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Abstract. As the global community intensifies efforts to combat climate change, insights on the influence of management on 

forest carbon stocks and fluxes are becoming invaluable for establishing sustainable forest management practices. However, 

accurately and efficiently monitoring carbon stocks remains technologically challenging. In this study, we aim to 1) leverage 

the complementary strengths of optical, Light Detection and Ranging (LiDAR) and Synthetic Aperture Radar (SAR) remote 

sensing technologies to improve overall accuracy and scalability in carbon stock estimation, and to 2) assess the effect of forest 10 

management on carbon stock by comparing unconfounded pairs of managed and unmanaged forests in the National Park 

Brabantse Wouden (Flanders, Belgium). Remote sensing data from Sentinel-2, Sentinel-1, and a canopy height product derived 

from the Global Ecosystem Dynamics Investigation mission (GEDI) were used as predictors in a generalized additive model 

(GAM) to estimate carbon stock. The combination of all three remote sensing sources significantly improved model accuracy 

(R²=0.68, RMSE=56.35, MAE=50.07) compared to a model using only Sentinel-2 indices (R²=0.56, RMSE=99.44, 15 

MAE=91.40). While field assessment exhibited higher carbon stocks in unmanaged stands compared to managed ones, this 

difference was not detectable using a remote sensing model that incorporated Sentinel-2, Sentinel-1, and GEDI variables. 

Potential explanations for this discrepancy include signal saturation and the need for more training data. 

1 Introduction 

1.1 Problem statement 20 

Increasing forest carbon stocks to enhance the climate mitigation potential is a key component of many international 

agreements aimed at combating climate change (e.g., Kyoto Protocol, Paris Agreement, European Green Deal). Accurate 

quantification of forest carbon over time provides the foundation for various initiatives targeting carbon management, 

especially within ecosystem service frameworks like carbon credit schemes, and the development of climate-smart forest 

management guidelines. Among different forest carbon pools, above-ground biomass has proven to be the most susceptible to 25 

human activities, including forest management practices (Gurung et al., 2015). Since above-ground carbon stocks are easier 

to measure and can serve as a proxy for below-ground carbon through modeling, they are increasingly considered a valuable 

indicator of sustainable forest management (Sabatini et al., 2019). However, while forest management practices affect above-

ground biomass carbon stocks in different ways, the precise impact of these practices remains poorly quantified. Evidence 

suggesting that unmanaged forests continue to function as effective carbon sinks, even into later stages of forest development, 30 

highlights the need for better localization and protection of these ecosystems (Kun et al., 2020; Luyssaert et al., 2008; Mikolāš 
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et al., 2023). Nevertheless, accurately capturing carbon stocks over large extents presents both technical and logistical 

challenges, but remote sensing shows cost-efficient and area-covering upscaling potential.  

1.2 State of the art and research gaps 

1.2.1 Managed versus unmanaged forests 35 

Despite the growing need to understand how to optimize a forest's climate mitigation capacity, controversy persists regarding 

the influence of management on above-ground carbon stocks (Kalies et al., 2016). On the one hand, natural ecosystems, such 

as unmanaged forests, may store more carbon due to a higher basal area, increased litter production, and unrestricted biomass 

accumulation. These natural ecosystems are generally viewed as more stable and resilient compared to heavily modified 

forests, leading to a more stable storage of carbon (Morel and Nogué, 2019). On the other hand, optimizing species composition 40 

in managed forests may enhance productivity and increase carbon stocks (Vayreda et al., 2012). Management may also reduce 

the susceptibility of a stand to climate disturbances such as wildfires and windthrows, therefore avoiding big losses of carbon 

stock and assuring carbon stability (Garcia-Gonzalo et al., 2007; Jandl et al., 2007; Ruiz-Peinado et al., 2017; Vayreda et al., 

2012). Due to the presence of confounding factors at study sites, such as climate, soil, slope, aspect, and stand history, drawing 

clear conclusions about the causes of observed differences in carbon stock and the effects of forest management has been 45 

challenging in previous research (Nadrowski et al., 2010). Dugan et al. (2017), Melikov et al. (2023) and Ruiz-Peinado et al. 

(2017) emphasize the need to clarify the relationship between forest management and carbon stock by accounting for or 

excluding these confounding variables. 

1.2.2 Measuring carbon 

Traditionally, above-ground carbon has been calculated for individual trees from tree height and diameter at breast height 50 

(DBH), wood density, and species-specific carbon concentration factors. This can then be extrapolated using expansion factors 

to a per-hectare basis (Zianis et al., 2005). While such in-situ methods achieve high accuracy at small extents, it becomes 

costly and labor-intensive when scaling to larger regions. Spaceborne remote sensing technologies have been widely adopted 

to expand the reach and efficiency of biomass estimation (Rodríguez-Veiga et al., 2017). Advances in remote sensing have led 

to a suite of techniques, with each approach offering distinct advantages and disadvantages (Tian et al., 2023). 55 

Passive optical remote sensing has become the predominant method for large-range biomass estimation, due to its extensive 

data availability, high spatial and temporal resolution and low cost (Tian et al., 2023; Xiao et al., 2019). Vegetation indices, 

such as the Normalized Difference Vegetation Index (NDVI), are important indicators of biomass. While passive optical 

remote sensing operates at a resolution suitable for regional assessments, active optical remote sensing such as Spaceborne 

Light Detection And Ranging (LiDAR) technology generates a detailed 3D profile of forest canopies, offering highly precise 60 

measurements at a higher resolution. Synthetic Aperture Radars (SAR) are also active remote sensors, which use microwave 

signals to capture the vegetation structure, related to the plant’s biomass (Sinha et al., 2015). The used signals are backscatter 
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intensity, frequency and polarization to reflect the vegetation’s moisture content, surface roughness, and dielectric properties 

(Goetz et al., 2009; Xiao et al., 2019). Microwaves penetrate clouds, making it particularly valuable in regions with persistent 

cloud cover (Xiao et al., 2019).  65 

 

While each remote sensing method offers unique advantages, their individual limitations constrain the precision and 

comprehensiveness of forest carbon assessments. Both passive optical sensors and SAR struggle with signal saturation in dense 

forests with a complex vegetation structure, where increasing biomass no longer affects the sensor signal (Rodríguez-Veiga et 

al., 2017). They may also suffer more from mixed pixels than LiDAR, when a single pixel captures multiple surface types and 70 

complicates accurate biomass estimation. Passive optical sensors, while effective for measuring photosynthetic activity, 

additionally fail to capture structural characteristics and are hindered by cloud cover, which impairs the signal-to-noise ratio. 

LiDAR, on the other hand, only measures the structural characteristics of the forest, missing photosynthetic information on 

tree health and chlorophyll content. Spaceborne LiDAR measurements moreover require interpolation, for example with 

passive optical remote sensing, because its measurements are not yet area-covering. This can introduce errors, especially in 75 

variable forest structures (Lu et al., 2012). Lastly, SAR faces issues with temporal decorrelation and signal interference from 

environmental factors, further complicating biomass monitoring (Koch, 2010; Xiao et al., 2019).  

 

In conclusion, each technique offers valuable insights but also comes with limitations, which underscore the importance of 

integrating remote sensing technologies (Jiang et al., 2022; Jiao et al., 2023; Sun et al., 2024). The integration of several remote 80 

sensing sources has already proven successful for biomass estimations, but most studies are limited to two sensor types. For 

example, David et al. (2022) and Forkuor et al. (2020) reported improved model predictions when using SAR and passive 

optical remote sensing indicators in dryland forest. Hoscilo et al. (2018) reported a saturation effect at 200 tons/ha biomass in 

temperate forests of Poland when combining SAR and passive optical remote sensors. The combined use of LiDAR, SAR and 

passive optical remote sensing has, to our knowledge, not yet been investigated to assess above-ground biomass in temperate 85 

forests. In this study, we aim to 1) leverage the complementary strengths of optical, LiDAR and SAR remote sensing 

technologies to improve overall accuracy and scalability in above-ground forest carbon stock modeling and to 2) assess the 

effect of forest management on carbon stock by comparing unconfounded pairs of managed and unmanaged temperate Atlantic 

forests in Flanders, Belgium.   

2 Materials and Methods 90 

2.1 Study region: National Park Brabantse Wouden 

Our study is located in the Brabantse Wouden National Park (BW NP) in central Belgium and was selected by the INFORMA 

Forest Management Platform to represent the temperate Atlantic forest ecosystems in Europe (Fig. 1a) (INFORMA, 2022). 

The BW NP encompasses a vast area including 10,000 hectares of forest, composed of several large fragments, including the 
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Sonian forest and Meerdael forest (Fig. 1a). Since October 2023 it is one of the six National Parks in Belgium, unique for its 95 

monumental beeches and oaks, sunken lanes, and meandering rivers (Brabantse Wouden, 2023).  

 

Figure 1: The study site is situated in the Brabantse Wouden National Park (a). Adjacent forest patches were clustered (b), where 

patches within a cluster only differed in management (c). 3 plots were randomly attributed to each forest patch (c). (The high-

resolution forest map from the European Union’s Copernicus Land Monitoring Service was used for the creation of this map 100 
https://doi.org/10.2909/db1af59f-f01f-4bd4-830c-f0eb652500c1.) 

2.2 The effect of forest management on carbon stock 

Above-ground carbon stock as calculated from individual tree height and DBH, measured in the field, is considered as the 

ground truth. The effect of forest management on the carbon stock can thus trustfully be deducted from such field data, which 

will also serve as calibration data in the remote sensing model.  105 

The database has an orthogonal design, which ensures the minimization of confounding effects (Nadrowski et al., 2010). It 

consists of a collection of forest patches grouped into clusters, with each cluster containing patches that differ only in 

management practices (Fig. 1b). Other factors affecting the accumulated carbon stock – such as aspect, soil, dominant species, 

elevation, slope, climate, and land use and management legacy – are therefore controlled for. Each cluster includes at least one 

managed and one unmanaged forest patch, with the unmanaged patch having remained undisturbed for at least 20 years (Fig. 110 

1c). For each patch, basic information is available, including forest management details, time since abandonment, and 

dominant tree species. A random selection of clusters, considering different dominant tree species, was made within the 

constraints of the IFMP and the time and resources available for field data collection. The resulting selection contained 13 

clusters and 26 patches; one managed and one unmanaged forest patch per cluster. Next, three plots were randomly assigned 

within each patch (Fig. 1c). The size of the patches was not considered, as homogeneity was ensured through the IFMP design. 115 

In total, 78 plots were identified across 26 forest patches, representing 13 clusters. Field measurements and remote sensing 

data were collected from these plots (Fig. 2).  

A nested plot design was used, following the thresholds in 𝐷𝐵𝐻 and tree height as used in the Flemish Forest Inventory (FFI) 

(Table 1). The system boundaries were defined as standing above-ground biomass (dead or alive), because below-ground 

biomass or lying deadwood cannot be easily quantified by remote sensing. The 𝐷𝐵𝐻 and tree height were measured for each 120 

tree, according to the nesting levels.  
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With site- and species-specific allometric equations, obtained from the FFI, the relationship between carbon stock and tree 

height and 𝐷𝐵𝐻 is described, following Eq. (1): 125 

𝐶𝑎𝑟𝑏𝑜𝑛 𝑠𝑡𝑜𝑐𝑘 = ∑ 𝑉𝑠𝑡𝑒𝑚 ×  𝑉𝐸𝐹 ×  𝑊𝐷 ×  𝐶𝐹𝑠𝑝𝑒𝑐𝑖𝑒𝑠          (1) 

where 𝑉𝑠𝑡𝑒𝑚 is the stem volume (m³), 𝑉𝐸𝐹 is the volume expansion factor (-), 𝑊𝐷 is the wood density (t/m³) and 𝐶𝐹 is the 

carbon factor (-).  

The 𝑉𝐸𝐹  was used to convert merchantable volume to above-ground biomass and was available through the National 

Inventory Report (2020). The 𝑊𝐷 is also species-specific and described in the National Forestry Accounting Plan of Belgium 130 

(Perin et al., 2018). For the 𝐶𝐹, a value of 0.5 was used for all species, as described in the IPCC report (2003) and the National 

Inventory Report (2020). The stem volume can be calculated using species-specific two-entry tariffs with DBH and height (H) 

measurements as specified in Eq. (2). The coefficients a, b, c, d and e were derived from Dagnélie et al. (1985), Berben (1983) 

and Quataert et al. (2011): 

𝑉𝑠𝑡𝑒𝑚  =  𝑎  +  𝑏 ∗ 𝜋 ∗ 𝐷𝐵𝐻 +  𝑐 ∗ (𝜋 ∗ 𝐷𝐵𝐻)2 +  𝑑 ∗ (𝜋 ∗ 𝐷𝐵𝐻)3 +  𝑒 ∗ 𝐻  +  𝑓 ∗ (𝜋 ∗ 𝐷𝐵𝐻) ∗ 𝐻 + 135 

                    𝑔 ∗ (𝜋 ∗ 𝐷𝐵𝐻)2 ∗ 𝐻.          (2) 

The two-entry tariffs are designed for trees with a 𝐷𝐵𝐻  larger than seven cm. For smaller trees, the volumes were 

approximated with the volume of a cylinder. Still, for some smaller trees with a DBH between seven and ten cm, the two-entry 

tariffs resulted in a negative volume. In this case, the volume was recalculated as a truncated cone with a capping diameter of 

seven cm (Eq. (3), (4), (5)):  140 

𝑉𝑐𝑜𝑛𝑒 =
1

3
∗ 𝐻 ∗

𝜋∗𝐷𝐵𝐻2

4
,           (3) 

𝑉𝑐𝑜𝑛𝑒 𝑡𝑜𝑝 =
1

3
∗

𝜋∗𝐷𝐵𝐻

𝐻∗22
∗

0.222

4∗𝜋
,          (4) 

𝑉𝑡𝑟𝑒𝑒 = 𝑉𝑐𝑜𝑛𝑒 − 𝑉𝑐𝑜𝑛𝑒 𝑡𝑜𝑝 ,           (5) 

with 𝐷𝐵𝐻 and 𝐻 in meters. These formulas were based on the Flemish Forest Inventory.  

  Nesting Level Plot radius (m) Tree DBH (cm) Tree Height (m) 

 
  

 

A 4.5 <7 >2 

B 9 7-39 / 

C 18 >39 / 

Table 1: Characteristics of the trees per nesting level for BW NP. 
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After calculation of the carbon stock per tree and then per plot, the mean carbon stock per patch was obtained from the three 145 

plots situated in each forest patch (Fig. 2). Finally, the difference in carbon stock between unmanaged and managed patches 

was calculated per cluster.  

We used a Generalized Linear Mixed Model (GLMM) with a gamma-distribution to statistically test the difference between 

carbon stocks of managed and unmanaged field-measured plots (Wood, 2006). The mean carbon stock per patch was the 

response variable, management was the fixed effect and the patch was nested in the cluster as a random effect.   150 

2.3 Carbon stock modeling with remote sensing 

2.3.1 Data collection and preprocessing 

Once the field measurements for calibration were obtained, remote sensing data were extracted and preprocessed for the same 

forest plots (Fig. 2).  

Figure 2: Overview of the data collection process and pre-processing of all data. H=tree height, DBH=diameter at breast height, 155 
GRD IW= Ground Range Detected, Interferometric Wide swath mode, S2= Sentinel-2. 

First, data from the Sentinel-2 mission (passive optical remote sensing), launched by the ESA Copernicus program, was 

obtained at level 2A via Google Earth Engine (https://earthengine.google.com/). Data were retrieved for all bands except B1, 

B9 and B10 because these bands are recorded at 60 m resolution, which is too coarse for analyses at stand level. A three-month 

period (July 1, 2023 to September 1, 2023) was selected to align with the time frame for field data collection. A cloud masking 

was performed (filtered with a 60% cloudy pixel percentage, masked with a 40% cloud probability threshold) and all 20-meter 

resolution bands were resampled to 10 m resolution. Mean band values were then calculated for each selected plot, using a 
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weighting percentage of 90% overlap between the pixel and the plot area.   

Vegetation indices, rather than raw band values, are particularly useful indicators of biomass. An explorative review of relevant 

scientific literature led to a selection of vegetation indices, derived from Sentinel-2, that have been proven useful indicators 

for above-ground biomass (AGB) modeling (Table 2) (Chen et al., 2019; Forkuor et al., 2020; Mngadi et al., 2021; Moradi et 

al., 2022). The mean of each vegetation index per plot was calculated identically to the mean Sentinel band values, to be used 

later as explanatory variables for above-ground carbon stock. 

Table 2: Vegetation indices, derived from Sentinel-2, which were used in this study with respective calculation and reference. 

 

 

 

  

Vegetation index Explanation 
Formula based on Sentinel-2 spectral 

bands 
Source reference 

NDVI 
Normalized Difference 

Vegetation Index 

𝐵8 − 𝐵4

𝐵8 + 𝐵4
 

Chen et al. (2019) 

Forkuor et al. (2020) 

EVI 
Enhanced Vegetation 

Index 
2.5 ∗ (

𝐵8 − 𝐵4

1 + 𝐵8 + 6 ∗ 𝐵4 − 7.5 ∗ 𝐵2
) Mngadi et al. (2021) 

LAI Leaf Area Index 3.618 ∗ 𝐸𝑉𝐼 − 0.118 Chen et al. (2019) 

GNDVI 
NDVI with green 

wavelengths 

𝐵7 − 𝐵3

𝐵7 + 𝐵3
 Chen et al. (2019) 

NDI45 
Normalized Difference 

Index with B4 and B5 

𝐵5 − 𝐵4

𝐵5 + 𝐵4
 Chen et al. (2019) 

REDNDVI 
NDVI with red 

wavelengths 

𝐵8 − 𝐵7

𝐵8 + 𝐵7
 

Forkuor et al. (2020) 

Mngadi et al. (2021) 

STVI1 
Stress-related Vegetation 

Index 1 

𝐵11 ∗ 𝐵4

𝐵8
 Forkuor et al. (2020) 

STVI2 
Stress-related Vegetation 

Index 2 

𝐵8

𝐵4 ∗ 𝐵12
 Forkuor et al. (2020) 

STVI3 
Stress-related Vegetation 

Index 3 

𝐵8

𝐵4 ∗ 𝐵11
 Forkuor et al. (2020) 

SAVI 
Soil-Adjusted Vegetation 

Index 

𝐵8 − 𝐵4

𝐵8 + 𝐵4 + 0.5
∗ 1.5 Moradi et al. (2022) 

MCARI 
Modified Chlorophyll 

Absorption Ratio Index 
((𝐵5 − 𝐵4) − 0.2 ∗ (𝐵5 − 𝐵3)) ∗

𝐵5

𝐵4
 Chen et al. (2019) 

PSSRa 
Pigment Specific Simple 

Ratio a 

𝐵7

𝐵4
 Chen et al. (2019) 

IPVI 
Infrared Percentage 

vegetation index 
0.5 ∗ (𝑁𝐷𝑉𝐼 + 1) Moradi et al. (2022) 

ARVI 
Atmospherically Resistant 

Vegetation Index 

𝐵8 − (2 ∗ 𝐵4 − 𝐵2)

𝐵8 + (2 ∗ 𝐵4 − 𝐵2)
 Chen et al. (2019) 

IRECI 
Inverted Red-Edge 

Chlorophyll Index 

𝐵7 − 𝐵4

𝐵5
𝐵6

 Chen et al. (2019) 

MTCI 
MERIS Terrestrial 

chlorophyll Index 

𝐵6 − 𝐵5

𝐵5 − 𝐵4
 Chen et al. (2019) 
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Second, GEDI, or Global Ecosystem Dynamics Investigation, is a spaceborne LiDAR mission launched in 2018 by NASA to 

measure the vertical structure of the Earth’s forests (Dubayah et al., 2020). GEDI can directly measure the canopy height, a 

morphological variable that is also measured in the field with conventional methods. However, the measurements are in 160 

discrete footprints and thus lack the full coverage of passive optical remote sensing missions such as Sentinel-2. Therefore, a 

high-resolution canopy height model of the earth (10x10m) was recently developed by ETH using a probabilistic deep learning 

model to extrapolate height data from the GEDI mission via spectral information from Sentinel-2 (Lang et al., 2022, 2023). 

Even though the product was developed at a global scale, lacking local calibration and introducing significant uncertainty, it 

was already successfully used for local carbon stock mapping in the context of the High Carbon Stock Approach (Lang et al., 165 

2021). The product was directly downloaded for the study regions and no preprocessing was needed. 

Finally, the Sentinel-1 mission, part of the ESA Copernicus program, is a C-band synthetic aperture radar (SAR) system. Data 

were acquired at level-1 in Interferometric Wide Swath mode (10m resolution) with dual polarization (VV and VH) for both 

ascending and descending passes. C-band radars are more sensitive to detecting leaves and needles than trunks and branches, 

in contrast to P- and L-band SAR (Rüetschi et al., 2018). The shorter wavelength interacts more strongly with smaller 170 

vegetation elements with a higher water content. The Sentinel-1 radar emits vertical waves and receives both vertical and 

horizontal waves (VV and VH respectively), yielding a SAR image. While VV backscatter indicates surface roughness and 

water content, VH backscatter is rather sensitive to volumetric scattering (Laurin et al., 2018). The amount of backscatter is 

influenced by the structural attributes of forest canopies and the interactions between surface and volumetric scattering in 

vegetation, both of which serve as indicators of above-ground biomass (AGB). A Lee speckle filter was applied to the data, 175 

which were collected during the same time period as the Sentinel-2 data. Mean plot values for VV and VH were then calculated 

separately to serve as explanatory variables. 

2.3.2 Data analysis  

In Fig. 3, the workflow of the modeling process is depicted, as can be followed throughout this section. First, only Sentinel-2 

imaging bands and vegetation indices were used as indicators to predict above-ground carbon stock. After optimizing this first 180 

model, data from Sentinel-1 and the GEDI height product were added to assess the added value of multi-sensor remote sensing 

modeling. 
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Figure 3: Graphical overview of the data analysis process. 

Feature selection. The number of field observations (78), and thus the degrees of freedom, was limited and a selection of the 185 

predictive variables (vegetation indices and Sentinel bands) was made by recursive feature elimination (RFE) to avoid 

overfitting (Kursa and Rudnicki, 2010). Multicollinear variables were identified and excluded from the selection. 

Modeling. A Generalized Additive Model (GAM) was chosen as a non-parametric extension of GLMs (generalized linear 

models) (Hastie and Tibshirani, 1986). The smooth functions make GAMs flexible while maintaining interpretability: a 

significant advantage compared to the more often used Random Forest algorithms (Wood, 2006). The response variable 190 

followed a gamma distribution and all variables were scaled. Neighborhood Cross-Validation (NCV) was identified as the 

optimal method for estimating smoothing parameters. A fixed value of 1.4 was assigned to the gamma parameter and 

adjustments to the k values were deemed unnecessary, following Wood (2006). Leave-one-out cross-validation (LOOCV) was 

performed to tune the model. A training dataset of 90% of all data points (70) was used in this process, reserving 10% (8) for 

the validation of the final model (Fig. 3). The root mean square error (RMSE), the mean absolute error (MAE) and the 195 

coefficient of determination (R²) were chosen as model test metrics and used as output from LOOCV to compare the results 

of different models. 

Model optimization. Due to the limited number of observations, we employed Leave-One-Out Cross-Validation (LOOCV) 

again on the same 90% training dataset during model optimization, aiming for the best model performance by evaluating 

different scenarios. First, a known limitation of passive optical remote sensing is signal saturation for forests with high 200 

complexity and biomass (Rodríguez-Veiga et al., 2017). This may lead to deviating spectral values that are detected, which 

may negatively affect the model performance. To evaluate oversaturation, the model was run excluding plots where field data 

showed a biomass greater than 450 tons/ha, which corresponds to a carbon stock exceeding 225 tons/ha. The impact of these 

underestimated high-biomass plots was evaluated by comparing model validation parameters. Second, small trees are more 

difficult to detect by passive optical remote sensing. The influence of the small trees in nesting level A was assessed by 205 
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comparing the model including all diameter classes with a model containing only trees from nesting levels B and C (Table 1). 

Then, the diameter threshold of detection by remote sensing was sought, based on improvement or impairment of the validation 

metrics when iteratively disregarding trees in different diameter percentiles. 

Multi-sensor modeling. Finally, the inclusion of height estimates from the ETH product derived from GEDI, along with VV 

and VH polarization data from the Sentinel-1 mission, was evaluated by incorporating these new explanatory variables into 210 

the GAM. 

Final model. The final model was constructed using the full 90% training data and validated on the remaining 10% that was 

isolated in the validation dataset (Fig. 3) and remained unseen during model tuning and optimization.  

Model extrapolation. To compare the results of the field measurements with the carbon stocks as predicted by the remote 

sensing model, the carbon stock was predicted for every pixel of the patches from the IFMP, including both the field-measured 215 

patches, and the patches that were not selected by the random sampling (Bolar, 2019). The mean predicted carbon stock was 

then calculated for each forest patch with the standard error of the mean. The standard error of prediction indicates the 

uncertainty in each estimate, while the standard error of the mean indicates the deviation of the estimated sample mean from 

the real sample mean (Goos, 2017). Again, a GLMM was used to statistically compare the carbon stock estimates between 

managed and unmanaged forest patches.  220 
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3. Results 

3.1 The effect of forest management on above-ground carbon stock 

Results of the statistical analysis on the field measurements show a clear difference between managed and unmanaged forest 

plots. Unmanaged forest plots store a significantly (alpha=0.05) higher amount of carbon (196.50 ± 61.28 tons/ha) in their 225 

above-ground biomass than managed forest plots (143.68 ± 48.90 tons/ha) (Fig. 4a). The unmanaged plots are characterized 

by a higher variation in carbon stock than the managed plots, where the density curve is negatively skewed (Fig. 4a). Within 

each cluster, the difference fluctuates between 10 and 180 tons/ha (Figure 4c). From the analysis at patch level, managed 

patches have a lower carbon stock than unmanaged patches (p-value=0.01, effect size -0.33).  

 230 

Figure 4: Results of the carbon stock analysis comparing managed and unmanaged forests: a) in the field plots, b) as 

predicted (mean pixel value per patch) by the remote sensing model, c) by calculating the difference in mean carbon 

stock per forest patch (unmanaged minus managed) for each cluster as measured in the field, and d) by calculating the 

difference in mean carbon stock per forest patch (unmanaged minus managed) for each cluster as estimated by the 

remote sensing model. 
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The difference in tree count between managed and unmanaged plots is noteworthy, a difference that is mostly reflected in the 

trees from nesting level A (Table 1), corresponding to the smallest trees (Table 3). Secondly, there is a higher tree density of 

the largest diameter class (C) in the unmanaged plots. In general, higher and larger trees are measured in unmanaged plots in 

BW NP. 

Table 3: Overview of the plot characteristics in managed and unmanaged forests, measured in the field. The different levels (A,B,C) 

refer to the nesting levels as defined in Table 1. 

 

 

 

 

 

 

 

 

 

3.2 Carbon stock modeling with remote sensing 

Feature selection. The Sentinel-2 variables selected through recursive feature elimination for the Generalized Additive Model 

(GAM) capture various photosynthetic and structural characteristics of vegetation. These included: B5, B12, GNDVI, STVI3, 

and MCARI. The red-edge wavelengths are represented, which help detect vegetation density and type. The short-wave 

infrared wavelengths, along with GNDVI and MCARI, provide insights into photosynthetic capacity and chlorophyll 235 

absorption depth. Lastly, near- and mid-infrared bands are included in the stress-related vegetation index. 

Modeling. Before model optimization, the validation parameters of the model, at this moment only containing Sentinel-2 

variables, were R²=0.56, RMSE=99.44 tons/ha, and MAE=91.40 tons/ha (Table 4). These validation parameters were not 

improved by disregarding plots with a high biomass (>450 tons/ha) or by disregarding small trees. A more detailed result of 

the model optimization can be found in Appendix 1.  240 

 
Managed Unmanaged 

Nr of plots 39 39 

Nr of trees 1348 884 

Species richness 18 19 

Mean DBH (cm) 
  

level A 2 3 

level B 16 21 

level C 58 59 

Mean height (m) 
  

level A 4 4 

level B 14 18 

level C 30 31 

Mean density (stems/ha) 
  

level A 2717 580 

level B 323 322 

level C 89 104 
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Multi-sensor modeling. Incorporating the canopy height estimates from GEDI enhanced both the model fit and predictive 

capabilities slightly (Table 4). Especially in the high DBH classes, the error decreased (Fig. 5). The introduction of both VV 

and VH also improved the model fit and predictive power. Again, oversaturation-induced underestimation was significantly 

reduced, and predictions also improved notably in the lower DBH classes. 

The model optimization resulted in a final model, used for extrapolation (Eq. 6). 

Carbon ~ MCARI + B5 + STVI3 + B12 + GNDVI + 1|Species + Canopy height + VH + VV    (6) 

Table 4: Evolution of the model validation parameters with the addition of multiple  

remote sensors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Model prediction accuracy after the model training with different remote sensing components, compared to the bisector 

of perfect prediction (measured = predicted carbon stock).  

The final model did not successfully detect the carbon stock difference between managed and unmanaged patches, as measured 245 

in the field. The predicted mean carbon stock for the unmanaged patches was 165.89 ± 26.46 tons/ha, for managed patches 

this was 166.80 ± 32.28 tons/ha (Fig. 4b). It is remarkable that unmanaged patches are overall underestimated, while the 

opposite is true for managed patches. On average, the standard error of the mean was 1.27 tons/ha and the maximal standard 

 Sentinel-2 Sentinel-2 + GEDI Sentinel-2 + GEDI + Sentinel-1 

R²  0.56 0.58 0.68 

RMSE 

(tons/ha) 

99.44 98.06 56.35 

MAE 

(tons/ha) 

91.40 90.21 50.07 
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error of the mean was 5.94 for the smallest patch that only contained 130 pixels. The managed patches have a higher variability 

in predicted carbon stock compared to the unmanaged patches (Fig. 4b), while again the opposite was true for the data as 250 

measured in the field. According to the remote sensing-based model, there is no significant difference between managed and 

unmanaged patches (α=0.05, p=0.61). For some clusters, almost no difference in carbon stock between the unmanaged and the 

managed patches is observed (Fig. 4d). For other clusters, a difference up to 40 tons/ha is estimated, however not in a consistent 

pattern. Compared to the field data, the estimated differences between managed and unmanaged forests are much smaller. No 

abnormalities were detected in the images of the clusters where a carbon stock difference of over 20 tons/ha was estimated.  255 

4. Discussion 

4.1 The effect of forest management on above-ground carbon stock 

The field data allowed us to assess the effect of forest management on above-ground carbon stock in a pairwise comparison 

analysis and was then used as calibration data for a remote sensing model to predict the carbon stock at locations that were not 

measured in the field. The selection of forest patches, grouped into clusters, made it possible to extract the effect of forest 260 

management without confounding factors and includes detailed information about the environmental conditions in the field. 

From the measured carbon stocks in the field, a significant difference between managed and unmanaged forest patches was 

detected in BW NP. Tree density was higher in managed plots, primarily due to the predominance of smaller trees belonging 

to the lowest diameter class (A). A few managed plots were situated in dense regeneration, and unmanaged plots on average 

thus had fewer but larger trees (in height and diameter). In unmanaged plots, older trees continue growing without harvest, 265 

leading to higher biomass and carbon stock. The results align with Vanhellemont et al. (2024), who performed a similar study 

to compare above-ground carbon pools in set-aside forests and the average forest in Flanders. Even though our measured 

carbon stocks are higher, due to the fertile soil conditions in the NP BW, a similar trend was reported. 

4.2 Carbon stock modeling with remote sensing 

The prediction of forest above-ground carbon stock using remote sensing remains technologically challenging. However, this 270 

study demonstrates significant potential by combining multiple types of remote sensors, leading to improved model 

predictions. The study also highlights the limitations of remote sensing, as it was unable to effectively distinguish carbon stock 

differences between managed and unmanaged forests. 

The model fit and predictive accuracy of the GAM in this study was only slightly improved when adding the dominant tree 

height as estimated from GEDI to the model only containing Sentinel-2 variables. However, LiDAR proved especially useful 275 

for biomass prediction at high forest AGB values. Namely, the product was developed with a focus on detecting tall canopies, 

which typically have large carbon stocks. Our findings align with previous research combining LiDAR and Sentinel-2 for 
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above-ground biomass estimation, which reported reduced saturation effects and enhanced predictivity of the model (Francini 

et al., 2022; Puliti et al., 2020).  

Alongside the multispectral and LiDAR remote sensing data, we incorporated VV and VH variables sourced from the Sentinel-280 

1 mission. The incorporation of both VV and VH backscatter images into the model effectively mitigated signal saturation and 

yielded the highest R² values, as well as the lowest RMSE and MAE. Especially in dense forest structures, C-band (and X-

band) microwave remote sensing proved successful for AGB estimation by Santoro et al. (2011) and Thurner et al. (2014), 

which is also confirmed by our study. 

It is clear that the combination of optical remote sensing (for measuring photosynthetic activity and vegetation health), LiDAR 285 

(for measuring vertical forest structure), and C-band SAR (for measuring vegetation structure) improved model performance 

compared to the use of Sentinel-2 alone (R² increased by 12.20%, RMSE decreased by 43.09 tons/ha, MAE decreased by 41.33 

tons/ha). This confirms the findings of earlier studies (Chen et al., 2019; David et al., 2022; Forkuor et al., 2020; Hoscilo et 

al., 2018; Nuthammachot et al., 2022). Possibilities to improve predictions even more may lie in further integration of C-band 

with L-band SAR, which can enhance the detection of texture features, vegetation diversity, and density (Laurin et al., 2018). 290 

Even though a significant improvement in model performance was noted, the combination of all three sensors did not 

successfully detect the difference in carbon stock between managed and unmanaged forests. Moreover, the obtained estimated 

differences in mean carbon per patch did not fully align with the differences measured on the field. The unmanaged patches, 

which are mostly in the higher biomass ranges, appear to be underestimated by the GAM when considering the conventional 

field method as the ground truth (Appendix 2). In contrast, the model overestimates the biomass for managed patches. The 295 

underestimation of high biomass in unmanaged patches is likely due to signal saturation, a common issue when passive optical 

remote sensing and SAR struggle to detect complex forest structures. Although excluding plots with biomass greater than 450 

tons/ha did not improve the model, a systematic underestimation for plots above 400 tons/ha biomass (200 tons/ha carbon 

stock) was observed for BW NP. This is most likely due to signal saturation, as noted in several previous studies (Hoscilo et 

al., 2018; Laurin et al., 2018). Second, low biomasses (mostly managed patches) were overestimated; this corresponds with 300 

the research of Hoscilo et al. (2018) and Zhang et al. (2023). A serious underestimation is reported for biomasses lower than 

125 tons/ha (Appendix 2). Fewer plots were measured in these outer ranges, which may lead to deviations, as well for low as 

for high biomasses. A solution could be to separately model managed and unmanaged patches, but more observations are then 

needed.  

Next to the technical limitations as described above, it is possible that the forest has not been left unmanaged for long enough 305 

to detect a difference through remote sensing, while it is already detectable by field measurements. The understory, often 

insufficiently detected by remote sensing, did not appear problematic in our case study as the presence or absence of the 

smallest trees (<15 cm DBH) did not affect the model fit. Past management intensity was defined as one of the major drivers 
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for above-ground carbon stock in Atlantic forests by Pires Coelho et al. (2022). Hence, management history may overrule the 

effect of current management practices in remote sensing analyses.  310 

 

Future research should focus on multi-sensor remote sensing, with the inclusion of multi-frequency SAR to further reduce 

signal saturation and improve model predictions. Investigating the effects of different management practices, rotation lengths, 

and thinning regimes on carbon stock – along with the substitution effect of resulting wood products – as beyond the scope of 

this study. However, such research could lead to more specific management guidelines and decision rules. Additionally, while 315 

maximizing carbon stock is important, it should be noted that managed forests provide various benefits, including wood and 

non-wood forest products, and regulating and cultural services. Future studies should consider these ecosystem services, 

alongside carbon stock, in local contexts and explore the trade-offs between them. 

5. Conclusion 

In this study, a deeper methodological understanding on the potential and limitations of different remote sensing technologies 320 

was obtained in a case study where the effect of forest management on above-ground biomass carbon stock was assessed. 

Research in this domain holds significance in the context of international policy agreements to fight climate change, for 

example with carbon credit schemes, where accurate assessment of carbon stocks is essential for incentivizing forest 

conservation and restoration efforts. The combination of passive optical remote sensing, synthetic aperture radar and 

spaceborne LiDAR significantly improves the estimation of above-ground carbon stock compared to the use of passive optical 325 

remote sensing alone. Unmanaged forests were found to store more carbon in their above-ground biomass than managed forests 

in the temperate Atlantic region. 
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Appendices 330 

Appendix 1: Results Model optimization  

First, disregarding all plots with a carbon stock >450 tons/ha did not result in a better fit (Table 5): only the MAE decreased 

remarkably. Even though oversaturation was detected at a level of 200 tons/ha carbon stock when plotting the GNDVI and B5 

(the variables that are most prone to oversaturation) for all plots, this did not have a significant influence on the overall model 

fit. Second, only modeling carbon stock in nesting levels levels B and C (Table 1) did not result in a better fit either for all 

three validation parameters (Table 5). In a more detailed analysis, we found that leaving trees smaller than 15 cm DBH (50 th 

percentile) out of the calibration dataset did not affect the model fit. While accounting for 50% of the number of trees, they 

overall only store 4% of the total carbon stock. Trees with a DBH >15 cm contain a substantial amount of carbon and were 

sufficiently detected by the model. Leaving these trees out of the field dataset resulted in a lower model fit. 

 

Table A1: Evolution of the model validation parameters during model optimization and  

the addition of multiple remote sensors. 

 

 

 

 

 

 

 

 

 

  

 Before 

optimization 

Without 

plots >450 

tons/ha 

Without 

nesting level 

A 

With GEDI With GEDI 

and Sentinel-1 

R²  0.56 0.36 0.54 0.58 0.68 

RMSE 

(tons/ha) 

99.44 100.15 116.12 98.06 56.35 

MAE 

(tons/ha) 

91.40 68.03 99.14 90.21 50.07 
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Appendix 2: The distribution of managed and unmanaged plot over the carbon stock range 

 

Figure A1: The carbon stock values for all plots in the training data set:  

predicted by the GAM versus measured in the field. The colour indicates 

the management. 
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