
show

::::::
partial

::::::::
agreement

:
on which stations are harder to estimate to some extent: The620

::::
more

:::::::
difficult

::
to

::::::
model.

:::
For

::::::::
example,

:::
the

:
KGE values in Fig. 6a , e.g., show that Altensteig , Rottweil, and Kirchentellinsfurt

consistently belong to the easier ones
:::
and

:::::
Stein

:::
are

::::::::::
consistently

:::::
easier

::
to
::::::::

estimate, while Oppenweiler, Bad Imnau, and Murr

belong to the harder ones. We assume that this is related to unobservable underground flows and pipes, however, this could be

further
::
are

::::::
among

:::
the

:::::
most

::::::::::
challenging.

::::
The

::::::
reasons

:::
for

::::
this

::::::::::
discrepancy

:
–
:::::

such
::
as

:::::::::
differences

::
in
:::::::::
catchment

::::
size,

::::
land

::::::
cover,

::
or

:::::::
upstream

::::::::::
complexity

:
–
:::::
could

:::
be analyzed in future work.625

The regression lines help us to see whether there is a systematic relationship between a station’s mean discharge and its

predictability
::::::
indicate

:::::::
whether

:::::
model

:::::::::::
performance

::::::::
correlates

::::
with

:::::::
average

::::::::
discharge

:::::
levels

:::::
across

::::::
stations. We performed linear

regressionhere, and ;
:
the regression lines are only

::::::
appear exponential due to the logarithmic

:::::
scaling

::
of

:::
the

:
x-axis. The KGE plot

(Fig. 6a) shows
::
All

:::::::
metrics,

::::::
except

:::::
MAE,

:::::
show that both models tend to perform better at stations with higher mean discharges.

This effect is more pronounced in EFAS, while our model exhibits a more balanced behavior. This is even more the case if630

we consider the NSE (Fig. 6b) and the PCC (Fig. 6c). Here, DRRAiNN’s performance barely depends on the station’s mean

discharge at all, which cannot be said about EFAS. Differences in the patterns of the KGE
:::
The

:::::::::
differences

::::::::
between

::::
KGE

::::
and

::::
NSE

:::::::
patterns (Fig. 6a ) and NSE plots (Fig. 6

:::
and

:
b) show that the models have different biases for the different stations, since

this is the main difference between KGE and NSE, as discussed above. Both ,
::::
KGE

:::::::
accounts

:::
for

::::
both

::::
bias

:::
and

:::::::::
variability,

:::::
while

::::
NSE

::::
only

:::::::
captures

::::::::
variance.

::::
Both

:
DRRAiNN and EFAS , produce significantly larger MAEs with increased mean discharge635

(Fig. 6d). This is expected , though, as
::::
since

:
MAE does not account for the stations’ mean discharges or their variability in

discharge, unlike the other metrics.
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(a) KGE

100 101 102

0.0

0.2

0.4

0.6

0.8

N
S

E

A
lt

e
n
s
t
e
ig

B
a
d

Im
n
a
u

D
e
n
k
e
n
d
o
r
f

G
a
il
d
o
r
f

K
ir

c
h
e
n
t
e
ll
in

s
fu

r
t

L
a
u
ff

e
n

M
o
s
b
a
c
h

M
u
r
r

N
e
u
s
t
a
d
t

O
p
p
e
n
w

e
il
e
r

P
fo

r
z
h
e
im

P
lo

c
h
in

g
e
n

R
o
c
k
e
n
a
u

R
o
t
t
w

e
il

S
c
h
w

a
b
s
b
e
r
g

S
t
e
in

U
n
t
e
r
g
r
ie

s
h
e
im

(b) NSE

100 101 102

Mean of stations’ discharges

0.70

0.75

0.80

0.85

0.90

0.95

r

A
lt

e
n
s
t
e
ig

B
a
d

Im
n
a
u

D
e
n
k
e
n
d
o
r
f

G
a
il
d
o
r
f

K
ir

c
h
e
n
t
e
ll
in

s
fu

r
t

L
a
u
ff

e
n

M
o
s
b
a
c
h

M
u
r
r

N
e
u
s
t
a
d
t

O
p
p
e
n
w

e
il
e
r

P
fo

r
z
h
e
im

P
lo

c
h
in

g
e
n

R
o
c
k
e
n
a
u

R
o
t
t
w

e
il

S
c
h
w

a
b
s
b
e
r
g

S
t
e
in

U
n
t
e
r
g
r
ie

s
h
e
im

(c) PCC

100 101 102

Mean of stations’ discharges

0

10

20

30

M
A

E
(m

3
/
s)

A
lt

e
n
s
t
e
ig

B
a
d

Im
n
a
u

D
e
n
k
e
n
d
o
r
f

G
a
il
d
o
r
f

K
ir

c
h
e
n
t
e
ll
in

s
fu

r
t

L
a
u
ff

e
n

M
o
s
b
a
c
h

M
u
r
r

N
e
u
s
t
a
d
t

O
p
p
e
n
w

e
il
e
r

P
fo

r
z
h
e
im

P
lo

c
h
in

g
e
n

R
o
c
k
e
n
a
u

R
o
t
t
w

e
il

S
c
h
w

a
b
s
b
e
r
g

S
t
e
in

U
n
t
e
r
g
r
ie

s
h
e
im

(d) MAE

DRRAiNN EFAS DRRAiNN reg EFAS reg

Figure 6. Performances of DRRAiNN and EFAS on
:

at
:
a
:
1 day lead time based on

:::::
across different metrics at the different

::
and

:
stations.

The x-axis denotes
:::::
shows the logarithmic means of the stations’ discharges

::::
mean

::::::::
discharge

:
at
::::

each
::::::
station. The blue shadow depicts

::::
Blue

:::::
vertical

::::
lines

:::::
depict

:
the standard deviation over the different

::::
across

:::::::::
DRRAiNN seeds. The dashed

:::::
Dashed

:
lines represent a linear regression

on
::::::::
regressions

:::::::
between the logarithmic stations’ means

:::::::
log-mean

:::::::
discharge

:
and the

:::::::::::
corresponding metric.
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Figure 7. Attribution maps of precipitation for discharge estimation at selected stations
::
and

::::
time

:::::::
intervals, averaged over all validation

:::
test

::
set sequences. Brighter colors indicate grid cells where precipitation has a stronger influence on the estimated discharge at the corresponding

station. For comparison, the traditional catchment areas delineated from elevation data are outlined in red. This juxtaposition highlights the

agreement between data-driven attributions and physically derived catchment boundaries. The
::::::::
attribution method used to compute these

attributions is described in detail in Subsection
::::::
Subsect.

:
2.6 of the main text.

3.3 Catchment area inference

We can successfully reconstruct
::::::
observe

::::
that

:::::::::
DRRAiNN

::::::::
implicitly

::::::
infers physically plausible catchment areasthat DRRAiNN

must have inferred implicitly (,
:::

as
::::::
shown

::
in

:
Fig. 7). Lighter areas show higher importance

:::::::
indicate

::::::
regions

:::::
with

::::::
higher640

:::::::::
importance

::
of

:::::::::::
precipitation

:
for estimating discharge at the corresponding station. These areas correlate

:::::::::
attribution

:::::::
patterns
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:::::::
spatially

::::::
overlap

:
with the catchment areas depicted in red, which are delineated from elevation alone

:::::::
(depicted

:::
in

::::
red).

::::
The

:::
first

:::::::
column

:::::
shows

::::::::::
attributions

::::::::
averaged

::::
over

:::
the

:::::
whole

:::
20

:::
day

::::::::::
sequences.

:::
The

:::::::::
remaining

:::::::
columns

::::::::
visualize

::::::::::
attributions

:::
for

:::::::::::
subsequences

::
of

::
5

::::
days

:::::
length

::
to
::::::::

illustrate
::::::::
temporal

:::::::
changes

::
in

:::::
spatial

:::::::::
influence..

::::::
There

:
is
::
a
::::::::
tendency

::
of

:::
the

::::
area

::
of

::::::::
influence

::
to

:::::::
increases

::
in
::::
size

:::
the

::::::
further

:::
we

::::
look

::::
into

:::
the

::::
past.

::::
This

:::::::
suggests

::::
that

:::::::::
DRRAiNN

:::::::::
propagates

::::::::
encoded

::::
water

:::::::::
quantities

:::::
along645

::
the

:::::::::
landscape

::
in

::
a

::::::
manner

::::
that

::::::
aligns,

::
at

::::
least

::
to

:::::
some

::::::
extent,

::::
with

:::::::
physical

:::::
flow

::::::::
processes. The results are not perfect. One

should keep in mind, however, that DRRAiNN is trained on daily discharge measurements.This means for sharp delineations,

the training data set ideally needs to contain sequences in which it rained within the area, but not outside, over the extent of a

24 h period. As precipitation is very dynamic on this time scale, the chances for this are relatively low. In the future, we expect

much better results if we go from daily to hourly discharge data.650

In the case of Pforzheim(Fig. 7b), DRRAiNN missed ,
::::::::::
DRRAiNN

::::::
assigns

::::
low

::::::::::
importance

::
to

:
an area in the lower right

partthat is considered part of ,
::::::
despite

:::
its

::::::::
inclusion

::
in the delineated catchment area. This could be explained by underground

flows that were found in previous studies near Pforzheim(Ufrecht, 2002). Water that would
::::::::::
discrepancy

:::::
could

::
be

:::::::
related

::
to

:::::
known

:::::::::::
underground

:::::
flows

::::
near

:::::::::
Pforzheim,

:::
as

:::::::
reported

::
in

::::::::::::
Ufrecht (2002)

:
.
::
In

:::
the

:::::::
absence

::
of

:::::::::
subsurface

::::::
flows,

:::::
water

:::::
would

:::
be

:::::::
expected

::
to pass through Pforzheimif no underground flows existed, instead flows ;

::::::::
however,

:::
due

::
to

:::
the

:::::::
presence

::
of

:::::::::::
underground655

::::
flow

:::::
paths,

:
it
:::::::

instead
:::::
moves

:
towards the southeast, entering the Neckar River network in a different channel

::
via

:::
an

:::::::::
alternative

::::
route. Our results might be evidence that DRRAiNN

:::::::
suggests

::::
that

:::::::::
DRRAiNN

::::
may

:::::
have detected these unobservable under-

ground flows from precipitation and discharge dynamics, however,
:
.
::::::::
However, this hypothesis arguably needs more investiga-

tion in the future.

Note , that these results mainly
:::::::
primarily

:
serve as a proof of principle: We only present the results of the best seed here. This660

is valid as we performed temporal validation on all seeds beforehand to check for their temporal generalization capabilities.

This could also be done if one was interested in building an operational model.
::::::
present

::::::
results

:::::
from

:::
the

::::
seed

:::::::::
producing

:::
the

::::::
clearest

::::::::::
attributions;

::::::
others

:::::::
yielded

::::::::::
qualitatively

::::::
worse

::::::
results.

::::::::
However,

::
it
::
is
:::::::::
important

::
to

::::
keep

:::
in

::::
mind

::::
that

::::::::::
DRRAiNN

::
is

::::::
trained

::
on

:::::
daily

::::::::
discharge

::::::::::::
measurements.

::::::::
Learning

:::::
sharp

::::::::
catchment

::::::::::
delineations

::::::
would

::::::
require

:::
the

:::::::
training

::::
data

::
set

::
to

:::::::
contain

::::::::
sequences

::
in

::::::
which

::
it

:::::
rained

::::::
within

:::
the

:::::
area,

:::
but

:::
not

::::::
outside

:::
of

::
it,

::::
over

:::
the

::::::
extent

::
of

:
a
:::::
24 h

::::::
period.

:::
As

:::::::::::
precipitation

::
is

::::
very665

:::::::
dynamic

::
on

::::
this

::::
time

:::::
scale,

:::
the

:::::::
chances

:::
for

:::
this

:::
are

::::::::
relatively

::::
low.

::
In

:::
the

::::::
future,

:::
we

:::::
expect

:::::::
sharper

::::::
results

:
if
:::
we

:::
go

::::
from

:::::
daily

::
to

:::::
hourly

::::::::
discharge

:::::
data.

3.4
::::::::
Ablations

::
To

::::::
assess

::::
both

:::
the

::::::::
physical

::::::::::
plausibility

:::
and

::::::::::::
contributions

::
of

:::::::
specific

:::::::::::
architectural

:::::::::::
components,

:::
we

:::::::::
conducted

::
a
:::::
series

:::
of

:::::::
ablations

:::
on

::::::::::
DRRAiNN

:::::::::
(Appendix

:::
A).

:::::
First,

:::
we

:::::::
showed

:::
that

::::::::::
DRRAiNN

:::
can

::::::
exploit

::::
the

:::::
DEM

::
as

::
a

::::::::
positional

::::::::
encoding

:::
by670

:::::::
training,

:::::::::
validating,

:::
and

::::::
testing

::
it

::
on

::
a
::::::
rotated

:::::
DEM.

:::::::::
However,

:
it
:::
did

:::::
result

::
in
:::::::
slightly

:::::
worse

:::::::::::
performance

:::
and

::::
less

:::::::::
physically

:::::::
plausible

::::::::
behavior

:::::::::
(Appendix

::::
A1).

:::::
Next,

::
we

::::::::
evaluated

:::
the

:::::::
model’s

::::::::
inductive

::::
bias

::
in

::::::::::::
distinguishing

:::::::
between

:::::::
spatially

::::::::
extended

:::
and

:::::
local

::::::::
processes

:::::::::
(Appendix

:::::
A2).

:::::
Last,

:::
we

::::::::
removed

:::
the

:::::::::::::
hypernetworks

::
to

:::::::
examine

:::::
their

::::::
impact

::::::::::
(Appendix

::::
A3).

:::::
Both

:::::::
ablations

:::
led

:::
to

:::::::::::
performance

::::::::::
degradation

::::::
across

:::::
most

::::::
metrics

::::
and

::::
lead

::::::
times.

::::::::
However,

::::
the

:::::::::
differences

:::::
were

:::
not

:::::::
always
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:::::::::
significant.

::::::::::
Importantly,

::::::
neither

:::::::
ablated

:::::
model

::::
was

::::
able

::
to

:::::::
produce

::::::::
physically

:::::::
realistic

:::::::::
catchment

:::::
areas,

::
as

::::::::::::
demonstrated

::::
both675

::::::::::
qualitatively

:::
and

::::::::::::
quantitatively.

:

4 Discussion

In this work, we present
:::
We

::::::::
introduce

:
DRRAiNN, a fully differentiable, fully distributed neural network architecture that

successfully estimates
:::
for

::::::::
estimating

:
river discharge from past discharge, an elevation map, gridded precipitation, and gridded

::::::
gridded

::::::::
elevation

:::::
maps,

::::
and

:::::::
gridded

::::::::::
precipitation

::::
and solar radiation. Individual instances of DRRAiNN can produce better680

KGE
:::::::::
DRRAiNN

:::::::::::
demonstrates

:::::
better

:
performance than EFAS with

::
on lead times of up to 100

::
50 days. This shows

:::::::
indicates

that DRRAiNN can produce reasonable
::::
valid

:
estimations far into the future even though it was only trained on

:::::
despite

::
it

:::::
being

::::::
trained

::
on

:::::::::
sequences

::
of

::::
only 20 day sequences

::::
days,

::::::::
including

:
a
::::::::
warm-up

::::::
period

::
of

::
10

:::::
days.

Our analysis reveals that discharge estimation at various stationsexhibits differing levels of difficulty. Notably,
:::
the

::::::::
difficulty

::
of

::::::::
discharge

:::::::::
estimation

:::::
varies

::::::
across

:::::::
gauging

:::::::
stations.

:::::::::::
Interestingly,

::::
both

:
DRRAiNN and EFAS tend to identify

::::::::::
consistently685

::::::
struggle

:::::
with

:
the same stationsas challenging to predict, suggesting that the difficulty is intrinsic to the stations and their

associated data rather than specific to the model architecture. This variability in prediction difficulty likely arises from several

factors . Stations influenced
::::::
Several

::::::
factors

:::::
likely

:::::::::
contribute

::
to

:::
this

::::::::::
variability.

:::
For

::::::::
example,

::::::
stations

:::::::
affected

:
by unobserved

variables like
::::
such

::
as complex subsurface topography, land cover heterogeneity, or anthropogenic factors (e.g., dam operations)

may pose greater challenges for both models
::
be

::::::::
inherently

::::::
harder

::
to

::::::
model. Furthermore, spatial variations in the quality of690

input data could contribute to discrepancies in performance. Future investigations employing
::::
using

:
attribution techniques

could offer deeper insights into these station-specific variations and guide the development of architectural modifications or

regularizations
:::::::::::
regularization

:
to address these challenges effectively.

We performed several ablations on our model (Appendix A). First, we showed that DRRAiNN can exploit the DEM as

a positional encoding by training and validating it on a rotated DEM. While this did not lead to worse performance, it695

resulted in significantly less physically plausible behavior (Appendix A1). Then, we checked whether the inductive bias that

makes the model distinguish between spatially extended and local processes is useful (Appendix A2). Last, we removed the

hypernetworks to examine their impact (Appendix A3). For some combinations of performed ablation, metric, and lead time,

there is no significant differences in terms of performance compared to the original DRRAiNN model. However, none of

the ablated models is able to produce physically realistic catchment areas, which we showed qualitatively and underlined700

quantitatively.

Our ablation studies highlight the importance
:::::
show

:::
the

:::::::
benefits

:
of distinguishing between spatially extended and local

processes, as well as the incorporation of
:::
and

:::
of

:::::::::::
incorporating

:
hypernetworks. The inability of

::::::
reduced

:::::::::::
performance

::::
and

:::::
failure

::
of

:::
the

:
ablated models to produce realistic catchment areas suggests that these components encode crucial hydrological

processes, such as water movement over
:::::
across

:
complex topographies. This finding indicates that certain inductive biases not705

only
:::::::
suggests

::::
that

:::::::::::
incorporating

::::::::::
appropriate

::::::::
inductive

::::::
biases

:::
can

:::::
both improve model interpretability but also prevent

:::
and

:::::
reduce

:::
the

::::
risk

::
of

:::::::
learning spurious correlations.

28



Interestingly, the model instance achieving the best attribution maps does not correspond to the one achieving the best

performance metrics. This highlights
:::
that

::::::::
produces

:::
the

:::::
most

:::::::::
physically

::::::::
plausible

:::::::::
attribution

:::::
maps

::
is

:::
not

::::
the

:::
one

:::::
with

:::
the

:::
best

:::::::::
predictive

:::::::::::
performance.

::::
This

::::::
points

::
to

:
a trade-off between optimizing for predictive accuracy and ensuring the model710

behaves in a physically meaningful way. It suggests that while the metricsmeasure how well the model captures patterns in

the training data, they
::::::::::
encouraging

:::::::::
physically

:::::::
realistic

:::::
model

::::::::
behavior.

::::
This

::::::::
suggests

:::
that

:::::::::::
conventional

:::::::::::
performance

:::::::
metrics,

::::
while

::::::::
effective

::
at

:::::::::
evaluating

::::::::
predictive

::::::::
accuracy,

:
may not fully capture the alignment with

:::::
reflect

:::::::
whether

:::
the

::::::
model

:::::::
adheres

::
to

:::::::::
underlying physical principles.

Our choice of input datasets was guided by considerations of temporal resolution, data sources, and practical availability, all715

of which impact model performance. Although EFAS uses EMO-1 for precipitation data, we opted for RADOLAN due to key

differences: EMO-1 provides 6-hourly resolution and is interpolated from station data rather than derived directly from radar

observations. While we expect minor differences in performance between RADOLAN and EMO-1, radar-derived datasets like

RADOLAN generally offer finer spatial and temporal detail, which is advantageous for distributed models. Similarly, for solar

radiation data, ERA5 was chosen due to its raster format and hourly resolution. Alternative datasets, such as those provided by720

DWD, are either available only as station-wise hourly data, which lack the required raster format, or as raster data aggregated

monthly, which does not meet our temporal requirements. Daily datasets like EOBS could suffice if temporal patterns are

encoded separately, but this would require additional preprocessing steps. If one aims to transition toward operational flood

forecasting in the future, the choice of precipitation forecast will become critically important (Imhoff et al., 2022). Ultimately,

all data products come with inherent uncertainties and errors, and our choices reflect a balance between data availability,725

temporal resolution, and model needs.

An increase in
::::::::
Increasing the amount of training data is always beneficial in machine learning

::::::::
generally

::::::::
enhances

::::::::::
performance

::
in

:::
ML. Currently, DDRAiNN

:::::::::
DRRAiNN

:
is not designed for scalability, as its application is expected to require retrain-

ing for
::
in

:
each specific context. A first step towards improving its

::::::
natural

::::
step

::::::
toward

:::::::::
improving

:
adaptability would be to

train DDRAiNN
::::::
training

::::::::::
DRRAiNN

:
on hourly discharge data. We anticipate this would yield performance improvements730

and qualitatively better attributions, potentially even capturing the
:::
This

:::::
could

::::::::
improve

:::::::::::
performance

:::
and

:::::::::
attribution

:::::::
quality,

:::::::::
potentially

:::::::
enabling

:::
the

::::::
model

::
to
:::::

trace
:::
the

:
origins of individual peaks in the hydrographs. To explore the model’s spatial

generalization capabilities, we aim to apply DDRAiNN to diverse catchments across Germany, Europe, or even globally.

By validating it on catchments that are not part of the training data, we can systematically assess its ability to generalize

to unseen regions. Improving this spatial generalization remains a key challenge and likely requires additional constraints735

or inductive biases in the model. Promising candidates are the incorporation of physical constraints like mass conservation

(Hoedt et al., 2021; Harder et al., 2023; Wi and Steinschneider, 2023) or semantically splitting the hidden state of the rainfall-runoff

model into surface and subsurface components. These enhancements could pave the way for future scalability and broader

applicability.

As traditional process-based models make use of many more
::::::::
discharge

:::::
peaks.

:::::
Since

:::::::::
traditional

:::::
PBMs

::::
rely

::
on

::
a
:::::
wider

:::::
range740

::
of input variables, feeding them as additional inputs could

:::
also

:
lead to performance improvements in DRRAiNNas well. This

includes land cover, geology, soil
:::::
parent

:::::::
material,

::::
soil

::::::
texture, vegetation, temperature, and potential evapotranspiration among
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others. Interpretability methods can then be used to perform a sensitivity analysis, revealing which input variables are important

when and, due to our model being fully distributed, where.
::::
These

::::::::
methods

::::
may

:::
also

:::::::
provide

:::::::
insights

:::
into

:::
the

:::::::
model’s

:::::::
internal

:::::::::::::
representations,

:::::::::
potentially

:::::::::
uncovering

::::
links

:::
to

::::::::
real-world

:::::::::::
hydrological

::::::::
variables.

:
745

Currently, DRRAiNN uses a warm-up period of 10 days for the hidden states to tune into the dynamics. The rainfall-runoff

modelpotentially captures precipitation during this time to estimate soil moisture, which has a huge impact on infiltration.

Therefore, soil moisture as an additional input variable is of special interest as it might allow us to get rid of the initial 10

days, thereby reducing training costs. An alternative would be to feed in the compressed precipitation history of the days or

even weeks before (Traub et al., 2024b).
::::::
Several

::::::::
strategies

:::
can

:::
be

::::::::
employed

::
to

:::::::::
investigate

:::::::::::
DRRAiNN’s

::::::
spatial

::::::::::::
generalization750

::::::::::
capabilities.

::::
One

:::::::
approach

::
is
::
to
:::::
leave

:::
out

:::::::::
individual

:::::::
stations

:::::
within

::
a

::::
river

:::::::
network

::::::
during

:::::::
training

::
to

:::::::
evaluate

::::::::::::
generalization

:::::
within

:::::::::::::
hydrologically

::::::::
connected

::::::::
regions.

::
A

:::::
more

:::::::::
demanding

::::
test

:::
of

::::::::::::
generalization

:::::
would

:::::::
involve

:::::::
training

::::
and

::::::
testing

:::
on

:::::::
different

::::
river

:::::::::
networks.

:::
By

::::::
testing

::
it

::
on

::::::::::
catchments

::::
that

:::
are

:::
not

::::
part

::
of

:::
the

:::::::
training

:::::
data,

:::
we

:::
can

:::::::::::::
systematically

:::::
assess

:::
its

:::::
ability

::
to

:::::::::
generalize

::
to

::::::
unseen

:::::::
regions.

:::::::::
Ultimately,

:::
we

:::
aim

::
to

:::::
apply

::::::::::
DRRAiNN

::
to

::::::
diverse

:::::::::
catchments

::::::
across

::::::::
Germany,

:::::::
Europe,

::
or

:::::::
globally.

::::
Due

:::
to

:::::::::::
DRRAiNN’s

:::::::::
data-driven

:::::::
nature,

::::::::
discharge

::::::::::::
measurements

::::
will

::::::
always

:::
be

::::::
needed

:::
for

:::::::
training.

:::::::::
However,755

:::::
recent

::::::::
advances

::
in

::::::
remote

::::::
sensing

::::
may

::::::
enable

:::
the

:::::::::
application

::
of

::::::::::
DRRAiNN

::
to

::::::::
ungauged

::::
river

::::::::
networks

:::::::::::::::
(Gigi et al., 2019)

:
.

Concerning output variables, DRRAiNN could also be used to estimate quantities other than discharge. For some measurement

stations, additional water-related information, like turbidity, is available. To estimate turbidity, information about potential

erosion can be helpful, as is provided by the RUSLE model (Renard et al., 1994), for example. Similarly to the catchment area

inference performed in this study, a trained instance of such a model could be interrogated to infer the origins of measured760

turbidity, potentially informing us about sites of actual erosion. This information could be used to create policies for soil

protection. Other variables of interest include the concentration of toxins and oxygen for similar applications.

Operational flood forecasting would be a safety-critical application of DRRAiNN. Therefore, it is important to quantify

uncertainties as was suggested elsewhere before (Hrachowitz et al., 2013; Nearing et al., 2021). Equipping our model with this

ability would allow us to provide confidence intervals when reporting inferred discharge values. In this regard, distributional765

parameter estimation is a technique where our architecture would produce an additional output that is interpreted as the standard

deviation in a negative log-likelihood loss. Other techniques include Bayesian neural networks (Neal, 2012), Monte-Carlo

dropouts (Gal and Ghahramani, 2015), and variational methods (Graves, 2011).

Another hurdle for operational flood forecasting is the inherent difficulty of obtaining sufficiently accurate, high-resolution

precipitation forecasts with lead times of several days. Even though numerical weather prediction models, such as those770

provided by the DWD, are readily available, they are limited in predicting localized extreme precipitation events and reducing

forecast uncertainty. In this work, we always assumed perfect forecasts by using historical observational precipitation data

since we focused on the dynamics of water once it reaches the earth’s surface. Therefore, further examination of DRRAiNN

’s predictive abilities when provided with precipitation forecasts is needed to see whether it would be suitable for operational

flood forecasting.775
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5 Conclusions

In this study
:::::
paper, we introduced DRRAiNN, a fully distributed neural network architecture that estimates river discharge

from precipitation, solar radiation, elevation maps, and past discharge measurements from gauging stations. Despite being

trained on sparse target data ,
:
–
:

namely daily discharge observations from only 17 stations ,
::
17

:::::::
stations

::::
over

:::
ten

:::::
years

::
–

DRRAiNN outperforms the operational benchmark model EFAS in terms of KGE and NSE across various lead times. Beyond780

its predictive accuracy, DRRAiNN provides physically interpretable attributions, enabling the identification of precipitation

sources contributing to discharge at specific stations. Our analyses highlight the importance of incorporating hydrologically

meaningful constraints, or inductive biases. These biases not only enhance interpretability but also ensure the model adheres

to
:::
help

:::
the

::::::
model

::::
align

:::::
more

::::::
closely

::::
with

:
physical principles, as evidenced by its ability to delineate realistic catchment areas.

With its predictive performance, interpretability, and physical consistency, DRRAiNN represents a promising step forward in785

the application of neural networks to distributed hydrological modeling.

Code and data availability. The preprocessed data sets can be found at Scholz et al. (2025a). The code can be found at Scholz et al. (2025b).

Appendix A: Ablations

A1 Rotated elevation map

We want to check whether DRRAiNN makes plausible use of
:::
aim

::
to
::::::

assess
:::::::
whether

:::::::::
DRRAiNN

:::::::
utilizes the elevation map

::
in790

:
a
:::::::::
physically

::::::::
plausible

::::
way

:
–
::::::::::
specifically,

:
to propagate water downwards over

:::::::
downhill

:::::
across

:
the landscape. An alternative

would be that DRRAiNN uses the elevation
:::::::
leverages

::::
the

::::::::
elevation

::::
map

::::::::
primarily

::
as

::
a
::::::::
positional

:::::::::
encoding,

::::::::
allowing

:
it
:

to

orient itself in the landscape , exploiting it as a positional encoding. This way DRRAiNN can learn local biasesat the different

positions in the map. Most likely, one will always observe a combination of both effects
:::::
within

:::
the

:::::::::
landscape

:::
and

::::::::
learning

:::::::::::::
location-specific

::::::
biases.

:
In

::::::::
practice,

::::
both

::::::::::
mechanisms

:::
are

:::::
likely

::
at

::::
play

::
to

:::::
some

::::::
degree.795

To examine this, we here trainand validateDRRAiNN with
::::
train,

::::::::
validate,

:::
and

:::
test

::::::::::
DRRAiNN

:::::
using the same elevation map

as before
:
, but rotated by 180

:::
180

:
degrees. This has the advantage

::::
setup

::::::::
preserves

:::
the

:::::::
statistics

:
of the elevation maphaving the

same statistics as before, making this comparison fair
:
,
:::::::
ensuring

::
a

:::
fair

::::::::::
comparison.

For most metrics and lead times, we do not find a significantly better performance of DRRAiNN if trained and validated

:::::::::
DRRAiNN

::::::::
performs

:::::
better

:::::
when

::::::
trained

:::
and

:::::
tested

:
on the original elevation map in contrast

::::::::
compared

:
to the rotated one (Fig.800

A1). This confirms our suspicion that the model can exploit the elevation map
::::::::::
Nonetheless,

:::
its

::::::::
continued

:::::::
superior

:::::::::::
performance

::::::
relative

::
to

:::::
EFAS

::
–
::::
even

:::::
with

:::
the

::::::
rotated

:::::
DEM

::
–

:::::::
supports

:::
the

:::::::::
hypothesis

::::
that

:::::::::
DRRAiNN

:::::::::
leverages

:::::::
elevation

:
as a positional

encoding. However, in this case, we are not able
::::::::::
Remarkably,

::::
this

:::
still

:::::::
enables

::
it to reconstruct plausible catchment areas

::
to

::::
some

::::::
extent (Fig. A2), which is underlined by our quantitative measure

:
.
::::::::
However,

:::
our

::::::::::
quantitative

:::::::
analysis

:
(Fig. A3) . This

is evidence
:::::
shows

::::
that

:::::::::
catchment

::::
areas

:::
are

:::::
more

:::::::::
accurately

:::::::::::
reconstructed

:::::
when

:::::::::
DRRAiNN

::
is
::::::::
executed

::
on

:::
the

:::::::
original

::::::
DEM.805
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Figure A1. Performances based on different metrics of EFAS,
::
the

::::
best

::::
three

:::
out

::
of

:::
five DRRAiNN ,

::::
model

:::::::
instances

:
and DRRAiNN

:::::
model

:::::::
instances on a rotated elevation mapwith

:
,
:::::::
compared

::
to
:::::

EFAS
:::::
across

:::::::
different

::::::
metrics

:::
and

:
lead time

::::
times up to 100

::
50 days. The results

:::::
Results

:
are averaged over the

:::::
across

::
all

:
stations, and the different seeds of our model are depicted with different .

::::
Each

:
line styles

::::
style

:::::::::
corresponds

::
to

:
a
::::::
distinct

::::::::
DRRAiNN

::::::
instance.
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Figure A2. Attribution maps of precipitation for discharge estimation at selected stations aggregated
:::
and

::::
time

:::::::
intervals,

:::::::
averaged over all

validation
::
test

:::
set sequences with a rotated elevation map. The brighter the color of

::::::
Brighter

:::::
colors

::::::
indicate

:::
grid

::::
cells

:::::
where

::::::::::
precipitation

::
has

:
a pixel,

:::::
stronger

:::::::
influence

:::
on the more important is precipitation in that grid cell for

:::::::
estimated

:
discharge estimation at the corresponding

station. The
::
For

::::::::::
comparison,

::::::::
traditional catchment areas inferred

::::::::
delineated from elevation alone

:::
data

:
are shown

::::::
outlined

:
in red.
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Figure A3. Wasserstein distance
::::::
distances

:
between normalized attributions within

:::::
inside and outside of the catchment areas delineated from

the digital elevation model. A higher distance points towards a
::::::
indicates

:
better agreement between inferred and delineated catchment areas,

and therefore a
::::::::
suggesting more physically realistic behavior of the model

::::::
behavior. The depicted standard

:::::::
Standard deviations are computed

over
::::
across

:
the different gauging stations.

::::
This

:::::::
suggests

:
that our original modelmakes suitable

::
’s

:
use of the elevation map that goes beyond positional encoding

::::
goes

::::::
beyond

::::
mere

:::::::::
positional

::::::::
encoding,

:::::::::::
incorporating

:::::::::::::
hydrologically

:::::::::
meaningful

::::::::::
information.

A2 All LSTM

One
:
A
:

key inductive bias in DRRAiNN is the explicit distinction
::::::::
separation

:
between spatially extended processes and local

processes. The lateral propagation of water over
::::::
Lateral

:::::
water

:::::::::
movement

:::::
across

:
the landscape is a spatially extended process810

that is mainly
:::::::
primarily

:
driven by elevation. Evapotranspiration, on the other hand, is a local process that is mainly driven

::::::
largely

::::::::
influenced

:
by solar radiation. We incorporate this

::::::
encode

:::
this

:::::::::
distinction into DRRAiNN by mapping these processes on

the DWConv and the PWConv components within
:::::::
assigning

:::::
these

::::::::
processes

::
to

:::::::
different

::::::::::
components

::
of

:
the ConvNeXt block.

:
:

::
the

:
DWConv is parameterized by a CNN that receives elevation as input, while PWConv1 and PWConv2 are parameterized by

an MLP that receives solar radiationas input. In this ablation, we discard this bias by feeding the elevation and solar radiation815

together with the precipitation
:
–
:::::::
together

::::
with

:::::::::::
precipitation

:
–
:::::::
directly into the PWLSTM. Therefore

:::::::::::
Consequently, the relativity

bias, realized by subtracting the elevation of the center cell from the elevations of all other cells within each receptive field of

the hypernetwork, is discarded here as well
:::
also

:::::::
removed.

We find
::::::
observe

:
a significant performance drop in earlier lead times for all metrics except MAE (Fig. A4). Furthermore

::
In

:::::::
addition, the inferred catchment areas do not look physically plausible

::::::
appear

::::
less

::::::::
plausible

::::::::
compared

:::
to

:::::
those

::::::::
produced820

::
by

::::::::::
DRRAiNN (Fig. A5), which is underlined

:
a
::::::
finding

::::
that

::
is

::::::::
supported

:
quantitatively (Fig. A6). This shows that the explicit

distinction between these sub-processes is advantageous for DRRAiNN , both
::::
These

::::::
results

::::::::::
demonstrate

::::
that

::::::::
explicitly

:::::::::::
distinguishing
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Figure A4. Performances based on different metrics of EFAS,
::
the

::::
best

::::
three

::
out

::
of

:::
five

:
DRRAiNN ,

:::::
model

:::::::
instances and ablated DRRAiNN

:::::
model

::::::::
instances where all forcings are fed into the PWLSTMwith

:
,
:::::::
compared

::
to

:::::
EFAS

:::::
across

::::::
different

::::::
metrics

:::
and

:
lead

::::
times up to 100

::
50

days. The results
:::::

Results are averaged over the
::::
across

:::
all stations, and the different seeds of our model are depicted with different

:
.
::::
Each line

styles
::::
style

:::::::::
corresponds

:
to
::

a
:::::
distinct

:::::::::
DRRAiNN

::::::
instance.
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Figure A5. Attribution maps of precipitation for discharge estimation at selected stations aggregated
:::
and

::::
time

:::::::
intervals,

:::::::
averaged over all

validation
::
test

:::
set sequences when all forcings are fed into the PWLSTM. The brighter the color of

::::::
Brighter

:::::
colors

::::::
indicate

:::
grid

::::
cells

:::::
where

:::::::::
precipitation

:::
has a pixel,

::::::
stronger

:::::::
influence

:::
on the more important is precipitation in that grid cell for

:::::::
estimated discharge estimation at the

corresponding station. The
::
For

::::::::::
comparison,

::::::::
traditional catchment areas inferred

::::::::
delineated from elevation alone

:::
data are shown

::::::
outlined in

red.
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Figure A6. Wasserstein distance
::::::
distances

:
between normalized attributions within

:::::
inside and outside of the catchment areas delineated from

the digital elevation model. A higher distance points towards a
::::::
indicates

:
better agreement between inferred and delineated catchment areas,

and therefore a
::::::::
suggesting more physically realistic behavior of the model

::::::
behavior. The depicted standard

:::::::
Standard deviations are computed

over
::::
across

:
the different gauging stations.

:::::::
between

:::::::
spatially

::::::::
extended

::::
and

::::
local

:::::::::
processes

:::::::
benefits

:::::::::
DRRAiNN

:
in terms of accuracy and

::::
both

::::::::
predictive

::::::::
accuracy

::::
and

:::::::
physical plausibility.

A3 No hypernetworks825

Here, we train DRRAiNN without hypernetworks to examine their usefulness
:::::
assess

::::
their

::::::::::
contribution. To stay close to the

original architecture, we want to maintain the
::::::
preserve

:
inductive bias that distinguishes

::::::
between

:
the spatially extended process

of propagating water over the landscape
::::
water

::::::::::
propagation

:
and the local process of evapotranspiration. Therefore

:::::::::
Specifically,

the elevation map is concatenated with the hidden state, fed into
:::::
passed

:::::::
through a position-wise linear layer, and only then fed

into the DWConv. This is necessary as
:::
step

::
is

::::::::
necessary

:::::::
because

:
DWConv requires the number of input and output channels to830

be the same. Therefore
::
of

:::::
equal

::::
size.

:::
As

:
a
:::::
result, the relativity bias, realized by subtracting the elevation of the center cell from

the elevations of all other cells within each receptive field of the hypernetwork, is discarded here as well. Solar radiation, on

the other hand, is concatenated
:::
also

::::::::
removed.

::::
For

::::
solar

::::::::
radiation,

:::
we

::::::::::
concatenate

::
it with the hidden state and directly fed

::::
feed

::
the

:::::
result

:::::::
directly into PWConv1.

Removing the hypernetworks from DRRAiNN leads to a significant decrease in
:::::
results

::
in

:::::::::
decreased performance for KGE835

, especially during the first days
:::
and

::::
NSE

:
(Fig. A7a ). For NSE this effect is less pronounced (Fig.

:::
and A7b), while .

::::
For

::::
PCC

:::
and

::::::
MAE,

:
we do not observe a systematic difference in PCC and MAE (Fig. A7c and A7d). The ablated model does

not produce plausible attribution maps
:::::::
produces

:::
less

::::::::
plausible

::::::::::
attributions

:::::
maps

::::::::
compared

::
to

::::::::::
DRRAiNN (Fig. A8), which is

underlined
:
a
::::::
finding

::::
that

:
is
:::::::::
supported quantitatively (Fig. A9).
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Figure A7. Performances based on different metrics of EFAS,
::
the

:::
best

::::
three

:::
out

::
of

:::
five

::::::
original DRRAiNN ,

::::
model

:::::::
instances

:
and DRRAiNN

:::::
model

::::::::
instances without the hypernetworkswith

:
,
::::::::
compared

::
to

::::
EFAS

:::::
across

:::::::
different

::::::
metrics

:::
and

:
lead time

::::
times

:
up to 100

::
50

:
days. The

results
:::::
Results

:
are averaged over the

:::::
across

::
all

:
stations, and the different seeds of our model are depicted with different

:
.
::::
Each line styles

::::
style

:::::::::
corresponds

::
to

:
a
::::::
distinct

::::::::
DRRAiNN

::::::
instance.
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Figure A8. Attribution maps of precipitation for discharge estimation at selected stations aggregated
:::
and

::::
time

:::::::
intervals,

:::::::
averaged over all

validation
::
test

:::
set sequences without hypernetworks. The brighter the color of

::::::
Brighter

:::::
colors

:::::::
indicate

:::
grid

::::
cells

:::::
where

::::::::::
precipitation

:::
has

a pixel,
::::::
stronger

:::::::
influence

::
on

:
the more important is precipitation in that grid cell for

:::::::
estimated discharge estimation at the corresponding

station. The
::
For

::::::::::
comparison,

::::::::
traditional catchment areas inferred

::::::::
delineated from elevation alone

:::
data

:
are shown

::::::
outlined

:
in red.
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Figure A9. Wasserstein distance
::::::
distances

:
between normalized attributions within

:::::
inside and outside of the catchment areas delineated from

the digital elevation model. A higher distance points towards a
::::::
indicates

:
better agreement between inferred and delineated catchment areas,

and therefore a
::::::::
suggesting more physically realistic behavior of the model

::::::
behavior. The depicted standard

:::::::
Standard deviations are computed

over
::::
across

:
the different gauging stations.

Appendix B:
:::::::::
Alternative

::::::::::::::::
hyperparameters840

::
In

:::
this

::::::::
appendix,

:::
we

:::::
report

:::
the

::::::::::
performance

::
of

::::::::::
DRRAiNN

:::::
under

::::::::
alternative

::::::::::::::
hyperparameters

:::::::
settings.

::
In

:::
the

::::::
default

:::::::::::
configuration,

::
the

::::::
LSTM

:::
in

:::
the

::::::::::::
rainfall-runoff

:::::
model

::::
has

:
a
::::::

hidden
::::

size
:::
of

::
4,

:::
and

:::
the

:::::
GRU

::
in
::::

the
::::::::
discharge

:::::
model

::::
has

:
a
::::::

hidden
::::

size
:::
of

::
8.

::::
Here,

:::
we

:::::::
examine

:::::::::::
DRRAiNN’s

:::::::::::
performance

:::::
using

::::
both

::::::
smaller

::::
and

:::::
larger

::::::
hidden

::::
sizes.

:::::::::::
Additionally,

:::
we

::::::
assess

:::
the

::::::
impact

::
of

:::::::
replacing

:::
the

::::::
GRUs

::
in

:::
the

::::::::
discharge

:::::
model

::::
with

::::::::
LSTMs.

B1
:::::::::::::
Rainfall-runoff

::::::
model

::::
with

:::::::
hidden

:::
size

::
2845

:::::
Figure

:::
B1

::::::
shows

:::
that

::::::::
reducing

:::
the

::::::
hidden

::::
size

::
of

:::
the

::::::::::::
rainfall-runoff

::::::
model

::::
from

::
4
::
to

::
2
::::
still

:::::
yields

::
a

::::::::::
competitive

::::::
model.

:::
On

:::::::
average,

:
it
::::::::
performs

::::::
slightly

::::::
worse

:::::
during

:::
the

::::::
initial

::::
days.

::::::::
However,

::::
due

::
to

:::
the

:::::::
variance

::
in

:::::::::::
performance

:::::
across

:::::::
different

::::::
seeds,

::::::::
additional

::::::::::
experiments

:::
are

:::::::
required

::
to
:::::
draw

:
a
:::::
more

::::::::
definitive

::::::::::
conclusion.

B2
:::::::::::::
Rainfall-runoff

::::::
model

::::
with

:::::::
hidden

:::
size

::
6

:::::
Figure

:::
B2

:::::
shows

::::
that

:::::::::
increasing

:::
the

::::::
hidden

:::
size

::
of

:::
the

::::::::::::
rainfall-runoff

::::::
model

::::
from

::
4

::
to

:
6
:::::::
slightly

::::::::
decreases

::::::::::
performance

:::
on

:::
the850

::::
NSE

:::
and

:::::
PCC

:::::::
metrics,

:::::
while

::::
KGE

:::::::
remains

:::::::
largely

:::::::::
unaffected.

:::::
Since

:::
no

:::::::::
significant

:::::::::::
improvement

::
is

::::::::
observed,

:::
we

:::::
argue

::::
that

::
the

:::::::
smaller

:::::
model

::::::
should

:::
be

::::::::
preferred,

::::::::
following

::::::::
Occam’s

:::::
razor.

B3
:::::::::
Discharge

::::::
model

::::
with

::::::
hidden

::::
size

:
4
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Figure B1.
::::::::::
Performances

::
of

::
the

::::
best

::::
three

:::
out

::
of

:::
five

::::::
original

:::::::::
DRRAiNN

:::::
model

:::::::
instances

:::
and

:::::::::
DRRAiNN

:::::
model

:::::::
instances

::::
with

:
a
::::::
hidden

:::
size

::
of

:
2
::
in

:::
the

:::::::::::
rainfall-runoff

:::::
model,

::::::::
compared

:
to
:::::

EFAS
:::::
across

:::::::
different

::::::
metrics

:::
and

:::
lead

:::::
times

::
up

::
to

::
50

::::
days.

::::::
Results

:::
are

:::::::
averaged

:::::
across

::
all

::::::
stations.

::::
Each

:::
line

::::
style

:::::::::
corresponds

::
to
:
a
::::::

distinct
:::::::::
DRRAiNN

:::::::
instance.

41



0 10 20 30 40 50

0.600

0.625

0.650

0.675

0.700

0.725

0.750

K
G

E

(a) KGE

0 10 20 30 40 50

0.50

0.55

0.60

0.65

0.70

0.75

N
S

E

(b) NSE

0 10 20 30 40 50

Day

0.775

0.800

0.825

0.850

0.875

0.900

r

(c) PCC

0 10 20 30 40 50

Day

4

6

8

10

M
A

E
(m

3
/
s)

(d) MAE

DRRAiNN EFAS Rainfall-runoff 6

Figure B2.
::::::::::
Performances

::
of

::
the

::::
best

::::
three

:::
out

::
of

:::
five

::::::
original

:::::::::
DRRAiNN

:::::
model

:::::::
instances

:::
and

:::::::::
DRRAiNN

:::::
model

:::::::
instances

::::
with

:
a
::::::
hidden

:::
size

::
of

:
6
::
in

:::
the

:::::::::::
rainfall-runoff

:::::
model,

::::::::
compared

:
to
:::::

EFAS
:::::
across

:::::::
different

::::::
metrics

:::
and

:::
lead

:::::
times

::
up

::
to

::
50

::::
days.

::::::
Results

:::
are

:::::::
averaged

:::::
across

::
all

::::::
stations.

::::
Each

:::
line

::::
style

:::::::::
corresponds

::
to
:
a
::::::

distinct
:::::::::
DRRAiNN

:::::::
instance.
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Figure B3.
::::::::::
Performances

::
of

::
the

::::
best

::::
three

:::
out

::
of

:::
five

::::::
original

:::::::::
DRRAiNN

:::::
model

:::::::
instances

:::
and

:::::::::
DRRAiNN

:::::
model

:::::::
instances

::::
with

:
a
::::::
hidden

:::
size

::
of

:
4
::
in
:::
the

:::::::
discharge

::::::
model,

:::::::
compared

::
to
:::::

EFAS
:::::
across

:::::::
different

::::::
metrics

:::
and

:::
lead

:::::
times

::
up

::
to

:::
50

::::
days.

::::::
Results

::
are

:::::::
averaged

:::::
across

:::
all

::::::
stations.

::::
Each

:::
line

::::
style

:::::::::
corresponds

::
to

:
a
::::::
distinct

:::::::::
DRRAiNN

::::::
instance.

:
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Figure B4.
::::::::::
Performances

::
of

::
the

::::
best

::::
three

:::
out

::
of

:::
five

::::::
original

:::::::::
DRRAiNN

:::::
model

:::::::
instances

:::
and

:::::::::
DRRAiNN

:::::
model

:::::::
instances

::::
with

:
a
::::::
hidden

:::
size

::
of

::
16

::
in

:::
the

:::::::
discharge

::::::
model,

:::::::
compared

::
to

:::::
EFAS

:::::
across

::::::
different

::::::
metrics

:::
and

::::
lead

::::
times

:::
up

:
to
:::
50

::::
days.

::::::
Results

:::
are

::::::
averaged

:::::
across

:::
all

::::::
stations.

::::
Each

:::
line

::::
style

:::::::::
corresponds

::
to

:
a
::::::
distinct

:::::::::
DRRAiNN

::::::
instance.

:

:::::
Figure

:::
B3

:::::
shows

::::
that

:::::::
reducing

:::
the

::::::
hidden

::::
size

::
of

:::
the

::::::::
discharge

::::::
model

::::
from

::
8

::
to

:
4
:::::::::::
significantly

::::::
reduces

:::::::::::
performance

:::::
across

:::
all

::::::
metrics

:::
and

::::
lead

:::::
times.

:
855

B4
:::::::::
Discharge

::::::
model

::::
with

::::::
hidden

::::
size

::
16

:::::
Figure

:::
B4

:::::
shows

::::
that

::::::::
increasing

:::
the

::::::
hidden

::::
size

::
of

:::
the

::::::::
discharge

:::::
model

::::
from

::
8
::
to

::
16

:::::
leads

::
to

:::::
mixed

::::::
results.

::::::
While

::::
KGE

:::::::
appears

::
to

:::::::::
deteriorate,

:::::
NSE

:::
and

:::::
PCC

::::
show

:::::
slight

:::::::::::::
improvements,

::::::::::
particularly

::
at

:::::
longer

::::
lead

::::::
times.

:::::
Since

:::
no

:::::::::
significant

:::::::::::
improvement

:::
can

::
be

::::::::
observed,

:::
we

:::::
argue

::::
that

:::::
opting

:::
for

:::
the

::::::
smaller

::::::
model

::::
align

:::::
better

::::
with

::::::::
Occam’s

:::::
razor.
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Figure B5.
::::::::::
Performances

::
of

:::
the

:::
best

::::
three

:::
out

::
of

:::
five

:::::::
original

::::::::
DRRAiNN

:::::
model

::::::::
instances

:::
and

:::::::::
DRRAiNN

:::::
model

:::::::
instances

::::
with

::::::
LSTMs

:::::
instead

::
of

:::::
GRUs

::
in
:::
the

::::::::
discharge

:::::
model,

::::::::
compared

::
to

:::::
EFAS

:::::
across

:::::::
different

:::::
metrics

::::
and

:::
lead

:::::
times

::
up

::
to

:::
50

::::
days.

::::::
Results

:::
are

:::::::
averaged

::::
across

:::
all

::::::
stations.

::::
Each

:::
line

::::
style

:::::::::
corresponds

::
to

:
a
::::::
distinct

:::::::::
DRRAiNN

:::::::
instance.

B5
:::::::::
Discharge

::::::
model

::::
with

::::::
LSTM860

:::::
Figure

:::
B5

::::::
shows

::::
that

::::::::
replacing

:::
the

::::::
GRUs

:::
in

:::
the

::::::::
discharge

::::::
model

::::
with

:::::::
LSTMs

:::::::::::
significantly

:::::::
reduces

:::::::::::
performance

::::::
across

::
all

:::::::
metrics

:::
and

::::::
almost

:::
all

::::
lead

:::::
times.

:::::
This

:::::::
suggests

::::
that

::::::
model

:::::::::
complexity

::::::
should

::::::
reflect

:::
the

::::::::::
complexity

::
of

:::
the

::::::::::
underlying

::::::::
dynamics:

:::::
river

::::
flow

:::::
tends

::
to

::::::
follow

:::::::
simpler

::::::::
dynamics

::::
than

:::::::
surface

:::
and

:::::::::
subsurface

:::::
flow,

::::::
which

:::
we

:::::
model

:::::
with

::
an

:::::::
LSTM.

::::::::
Moreover,

:::::
water

::::::::
typically

::::::
resides

:::
in

::::::::
channels

:::
for

::::::
shorter

:::::::
periods

::::::::
compared

::
to
:::

its
::::::::
residence

:::::
time

:::::
below

:::::::
ground.

:::::
This

::::
may

::::::
explain

:::
the

:::::::
superior

::::::::::
performance

:::
of

:::::
GRUs

::
in

:::
the

::::::::
discharge

::::::
model,

::::::
though

::::::
further

:::::::::::
investigation

::
is

:::::::::
warranted.865
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L., Hopkinson, C., Hrachowitz, M., Illangasekare, T. H., Inam, A., Innocente, C., Istanbulluoglu, E., Jarihani, B., Kalantari, Z., Kalvans,895

A., Khanal, S., Khatami, S., Kiesel, J., Kirkby, M., Knoben, W., Kochanek, K., Kohnová, S., Kolechkina, A., Krause, S., Kreamer, D.,

Kreibich, H., Kunstmann, H., Lange, H., Liberato, M. L. R., Lindquist, E., Link, T., Liu, J., Loucks, D. P., Luce, C., Mahé, G., Makarieva,

O., Malard, J., Mashtayeva, S., Maskey, S., Mas-Pla, J., Mavrova-Guirguinova, M., Mazzoleni, M., Mernild, S., Misstear, B. D., Monta-

nari, A., Müller-Thomy, H., Nabizadeh, A., Nardi, F., Neale, C., Nesterova, N., Nurtaev, B., Odongo, V. O., Panda, S., Pande, S., Pang,

Z., Papacharalampous, G., Perrin, C., Pfister, L., Pimentel, R., Polo, M. J., Post, D., Sierra, C. P., Ramos, M.-H., Renner, M., Reynolds,900

J. E., Ridolfi, E., Rigon, R., Riva, M., Robertson, D. E., Rosso, R., Roy, T., Sá, J. H., Salvadori, G., Sandells, M., Schaefli, B., Schumann,

A., Scolobig, A., Seibert, J., Servat, E., Shafiei, M., Sharma, A., Sidibe, M., Sidle, R. C., Skaugen, T., Smith, H., Spiessl, S. M., Stein, L.,

Steinsland, I., Strasser, U., Su, B., Szolgay, J., Tarboton, D., Tauro, F., Thirel, G., Tian, F., Tong, R., Tussupova, K., Tyralis, H., Uijlenhoet,

R., van Beek, R., van der Ent, R. J., van der Ploeg, M., Loon, A. F. V., van Meerveld, I., van Nooijen, R., van Oel, P. R., Vidal, J.-P., von

Freyberg, J., Vorogushyn, S., Wachniew, P., Wade, A. J., Ward, P., Westerberg, I. K., White, C., Wood, E. F., Woods, R., Xu, Z., Yilmaz,905

K. K., and Zhang, Y.: Twenty-three unsolved problems in hydrology (UPH) –a community perspective, Hydrological Sciences Journal,

64, 1141–1158, https://doi.org/10.1080/02626667.2019.1620507, 2019.

Börgel, F., Karsten, S., Rummel, K., and Gräwe, U.: From weather data to river runoff: using spatiotemporal convolutional networks for

discharge forecasting, Geoscientific Model Development, 18, 2005–2019, https://doi.org/10.5194/gmd-18-2005-2025, 2025.

Brutsaert, W.: Hydrology, Cambridge university press, 2023.910

47

https://www.lubw.baden-wuerttemberg.de/wasser/awgn
https://doi.org/https://doi.org/10.1029/2023WR035337
https://doi.org/10.1080/02626667.2019.1620507
https://doi.org/10.5194/gmd-18-2005-2025


Butz, M. V., Bilkey, D., Humaidan, D., Knott, A., and Otte, S.: Learning, planning, and control in a monolithic neural event inference

architecture, Neural Networks, 117, 135–144, https://doi.org/10.1016/j.neunet.2019.05.001, arXiv: 1809.07412, 2019.

Butz, M. V., Mittenbühler, M., Schwöbel, S., Achimova, A., Gumbsch, C., Otte, S., and Kiebel, S.: Contextualizing predictive minds,

Neuroscience \& Biobehavioral Reviews, p. 105948, 2024.

Camporese, M. and Girotto, M.: Recent advances and opportunities in data assimilation for physics-based hydrological modeling, Frontiers915

in Water, 4, 948 832, 2022.

Chen, S., Zwart, J. A., and Jia, X.: Physics-Guided Graph Meta Learning for Predicting Water Temperature and Streamflow in Stream

Networks, in: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD '22, p. 2752–2761,

Association for Computing Machinery, New York, NY, USA, ISBN 9781450393850, https://doi.org/10.1145/3534678.3539115, 2022.

Cho, K., van Merrienboer, B., Bahdanau, D., and Bengio, Y.: On the Properties of Neural Machine Translation: Encoder–Decoder Ap-920

proaches, in: Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, Association for

Computational Linguistics, https://doi.org/10.3115/v1/w14-4012, 2014.

Darcy, H.: Les fontaines publiques de la ville de Dijon: exposition et application des principes à suivre et des formules à employer dans les

questions de distribution d'eau, vol. 1, Victor dalmont, 1856.

EU-DEM, 2016: EU-DEM v1.1, Dataset, https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1, 2016.925

Gal, Y. and Ghahramani, Z.: Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning, http://arxiv.org/abs/

1506.02142v6, 2015.

Gauch, M., Kratzert, F., Klotz, D., Nearing, G., Lin, J., and Hochreiter, S.: Rainfall–runoff prediction at multiple timescales with a single

Long Short-Term Memory network, Hydrology and Earth System Sciences, 25, 2045–2062, https://doi.org/10.5194/hess-25-2045-2021,

2021.930

Gigi, Y., Elidan, G., Hassidim, A., Matias, Y., Moshe, Z., Nevo, S., Shalev, G., and Wiesel, A.: Towards Global Remote Discharge Estimation:

Using the Few to Estimate The Many, http://arxiv.org/abs/1901.00786v1, 2019.

Gillies, S. and others: Rasterio: geospatial raster I/O for Python programmers, https://github.com/rasterio/rasterio, 2013.

Graves, A.: Practical variational inference for neural networks, in: Advances in neural information processing systems, pp. 2348–2356, 2011.

GRDC, 2024: Global Runoff Data Centre, https://grdc.bafg.de/, 2024.935

Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of the mean squared error and

NSE performance criteria: Implications for improving hydrological modelling, Journal of Hydrology, 377, 80–91,

https://doi.org/https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.

Harder, P., Ramesh, V., Hernandez-Garcia, A., Yang, Q., Sattigeri, P., Szwarcman, D., Watson, C., and Rolnick, D.: Physics-Constrained

Deep Learning for Downscaling, Tech. rep., Copernicus Meetings, 2023.940

Hendrycks, D. and Gimpel, K.: Gaussian Error Linear Units (GELUs), arXiv preprint arXiv:1606.08415, http://arxiv.org/abs/1606.08415v5,

2016.

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., and others:

ERA5 hourly data on single levels from 1940 to present, 2018.

Hochreiter, S. and Schmidhuber, J.: Long Short-Term Memory, Neural Computation, 9, 1735–1780,945

https://doi.org/10.1162/neco.1997.9.8.1735, 1997.

Hoedt, P.-J., Kratzert, F., Klotz, D., Halmich, C., Holzleitner, M., Nearing, G., Hochreiter, S., and Klambauer, G.: MC-LSTM: Mass-

Conserving LSTM, Proceedings of Machine Learning Research, http://arxiv.org/abs/2101.05186v3, 2021.

48

https://doi.org/10.1016/j.neunet.2019.05.001
https://doi.org/10.1145/3534678.3539115
https://doi.org/10.3115/v1/w14-4012
https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1
http://arxiv.org/abs/1506.02142v6
http://arxiv.org/abs/1506.02142v6
http://arxiv.org/abs/1506.02142v6
https://doi.org/10.5194/hess-25-2045-2021
http://arxiv.org/abs/1901.00786v1
https://github.com/rasterio/rasterio
https://grdc.bafg.de/
https://doi.org/https://doi.org/10.1016/j.jhydrol.2009.08.003
http://arxiv.org/abs/1606.08415v5
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/2101.05186v3


Höge, M., Scheidegger, A., Baity-Jesi, M., Albert, C., and Fenicia, F.: Improving hydrologic models for predictions and process understand-

ing using neural ODEs, Hydrology and Earth System Sciences, 26, 5085–5102, https://doi.org/10.5194/hess-26-5085-2022, 2022.950

Hrachowitz, M., Savenije, H., Blöschl, G., McDonnell, J., Sivapalan, M., Pomeroy, J., Arheimer, B., Blume, T., Clark, M., Ehret, U., Fenicia,

F., Freer, J., Gelfan, A., Gupta, H., Hughes, D., Hut, R., Montanari, A., Pande, S., Tetzlaff, D., Troch, P., Uhlenbrook, S., Wagener, T.,

Winsemius, H., Woods, R., Zehe, E., and Cudennec, C.: A decade of Predictions in Ungauged Basins (PUB)—a review, Hydrological

Sciences Journal, 58, 1198–1255, https://doi.org/10.1080/02626667.2013.803183, 2013.

Hunter, N. M., Bates, P. D., Horritt, M. S., and Wilson, M. D.: Simple spatially-distributed models for predicting flood inundation: A review,955

Geomorphology, 90, 208–225, 2007.

Imhoff, R., Van Verseveld, W., Van Osnabrugge, B., and Weerts, A.: Scaling point-scale (pedo) transfer functions to seamless large-domain

parameter estimates for high-resolution distributed hydrologic modeling: An example for the Rhine River, Water Resources Research, 56,

e2019WR026 807, 2020.

Imhoff, R. O., Brauer, C. C., van Heeringen, K.-J., Uijlenhoet, R., and Weerts, A. H.: Large-sample evaluation of radar rainfall nowcasting960

for flood early warning, Water Resources Research, 58, e2021WR031 591, 2022.

Karlbauer, M., Otte, S., Lensch, H. P. A., Scholten, T., Wulfmeyer, V., and Butz, M. V.: A Distributed Neural Network Architecture for

Robust Non-Linear Spatio-Temporal Prediction, http://arxiv.org/abs/1912.11141v1, 2019.

Klotz, D., Kratzert, F., Gauch, M., Keefe Sampson, A., Brandstetter, J., Klambauer, G., Hochreiter, S., and Nearing, G.: Uncertainty estima-

tion with deep learning for rainfall–runoff modeling, Hydrology and Earth System Sciences, 26, 1673–1693, 2022.965

Kratzert, F., Klotz, D., Brenner, C., Schulz, K., and Herrnegger, M.: Rainfall–runoff modelling using long short-term memory (LSTM)

networks, Hydrology and Earth System Sciences, 22, 6005–6022, 2018.

Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., and Nearing, G.: Towards learning universal, regional, and local hy-

drological behaviors via machine learning applied to large-sample datasets, Hydrology and Earth System Sciences, 23, 5089–5110,

https://doi.org/10.5194/hess-23-5089-2019, 2019.970

Kratzert, F., Klotz, D., Gauch, M., Klingler, C., Nearing, G., and Hochreiter, S.: Large-scale river network modeling using Graph Neural

Networks, in: EGU General Assembly Conference Abstracts, pp. EGU21–13 375, 2021.

Kratzert, F., Nearing, G., Addor, N., Erickson, T., Gauch, M., Gilon, O., Gudmundsson, L., Hassidim, A., Klotz, D., Nevo, S., Shalev, G.,

and Matias, Y.: Caravan - A global community dataset for large-sample hydrology, https://doi.org/10.5194/egusphere-egu23-5256, 2023.

Li, P., Zhang, J., and Krebs, P.: Prediction of flow based on a CNN-LSTM combined deep learning approach, Water, 14, 993, 2022.975

Liu, Y. and Gupta, H. V.: Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework, Water resources research,

43, 2007.

Liu, Y., Weerts, A., Clark, M., Hendricks Franssen, H.-J., Kumar, S., Moradkhani, H., Seo, D.-J., Schwanenberg, D., Smith, P., Van Dijk,

A., Van Velzen, N., He, M., Lee, H., Noh, S., Rakovec, O., and Restrepo, P.: Advancing data assimilation in operational hydrologic

forecasting: progresses, challenges, and emerging opportunities, Hydrology and earth system sciences, 16, 3863–3887, 2012.980

Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T., and Xie, S.: A ConvNet for the 2020s, in: 2022 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), IEEE, https://doi.org/10.1109/cvpr52688.2022.01167, 2022.

Longyang, Q., Choi, S., Tennant, H., Hill, D., Ashmead, N., Neilson, B. T., Newell, D. L., McNamara, J. P., and Xu, T.: Explainable Spatially

Distributed Hydrologic Modeling of a Snow Dominated Mountainous Karst Watershed Using Attention, Authorea Preprints, 2024.

Marçais, J. and de Dreuzy, J.-R.: Prospective interest of deep learning for hydrological inference, Groundwater, 55, 688–692, 2017.985

49

https://doi.org/10.5194/hess-26-5085-2022
https://doi.org/10.1080/02626667.2013.803183
http://arxiv.org/abs/1912.11141v1
https://doi.org/10.5194/hess-23-5089-2019
https://doi.org/10.5194/egusphere-egu23-5256
https://doi.org/10.1109/cvpr52688.2022.01167


Mazzetti, C., Carton de Wiart, C., Gomes, G., Russo, C., Decremer D Ramos, A., Grimaldi, S., Disperati, J., Ziese, M., Schweim, C.,

Sanchez Garcia, R., Jacobson, T., Salamon, P., and Prudhomme, C.: River discharge and related historical data from the European

Flood Awareness System, v5.0, European Commission, Joint Research Centre (JRC), https://cds.climate.copernicus.eu/cdsapp#!/dataset/

efas-historical, 2023.

Montzka, C., Pauwels, V. R., Franssen, H.-J. H., Han, X., and Vereecken, H.: Multivariate and multiscale data assimilation in terrestrial990

systems: A review, Sensors, 12, 16 291–16 333, 2012.

Moradkhani, H., Hsu, K.-L., Gupta, H., and Sorooshian, S.: Uncertainty assessment of hydrologic model states and parameters: Sequential

data assimilation using the particle filter, Water resources research, 41, 2005.

Moshe, Z., Metzger, A., Kratzert, F., Morin, E., Nevo, S., Elidan, G., and Elyaniv, R.: HydroNets: Leveraging River Network Structure and

Deep Neural Networks for Hydrologic Modeling, https://doi.org/10.5194/egusphere-egu2020-4135, 2020.995

Muñoz-Carpena, R., Carmona-Cabrero, A., Yu, Z., Fox, G., and Batelaan, O.: Convergence of mechanistic modeling and artificial intelligence

in hydrologic science and engineering, PLOS Water, 2, e0000 059, 2023.

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I—A discussion of principles, Journal of hydrology,

10, 282–290, 1970.

Neal, R. M.: Bayesian learning for neural networks, vol. 118, Springer Science \& Business Media, 2012.1000

Nearing, G. S., Kratzert, F., Sampson, A. K., Pelissier, C. S., Klotz, D., Frame, J. M., Prieto, C., and Gupta, H. V.: What role does hydrological

science play in the age of machine learning?, Water Resources Research, 57, e2020WR028 091, 2021.

Oddo, P. C., Bolten, J. D., Kumar, S. V., and Cleary, B.: Deep Convolutional LSTM for improved flash flood prediction, Frontiers in Water,

6, 1346 104, 2024.

Otte, S., Karlbauer, M., and Butz, M. V.: Active Tuning, arXiv:2010.03958 [cs], http://arxiv.org/abs/2010.03958, arXiv: 2010.03958, 2020.1005

Palmer, M. A., Reidy Liermann, C. A., Nilsson, C., Flörke, M., Alcamo, J., Lake, P. S., and Bond, N.: Climate change and the world's river

basins: anticipating management options, Frontiers in Ecology and the Environment, 6, 81–89, 2008.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf,

A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S.: PyTorch: An Imperative

Style, High-Performance Deep Learning Library, p. 12, 2019.1010

Pilon, P. J.: Guidelines for reducing flood losses, Tech. rep., United Nations International Strategy for Disaster Reduction (UNISDR), 2002.

Pokharel, S. and Roy, T.: A Parsimonious Setup for Streamflow Forecasting using CNN-LSTM, arXiv preprint arXiv:2404.07924, 2024a.

Pokharel, S. and Roy, T.: A parsimonious setup for streamflow forecasting using CNN-LSTM, Journal of Hydroinformatics, p. jh2024114,

2024b.

RADOLAN, 2016: RADOLAN/RADVOR, https://opendata.dwd.de/climate_environment/CDC/grids_germany/hourly/radolan/, 2016.1015

Rakovec, O., Weerts, A., Hazenberg, P., Torfs, P., and Uijlenhoet, R.: State updating of a distributed hydrological model with Ensemble

Kalman Filtering: effects of updating frequency and observation network density on forecast accuracy, Hydrology and Earth System

Sciences, 16, 3435–3449, 2012.

Renard, K. G., Laflen, J., Foster, G., and McCool, D.: The revised universal soil loss equation, Routledge, 1994.

Samaniego, L., Kumar, R., and Attinger, S.: Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale, Water1020

Resources Research, 46, 2010.

Schalge, B., Baroni, G., Haese, B., Erdal, D., Geppert, G., Saavedra, P., Haefliger, V., Vereecken, H., Attinger, S., Kunstmann, H., Cirpka,

O. A., Ament, F., Kollet, S., Neuweiler, I., Hendricks Franssen, H.-J., and Simmer, C.: Presentation and discussion of the high-resolution

50

https://cds.climate.copernicus.eu/cdsapp#!/dataset/efas-historical
https://cds.climate.copernicus.eu/cdsapp#!/dataset/efas-historical
https://cds.climate.copernicus.eu/cdsapp#!/dataset/efas-historical
https://doi.org/10.5194/egusphere-egu2020-4135
http://arxiv.org/abs/2010.03958
https://opendata.dwd.de/climate_environment/CDC/grids_germany/hourly/radolan/


atmosphere–land-surface–subsurface simulation dataset of the simulated Neckar catchment for the period 2007–2015, Earth System Sci-

ence Data, 13, 4437–4464, https://doi.org/10.5194/essd-13-4437-2021, 2021.1025

Schmidt, L., Gusho, E., de Back, W., Vinogradova, K., Kumar, R., Rakovec, O., Attinger, S., and Bumberger, J.: Spatially-distributed Deep

Learning for rainfall-runoff modelling and system understanding, in: EGU General Assembly Conference Abstracts, p. 20736, 2020.

Scholz, F., Traub, M., Zarfl, C., Scholten, T., and Butz, M. V.: Fully differentiable, fully distributed River Discharge Prediction: data sets,

https://doi.org/10.5281/zenodo.13970576, 2025a.

Scholz, F., Traub, M., Zarfl, C., Scholten, T., and Butz, M. V.: Fully differentiable, fully distributed River Discharge Prediction: code,1030

https://doi.org/10.5281/zenodo.13992584, 2025b.

Shen, C.: A transdisciplinary review of deep learning research and its relevance for water resources scientists, Water Resources Research,

54, 8558–8593, 2018.

Shen, C., Appling, A. P., Gentine, P., Bandai, T., Gupta, H., Tartakovsky, A., Baity-Jesi, M., Fenicia, F., Kifer, D., Li, L., Liu, X., Ren, W.,

Zheng, Y., Harman, C. J., Clark, M., Farthing, M., Feng, D., Kumar, P., Aboelyazeed, D., Rahmani, F., Song, Y., Beck, H. E., Bindas,1035

T., Dwivedi, D., Fang, K., Höge, M., Rackauckas, C., Mohanty, B., Roy, T., Xu, C., and Lawson, K.: Differentiable modelling to unify

machine learning and physical models for geosciences, Nature Reviews Earth & Environment, 4, 552–567, https://doi.org/10.1038/s43017-

023-00450-9, 2023.

Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-k., and Woo, W.-c.: Convolutional LSTM Network: A Machine Learning Approach for

Precipitation Nowcasting, Advances in neural information processing systems, http://arxiv.org/abs/1506.04214v2, 2015.1040

Sit, M., Demiray, B., Xiang, Z., Ewing, G., Sermet, Y., and Demir, I.: A Comprehensive Review of Deep Learning Applications in Hydrology

and Water Resources, https://doi.org/10.31223/osf.io/xs36g, 2020.

Sit, M., Demiray, B., and Demir, I.: Short-term Hourly Streamflow Prediction with Graph Convolutional GRU Networks, arXiv preprint

arXiv:2107.07039, http://arxiv.org/abs/2107.07039v1, 2021.

Sun, A. Y., Jiang, P., Yang, Z.-L., Xie, Y., and Chen, X.: A graph neural network (GNN) approach to basin-scale river network learning: the1045

role of physics-based connectivity and data fusion, Hydrology and Earth System Sciences, 26, 5163–5184, https://doi.org/10.5194/hess-

26-5163-2022, 2022.

Sundararajan, M., Taly, A., and Yan, Q.: Axiomatic attribution for deep networks, in: International conference on machine learning, pp.

3319–3328, PMLR, 2017.

Traub, M., Becker, F., Sauter, A., Otte, S., and Butz, M. V.: Loci-segmented: improving scene segmentation learning, in: International1050

Conference on Artificial Neural Networks, pp. 45–61, Springer, 2024a.

Traub, M., Scholz, F., Scholten, T., Zarfl, C., and Butz, M. V.: High-Efficiency Rainfall Data Compression Using Binarized Convolutional

Autoencoder, Tech. rep., Copernicus Meetings, 2024b.

Tyson, C., Longyang, Q., Neilson, B. T., Zeng, R., and Xu, T.: Effects of meteorological forcing uncertainty on high-resolution snow modeling

and streamflow prediction in a mountainous karst watershed, Journal of Hydrology, 619, 129 304, 2023.1055

Ueda, F., Tanouchi, H., Egusa, N., and Yoshihiro, T.: A Transfer Learning Approach Based on Radar Rainfall for River Water-Level Predic-

tion, Water, 16, 607, 2024.

Ufrecht, W.: Ein Hydrogeologisches Modell für den Karst-und Mineralwasseraquifer Muschelkalk im Großraum Stuttgart, Hydrogeologische

Modelle–ein Leitfaden mit Fallbeispielen, Schriftenreihe der Deutschen Geologischen Gesellschaft, 24, 2002.

Valeriano, O. C. S., Koike, T., Yang, K., and Yang, D.: Optimal dam operation during flood season using a distributed hydrological model1060

and a heuristic algorithm, Journal of Hydrologic Engineering, 15, 580–586, 2010.

51

https://doi.org/10.5194/essd-13-4437-2021
https://doi.org/10.5281/zenodo.13970576
https://doi.org/10.5281/zenodo.13992584
https://doi.org/10.1038/s43017-023-00450-9
https://doi.org/10.1038/s43017-023-00450-9
https://doi.org/10.1038/s43017-023-00450-9
http://arxiv.org/abs/1506.04214v2
https://doi.org/10.31223/osf.io/xs36g
http://arxiv.org/abs/2107.07039v1
https://doi.org/10.5194/hess-26-5163-2022
https://doi.org/10.5194/hess-26-5163-2022
https://doi.org/10.5194/hess-26-5163-2022


Van Vliet, M. T., Franssen, W. H., Yearsley, J. R., Ludwig, F., Haddeland, I., Lettenmaier, D. P., and Kabat, P.: Global river discharge and

water temperature under climate change, Global Environmental Change, 23, 450–464, 2013.

Wang, C., Jiang, S., Zheng, Y., Han, F., Kumar, R., Rakovec, O., and Li, S.: Distributed Hydrological Modeling With Physics-

Encoded Deep Learning: A General Framework and Its Application in the Amazon, Water Resources Research, 60, e2023WR036 170,1065

https://doi.org/https://doi.org/10.1029/2023WR036170, e2023WR036170 2023WR036170, 2024.

Wi, S. and Steinschneider, S.: On the need for physical constraints in deep learning rainfall-runoff projections under climate change, EGU-

sphere, 2023, 1–46, 2023.

Wright, L.: Ranger - a synergistic optimizer., \urlhttps://github.com/lessw2020/Ranger-Deep-Learning-Optimizer, 2019.

Xiang, Z. and Demir, I.: Distributed long-term hourly streamflow predictions using deep learning –A case study for State of Iowa, Environ-1070

mental Modelling &amp; Software, 131, 104 761, https://doi.org/10.1016/j.envsoft.2020.104761, 2020.

Xiang, Z. and Demir, I.: Fully distributed rainfall-runoff modeling using spatial-temporal graph neural network, 2022.

Xu, T., Longyang, Q., Tyson, C., Zeng, R., and Neilson, B. T.: Hybrid physically based and deep learning modeling of a snow dominated,

mountainous, karst watershed, Water Resources Research, 58, e2021WR030 993, 2022.

Yadan, O.: Hydra - A framework for elegantly configuring complex applications, Github, https://github.com/facebookresearch/hydra, 2019.1075

Zhong, L., Lei, H., Li, Z., and Jiang, S.: Advancing streamflow prediction in data-scarce regions through vegetation-constrained distributed

hybrid ecohydrological models, Journal of Hydrology, 645, 132 165, https://doi.org/https://doi.org/10.1016/j.jhydrol.2024.132165, 2024.

Zhu, S., Wei, J., Zhang, H., Xu, Y., and Qin, H.: Spatiotemporal deep learning rainfall-runoff forecasting combined with remote sensing

precipitation products in large scale basins, Journal of Hydrology, 616, 128 727, 2023.

52

https://doi.org/https://doi.org/10.1029/2023WR036170
https://doi.org/10.1016/j.envsoft.2020.104761
https://github.com/facebookresearch/hydra
https://doi.org/https://doi.org/10.1016/j.jhydrol.2024.132165

