In this paper the authors address the question of how to identify useful weather regimes, which are
both predictable in current forecasting systems and which do a good job at explaining variability in
a target field of interest: in this case extreme wintertime rainfall over Morocco. Much ink has been
spilled in the past 20 years on the topic of which weather regimes to use, how to define them, etc. I
find the approach the authors have taken here refreshing and exciting. The use of a machine
learning approach based on a variational autoencoder architecture to perform this task is, as far as I
am aware, a novel innovation in this area, putting aside the authors’ recent related paper. The focus
on the practical value of the regimes for forecasting is also conceptually clarifying and provides a
good motivation for the work.

The authors compare their CMM-VAE regimes to both a classical K-means approach and a surface-
weather targeted CCA approach, and show that their method explains the most categorical rainfall
variability while remaining similarly well predicted as the classical regime, with only a slight
decrease in persistence and separability. They then go on to investigate sources of predictability,
linking the predictability of the regime patterns to the polar vortex and Madden Julian oscillation.

I really like this work, and my only comments are editorial in nature; I believe the paper is
publishable after minor revisions to increase clarity and to fix a few small typos.

Josh Dorrington

Minor points:
L55: predictable - predictability

You don’t actually motivate why you switch from continuous rainfall to categorical precip clusters
in this work. Was there a reason beyond simply proof of concept? Maybe a comment around L65 on
this?

L.141: Just out of curiosity, can you tell us what other regions you tested this on?
The numbering for appendix plots has gone wrong.

You mention a few times that this is a generative model: is there any value in the generative aspect
here? I can’t immediately think of one, but if you have thoughts perhaps share them in the
conclusion?

I don’t think its an important enough issue to require any changes here, but its worth bearing in
mind for any future work that CCA can behave unreliably for correlated data, and that the closely
related PLSR is more stable in this regard (differing only in that it maximixes cross covariance
rather than cross correlation) https://arxiv.org/abs/2107.06867. Anecdotally, the scikit learn
implementation of PLSR seems to handle full field data fine, so you could perhaps have avoided the
district aggregation and ridge regularization process.

Clarification of the ML architecture

My main comment is that the description of the CMM-VAE architecture is quite opaque and not
quite self-standing — I had to read your previous RMM-VAE paper in detail, and ultimately the
RMM-VAE python code to work out what exactly was going on — and I still think I have some
things wrong. I suggest some clarifications on this as follows:

Around L170 it could be useful for the readership to explicitly introduce VAEs as a generalisation
of PCA as done in Murphy. E.g.


https://arxiv.org/abs/2107.06867

‘Where PCA deterministically maps high-dimensional input data to a low-dimensional space
(which due to linearity can be interpreted as a series of patterns), VAEs map input data to a low-
dimensional probability distribution, normally parameterised as a multivariate Gaussian, in a
space which is not directly interpretable.’

The big green arrow in figure 3 seems to imply that you model z|t, but you only model z|c and c|t,
correct? Could you flip ¢ and mu/sigma in the graphic to clarify that?

In appendix A can you:

a) Reiterate the interpretation of each loss term

b) Explicitly list the various predictive models that make up the CMM-VAE with a bit more
exposition about the concrete details? If I have got my head round it, its something like this:

* q(c"x)= a part of the encoder neural network, predicting probability of each class. This is the
only part you actually use once the model is trained.

* q(z|x) = part of the encoder neural network predicts mu and sigma for each class, then (k
different?) points in z are sampled from those distributions.

* q(t|x)= the third part of the encoder neural network, predicting precipitation class from x

* p(x]z) = the decoder neural network, reproducing x from a point in z.

*  p(z| ) = another mu and sigma used to generate a point in z, but based only on the class
assignment. This is a linear regression? I’'m also confused why its part of p, not q, as its
predicting z.

* p(c¥t)= a logistic regression from precip classes onto the regimes.

A diagram (like a cleaned up equivalent of this one from your last work) would be useful:

encoder_input | input: | [(None, 286)] dummy input: | [(None, 1)] ground_truth | input: | [(None, 1)]
InputLayer output: | [(None, 286)] InputLayer | output: | [(None, 1)] InputLayer | output: | [(None, 1)]
encoder_intermediate | input: | (None, 286) mu_vector | input: | (None, 1) pi input: | (None, 1)
Dense output: | (None, 128) Dense output: | (None, 50) Dense | output: | (None, 5)
encoder_intermediate_2 | input: | (None, 128) mu input: (None, 50)
Dense output: | (None, 64) Reshape | output: | (None, 5, 10)
- / l
r mean | input: | (None, 64) r log var | input: | (None, 64) z_mean | input: | (None, 64) z log_var | input: | (None, 64) c input: | (None, 64)
Dense | output: | (None, 1) Dense output: | (None, 1) Dense | output: | (None, 10) Dense output: | (None, 10) Dense | output: | (None, 5)
r input: | [(None, 1), (None, 1)] z input: | [(None, 10), (None, 10)]
Lambda | output: (None, 1) Lambda | output: (None, 10)

)

pz mean | input: | (None, 1)

Dense output: | (None, 10)




