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Abstract. Aerosols influence the Earth’s radiative balance through direct interactions with radiation and by affecting cloud

properties. Anthropogenic aerosols have led to cooling during the industrial era through aerosol–cloud interactions (ACI),

including aerosol effects on cloud microphysical properties and the subsequent adjustments. However, large uncertainties

remain in Earth system models (ESMs) regarding the magnitude of this cooling. In part, ESMs substantially disagree on

cloud properties, thermodynamics, the hydrological cycle, and general circulation. Reanalysis provides a useful avenue for5

exploring the impact of ACI on clouds and radiation because its atmosphere is forced to match realistic conditions through the

assimilation of observations. Here, we explore the impact of ACI on clouds in the GiOcean reanalysis - the first to incorporate

aerosol-cloud interactions. We contrast variables important for ACI between GiOcean and satellite observations and develop

2-dimensional lookup tables of ACI for both using a source-sink budget perspective to attribute the changes in cloud droplet

number (Nd) and liquid water path (LWP) to aerosol and meteorology. A compositing analysis using lookup tables shows10

that GiOcean captures key aspects of aerosol–cloud–precipitation interactions, including (1) activation of aerosol into cloud

droplets, (2) effective precipitation scavenging of Nd, (3) suppression of precipitation by high Nd in regions with heavy aerosol

emissions. In contrast, satellite observations do not exhibit clear patterns for processes (2) and (3). Random Forest analysis

shows that interannual variability in Nd and LWP over the Northern Hemisphere ocean in GiOcean is primarily driven by

precipitation, consistent with satellite observations.15

1 Introduction

Climate change is driven by imbalances in Earth’s energy budget, known as climate forcings, which result from changes

in atmospheric composition (e.g., greenhouse gases, aerosols, ozone, stratospheric water vapor) and in surface properties

such as surface albedo (Smith et al., 2021). Among these, the net effect of anthropogenic aerosols on Earth’s energy budget

(aerosol radiative forcing) remains one of the largest uncertainties in our projections of future warming (Bellouin et al., 2019;20

Watson-Parris and Smith, 2022). The change in reflected solar radiation due to anthropogenic emissions of aerosols (e.g.,

aerosol radiative forcing) is largely uncertain due to the complex effects that aerosols can have on climate (Bellouin et al.,

2019). Aerosols affect the Earth’s radiation balance in several ways. Aerosol alters the Earth’s energy budget directly by

scattering and absorption of radiation, termed aerosol-radiation interactions. Aerosol can affect climate indirectly through
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aerosol-cloud interactions (ACI) by 1) modifying cloud microphysical properties, and thereby altering cloud reflectivity, known25

as the Twomey effect (Twomey, 1977), and 2) by altering macrophysical properties induced by changes in cloud microphysics

(Ackerman et al., 2004), such as cloud lifetime, precipitation formation and cloud cover. This effect is referred to as aerosol-

cloud adjustments (Albrecht, 1989; Bretherton et al., 2007). The combined radiative forcing from the Twomey effect and

aerosol-cloud adjustment is referred to as the effective radiative forcing due to ACI (Bellouin et al., 2019). ACI have led

to cooling during the industrial era, but the degree to which ACI have affected the Earth’s energy budget remains uncertain30

(Bellouin et al., 2019).

The uncertainty in ACI forcing arises not only from the understanding of the complexity of ACI processes, but also from how

aerosols and clouds are represented in Earth system models (ESMs). Cloud microphysical processes are hard to represent in

ESMs as these processes are small in scale (∼µm), and ESMs (∼100 km) cannot resolve these small, fast processes dynamically

(Liu and Kollias, 2023; Morrison et al., 2020), so parameterizations are necessary to describe these physical processes. Most35

ESMs use simplified “bulk” schemes (Morrison and Gettelman, 2008). One-moment schemes typically predict only the mass

of hydrometeors and cannot capture aerosol-driven changes in droplet number or size, limiting their ability to simulate ACI.

Two-moment schemes improve this by prognosing both mass and number concentrations, enabling explicit responses of cloud

microphysics to aerosol perturbations (Twomey, 1977; Barahona et al., 2014). Many ESMs have implemented the two-moment

microphysics scheme into cloud presentations and showed improved representation of cloud properties (Ghan et al., 1997;40

Lohmann et al., 1999; Ming et al., 2007; Barahona et al., 2014; Morrison and Gettelman, 2008).

Despite the advances in the representation of cloud microphysics in ESMs, the interaction of aerosol with clouds is always

neglected in operational forecasting systems and climate reanalyses. In reanalyses that include an aerosol representation, a

carefully crafted aerosol climatology is allowed to interact with radiation as a way of representing the aerosol direct effect;

however, interactions with clouds are neglected. (e.g., Bozzo et al., 2020). This approach has shown to improve the prediction45

of the African Easterly Jet (Tompkins et al., 2005) and tropical cyclogenesis (Reale et al., 2014). On the other hand, Zhang

et al. (2016a) showed that numerical weather prediction (NWP) systems using aerosol climatologies overestimated surface

temperature during a strong biomass burning event, whereas models with prognostic aerosols showed the correct surface

cooling. In some cases the usage of aerosol climatologies may lead to degradation of the forecast skill, since without the

feedback between aerosol and meteorology, anomaly centers associated with aerosol emissions become permanent, imprinting50

spurious temperature gradients that perturb global circulation (Morcrette et al., 2011). Ekman (2014) suggested that the explicit

representation of ACI in ESMs improves the simulation of the historical surface temperature trend. This has been further

shown during dust storms over Europe and North Africa where neglecting dust emissions and their effect on clouds can lead to

overestimation of surface temperature in NWP (Bangert et al., 2012). Aerosol effects have been shown to play a significant role

in the modulation of dust transport by the Madden Julian Oscillation (MJO) (Benedetti and Vitart, 2018) as well on hurricane55

development (Nowottnick et al., 2018). Given all of these potential interactions between aerosol and climate, there is a growing

consensus that ACI must be represented in weather, seasonal forecasting models, and climate reanalyses (Board et al., 2016).

Furthermore, including a realistic representation of aerosols and clouds in reanalysis is particularly important given the

strong spatial variability in aerosol radiative forcing, which can be can be either positive or negative depending on the region
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(Smith et al., 2021). Several factors contribute to such a heterogeneity. Aerosol have a shorter lifespan in the atmosphere60

than greenhouse gases, of the order of few days to about two weeks. Despite this, they may be transported around the globe

and interact with clouds and radiation far away from their sources (Uno et al., 2009). Over this time their composition may

change due to the interaction with local pollution sources and from oxidation processes. When aerosol particles reach pristine

regions in the North Atlantic and the Pacific oceans, away from their emission sources, they may substantially impact the

regional climate (Fan et al., 2016). Their emission rate changes over time, with marked seasonal cycles (McCoy et al., 2017;65

Kasibhatla et al., 1997), and long-term decadal trends (Bellucci et al., 2015; McCoy et al., 2018a). Volcanic events and even

policy decisions (Yuan et al., 2024) add variability to the atmospheric aerosol concentration (Bellucci et al., 2015). It is known

that over the time scale of days to months, aerosols have an observable, local effect on clouds and radiation (Fan et al., 2016;

Breen et al., 2021). These effects can result in persistent radiative flux and cloud property anomalies, strong enough to modify

large-scale atmospheric patterns (Morcrette et al., 2011; Bellucci et al., 2015; Ekman, 2012).70

This study introduces a new coupled reanalysis dataset - GiOcean, which incorporates two-moment microphysics scheme

for stratiform and convective clouds, enabling the explicit representation of ACI (Barahona et al., 2014; Molod et al., 2020).

We focus on evaluating the impact of ACI in warm clouds by comparing it with observations of clouds, precipitation, and

aerosol during periods of substantial emission changes over a multidecadal time scale.

2 Methods75

2.1 The GiOcean Coupled Reanalysis

GiOcean is a global reanalysis dataset that spans from 1998 to the present, with a typical data availability lag of about six

months due to the time required for quality control and data assimilation. GiOcean integrates three data assimilation systems

for the atmosphere, aerosol, and ocean. These systems assimilate a vast array of observational data to calculate six-hourly

“increments” that adjust meteorological, oceanic, and aerosol states, forcing the model to align with observations. Unlike80

typical reanalyses, which focus solely on meteorological states, GiOcean incorporates data from all three domains, providing

a more comprehensive representation.

2.1.1 Modeling Description and Data Assimilation Approach

GiOcean is based on the Goddard Earth Observing System (GEOS) Subseasonal-to-Seasonal (GEOS-S2S) prediction system,

developed by the Global Modeling and Assimilation Office (GMAO) (Molod et al., 2020). GEOS-S2S is a coupled Earth system85

modeling and data assimilation framework to produce forecasts on subseasonal to seasonal timescales. The core component

of the GEOS-S2S system is the coupled Atmosphere-Ocean General Circulation Model (AOGCM). It includes atmosphere,

land, aerosol, ocean, and sea ice components with spatial resolutions of approximately 50 km for the atmosphere and 25 km

for the ocean. The atmosphere component of the GiOcean is the GEOS Atmospheric General Circulation Model (AGCM)

(Molod et al., 2015; Rienecker et al., 2008). The ocean component of the GEOS AOGCM is the MOM5 (Modular Ocean90
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Model version 5) ocean general circulation model (Griffies et al., 2005; Griffies, 2012), and the Community Ice CodE-4 sea ice

model (Hunke, 2008). Ocean data assimilation follows the Local Ensemble Transform Kalman Filter approach (Penny et al.,

2013). The land surface model uses a catchment-based approach and statistically represents subgrid-scale variability in surface

moisture (Koster et al., 2000). To produce GiOcean, GEOS-S2S is retrospectively integrated starting on January 1998 using a

time step of 450 seconds and assimilating atmospheric and ocean observations every six hours for the atmospheric and aerosol95

components and five days for the ocean, as described below.

The GiOcean reanalysis employs weak or “one-way” coupling, meaning that the ocean and aerosol components use a full as-

similation system, while the atmosphere is "replayed" to a preexisting atmospheric reanalysis. In this approach, the atmospheric

analysis increments used for model correction are derived from the pre-existing atmosphere-only reanalysis but adjusted for

differences in model physics. This approach stabilizes the reanalysis by avoiding a full meteorological assimilation system,100

though it limits feedback between the ocean and atmosphere. GEOS-IT, produced for NASA’s instrument teams, serves as a

stable meteorological dataset for GiOcean (https://gmao.gsfc.nasa.gov/GMAO_products/GEOS-5_FP-IT_details.php). Simi-

lar to the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) (Gelaro et al., 2017),

GEOS-IT is a multidecadal retrospective reanalysis integrating both aerosol and meteorological observations (Gelaro et al.,

2017; Randles et al., 2017). However, it incorporates recent model enhancements that provide more accurate representations of105

moisture, temperature, and land surfaces as well as the latest satellite observations through updated analysis techniques. While

the atmosphere component of GEOS-S2S is "replayed" using the GEOS-IT reanalysis (Gelaro et al., 2017), the aerosol and

ocean data assimilation systems, however, remain fully active.

2.1.2 Aerosols and Cloud Microphysics

Of significance to this work is that GiOcean explicitly assimilates aerosol fields. Furthermore cloud microphysics is described110

using a two-moment scheme, where cloud formation is linked to the aerosol concentration. This allows GiOcean to explicitly

capture the aerosol direct and indirect effects.

Transport of aerosols and gaseous tracers such as CO are simulated using the Goddard Chemistry Aerosol and Radiation

model (GOCART; Colarco et al., 2010). All components are coupled together using the Earth System Modeling Framework

(Hill et al., 2004) and the Modeling Analysis and Prediction Layer interface layer (Suarez et al., 2007). GOCART is a mass-115

based aerosol transport model that explicitly calculates the transport and evolution of dust, black carbon, organic material, sea

salt, and sulfate. To relate aerosol mass to number concentrations, prescribed size distributions were used to calculate mass-

number conversion factors as detailed by Barahona et al. (2014). Dust and sea salt emissions are prognostic whereas sulfate

and biomass burning data are prescribed (Randles et al., 2017). Volcanic SO2 emissions are constrained by observations from

the Ozone Monitoring Instrument (OMI) on-board NASA’s EOS/Aura spacecraft (Carn et al., 2017).120

Aerosol fields in GiOcean are assimilated using The Goddard Aerosol Assimilation System (GAAS) (Buchard et al., 2016).

Aerosol assimilation is carried out in two steps. First the aerosol optical depth (AOD), is assimilated using the observations of

AOD from multiple sources described in Table 2 of Randles et al. (2017), including the Multi-angle Imaging SpectroRadiome-

ter (MISR), the Moderate Resolution Imaging Spectroradiometer (MODIS), the Aerosol Robotic Network (AERONET), etc.
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Then in a second step the analysis increment is distributed vertically and among the different aerosol species to update their125

mass mixing ratios. In GiOcean the overall assimilation cycle is controlled by the meteorology. The meteorological observing

system (i.e., the collection of instruments, platforms, and networks that provide meteorological observations) is also much

larger than the one used in GAAS (Gelaro et al., 2017). GAAS is used to assimilate aerosol fields in the MERRA-2 reanalysis,

although the cloud microphysics scheme in MERRA-2 lacks a representation of the aerosol indirect effect.

In GiOcean a 2-moment cloud microphysics scheme is used to calculate the mixing ratio and number concentration of130

cloud droplets and ice crystals as prognostic variables for stratiform (i.e., stratocumulus, cirrus) and convective clouds (Bara-

hona et al., 2014). Cloud droplet activation follows the approach of Abdul-Razzak and Ghan (2000). The stratiform cloud

microphysics scheme follows (Morrison and Gettelman, 2008, : MG08) with adjustments when incorporated into GiOcean

(Barahona et al., 2014). The droplet autoconversion parameterization is replaced by the formulation of Liu et al. (2006). A

parameterization of subgrid vertical velocity, which is important for particle activation, was developed and detailed in Bara-135

hona et al. (2014). MG08 is also modified to represent the impact of existing ice crystals on the development of cirrus clouds.

Ice nucleation is estimated using a physically-based analytical approach (Barahona and Nenes, 2009) that includes homoge-

neous and heterogeneous ice nucleation, and their competition. The description of heterogeneous ice droplet formation by

immersion freezing and contact ice nucleation follows Ullrich et al. (2017). Vertical velocity fluctuations are constrained by

non-hydrostatic, high-resolution global simulations (Barahona et al., 2017). This configuration has been shown to reproduce140

the global distribution of clouds, radiation, and precipitation in agreement with satellite retrievals and in situ observations

(Barahona et al., 2014; Molod et al., 2020).

2.2 Analysis method

2.2.1 Variables analyzed

This study focuses on the evaluation of ACI in warm clouds in GiOcean. We limit the scope to variables related to aerosol145

abundance, activation into cloud droplets, the state of cloud macrophysical properties, and precipitation rate. We focus on

variables that can be compared relatively directly between GiOcean and spaceborne remote sensing, including aerosol optical

depth (AOD), cloud droplet number concentration (Nd), liquid water path (LWP), and precipitation rate.

The aerosol metric we use is the AOD, which measures the column-integrated aerosol extinction (scattering and absorption

of light) and is often related to the total amount of aerosols in the atmospheric column. Although AOD does not provide150

information for the vertical distribution of aerosols or the aerosol sizes and species in the column, AOD provides an estimate

of column integrated aerosol loading nearly globally, with limitation at high latitudes due to snow contamination. This is in

contrast to sparse in-situ observations of aerosols made by aircraft and surface sites, and can be compared relatively directly

between models and observations.

The cloud microphysical property we evaluate in this study is Nd. Nd is key variable of state (or most important variable)155

in controlling ACI (Wood, 2012). Changes in Nd also alter cloud macrophysical properties (Ackerman et al., 2004, 2000;

Albrecht, 1989; Bretherton et al., 2007).
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The cloud macrophysical property we evaluate is liquid condensate mass. It provides a diagnostic of the liquid cloud adjust-

ment to aerosol-induced changes in cloud microphysics (Bellouin et al., 2019; Song et al., 2024). In practice, liquid condensate

mass is usually observed as column-integrated liquid water from remote sensing observations, which is known as liquid water160

path (LWP).

Nd and LWP have been shown to be very important variables in understanding the physical processes related to ACI

(Mikkelsen et al., 2025; Gryspeerdt et al., 2019; Wall et al., 2022; Bellouin et al., 2019). While aerosol-driven changes in

cloud microphysics and macrophysics are essential to ACI, they do not capture the full complexity of ACI processes. Precipi-

tation drives coalescence-scavenging and depletes Nd (Wood et al., 2012; Kang et al., 2022; McCoy et al., 2020). Precipitation165

also serves as a proxy for moisture convergence and contains information about the large-scale environment, which in turn

affects LWP (Mikkelsen et al., 2025). To evaluate how these variables are represented in GiOcean, we compare AOD, Nd,

LWP, and precipitation rate from the GiOcean reanalysis with satellite observations, as detailed in Section 2.3.

2.2.2 Sensitivity metrics

In this study, we calculate two key sensitivity metrics. The sensitivity metric follows previous studies examining ACI (Ghan170

et al., 2016; Bellouin et al., 2019), as a way of evaluating the ACI presentation in GiOcean against satellite observations. The

sensitivity of Nd to CCN represents the inferred efficacy of aerosol activation into cloud droplets and is expressed in Eq 1.

SNd−AOD =
d lnNd

d lnAOD
(1)

Similarly, to quantify the extent of cloud macrophysical adjustments (e.g., changes in LWP) in response to microphysical

perturbations, the sensitivity of LWP to Nd is calculated using Eq 2.175

SLWP−Nd =
d lnLWP

d lnNd
(2)

We apply a consistent binning approach to compute these inferred sensitivities in both the GiOcean reanalysis and satellite

observations. Monthly Nd is binned into 15 logarithmically spaced bins, and mean values of relevant variables (e.g., LWP,

Nd, AOD) are calculated within each bin. Relationships between AOD and Nd, and between LWP and Nd, are then plotted

using these bin-averaged values (Section 3.3). Logarithmic derivatives are then estimated using finite differences between the180

binned means. A weighted average of these derivatives is calculated, with weights corresponding to the number of data points

in each bin. The binning approach smooths out random noise by enforcing 15 logarithmically spaced Nd bins, so that each

derivative estimate is based on hundreds or thousands of observations and the resulting slopes (e.g., lnLWP versus lnNd) are

statistically robust and representative.

By comparing these metrics across GiOcean and satellite observations, we evaluate the representation of both aerosol ac-185

tivation and aerosol-cloud adjustment in the GiOcean reanalysis. The results are discussed in Section 3.3. We note that these

inferred sensitivities (calculated from Eq 1 and Eq 2) do not imply causation and may be strongly affected by other factors

than microphysical relations (Mikkelsen et al., 2025; Gryspeerdt et al., 2019; McCoy et al., 2020). Therefore, we refer to these

sensitivities as inferred sensitivities.
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2.2.3 Source-sink analysis of Nd and LWP190

Nd and LWP are two key variables that influence ACI (Wood et al., 2012; Bellouin et al., 2019). The sensitivity metrics intro-

duced in Section 2.2.2 follow previous studies examining ACI (Ghan et al., 2016; Bellouin et al., 2019). In this study, we apply

a source-sink budget framework to better understand the source of disagreement between GiOcean and satellite observations

in terms of these quantities (whether the differences arise from aerosol effects on cloud properties or from variations in the

large-scale environment). In this approach, we analyze the budget of Nd and LWP as a function of competing processes that195

supply or remove cloud-relevant properties.

The steady-state Nd results from a balance between sources due to the activation of CCN into cloud droplets from free

tropospheric sources, and sinks from removal by precipitation scavenging (Wood et al., 2012). In Wood et al. (2012), a steady-

state budget model was applied to airborne observations to explain spatial variations in Nd. Their study demonstrated that the

offshore gradient of Nd near the coast of Peru was primarily driven by increasing precipitation sinks, rather than decreasing200

CCN sources. Here we characterize Nd in terms of precipitation rate and AOD, which is slightly different from Wood et al.

(2012), who used precipitation rates estimated from radar reflectivity and airborne in-situ CCN measurements. While these

terms are imperfect analogs to CCN near cloud and coalescence-scavenging in cloud, they allow us to compare GiOcean to

spaceborne observations of these quantities. The results are discussed in Section 3.4.1

The simple source–sink framework of LWP provides a conceptual basis for interpreting how cloud liquid water (i.e., LWP)205

changes as the result of interacting processes: 1) adjustment of liquid cloud to changes in Nd (i.e., aerosol-cloud adjustment);

2) environmental influence on liquid cloud through the large-scale circulation and the pattern of sea surface temperature. We

use Nd as a source term of LWP because Nd is a key determinant of LWP adjustment to aerosol-driven changes in microphysics

(Albrecht, 1989; Khairoutdinov and Kogan, 2000; Song et al., 2024), and we use precipitation rate as a sink for LWP. This

approach follows previous work examining extratropical ACI in the context of the precipitation rate imposed by the large-scale210

moisture convergence (McCoy et al., 2020, 2018b). It is important to note that both precipitation rate and Nd serve as indirect

indicators of the sink and source terms in the LWP budget. They do not directly determine increases or decreases in LWP, but

instead reflect underlying processes that influence it (through large-scale moisture convergence and aerosol-cloud adjustment).

This allows us to examine how cloud water responds to the interplay between aerosol-cloud adjustment (via Nd) and large-scale

moisture convergence (via precipitation rate). The results are discussed in Section 3.4.1215

2.2.4 Sensitivity test on interannual variability of Nd and LWP using sink-source budget framework

We apply the source and sink framework to examine the drivers of interannual variability in Nd and LWP. This differs from

Wood et al. (2012), who used the same framework to evaluate the drivers of spatial variation in Nd. To do so, we build random

forest (RF) models of Nd and LWP using regionally averaged monthly data, with their source and sink variables as their

predictors.220

Sensitivity tests are conducted on the RF models for Nd and LWP. Specifically, we create three predictor scenarios: (1) the

source variable is held constant at its multi-year mean, (2) the sink variable is held constant, and (3) both source and sink vary
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as in the original time series. Scenarios (1) and (2) are used to evaluate the contribution of each driver and to assess whether the

framework can reproduce the interannual variability by setting either their sink or source a constant. We show that source-sink

framework allows for the assessment of the sensitivity of key ACI variables (e.g., Nd and LWP) to their sinks and sources in225

GiOcean, in comparison to satellite-based observations. (Section 3.5).

2.3 Observations

2.3.1 MODIS Nd and AOD

In this work, observations of aerosol optical depth (AOD) for the period of 2003-2015 are taken from a passive imaging

radiometer - the Moderate Resolution Imaging Spectroradiometer Collection 6 (MODIS C6), retrieved at 550 nm on the Aqua230

(1:30 P.M. local solar Equatorial crossing time) platform (https://ladsweb.modaps.eosdis.nasa.gov/search/order/1/MYD08_

M3--61). AOD is not a direct analog for the amount of aerosol that is relevant to the budget of cloud condensation nuclei

available to liquid clouds because it includes all aerosol particles and does not directly characterize size distribution and

chemical composition and is column-integrated. However, it does provide a dimensionless measure of the column-integrated

extinction of solar radiation by aerosols, which is related to the total column loading of aerosols. AOD can be compared235

relatively directly between GiOcean reanalysis and observations from spaceborne remote sensing.

Observations of cloud droplet number concentration (Nd) are derived from cloud optical thickness (τc) and cloud effective

radius (re) retrievals from MODIS C6 for the period of 2003-2015 based on adiabatic cloud assumptions (Grosvenor et al.,

2018b). τc and re are simultaneously retrieved by a bispectral algorithm that relies on the cloud reflectance measured from both

a non-absorbing visible wavelength and an absorbing shortwave infrared wavelength (Nakajima and King, 1990; Zhang et al.,240

2016b). MODIS Nd has been shown to be unbiased relative to in-situ measurements from aircraft and provides nearly global

coverage of observations (Gryspeerdt et al., 2022). However, there are several potential sources of uncertainty that affect the

Nd calculated from this method including low sun-angle (Grosvenor and Wood, 2014), cloud heterogeneity (Grosvenor et al.,

2018b), and contamination by upper level cloud and aerosol (Zhang et al., 2016b).

GiOcean generates 3-hourly global, grid-averaged Nd fields across 27 vertical levels for stratiform and convective clouds.245

These model-derived fields are not directly comparable to MODIS as the retrievals rely on simplified assumptions such as

adiabatic cloud structure, vertical homogeneity, and the presence of high cloud fraction, which are not inherent in GiOcean. To

carry out a consistent comparison, we leverage the MODIS COSP (CFMIP Observation Simulator Package) satellite simulator

implemented in the GEOS model (Bodas-Salcedo et al., 2011). This tool emulates MODIS retrieved cloud fields like effective

radius and cloud optical depth using model-generated fields, and allows us to apply the same methodology and assumptions250

described in Grosvenor et al. (2018a) but using the GiOcean COSP output. Consistently, we apply the same filtering criteria

used in the MODIS Nd retrieval algorithm to compute GiOcean Nd. These include:

1. Only pixels with at least 80% identified as liquid-phase clouds are used, as a high cloud fraction minimizes retrieval

biases from broken clouds due to enhanced scattering at cloud edges (Bennartz, 2007).
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2. The solar zenith angle (SZA) is restricted to ≤ 65◦ (Grosvenor and Wood, 2014; Grosvenor et al., 2018a).255

3. The cloud top height (CTH) is restricted to values lower than 3.2 km. This is to exclude deeper clouds where Nd retrievals

are less reliable due to increased cloud heterogeneity (Grosvenor et al., 2018a).

Although our primary focus is on evaluating GiOcean Nd derived from COSP output, we also analyze the cloud base Nd from

GiOcean for comparison. No such filtering is applied to the cloud base Nd values.

2.3.2 MAC-LWP260

In this study, we use observations of liquid water path (LWP) from the Multi-Sensor Advanced Climatology of Liquid Water

Path (MAC-LWP) for the period 2003–2015 (Elsaesser et al., 2017). MAC-LWP is an updated version of the University of

Wisconsin (UWisc) cloud LWP (CLWP) climatology (O’Dell et al., 2008). Oceanic monthly-mean MAC-LWP at 1 ◦ spatial

resolution is constructed from 7 sources of satellite microwave data sampling different parts of the diurnal cycle at 0.25°

spatial resolution. One of the major updates to UWisc LWP is that the MAC-LWP bias was corrected by matchups to clear-sky265

scenes from MODIS. In this way, whenever MODIS observes a clear-sky scene but the microwave retrieval still reports a

non-zero cloud LWP, MAC-LWP is set to zero. Because it is difficult to differentiate cloudwater from rainwater using passive

microwave signal from cloudwater, uncertainty in MAC-LWP is usually larger in heavy-precipitating regions (Elsaesser et al.,

2017). MAC-LWP represents grid-box–averaged LWP, making it directly comparable to the native LWP output from GiOcean.

2.3.3 IMERG270

Observations of precipitation rate are taken from the Integrated Multi-satellitE Retrievals for Global Precipitation Mission

(IMERG) (Huffman et al., 2020). IMERG is a merged precipitation product that contains information from passive microwave

precipitation estimates, microwave-calibrated infrared (IR) satellite estimates, gauge analyses, and other estimators via inter-

calibrating, merging, and interpolating the sources of precipitation estimates. IMERG provides precipitation data with global

coverage spanning the entire Tropical Rainfall Measuring Mission (TRMM) and the Global Precipitation Measurement (GPM)275

mission record. In this study, we used IMERG version 07 (V07) final run daily data for the period of 2003-2015 for analysis

(Huffman et al., 2023).

3 Results

We examine the ACI representation in GiOcean reanalysis by comparing its AOD, Nd, LWP and precipitation rate with

remotely-sensed observations. We first examine the spatial variation of these quantities globally (Section 3.1) and then tempo-280

rally in the outflow regions from North America and East Asia in Section 3.2 (highlighted in Figure 1 as rectangles). These

regions have been characterized in previous studies examining Nd variability (McCoy et al., 2018a; Wall et al., 2022) and

have relatively high AOD and Nd in both GiOcean and MODIS (Figure 1a,b,d,e), and are subject to emission controls with

significant changes in aerosol emissions (McCoy et al., 2018a). We will focus on these regions through the remainder of our

9



study. In addition, we include the Northern Hemisphere (NH: (15°–65°N)) ocean in our analysis, where most anthropogenic285

emissions originate, when applying the source–sink budget framework to study ACI.

To evaluate the temporal consistency between GiOcean and satellite observations, we calculate the Pearson correlation co-

efficient (r) between their respective regionally-averaged monthly time series. This analysis is performed for both the seasonal

cycle and the decadal trend in two key outflow regions: East Asia and North America. High correlation values indicate that

GiOcean effectively captures the temporal variability of key variables (e.g., AOD, Nd, LWP, precipitation rate) observed by290

satellites in that region.

Building on this regional focus, we characterize ACI using sensitivity metrics (Section 3.3) and a source–sink budget frame-

work (Section 3.4). Under the source–sink budget framework, we include analysis over the NH ocean to provide a broader

spatial context in terms of ACI beyond regional scales. Finally, we identify the dominant factors controlling the interannual

variability of ACI in these regions (outflows of East Asia and North America, and NH ocean) using sensitivity tests based on295

random forest models.

3.1 Spatial variability

AOD from GiOcean and MODIS are in good agreement, except at very high latitudes (Figures 1a, b and c). MODIS AOD

retrievals in these regions are noticeably affected by a lack of clear-sky observations and surface contamination, especially

in the Northern Hemisphere (Figure 1a). This is attributed to MODIS often misinterpreting bright surface signals (i.e., snow300

surface) as aerosol scattering and reports spuriously high AOD (Levy et al., 2010). This discrepancy is clearly evident in

the zonal-mean AOD (Figure 2a) and the difference plot (Figure 1c). Despite the inconsistency at high latitudes, AOD from

GiOcean compares favorably to MODIS AOD with similar AOD in regions of heavy anthropogenic pollution, Saharan dust, and

biomass burning (warmer colors in Figure 1ab). This is not entirely surprising since MODIS AOD is assimilated in GiOcean.

In this way, observations of MODIS AOD are directly incorporated into the GiOcean reanalysis through data assimilation305

techniques, leading to high agreement between the two datasets, especially in regions where MODIS retrievals are reliable

(e.g., ocean surfaces and clear-sky conditions). AOD is not a direct proxy for liquid-cloud relevant CCN, but the agreement

in AOD between GiOcean and MODIS supports GiOcean having the right overall aerosol optical properties and hopefully a

reasonable distribution of CCN following from that.

Although the overall AOD pattern in GiOcean and MODIS are very similar (Figure 2a), AOD in GiOcean is systematically310

lower over ocean compared to MODIS (Figure 2a). A possible explanation for the small differences between GiOcean AOD

and satellite AOD is the differences in AOD sampling between the GiOcean reanalysis and remote sensing observations.

GiOcean AOD is assimilated from measurements collected by both the Terra and Aqua satellites (Buchard et al., 2016) (the

Terra satellite crosses the equator in the morning, while Aqua crosses in the afternoon). Since AOD is influenced by the diurnal

cycle (Balmes et al., 2021), these differences in overpass times can lead to discrepancies in the AOD observed by each satellite.315

Comparing satellite AOD sampled during Aqua satellite to GiOcean AOD can contribute to small differences (Figure 2a).

Additionally, several drivers may exacerbate the disagreement between the assimilated AOD in GiOcean and satellite retrievals.

These include: (1) the influence of aerosol hygroscopic growth under high relative humidity conditions, which can enhance
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Figure 1. Comparison of the variables examined in this study between remote sensing observations (a,d,g,j) and GiOcean (b,e,h,k). The

difference in variables betwen GiOcean and observations in shown in difference plot (c,f,i,l). GiOcean aerosol optical depth is compared to

MODIS (a,b); GiOcean COSP Nd is compared to MODIS Nd from Grosvenor et al. (2018a) (d,e);GiOcean liquid water path is compared

to MAC (g,h); and GiOcean precipitation is compared to IMERG (j,k). Study areas off the coast of the East Asia and North America are

highlighted in white. The region of Kı̄lauea, where substantial effusive volcanic emissions occur, is indicated by triangles in a and b.

satellite-derived AOD but may not be fully captured in the model assimilation process (Twohy et al., 2009); (2) passive satellite

sensors like MODIS retrieve AOD only under clear-sky conditions. However, GiOcean’s AOD may include scenes where real-320

world cloudiness would have prevented satellite retrievals, leading to a mismatch in AOD sampling between GiOcean and

satellite-based observations; (3) limited representation of new particle formation events in GiOcean in the Southern Ocean

boundary layer may lead to underestimation of aerosol concentrations and AOD (McCoy et al., 2021; Gordon et al., 2017); and

(4) although GiOcean assimilates satellite AOD, the assimilation is constrained by retrieval uncertainties in this pristine and

frequently cloudy region. As a result, model biases in aerosol processes and the inherently low aerosol concentrations may still325

contribute to differences between GiOcean and MODIS AOD, particularly over the Southern Ocean. Lower AOD in GiOcean

is also apparent in the area downwind from Kı̄lauea (triangles on Figure 1a,b), which are areas of substantial effusive volcanic

emissions (McCoy et al., 2018a; Carn et al., 2017) (Figure 1a,b). Although volcanic SO2 emissions in GiOcean are constrained

by observations from the OMI instrument aboard NASA’s Aura satellite (Carn et al., 2015), the dataset provides only annual

mean SO2 emission rates. This temporal resolution is insufficient to capture short-term degassing events, leading to potential330

underrepresentation of short-term volcanic SO2 contributions. For example, accurately representing eruptions such as those at

Kı̄lauea in 2008 and 2018 requires daily-resolved emissions (Breen et al., 2021).
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Figure 2. Comparison of zonal-mean oceanic quantities from GiOcean (pink) and satellite observations (gray). (a) Aerosol optical depth

(AOD) from GiOcean (pink) and from MODIS (gray); (b) Cloud droplet number concentration (Nd) from GiOcean COSP output (pink) and

MODIS, with values from Grosvenor et al. (2018a) shown in gray and from Bennartz and Rausch (2017) shown in orange; (c) Liquid water

path (LWP) from native GiOcean output (pink) and MAC-LWP (gray); and (d) Precipitation rate from GiOcean (pink) and IMERG (gray).

Shading represents the 95% confidence interval of interannual variability.

GiOcean COSP Nd generally aligns well with the MODIS retrieval. Both datasets show elevated Nd near heavily industri-

alized areas and in regions influenced by biomass burning (e.g., Namibia) and Saharan dust, consistent with enhanced AOD

(Figure 1a,b,c and Figure 1d,e,f: warmer colors). GiOcean tends to report lower Nd over tropical and subtropical regions335

compared to MODIS (Figure 1f, 2b). While the random uncertainty in individual MODIS Nd retrievals can be large (up to

78%), this uncertainty decreases with averaging (Grosvenor et al., 2018b). However, systematic differences due to sampling

and retrieval filtering remain and may contribute to the observed discrepancy (Gryspeerdt et al., 2022). As shown in Figure 2b,

GiOcean COSP Nd output falls between values reported by Bennartz and Rausch (2017) and Grosvenor et al. (2018b), both

based on MODIS data. There is some indication that GiOcean may systematically underestimate Nd in pristine subtropical340

regions of the Southern Hemisphere (around 25◦S), possibly due to GAAS underestimating sea salt concentrations (Randles

et al., 2017). Conversely, GiOcean COSP Nd is higher than MODIS along remote southern storm tracks (around 50◦S in Fig-

ure 1f), potentially due to convective enhancement of Nd, parameterized in GiOcean but not in the MODIS algorithm. These
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differences may not be statistically significant, and improved Nd datasets are needed to better understand the contributing

factors.345

Figure 3. Annual mean cloud droplet number concentration (Nd) from GiOcean calculated from COSP output (left) and at cloud base

(center), and cloud drop effective radius (re) (right). Global spatial correlation between annual mean re (right) and GiOcean COSP Nd (left)

is −0.73, and between annual mean re (right) and GiOcean cloud-base Nd (left) is −0.75.

Figure 3, expands the analysis of Figure 1 to a global scale, including continental regions, comparing Nd values from the

GiOcean COSP output (left panel) with those calculated at cloud base (center panel). While both datasets show broadly similar

spatial patterns, the GiOcean COSP Nd tends to be slightly lower than Nd at cloud base in regions with heavy anthropogenic

aerosol emissions. The greatest Nd appears in both datasets along the west coasts of North and South America, Europe,

Southeast Asia, and South Africa. However, the GiOcean COSP value shows greater Nd at higher latitudes in both hemispheres350

compared to the cloud base values, a feature also evident in Figure 1e. The origin of this discrepancy may stem from the retrieval

algorithm used in GiOcean’s COSP Nd, which tends to preferentially sample scenes with high liquid cloud fraction—conditions

that become increasingly rare near the poles, while there is no such filtering to the cloud base Nd values.

Figure 3 also presents the cloud effective radius (re) from the GiOcean output. A strong inverse relationship between re and

Nd is observed. The global spatial correlation between mean re and Nd is −0.73 for the GiOCean COSP product and −0.75355

at cloud base, reflecting the microphysical basis of Twomey effect: higher cloud condensation nuclei (CCN) concentrations

lead to a greater number of smaller droplets, enhancing cloud reflectivity (Twomey, 1991). This confirms GiOcean’s capacity

to capture such microphysical processes. It is important to note that re is also a parameter in the retrieval algorithm used for

the GiOcean COSP output. The observed decrease in re at high latitudes could therefore inflate Nd values in these regions.

Although the microphysical basis of Twomey effect is prominent globally, it is not ubiquitous. For example, in Southeast Asia,360

high Nd does not correspond to small re. Likewise, Reff decreases at higher latitudes, particularly in the Northern Hemisphere,

without a corresponding increase in cloud base Nd—likely due to reduced water availability in colder conditions. These features

may reflect aerosol-induced adjustments to liquid water path (LWP) and precipitation, which are explored further in Section

3.3.
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LWP is systematically lower in GiOcean than observed by microwave radiometers as aggregated and harmonized in the365

MAC-LWP data set (Figure 1g,h,i and Figure 2c: pink and gray), particularly true in the Tropical regions (30 ◦S to 30 ◦N).

However, some of this discrepancy may be attributable to potential systematic errors in microwave LWP as discussed in section

2.3.2. Within the extratropics we estimate this error to be ±10% (Song et al., 2024; Elsaesser et al., 2017), which may bring the

observations closer or further, but cannot entirely explain this observation-reanalysis discrepancy (Figure 2c). The discrepancy

is larger in relatively high precipitation regions in the tropics. Overall this points to an unrealistically low LWP in GiOcean,370

despite observational uncertainty.

GiOcean and IMERG exhibit consistent zonal patterns in precipitation rate across latitudes, with both capturing the major

meridional features (Figure 2d). This consistence may stem from GiOcean’s assimilation of SST, which controls large-scale

circulation features such as the Intertropical Convergence Zone (ITCZ) and midlatitude storm tracks. However, slight differ-

ences in magnitude are evident across latitudes. GiOcean overestimates precipitation in regions with low precipitation rates375

(e.g., subtropics and regions poleward of 60◦) and exhibits a sharper transition to very low precipitation in the subtropical dry

zones near the western sides of continents (Figure 1j,k). This may be partially attributable to biases in GiOcean, but may also

relate to IMERG struggling to detect the prevalent drizzle in these regions (Pradhan and Markonis, 2023).

3.2 Temporal variability

3.2.1 Seasonal cycle380

Having characterized the spatial patterns of aerosols, cloud properties, and precipitation, we now examine their temporal

variability. Our analysis focuses on the North American and East Asian outflow regions, as indicated by the rectangular boxes

in Figure 1, because these regions are major sources of anthropogenic aerosol emissions and are known to strongly influence

downwind cloud properties (McCoy et al., 2018a). These two regions also show contrasting sensitivity of re to Nd (Figure 3).

We examine the seasonal and decadal variability in each region.385

Seasonal variability in AOD shows strong agreement between GiOcean and MODIS, with correlation coefficients (r) near 1

in both the East Asian and North American outflow regions (Figure 4a,b). Peak AOD occurs during boreal spring in the East

Asian outflow and during boreal summer in the North American outflow. This is expected as AOD is assimilated in GiOcean.

In the East Asian outflow, Nd from GiOcean exhibits a pronounced seasonal cycle with a peak during winter and a minimum

in summer (Figure 4c: pink). This pattern is likely driven by increased precipitation between June and September, peaking390

around August, possibly enhanced by the summer monsoon as indicated by the precipitation seasonal cycle (Figure 4g: pink).

Enhanced wet scavenging during this period reduces both aerosol concentrations and droplet number (Figure 4a,c: pink).

However, this effect may be confounded by increased biomass burning emissions during the same period (Kim et al., 2007).

Interestingly, this strong seasonal signal in Nd is not evident in the MODIS retrieval over the East Asian outflow region (Figure

4c: gray and orange), although notable discrepancies exist among different Nd datasets, with the data from Bennartz and395

Rausch (2017) showing a somewhat stronger seasonal cycle than the data from Grosvenor et al. (2018a), though still weaker

than in GiOcean.
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Figure 4. Comparison of seasonal cycles in the outflow regions of East Asia (a,c,e,g) and North America (b,d,f,h) from GiOcean (pink)

and satellite observations (gray). AOD (a, b), Nd (c, d), LWP (e, f), and precipitation rate (g, h). The GiOcean outputs and the sources of

satellite observations used for comparison are consistent with the description in Figure 2. Solid lines show 12-month climatological mean

seasonal cycles, and the shading shows ± standard deviation across all years (2003-2015) for each month. The correlation (r) between the

monthly climatology time series of GiOcean and satellite observations is shown in the panel title. r(Ben) is the correlation between Bennartz

Nd (Bennartz and Rausch, 2017) and GiOcean COSP Nd.

In contrast, the North American outflow region displays a weaker seasonal cycle in Nd in GiOcean, with lower values during

summer, and better consistency between GiOcean COSP Nd and the observational datasets, yet with significant differences in

absolute value (Figure 4d). The consistency in seasonal trends across datasets suggests that GiOcean and satellite observations400
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capture similar seasonal signals. However, differences in absolute Nd values may partly reflect the spread across satellite re-

trieval algorithms, referred to as the retrieval bundle, which represents a form of systematic observational uncertainty (Elsaesser

et al., 2024).

Overall, we found larger discrepancies in the seasonal cycle of Nd over the East Asian outflow region (Figure 4c) compared

to the North American outflow, which may be due to active convection, which complicates the retrieval and modeling of Nd.405

Reanalysis products often exhibit greater biases in simulating Asian meteorology, and the assumptions underlying MODIS

retrievals may break down under these meteorological conditions. As a result the disagreement in Nd seasonal cycle is higher

over East Asian outflow than over the North American outflow.

The seasonal cycles of GiOcean and MAC-LWP both exhibit peak LWP in winter in the East Asian and North American

outflow regions (Figure 4e,f), but substantial differences in the overall seasonal patterns and magnitude remain. The GiOcean410

and MAC-LWP show a better agreement during winter in the East Asian outflow region, which might be due to the relatively

accurate MAC-LWP estimates during winter over the study regions (Elsaesser et al., 2017). However, correlation between

MAC-LWP and GiOcean is weakly negative in East Asian outflow region (Figure 4e). In the North American outflow region,

the seasonal variability of LWP is mostly captured by GiOcean, with a correlation of r = 0.76 compared to satellite observations

(MAC-LWP) (Figure 4f).415

Seasonal variability in precipitation rate in GiOcean matches IMERG in both the East Asian and North American outflow

regions, with differences statistically indistinguishable at the 95% confidence level across all months (Figure 4g,h). There is

a high correlation of r = 0.99 between GiOcean and IMERG in the East Asian outflow, where a strong seasonal cycle exists

(Figure 4g). In the North American outflow where the seasonal cycle is weaker the agreement is also good, with a correlation

of r = 0.83 (Figure 4h). Although GiOcean slightly underestimates the amplitude of seasonal variation, it reproduces the broad420

features of the cycle, including a minimum in late spring and a gradual increase in precipitation from summer into fall. The

high correlation between GiOcean and observed precipitation rates in the East Asia outflow (Figure 4g) is consistent with the

fact that GiOcean is constrained by SST fields from the GEOS-IT reanalysis. SST strongly influences moisture convergence

through its impact on large-scale atmospheric circulation, and therefore plays a key role in shaping seasonal precipitation

patterns (Seager et al., 2010).425

3.2.2 Interannual variability

The decadal trend in aerosol and cloud properties is a useful proxy for understanding the radiative forcing from ACI (Wall

et al., 2022; McCoy et al., 2018a; Bennartz et al., 2011). The monthly time series of AOD, Nd, LWP and precipitation rate are

shown in Figure 5.

Both GiOcean and satellite observations show an overall downward trend in AOD, along with good agreement in the monthly430

anomaly time series across the two focus regions (Figure 5a,b). This is consistent with trends in sulfur dioxide emissions in

these regions driven by emissions control measures in the East Asian and North American outflow regions (McCoy et al.,

2018a).
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Figure 5. The monthly anomaly time series in the outflow regions of East Asia (a,c,e,g) and North America (b,d,f,h) from GiOcean (pink)

and satellite observations (gray or orange). AOD (a, b), Nd (c, d), LWP (e, f), and precipitation rate (g, h). The GiOcean outputs and the

sources of satellite observations are consistent with the description in Figure 2. Monthly anomalies are calculated by removing the long-term

monthly climatology from the original time series. The correlation (r) between the monthly anomaly time series of GiOcean and satellite

observations is shown in the panel title. Linear trend lines are shown for each dataset in the line labels, with the slope (s) indicating the trend

per month.

Generally MODIS and GiOcean broadly agree with the trend in Nd with a downward trend through the observational period

in the North American outflow (Figure 5d), suggesting that the observed decadal trend in Nd may be related to aerosol affecting435

cloud microphysical properties in that region. The downward trend in Nd in the North American outflow is also consistent with

previous evaluation of trends in Nd (McCoy et al., 2018a). During the period with concurrent observational data over the East

Asian outflow, MODIS Nd from Bennartz and Rausch (2017) and Grosvenor et al. (2018b) shows a downward trend while

GiOcean COSP Nd is relatively flat (Figure 5c). This may result from the disproportionate influence of convection over the

region which tends to introduce uncertainty in both the retrieval and the reanalysis.440
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The monthly anomaly time series in LWP are consistent between MAC-LWP and GiOcean in the East Asian and North

American outflows, with correlation coefficients close to 0.8 in both regions and no clear overall upward or downward trends

during the study period (Figure 5e,f). GiOcean has the microphysics scheme necessary to produce precipitation suppression

and this may lead to the covariation of LWP and Nd from 2003 to 2015 in the East Asian outflow region, where increases in

Nd are consistently accompanied by increases in LWP in GiOcean, and vice versa (Figure 5c,e: pink, Figure S1). It must also445

be noticed that the response of LWP is not entirely driven by cloud microphysical processes in GiOcean. Large-scale moisture

convergence, which is influenced by sea SST and large-scale atmospheric circulation (Zelinka et al., 2018), also plays a key

role. The base model of GiOcean is constrained by SST and a moisture analysis increment is applied every six hours to correct

the state of the model. The consistency in the monthly time series between observed LWP and GiOcean LWP suggests that

GiOcean has the ability to represent both the moisture supply and the cloud response to Nd that are necessary to reproduce450

LWP interannual variability.

In keeping with the seasonal cycle, the monthly precipitation anomaly time series from GiOcean and IMERG are in good

agreement and exhibit concurrent variation with LWP anomalies in GiOcean and observations across both regions during the

study period. While consistent, there isn’t a particularly strong overall trend in precipitation in either study region (Figure

5g,h). Given the overall magnitude of the precipitation rate in these regions (Figure 1h), this points to a fairly large interannual455

variability in the precipitation flux demand by the atmosphere that makes it difficult to disentangle the role of meteorology,

data assimilation, aerosol, and precipitation-related scavenging in driving changes in cloud properties (i.e. Nd and LWP) (Wood

et al., 2012; Kang et al., 2022). In the following section we attempt to evaluate the representation of ACI in GiOcean against

satellite observations.

3.3 Aerosol-cloud interactions in GiOcean and observations460

While the primary focus of this study is on jointly analyzing the effect of sources and sinks on cloud properties, we include this

sensitivity analysis of Nd versus AOD and LWP versus Nd to facilitate comparison with previous studies that have emphasized

these pairwise relationships.

3.3.1 Inferred sensitivity of cloud droplet number concentration to AOD

AOD is commonly used in satellite-based studies and model evaluations of how aerosols alter cloud microphysical properties,465

despite its known limitations as a proxy for cloud condensation nuclei (CCN) (Liu et al., 2024; Quaas et al., 2010).

We found a positive inferred sensitivity of Nd to AOD in the East Asian outflow region in both the GiOcean reanalysis

and satellite observations (Figure 6: circles), indicating that increases in AOD are associated with increases in Nd. This is

consistent with the aerosol indirect effect where increased aerosol enhances cloud droplet activation (Twomey, 1977). The

stronger inferred sensitivity in GiOcean (S = 0.96: pink circles in Figure 6a) compared to observations (S = 0.64: gray circles)470

suggests that cloud droplet formation in the model responds more strongly to changes in AOD in GiOcean over East Asian

outflow. However, this stronger slope does not imply that GiOcean has a stronger aerosol–cloud microphysical response at

a given AOD. In fact, despite the higher inferred sensitivity, the absolute Nd in GiOcean is lower than in MODIS for the
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same AOD (Figure 6a). This may suggest that GiOcean overestimates the relative response of Nd to aerosol changes, but

underestimates the overall efficiency of aerosol activation into cloud droplets.475

Figure 6. (a) Inferred sensitivity (S) of cloud droplet number concentration (Nd) to aerosol optical depth (AOD), and (b) inferred sensitivity

of liquid water path (LWP) to Nd, based on both GiOcean (pink) and satellite observations (gray) in the outflow regions of East Asia (circles)

and North America (triangles), using the sensitivity metrics defined in Eq 1 and Eq 2.

Similarly, we examined the inferred sensitivity of Nd to AOD in the North American outflow region (Figure 6: triangles).

The inferred sensitivity is slightly positive (S = 0.22: pink triangles in Figure 6) in GiOcean, while near zero in observations

(gray triangles in Figure 6). The low sensitivity of Nd to AOD over the North American outflow is primarily due to sampling. In

GiOcean, COSP-derived Nd is sampled following the cloud-filtering criteria of Grosvenor et al. (2018a) to match the sampling

of MODIS Nd. When cloud base Nd is used, or when COSP-derived Nd is recalculated without filtering, a strong positive480

sensitivity of Nd to AOD becomes apparent (Figure S2). This indicates that the low sensitivity of Nd to AOD is inherent to the

Nd sampling strategy over the North American outflow, rather than a result of GiOcean being unable to represent aerosol–cloud

microphysical responses. We also note that the analysis of the inferred sensitivity of Nd to AOD does not account for the

role of meteorological factors in driving the sensitivity terms. Precipitation scavenges aerosol and cloud droplets, potentially

dampening the signal of changes in cloud properties induced by aerosol perturbation. We will discuss the role of precipitation485

in the Section 3.4.1.

3.3.2 Inferred sensitivity of liquid water path (LWP) to Nd

In addition to changes in cloud microphysics, changes in Nd can also change macrophysical cloud properties. The inferred

sensitivity of LWP to Nd is characterized using Eq 2. In observation, there is a very low inferred sensitivity of LWP to Nd
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in both regions (S = 0.02–0.06) (Figure 6b: gray shapes). Instead, GiOcean shows stronger response in LWP with Nd than490

observed in both regions (Figure 6b: pink). In East Aisan outflow, GiOcean shows monotonic increase in LWP with Nd

(Figure 6b: pink circles). In the North American outflow region LWP first increases with Nd in the low Nd regime and and then

decrease with Nd in the high Nd regime (Figure 6: pink triangles). This is consistent with the theoretical evidence of competing

precipitation suppression and entrainment effects on liquid cloud adjustment (Ackerman et al., 2004). However, interpreting

the relationship between Nd and LWP is complicated by coalescence-scavenging from precipitation (Mikkelsen et al., 2025).495

Precipitation is a strong sink of Nd in marine low clouds (Kang et al., 2022; Wood et al., 2012), and depletes aerosol at cloud

base (Textor et al., 2006). The amount of liquid water in clouds (i.e., LWP) also depends on how much rain the clouds produce,

which is strongly controlled by environmental factors such as large-scale atmospheric circulation and sea surface temperature

patterns.

To illustrate the importance of precipitation in the context of aerosol affecting cloud microphysical properties (Eq 1) and liq-500

uid cloud adjustment induced by changes in Nd (Eq 2), we interpret the budget of Nd and LWP using a sink-source perspective

in Section 3.4.

3.4 Source-sink budgets of cloud microphysics and macrophysics

As outlined above, GiOcean generally replicates spatial and temporal patterns of AOD and precipitation rate (Figure 1, 4, and

5). However, the correspondence between GiOcean and observations regarding cloud microphysics and macrophysics (i.e. Nd505

and LWP) is less robust. To understand the sources of these biases, it is important to determine whether they arise from how

GiOcean simulates the response of liquid clouds to aerosols (sources), or from how it represents the influence of moisture

demands from the large-scale environment (sinks via precipitation-scavenging). This requires separating the effects of these

two factors on the cloud properties. Here, we consider cloud droplet number (Nd) and cloud liquid mass (LWP) in terms a

simple source-sink budget framework to evaluate monthly patterns of both quantities in the outflow regions identified in Figure510

1. We also examine a broader spatial scale covering the Northern Hemisphere (15◦-65◦), where most anthropogenic emissions

originate.

3.4.1 Source-sink budget of Nd

To visualize the response of Nd to AOD or precipitation rate we formulated the source-sink budget of Nd as two-dimensional

lookup tables using monthly datasets at each grid point over the study regions. The lookup table is constructed by dividing515

monthly AOD and precipitation rate into 50 × 50 two-dimensional bins and bin averages are calculated within each bin. This

allows us to examine how Nd responds across varying combinations of AOD and precipitation. We note that because the lookup

tables are constructed using monthly data across all grid points, the Nd–AOD–precipitation relationships reflect a combination

of spatial and temporal variability. Due to the large range and log-normal distributions of precipitation rate and AOD we

use logarithmic bins. The dependence of Nd on AOD and precipitation rate for each outflow region and for GiOcean and520

observations is visualized in the lookup tables in Figure 7.
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By analyzing the marginal distribution of Nd across AOD while holding precipitation rate fixed, we assess how aerosol

alters cloud properties. Conversely, examining Nd across precipitation rate while holding AOD fixed provides insight into how

precipitation controlled by large-scale environment modulates Nd through wet scavenging.

Figure 7. Cloud droplet number (Nd) composited on AOD and precipitation rate in GiOcean (abc) and from observations (def) and in the

regions off the coast of East Asia (ad), North America (be) and Northern hemisphere ocean (cf). The density of points is indicated by white

contours. The percentage labeled on each contour represents the fraction of monthly data points contained within that contour. The outermost

white contour encloses the 2-D density region containing 95% of the monthly data points, effectively excluding extreme outliers.

Overall, the ranges of precipitation rate and AOD in GiOcean match those from satellite observations in the outflow regions525

of both East Asia and North America, as well as over the broader Northern Hemisphere (Figure 7). In East Asia, the range of

precipitation rate and AOD spans nearly two orders of magnitude in both GiOcean and observations (Figure 7a,d), whereas in

North America, it covers only one.

In the North American outflow, the pattern of Nd as a function of AOD and precipitation rate is not clear for either GiOcean

or observations (Figure 7b,e). This might be because the sampling of Nd following Grosvenor et al. (2018a), which can obscure530

the sensitivity of Nd to AOD and precipitation in this region. In contrast, a clearer relationship emerges in the outflow region

of East Asia and over the Northern Hemisphere ocean (first and third columns of Figure 7).
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In the East Asian outflow region (first column of Figure 7), GiOcean Nd increases with AOD at fixed precipitation rates

(Figure 7a), indicating a microphysical response of Nd to aerosol loading at fixed coalescence-scavenging. Similarly, when

AOD is held approximately constant within its range, Nd decreases with increasing precipitation (high Nd is associated with535

low precipitation rate). This pattern suggests that the Nd budget in GiOcean reflects a combination of a source driven by

effective CCN and a sink associated with wet scavenging (via precipitation), which is modulated by environmental conditions.

We use the same methodology to analyze the Nd pattern in satellite observations (Figure 7c). Similar to GiOcean, satellite data

shows an increase in Nd with increasing AOD at fixed precipitation rates, indicating a consistent aerosol–cloud microphysical

relationship. However, unlike GiOcean, we find a much weaker covariance between precipitation rate and Nd when AOD is540

held constant, particularly at low AOD concentrations. This might suggest that, in the observational data, the precipitation sink

of Nd via wet scavenging is either less pronounced or obscured by retrieval uncertainties or other confounding factors such as

satellite sampling biases, differences in vertical overlap between precipitation and aerosol layers, or cloud regime heterogeneity

(Grosvenor et al., 2018b). The more pronounced link between Nd and precipitation rate in GiOcean might also indicate that

the precipitation dependence of Nd may be amplified by the representation of coalescence scavenging in GiOcean.545

Extending the compositing analysis using lookup tables to the NH ocean (third column of Figure 7), the relationship between

Nd and precipitation rate becomes weaker. This weakened link is consistent in both GiOcean and satellite data (Figure 7c,f).

Overall, the dependence of Nd on AOD and precipitation rate inferred from the compositing in Figure 7 is consistent with

prior expectations based on Wood et al. (2012). Increasing AOD corresponds to an increase in CCN-relevant aerosol and

an increasing in Nd. This behavior is consistently captured in both GiOcean and satellite observations across regional and550

broader Northern Hemisphere analyses (Figure 7a,d, c,f). Increasing precipitation removes cloud droplets through coalescence

scavenging, leading to a decrease in Nd with increasing precipitation rate. This pattern is more clearly represented in GiOcean

over heavily polluted regions such as East Asian outflow (Figure 7a), but is less pronounced in satellite observations over the

same area (Figure 7d). The weak link between precipitation and Nd is also seen in both GiOcean and satellite data over the

broader NH ocean (Figure 7c,f). Taken together, this suggests that precipitation scavenging of Nd may be overestimated in555

heavily polluted regions in GiOcean.

3.4.2 Source-sink budget of LWP

The interpretation of the LWP lookup tables follows the same logic as that of the compositing analysis using Nd lookup

tables discussed earlier in Section 3.4.1. We assess how liquid clouds adjust to changes in Nd by analyzing variations in

LWP across Nd bins while holding precipitation rate constant. Conversely, we evaluate how large-scale moisture convergence560

influences liquid cloud amount (i.e., LWP) by examining LWP across precipitation bins while holding Nd constant (Figure 8).

Furthermore, by comparing the relative sensitivity of LWP to changes in Nd and precipitation, we can assess how liquid cloud

adjustment responds to aerosol and environmental controls in both GiOcean (Figure 8a,b) and satellite observations (Figure

8c,d).

The dependence of LWP on Nd and precipitation rate is consistent with a priori expectations. In all study regions, and in565

both observations and GiOcean, LWP increases with precipitation rate when Nd is held constant (Figure 8), consistent with the
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Figure 8. Similar to Figure 7 but showing liquid water path composited on Nd and precipitation rate in GiOcean (abc) and from observations

(def) and in the regions off the coast of East Asia (ad), North America (be), and over Northern Hemisphere ocean (cf).

interpretation that greater large-scale moisture convergence leads to increased cloud water content, assuming precipitation effi-

ciency remains approximately unchanged (via fixed Nd). This suggests that higher precipitation rates reflect not only enhanced

removal of cloud water, but also stronger moisture supply to the cloud layer.

The patterns of inferred liquid cloud adjustment shows varying degree of agreement between GiOcean and satellite obser-570

vations over different study regimes (Figure 8). In the North American outflow region, both GiOcean (Figure 8b) and satellite

observations (Figure 8e) indicate a weak liquid cloud adjustment to Nd (weak variation in LWP with Nd at fixed precipitation

rate). This consistency suggests that GiOcean realistically captures the weak liquid cloud adjustment in this region.

In the East Asian outflow, GiOcean reanalysis shows that LWP increases with higher Nd when precipitation rate is held

constant (Figure 8a). This pattern is consistent with the suppression of precipitation: at higher Nd, more LWP is needed to575

maintain the same precipitation rate due to reduced collision–coalescence efficiency. However, the liquid cloud adjustment

through precipitation suppression is less pronounced in satellite observations over the East Asian outflow region (Figure 8d).

This may reflect limitations in satellite retrievals, such as uncertainties in Nd under multilayer cloud conditions or partial cloud

cover (Zhang et al., 2016b; Grosvenor et al., 2018b), and uncertainty in LWP under heavy-precipitating regions (Elsaesser
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et al., 2017). Additionally, satellite observations represent instantaneous snapshots, which may not fully capture the temporal580

evolution of cloud water accumulation in response to aerosol loading. This may also indicate that the effects of precipitation

suppression may be overestimated in GiOcean compared with what occurs in reality in the East Asian outflow region.

The NH ocean pattern is similar with that in the outflow of East Asia in GiOcean: LWP increases with Nd at fixed pre-

cipitation rate, indicating suppressed precipitation and accumulation of liquid water. This positive Nd–LWP relationship is

especially pronounced at high precipitation rates (Figure 8c). In contrast, satellite observations show a negative Nd–LWP re-585

lationship when precipitation rate is fixed, particularly at low precipitation rates. This negative Nd–LWP correlation is found

across satellite retrieval methods (Gryspeerdt et al., 2019). This suggests that the contrast with GiOcean likely reflects model

biases in representing cloud microphysics, rather than retrieval artifacts alone.

3.5 Analysis of the factors controlling Nd and LWP decadal variability

The compositing analysis using lookup tables built from monthly data at each grid points in Section 3.4 provides a diagnostic590

of the dependence of Nd and LWP on their sources and sinks, capturing a mixture of temporal and spatial variability. In this

section, we characterize the factors driving historical trends in Nd and LWP, which is critical for quantifying the magnitude

and evolution of radiative forcing from ACI (Wall et al., 2022), particularly in regions undergoing rapid changes in aerosol

emissions, such as East Asia (Bennartz et al., 2011) and North America.

To evaluate how the dependencies of Nd and LWP on their respective sources and sinks influence long-term temporal595

variations in cloud properties, we use RF models trained on regionally-averaged monthly time series from three study domains:

the outflow regions of East Asia, North America, and the NH ocean. Separate RF models of Nd and LWP are trained for

GiOcean and satellite observations using source and sink variables as predictors (i.e., AOD and precipitation rate for Nd,

and Nd and precipitation rate for LWP). We then conduct sensitivity experiments to assess how interannual variability in Nd

and LWP responds to changes in their source and sink terms in GiOcean and satellite observations. The details of each RF600

experiment are as follows:

1. Full-predictor case: The Nd decadal trend is predicted based on the RF model using the original monthly time series

of AOD (source) and precipitation rate (sink) at their regional means as predictors. Similarly, the LWP decadal trend is

predicted based on RF model using the original time series of Nd (source) and precipitation rate (sink) as predictors.

This full-predictor approach is applied to both satellite observations and GiOcean data. Predictions from this case are605

shown as gray solid lines in Figures 9 and 10.

2. Fixed-sink case: In this scenario, we aim to predict the decadal trends of Nd and LWP based on RF models while holding

the precipitation rate (sink) constant at its multiyear mean value. The source terms—AOD for Nd and Nd for LWP—are

taken from the original monthly time series (GiOcean or satellite observations). RF model predictions from this case are

shown as green solid lines in Figures 9 and 10.610

3. Fixed-source case: The decadal trends of Nd and LWP in GiOcean and satellite observations are predicted using the

RF models by setting the source terms—AOD for Nd and Nd for LWP as constant at their multiyear mean values. The
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sink term (precipitation rate) varies over time based on values from GiOcean or satellite observations. The Nd and LWP

decadal trends predicted by fixed-source are shown in pink solid lines in Figure 9 and Figure 10.

We compare the fixed-source and fixed-sink predictions from RF models to the original (directly available from GiOcean615

and satellite observations) monthly time series of Nd and LWP. Specifically, we assess how well each sensitivity case captures

the interannual variability by calculating the temporal correlation (r) between their predicted regional averaged monthly time

series and that of the original datasets. In these experiments, a higher temporal correlation between the fixed-sink prediction

and the original dataset indicates that the decadal variability can be largely reproduced without accounting for variability in

the sink term. This suggests that the long-term changes in Nd or LWP are primarily driven by variability in the source term.620

Conversely, a higher correlation in the fixed-source case implies that the trend is more strongly influenced by changes in the

sink term. In this way, the relative correlation strength serves as a diagnostic tool to evaluate whether aerosol affecting cloud

properties or large-scale environment dominate the Nd and LWP interannual variability.

3.5.1 Factors driving decadal variability of Nd

Figure 9 shows the decadal predictions of Nd from RF models trained for GiOcean and satellite observations under the full-625

predictor (gray lines), fixed-sink (green lines), and fixed-source (pink lines) scenarios, as well as the comparison to the original

datasets (black dashed lines). The performance of these sensitivity experiments is evaluated based on how well they reproduce

the original temporal patterns of Nd by calculating the correlation (r) between the time series from sensitivity experiments with

that of the original datasets as indicated by the r values in the legend. The RF model trained on the full-predictor experiments

(Figure 9ab: gray line) successfully reproduces the decadal trends in Nd and LWP from the original datasets (Figure 9ab: black630

dashed line) with r-values close to 1. This agreement provides confidence in using the RF model for sensitivity tests that isolate

the influence of individual source and sink terms. We examine each region of interest one by one.

In the East Asian outflow region, Nd prediction from fixed-sink (precipitation) and fixed-source (AOD) experiments in

GiOcean reproduces the decadal variability of Nd with r values of 0.55 and 0.74 (Figure 9a). This indicates that Nd interannual

variability is driven by both aerosol affecting cloud microphysics (source) and wet scavenging via precipitation (sink) in this635

region in GiOcean. The dependence of temporal variability in Nd is consistent with the lookup table analysis in Figure 7a which

shows the spatial and temporal variability in Nd is driven by both sinks and sources. The fixed-source (AOD) experiment has a

greater capacity of recreating Nd decadal trend than fixed-sink (precipitation) case with r values of 0.74 and 0.55, implying the

majority of Nd temporal variability is driven by variation in the sink term by removal of Nd through precipitation-scavenging

in GiOcean (Figure 9a). In the satellite observations, the sink also appears to play a greater role in influencing the Nd decadal640

variability. However, the overall sensitivity to both source and sink is weaker than in GiOcean, as reflected by the lower

correlation values in Figure 9b than in Figure 9a.

In the North American outflow region, GiOcean and satellite observations show contrasting roles of source and sink in

driving the Nd decadal variability. In GiOcean, precipitation (the sink) plays a greater role than aerosols (represented by AOD),

whereas in satellite observations, AOD is more influential (Figure 9cd).645
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Figure 9. The monthly time series of Nd in the regions off the coast of (a,b) East Asia, (c,d) North America, and over (e,f) Northern

Hemisphere ocean. The black dashed line represents the original Nd time series from GiOcean or MODIS, while the solid lines show

predictions from Random Forest (RF) models. Three correlation diagnostics are included in the legend: RF Full (gray): Nd predicted by the

RF model using all input variables from original datasets (sink + source), with the correlation (r) indicating how well the RF model captures

year-to-year variability in regional-mean Nd. RF P = const (green): Prediction with precipitation rate (sink) held constant at its multiyear

mean, used to assess the influence of sink on Nd interannual variability. The correlation coefficient (r) is calculated between the monthly time

series of predicted Nd from the fixed-sink experiments and the original dataset. RF AOD = const (pink): Prediction with AOD (source) held

constant at its multiyear mean, used to evaluate the influence of aerosol loading on Nd variability. Higher correlations indicate a stronger

ability of the model to reproduce observed decadal variability of Nd under each condition.

Extending the sensitivity analysis to NH ocean, we find a similar result to that in the East Asian outflow region: setting source

a constant while letting precipitation rate varies with time largely reproduces the decadal trend in Nd, implying precipitation

(sink) plays a greater role than aerosols (source) in driving Nd interannual variability, and this pattern is consistent between

GiOcean and satellite observations (Figure 9ef).

3.5.2 Factors driving decadal variability of LWP650

The decadal prediction of LWP from GiOcean and satellite observations based on the full-predictor, fixed-sink, and fixed-source

cases using RF models is shown in Figure 10. We evaluate the interannual variability of LWP in both GiOcean and satellite

observations by comparing the fixed-source and fixed-sink predictions to their respective original LWP monthly time series.
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Figure 10. Same as Figure 9, but showing the monthly time series of LWP for regions off the coasts of (a, b) East Asia, (c, d) North America,

and (e, f) the Northern Hemisphere ocean. In this case, fixed-source experiments refer to holding Nd constant at its multiyear mean while

allowing precipitation rate to vary monthly. Fixed-sink experiments refer to holding precipitation rate constant at its multiyear mean while

allowing Nd to vary monthly.

In GiOcean, the correlation between the original LWP time series and the fixed-source experiment (Figure 10: pink lines) is

higher than that of the fixed-sink experiment (Figure 10: green lines), indicating that LWP temporal variability can be largely655

reproduced without accounting for changes in source (Nd). This highlights the dominant role of precipitation in controlling

LWP variability. This precipitation-driven pattern in LWP temporal variability is consistently found in both GiOcean and

satellite datasets across all three regions (Figure 10), which reflects the importance of large-scale environment on temporal

variations in liquid cloud amount. A similar precipitation-driven signal also emerges from the joint analysis of spatial and

temporal variability in LWP and is consistent between GiOcean and observations (Figure 8).660

An interesting feature in Figure 10e is that the RF model sensitivity test, which holds regionally averaged precipitation

constant, shows an anticorrelation between Nd and LWP. This contrasts with the lookup table result, which shows a positive

Nd–LWP relationship at fixed precipitation rate at each grid points (Figure 8a). The difference likely reflects the effect of

spatial averaging in the RF analysis, which may smooth out subregional variations and obscure the co-variability captured at

the grid scale (∼100 km) in the lookup table.665
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4 Conclusions

Earth system models (ESMs) have implemented two-moment cloud microphysics scheme and achieved more realistic repre-

sentation of clouds (Ghan et al., 1997; Lohmann et al., 1999; Ming et al., 2007; Barahona et al., 2014; Morrison and Gettelman,

2008), but until now reanalyses have not included two-moment microphysics coupled to aerosols. In this study, we evaluate

the new GiOcean reanalysis with two-moment cloud microphysics against satellite retrievals.670

To evaluate ACI in warm clouds in GiOcean, we first compare variables important for ACI from GiOcean with available

spaceborne remote sensing in terms of spatial and temperal variability a period of 2003-2015. The variables include aerosol

optical depth (AOD), cloud droplet number concentration (Nd), liquid water path (LWP) and precipitation rate.

GiOcean agrees well with MODIS AOD and IMERG precipitation in both global spatial patterns and regional temporal vari-

ability, including seasonal cycles and decadal trends of regionally averaged values in areas with substantial emission changes675

(e.g., the outflow regions of East Asia and North America). It also reproduces Nd and LWP within the margin of error of the

retrievals (Figure 1,2, 4,5).

A key question in GiOcean is whether the addition of two-moment cloud microphysics has created aerosol-cloud interactions

(ACI) that are realistic. Globally there is a clear connection between cloud droplet size, Nd, and aerosol emissions in GiOcean,

i.e., the microphysical basis of the Twomey effect (Figure 3). This indicates that the reanalysis is able to account for aerosol680

effects on droplet size. The effect of Nd and aerosols on LWP through cloud adjustments is much more difficult to assess.

Several factors may be responsible, including sampling biases in the satellite observations, and the role of aerosol and water

vapor assimilation which may add a “non-physical” tendency to the cloud fields.

Several factors drive variability in Nd and LWP. Nd reflects the cloud microphysical response to aerosols (Twomey, 1977),

but its interpretation is subject to some degree of causal ambiguity. Studies have shown that the primary driver of spatial685

patterns in Nd is precipitation rather than aerosol loading near the coast of Peru (Wood et al., 2012) and in the Southern

Ocean (Kang et al., 2022). LWP is influenced by changes in cloud microphysical properties (e.g., Nd), but the majority of

its variability is driven by variations in the meteorological state of the atmosphere, rather than by the microphysical state of

the clouds (Wall et al., 2022; Bender et al., 2019; McCoy et al., 2018b). In terms of understanding aerosol-cloud adjustments

through precipitation suppression, the key driver of this behavior has been argued to be precipitation rate (McCoy et al., 2020).690

This highlights the need to disentangle the influences of ACI and large-scale environmental factors on cloud properties, in order

to determine whether the disagreement in Nd and LWP between GiOcean and satellite observations arises from differences in

how meteorology—particularly large-scale moisture convergence, translates into precipitation rate, or from differences in ACI

itself.

To tackle the attribution of liquid cloud properties to ACI or to large-scale environmental factors we put forward a simple695

source-sink budget framework of liquid cloud microphysical (i.e., Nd) and macrophysical (i.e., LWP) properties. Our frame-

work allows us to characterize Nd variability in terms of sources from aerosol loading and sinks from precipitation rate (Wood

et al., 2012), and to characterize LWP variability in terms of sources related to the adjustment of liquid clouds to changes in Nd

and sinks associated with precipitation rate imposed by the large-scale environment. Lookup tables of Nd and LWP are built
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using monthly data across all grid points over three study domains: outflow of East Asia and North America, and NH ocean.700

This is to characterize how the joint spatial and temporal variability in Nd and LWP are driven by their sources and sinks.

Compositing analysis using lookup tables of Nd show that GiOcean agrees with satellite observations. Greater AOD (source)

corresponds to greater Nd while holding precipitation rate (sink) a constant (Figure 7a,c,d,f), indicating aerosol and cloud

properties are linked through aerosol activation. The dependence of Nd variability on precipitation rate is more pronounced

in GiOcean in the East Asian outflow region (Figure 7a) compared to satellite observations over the same region (Figure 7d),705

indicating that precipitation scavenging of Nd may be overestimated in heavily polluted regions in GiOcean.

Similarly, we examine the dependence of LWP using a source-sink budget perspective. The dependence of LWP’s spatial and

temporal variability on Nd and precipitation rate is shown in lookup tables (Figure 8) and the results generally align with phys-

ical expectations. Broadly, when Nd is held constant, both GiOcean and satellite observations show that LWP increases with

precipitation rate across all study regions, consistent with enhanced moisture convergence supplying more cloud water. Larger710

Nd corresponds to larger LWP at fixed precipitation rate in the East Aisan outflow in GiOcean (Figure 8a), consistent with the

implementation of two-moment cloud microphysics and precipitation suppression in GiOcean. However, the dependence of

LWP on Nd is weak in satellite observations, suggesting an overestimated liquid cloud adjustment to changes in Nd in the East

Aisan outflow in GiOcean (Figure 8a). Over the NH ocean, GiOcean again shows a strong positive Nd–LWP relationship at

fixed precipitation, especially at high precipitation rates, whereas satellite data show a negative correlation at low precipitation.715

This disagreement likely reflects a combination of model biases in cloud microphysical processes and retrieval artifacts.

In terms of understanding climate we are concerned with the cloud response to long-term changes in emissions (McCoy

et al., 2018a; Wall et al., 2022). We apply Random Forest models to predict interannual variability in Nd and LWP (Figure 9,

Figure 10). We leverage sensitivity tests to the decadal predictions using RF models (Figure 8, Figure 7) to attribute the factors

(whether from bias in ACI or from large-scale environment) driving the interannual variability of Nd and LWP. To do this we720

compare the original monthly time series of regionally-averaged cloud properties with that from the fixed-source and fixed-sink

predictions from RF models with original monthly time series of Nd and LWP.

The results suggest that interannual variations in Nd are primarily driven by variations in precipitation-scavenging, with con-

sistent patterns between GiOcean and satellite observations in the East Asian outflow and broader NH ocean region (Figure 9).

The precipitation-driven temporal variation in Nd is consistent with previous findings that emphasized the spatial control of725

precipitation on Nd (Wood et al., 2012). However, GiOcean shows a stronger dependence of Nd interannual variability on pre-

cipitation and AOD than observations, and a different dominant driver (sink vs. source) of Nd variability in the North American

outflow, potentially contributing to the somewhat weak agreement in interannual variability in Nd there (Figure 5c,d). The in-

terannual variability of LWP is primarily controlled by precipitation in both GiOcean and satellite observations across all study

regions, highlighting the dominant role of large-scale environmental factors (Figure 10). This consistency may also explain the730

relatively good agreement in LWP interannual variability over the three study domains (Figure 5e,f).

In summary, GiOcean’s climatology of aerosol, liquid cloud properties and precipitation rate compares favorably to obser-

vations (Figure 1 and 2). Analysis of GiOcean in the context of a simple source-sink budget perspective of ACI shows that the

two-moment cloud microphysics scheme in GiOcean realistically (i) represents the activation of aerosol into cloud droplets
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(Figure 7), (ii) represents precipitation suppression due to enhanced aerosol (Figure 8), (iii) shows a precipitation-driven tem-735

poral variation in Nd that is consistent with previous findings that emphasized the spatial control of precipitation on Nd (Wood

et al., 2012), and (iv) represents precipitation-driven changes in long-term temporal variation in LWP, consistent with satellite

observations. Discrepancy between GiOcean and satellite observations may also be attributed to the fact that satellites have

limited capability to observe ACI (Christensen et al., 2017) and improved datasets would be required to better elucidate the role

of aerosols, Nd, and precipitation in cloud evolution. GiOcean is the only reanalysis to date that explicitly includes aerosol-740

cloud interactions, and does help advance our understanding of the critical, yet still poorly understood, role of ACI on climate,

particularly on decadal time scales.

Data availability. GiOCean dataset is publicly available at https://portal.nccs.nasa.gov/datashare/gmao/geos-s2s-3/GiOCEAN_e1/. cloud

optical thickness and cloud effective radius (used to derive Nd) are taken from: mod_inst_6hr_glo_L720x361_sfc;

aerosol optical depth is taken from aer_tavg_1mo_glo_L720x361_slv; and liquid water path and precipitation rate are taken from745

sfc_tavg_3hr_glo_L720x361_sfc.

MODIS AOD is available at https://ladsweb.modaps.eosdis.nasa.gov/search/order/1/MODIS:Aqua. Cloud droplet number concentration
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