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Abstract 11 

Human land–water management, especially irrigation water withdrawal and use, significantly 12 
impacts the global and regional water cycle, energy budget, and near-surface climate. While land 13 
surface models are widely used to explore and predict the impacts of irrigation, the irrigation 14 
system representation in these models is still in its early stages. This study enhances the 15 
Common Land Model (CoLM) by introducing a two-way coupled irrigation module. This 16 
module includes an irrigation water demand scheme based on soil moisture deficit, an irrigation 17 
application scheme considering four major irrigation methods, and an irrigation water 18 
withdrawal scheme that incorporates multiple water source constraints by integrating CoLM with 19 
a river routing model and a reservoir operation scheme. Crucially, it explicitly accounts for the 20 
feedback between irrigation water demand and supply, which is constrained by available surface 21 
water (i.e., runoff, streamflow, reservoir storage) and groundwater. Simulations conducted from 22 
2001 to 2016 at a 0.25° spatial resolution across the contiguous United States reveal that the 23 
model effectively reproduces irrigation withdrawals, their spatial distribution, and water source 24 
proportions, aligning well with reported state-level statistics. Comprehensive validation 25 
demonstrates that the new module significantly improves model accuracy in simulating regional 26 
energy dynamics (sensible heat, latent heat, and surface temperature), hydrology (river flow), 27 
and agricultural outputs (yields for maize, soybean, and wheat). Application analyses highlight 28 
the potential of the enhanced CoLM as a valuable tool for predicting irrigation-driven climate 29 
impacts and assessing water use and scarcity. This research offers a pathway for a more holistic 30 
representation of fluxes in irrigated areas and human-water interactions within land surface 31 
models. It is valuable for exploring the interconnected evolution of climate, water resources, 32 
agricultural production, and irrigation activities, while supporting sustainable water management 33 
decisions in a changing climate. 34 
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1. Introduction 35 

Freshwater resources are indispensable for human society. Since 1900, the global population has 36 
increased more than fourfold, leading to a nearly sixfold rise in water withdrawals, from 37 
approximately 500 km³ per year in 1900 to about 3000 km³ per year in 2000, with agriculture 38 
being the dominant water user (Pokhrel et al., 2016). Around 70% of global freshwater has been 39 
withdrawn for irrigation (Campbell et al., 2017), accounting for 90% of consumptive water use 40 
(Siebert and Döll, 2010), with irrigated areas providing approximately 40% of global food 41 
production on just 2.5% of global land (Abdullah, 2006). Accompanied by significant 42 
socioeconomic benefits, these intense human land-water management practices have profoundly 43 
altered Earth's surface and impacted terrestrial water and energy cycles (Ketchum et al., 2023; 44 
Nocco et al., 2019; Rappin et al., 2022; Thiery et al., 2017; de Vrese et al., 2016). The demand 45 
for irrigation water is anticipated to rise with the growing global population and food demand, 46 
while climate-warming-induced droughts are likely to exacerbate this need (McDermid et al., 47 
2023; Mehta et al., 2024; Yang et al., 2023). Therefore, understanding and quantifying the 48 
impacts of irrigation water management in human-Earth system interactions are crucial for 49 
developing strategies to sustainably manage these resources amidst changing climatic and 50 
demographic conditions. 51 

Irrigation practices transfer water from various sources, such as rivers, lakes, reservoirs, and 52 
aquifers, into agricultural systems, directly affecting the magnitude and timing of runoff and 53 
river flow (Ketchum et al., 2023). The rising irrigation demand has spurred increased 54 
construction of reservoirs and diversions, resulting in both local and downstream impacts. In 55 
some regions, water extraction for irrigation has reduced the availability of both surface and 56 
groundwater (Döll et al., 2014). Besides modifying water fluxes, irrigation also influences 57 
regional climates both locally and remotely. Locally, it alters surface albedo, evapotranspiration, 58 
and surface soil moisture, impacting regional radiation and energy balances and affecting 59 
temperature, humidity, and precipitation through land-atmosphere feedback (Chen and Dirmeyer, 60 
2019; Kang and Eltahir, 2018; Li et al., 2022; McDermid et al., 2017; Nocco et al., 2019). 61 
Remotely, it affects climate through complex interactions between altered temperature and 62 
moisture gradients and larger-scale processes such as atmospheric circulation and wave activity 63 
(Douglas et al., 2009; Phillips et al., 2022; de Vrese et al., 2016).  64 

Earth system models (ESMs) are powerful tools for examining the interactions and feedback 65 
among the intricately intertwined processes of the Earth system, both in the past and future. Land 66 
surface models (LSMs) are a crucial component of ESMs. Due to the complex dynamics of 67 
natural hydrological processes and anthropogenic activities, describing human-water interactions 68 
has been recognized as a significant challenge in Land surface modeling (Nazemi and Wheater, 69 
2015). In recent years, targeted efforts have aimed to address this deficiency, yet water use 70 
remains largely underrepresented or in a nascent stage within LSMs (Blyth et al., 2021; Taranu et 71 
al., 2024). Meanwhile, global hydrological models (GHMs), originally designed for water 72 
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resource assessment, have undergone continuous improvements over the last three decades to 73 
explicitly represent human water use (Hanasaki et al., 2018; Liang et al., 1994; Müller Schmied 74 
et al., 2021; Sood and Smakhtin, 2015; Sutanudjaja et al., 2018; Tang et al., 2007). These models 75 
enable the determination of the spatial distribution and temporal evolution of water resources and 76 
water stress for both humans and other biota under the pressures of global change (Döll et al., 77 
2018; Schewe et al., 2014; Schlosser et al., 2014). These advancements have offered valuable 78 
insights for incorporating human water use into LSMs. 79 

Parameterizing irrigation water use and modeling its impacts in GHMs and LSMs has been 80 
approached using different assumptions and simplifications in three key aspects: irrigation 81 
demands, irrigation methods, and irrigation water supplies/withdrawals. The first aspect is 82 
estimating irrigation water demands. Models estimate these demands using either a root-zone 83 
soil moisture deficit approach or a crop-specific potential evapotranspiration approach. The root-84 
zone soil moisture deficit approach estimates irrigation demand as the water needed to keep root-85 
zone soil moisture (usually within the top meter of soil) above a certain threshold during the 86 
growing season (normally a certain percentage of field capacity or soil saturation) (Ozdogan et 87 
al., 2010). The crop-specific potential evapotranspiration approach estimates irrigation needs 88 
based on the difference between crop-specific potential evapotranspiration and simulated 89 
unirrigated evapotranspiration, or between potential and effective precipitation under well-90 
watered conditions where crops transpire at their maximum rate (Müller Schmied et al., 2021). 91 
Notably, LSMs generally do not use potential evapotranspiration to estimate irrigation demand.  92 

The second aspect concerns the representation of irrigation methods. Many models simplify 93 
irrigation application by directly modifying soil moisture or treating it as additional rainfall 94 
across all irrigated land, overlooking the diversity of irrigation techniques employed in various 95 
parts of the world or by different farmers (Li et al., 2024; Lu et al., 2015; de Vrese et al., 2018). 96 
Recently, some models have started integrating specific irrigation techniques for certain crops or 97 
regions. For instance, LPJmL includes sprinkler, drip, and surface irrigation methods, and CLM 98 
incorporates drip, sprinkler, flood, and paddy irrigation methods (Jägermeyr et al., 2015; Yao et 99 
al., 2022). Different irrigation techniques affect farmland hydrological processes and irrigation 100 
efficiency in distinct ways. For example, drip and surface irrigation methods avoid interception 101 
losses observed with sprinkler (Nair et al., 2013).  102 

Third is the representation of irrigation water supplies/withdrawals, which is particularly critical 103 
as it involves the interaction between multiple processes or modules, such as hydrological and 104 
agricultural systems. However, explicit representation of these interactions remains largely 105 
absent in LSMs, despite the extensive modeling experience provided by GHMs. Such modeling 106 
first requires identifying the sources of irrigation water, typically categorized into surface water 107 
and groundwater. Surface water sources are normally constrained by available runoff, 108 
streamflow, and storage such as lakes and reservoirs. Accessing these sources, such as rivers and 109 
reservoirs, necessitates coupling with river routing and reservoir modules, which are well-110 
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represented in many GHMs (Biemans et al., 2011; Hanasaki et al., 2018). Groundwater is 111 
typically divided into renewable sources (baseflow or dynamic groundwater levels) and 112 
nonrenewable sources (fossil groundwater). Some models assume an inexhaustible supply of 113 
nonrenewable groundwater to meet irrigation demands, neglecting irrigation shortages caused by 114 
water scarcity (Zhou et al., 2020). Additionally, some GHMs incorporate alternative sources, 115 
such as inter-regional water transfers and seawater desalination (Hanasaki et al., 2018; 116 
Sutanudjaja et al., 2018). A second critical aspect of irrigation water supply modeling is 117 
determining the allocation of irrigation water among different sources, including the 118 
prioritization of water usage. Various models adopt different assumptions for this allocation. For 119 
example, H08 prioritizes surface water (Hanasaki et al., 2018), while WBMplus prioritizes 120 
reservoirs and groundwater (Wisser et al., 2010). PCR-GLOBWB uses an empirical approach 121 
that allocates groundwater use based on comparisons between baseflow conditions and long-term 122 
historical climatology, capturing feedback between water supply and demand (Sutanudjaja et al., 123 
2018). Another common approach is to assume a predefined allocation ratio based on water 124 
withdrawal infrastructure (e.g., Siebert et al., 2010), using this ratio to divide total irrigation 125 
abstractions between groundwater and surface water (Arboleda-Obando et al., 2024; Leng et al., 126 
2015). Despite these advances, the representation of water extraction and the coupling of 127 
irrigation and hydrological systems in LSMs is still in its early stages. Most irrigation-enabled 128 
models still assume an unlimited water supply, failing to account for constraints imposed by 129 
water availability (Druel et al., 2022; Yao et al., 2022; Zhou et al., 2020).  130 

The Common Land Model (CoLM; Dai et al., 2003), derived from the Community Land Model 131 
(CLM), is a widely used land surface model that integrates ecological, hydrological, and 132 
biophysical processes. In recent years, it has further incorporated various physical processes such 133 
as lakes, wetlands, and dynamic vegetation, enhancing the representation of energy and water 134 
exchanges among soil, vegetation, snow, and atmosphere. CoLM has been successfully 135 
implemented in global atmospheric models, such as GRAPES, CWRF, and CAS-ESM2.0 (Shen 136 
et al., 2021; Yuan and Liang, 2011; Zhang et al., 2020a). Despite significant advancements in 137 
parameterizing natural land surface processes, the representation of human activities in CoLM 138 
remains at an early stage. Recently, CoLM has further integrated a crop module, providing a 139 
foundation for considering irrigation and its interactions with natural water systems. 140 

To enhance the representation of human–water interactions in land surface models, we introduce 141 
a new irrigation module for CoLM. This module provides a comprehensive framework for 142 
simulating the entire irrigation water system, including water demand, withdrawal, and 143 
utilization. It incorporates an irrigation water demand scheme based on soil moisture deficits, an 144 
irrigation application scheme accounting for four major irrigation methods, and an irrigation 145 
water withdrawal scheme that incorporates multiple water source constraints by integrating 146 
CoLM with a river routing model and a reservoir operation scheme. A key focus of this module 147 
is the bidirectional coupling between irrigation water demand and supply, alongside a detailed 148 
representation of water withdrawals from different sources. Section 2 provides a detailed 149 
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description of the module and its implementation, including an overview of CoLM, the datasets 150 
used for simulation and validation, and the experimental design. Section 3 validates the module’s 151 
performance in simulating irrigation water withdrawals using reported data and compares its 152 
results to other hydrological models. It also assesses improvements in model accuracy for 153 
regional energy dynamics (sensible heat, latent heat, and surface temperature), hydrology (river 154 
flow), and agricultural outputs (maize, soybean, and wheat yields). Section 4 demonstrates two 155 
key applications of the module: analyzing irrigation impacts on the energy budget and evaluating 156 
irrigation water security. Finally, we discuss the module’s current limitations and propose 157 
potential future improvements. 158 

2. Materials and Methods 159 

2.1 Description of CoLM and its crop module 160 

The Common Land Model (CoLM) is one of the most advanced land surface models widely used 161 
to simulate the Water–Energy–Carbon Nexus. The original version of CoLM (Dai et al., 2003)  162 
combines the three land surface models: the Land Surface Model (LSM; Bonan, 1996), the 163 
Biosphere-Atmosphere Transfer Scheme (BATS; Dickinson et al., 1993), and the 1994 version of 164 
the Chinese Academy of Sciences Institute of Atmospheric Physics LSM (IAP94; Dai and Zeng, 165 
1997). CoLM2014 integrates the Catchment-Based Macro-Scale Floodplain model (CaMa-166 
Flood; Yamazaki et al., 2011), enabling river routing calculations within the model. Specifically, 167 
runoff generated by CoLM is transferred to CaMa-Flood for routing through the river network. 168 
CaMa-Flood represents the river network as a series of irregular unit catchments, defined 169 
through sub-grid topographic parameters. River discharge and other flow characteristics are 170 
computed using the local inertial equations along the river network, allowing for detailed flow 171 
dynamics across catchments.  172 

The CoLM2024 version incorporates substantial updates over CoLM2014, particularly by 173 
introducing representations of biogeochemical cycles and human activity processes (e.g., crop 174 
growth and reservoir management). The new crop module introduces a phenological 175 
development scheme based on accumulated temperature, a biomass allocation scheme among 176 
different plant organs, and fertilization schemes (Drewniak et al., 2013). Crops are categorized 177 
into four organ pools: leaves, stems, fine roots, and grains. The growth stages are divided into 178 
three phases: sowing to emergence, emergence to grain filling, and grain filling to maturity, with 179 
carbon allocation ratios to roots, stems, leaves, and grains varying across these phases. Upon 180 
maturation, crops are harvested, with part of the carbon from the grains contributing to the yield, 181 
while a small portion (3g) is reserved as seeds for the next growing season. For carbon 182 
assimilation, the module employs Farquhar’s photosynthesis scheme (Collatz et al., 1992; 183 
Farquhar et al., 1980) and Ball-Berry’s stomatal model (Ball et al., 1987; Collatz et al., 1991), 184 
treating maize as a C4 crop and other crops as C3. Additionally, the module accounts for the 185 
effects of heat stress, water stress, nitrogen stress, and ozone stress on yield (Li et al., 2024; 186 
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Lombardozzi et al., 2020). The module has been calibrated for various crops, including maize, 187 
soybean, spring and winter wheat, rice, cotton, and sugarcane, enabling accurate simulation of 188 
crop yields. 189 

2.2 Two-way coupled irrigation water use module 190 

2.2.1 Irrigation demand 191 

The irrigation demand is calculated using the soil moisture deficit method (Leng et al., 2017; 192 
Ozdogan et al., 2010; Yao et al., 2022). During the crop growth stage, irrigation is triggered at 6 193 
a.m. local time if the soil moisture in the root zone (zirrig=1m) falls below the threshold value 194 
(ωthresh). The total irrigation water demand (Dirrig, mm) is then calculated using Equation (1): 195 

 Dirrig = !
           ωirrig - ωavail          ωavail ≤ ωthresh
                    0                   ωavail > ωthresh

                           (1) 196 

where ωavail is the total soil water amount in the root zone (mm); ωirrig  is the irrigation target 197 
threshold (mm), calculated using Equation (2): 198 

ωirrig = firrig(ωtarget - ωwilt) + ωwilt                                         (2) 199 

where ωwilt is the wilting point soil water amount in the root zone (mm), calculated as the sum of 200 
soil water at the wilting point for each soil layer (∑ θwiltΔzj

Nirr
j=1 ); 𝜔!"#$%! is the target soil water 201 

amount in the root zone (mm), calculated as the sum of target soil water for each soil layer 202 
(∑ θtargetΔzj
Nirr
j=1 ). Nirr is the number of soil layers in the root zone and Δzj is the thickness of each 203 

soil layer (m). The target (θtarget) and wilting point (θwilt) soil moisture (m3/m3) for each layer are 204 
calculated based on the corresponding soil water potential (Φtarget and Φwilt). firrig is a weighting 205 
coefficient ranging from 0 to 1, controlling the extent to which soil water amount approaches the 206 
target level ωtarget during irrigation (default value = 1). In some cases, it can represent the 207 
efficiency of the irrigation system, accounting for water losses due to evaporation, seepage, or 208 
other factors.  209 

The irrigation trigger threshold (ωthresh) in Equation (1) is calculated as: 210 

ωthresh = fthresh(ωtrigger - ωwilt) + ωwilt                                                  (3) 211 

where ωtrigger is the trigger water amount in the root zone (mm); fthresh is also a weighting 212 
coefficient ranging from 0 to 1 that controls the proximity of soil water amount to the trigger 213 
level ωtrigger (default value = 1).  214 
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The values of ωtrigger and ωtarget are set according to the irrigation application method. For drip 215 
and sprinkler irrigation, both ωtrigger and ωtarget are set to the soil field capacity water amount. For 216 
flood irrigation, ωtrigger is set to the soil field capacity water amount and  ωtarget to the saturation 217 
water amount. For paddy irrigation, both ωtrigger and ωtarget are set to the saturation water amount. 218 

2.2.2 Irrigation application 219 

The model incorporates four different irrigation application methods: drip irrigation, sprinkler 220 
irrigation, flood irrigation, and paddy irrigation, each with unique triggering conditions, water 221 
demand requirements, and application processes. Drip irrigation is triggered when soil moisture 222 
in the root zone falls below field capacity, with the irrigation goal being to restore soil moisture 223 
to field capacity. This method applies water directly to the surface soil, allowing it to percolate 224 
into deeper soil layers. Sprinkler irrigation shares the same triggering condition and demand 225 
requirement as drip irrigation but applies water above the canopy. In this method, water can be 226 
intercepted and evaporated before reaching the soil surface, resulting in relatively lower 227 
irrigation efficiency. This method is the most commonly used in the United States. Flood 228 
irrigation is triggered when soil moisture falls below field capacity, to raise soil moisture to the 229 
point of saturation. Paddy irrigation is applied whenever soil moisture drops below saturation, 230 
aiming to restore soil moisture to saturation without causing runoff loss. Paddy fields are 231 
typically maintained with a specific water level on the surface (10 cm) during the growing 232 
season. A global irrigation method map (Yao et al., 2022; Figure S3) is used to determine the 233 
irrigation method for each grid. In addition, irrigation is implemented daily at 6 a.m., if 234 
necessary, with water supply evenly distributed across each time step throughout the next 4 235 
hours. 236 

2.2.3 Irrigation water supply/withdrawal 237 

The model incorporates two distinct irrigation water supply/withdrawal schemes. The first 238 
scheme, Unlimited Supply (irrig-unlim), assumes that irrigation demand is fully met without 239 
accounting for specific water sources, a common approach in most land surface models (Yao et 240 
al., 2022). The second scheme, Limited Supply (irrig-lim), divides total irrigation demand 241 
between surface water and groundwater sources, labeled as surface water demand (Dsurf) and 242 
groundwater demand (Dgrnd), respectively. Both demands are constrained by the available water 243 
within each respective system. This distribution is based on the spatial extent of groundwater 244 
irrigation equipment, as provided by Siebert et al. (2010), and is formulated as follows: 245 

Dsurf = Dirrig× (1- fgrnd)                                                          (4) 246 

Dgrnd 	= Dirrig× fgrnd                                                             (5) 247 
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where Dsurf and Dgrnd represent the demand from surface water and groundwater systems, and 248 
fgrnd denotes the area fraction covered by groundwater equipment. In this scheme, surface water 249 

demand (Dsurf) is sourced sequentially from local grid cell runoff, local river streamflow, and 250 
upstream reservoirs, while groundwater demand (Dgrnd) is drawn from groundwater aquifers. 251 

2.2.3.1 Surface water supply 252 

In our two-way coupled irrigation system (Figure 1), the daily surface water supply for irrigation 253 
is constrained by surface water availability, which is simulated by CoLM (runoff) and CaMa-254 
Flood (local streamflow and upstream reservoirs). We first examine whether the runoff from the 255 
local grid cell (Sro) can meet the daily surface water demand (Dsurf) for that cell. If runoff is 256 
insufficient, additional water is sourced from local streamflow and upstream reservoirs. River 257 
streamflow availability (Sriv) is determined by CaMa-Flood. For each irrigated grid cell, the river 258 
grid with the highest flow within a 250 km radius is selected as the source. To prevent excessive 259 
water extraction, a withdrawal limit is imposed, ensuring that the remaining flow in each river 260 
grid cell does not drop below 20% of its average daily volume. Before conducting irrigation 261 
simulations, natural river flow simulations are performed to establish essential parameters for 262 
both river and reservoir water withdrawal schemes. 263 

Reservoir water availability (Sres) is also determined by CaMa-Flood, which now includes a 264 
reservoir module. This module consists of the following components: (i) a reservoir dataset that 265 
provides reservoir location information matched with the river network, along with reservoir 266 
parameters (e.g., characteristic storage capacity); (ii) a reservoir operation scheme designed for 267 
flood control; and (iii) a routing scheme that integrates reservoir operations into river flow 268 
simulations. For more details, refer to Hanazaki et al. (2022). In this study, we further propose a 269 
new scheme for sourcing irrigation water from reservoirs (Figure 2), which involves the 270 
following steps: 271 

(i) Identifying the irrigation area served by each reservoir. It is challenging to accurately define 272 
the true irrigation extent/area for each reservoir, especially across large spatial domains. 273 
Therefore, a simplified approach is adopted here: larger reservoirs are assumed to cover a 274 
proportionately larger irrigation area, restricted to downstream regions only (since upstream 275 
water transfer is economically infeasible). Based on the relationship between reservoir size and 276 
the corresponding irrigation area provided in Table S1, we calculate the irrigation area for each 277 
reservoir according to its storage capacity by linear interpolation. Downstream irrigation grids 278 
are selected sequentially, from nearest to farthest, until the cumulative grid area closely matches 279 
the calculated irrigation area. If multiple reservoirs serve the same irrigation grid, a sharing 280 
proportion (fshare, ranging from 0 to 1) is assigned to the irrigation grid based on the degree of 281 
shared usage. 282 
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(ii) Calculating the irrigation demand for each reservoir by aggregating the demands of 283 
associated irrigation grids. This is expressed as: Dres-total =∑ &Dirrig-unmet

i ×fshare
  i 'N

i=1 , where 284 

Dirrig-unmet
i  and fshare

  i  represent the irrigation demand (i.e., the portion of Dsurf not met by local 285 
runoff and river streamflow) and sharing proportion of grid i, respectively. N denotes the number 286 
of irrigation grids served by the reservoir.  287 

(iii) Executing reservoir withdrawals for irrigation based on demands. Water is then withdrawn 288 
(Sres-total) from the reservoir’s effective storage (Veff) — the portion between the current water 289 
level and dead water level—according to the required demand. This is expressed as 290 
Sres-total = min(Dres-total,Veff). After updating the reservoir storage, the reservoir operation and 291 
subsequent river routing are calculated following the approach outlined in Hanazaki et al. (2022). 292 

(iv) Redistributing withdrawn water to the irrigation grids. Based on each irrigation grid’s 293 
contribution to the total reservoir irrigation demand, the total withdrawal volume is 294 
proportionally allocated across the associated grids (Sres

 i ). This is expressed as 295 

Sres
 i =Sres-total×

Dirrig-unmet
i ×fshare

  i

Dres-total
. Notably, this water is not applied directly to irrigation but is stored in 296 

a temporary reservoir (i.e., a temporary variable) for each irrigation grid in CoLM. This approach 297 
addresses the response delay in water supply from the river routing model to the land model’s 298 
irrigation demands, as the time step for CoLM is 60 minutes, while CaMa-Flood operates with a 299 
6-hour time step and exchanges information with CoLM every 6 hours. Moreover, if the 300 
reservoir cannot fully meet the irrigation demand within the initial time step, any unmet demand 301 
is carried forward to the next time step. This process continues over a 24-hour cycle, after which 302 
new water demands for the next day are received. 303 

Thus, the computational sequence proceeds as follows: Step (i) is completed before model 304 
execution, with its results serving as an essential input for the irrigation module. During model 305 
operation, CoLM calculates the irrigation demand at 6 a.m. local time. The unmet demand (after 306 
subtracting the water supplied by local runoff and streamflow) is then sent to CaMa-Flood, as 307 
described in Step (ii). CaMa-Flood supplies water from reservoir to meet this demand, as 308 
described in Step (iii), and returns the supplied water to CoLM according to Step (iv), over the 309 
next 24 hours. During this process, the water supplied by reservoir is stored in the temporary 310 
reservoir (variable) for each irrigation grid within CoLM. The following day, when irrigation 311 
begins again at 6 a.m., water is withdrawn directly from the temporary reservoir if the demand 312 
cannot be met by local runoff and streamflow. 313 
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 314 
Figure 1. Diagram of the two-way coupled irrigation water system in the Common Land Model. 315 

316 
Figure 2. Diagram of the reservoir water supply scheme. 317 

2.2.3.1 Groundwater supply 318 

Groundwater supply is constrained by the availability of water within the aquifer. In CoLM, the 319 
groundwater table interacts with soil layers through vertical water exchange, allowing recharge 320 
or withdrawal of water from the aquifer (Li et al., 2017). The evolution of the groundwater table 321 
is determined by the balance of soil water recharge and subsurface outflow, with the specific 322 
yield dynamically linking the water table position to changes in soil moisture and aquifer 323 
storage. When irrigation is required, water is directly extracted from the top of the simulated 324 
aquifer, and the water table depth is updated accordingly. This process continues until either the 325 
irrigation demand is fully met, or the water table falls below a predefined threshold, set as 1 326 
meter below the initial depth at the beginning of the year (Jasechko et al., 2024; Russo and Lall, 327 
2017). Groundwater supply is immediately available upon demand, with no temporal lag 328 
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between the request and its availability for irrigation. Changes in the water table depth can then 329 
affect subsurface drainage and recharge from the bottom soil layer to the aquifer. 330 

2.3 Materials 331 

2.3.1 Input datasets 332 

In this study, CoLM was implemented across the contiguous United States at a 0.25° spatial 333 
resolution for the period 2001–2016. Meteorological input data were derived from the WATCH 334 
Forcing Data methodology applied to ERA-Interim data (WFDEI) (Weedon et al., 2014), which 335 
has also been utilized in the Inter-Sectoral Impact Model Intercomparison Project Phase 2a 336 
(ISIMIP2a; Gosling et al., 2019). Soil property data were sourced from the Global Soil Dataset 337 
for Earth System Modeling (GSDE), originally provided at a spatial resolution of 30 arc-seconds 338 
(Dai et al., 2019; Shangguan et al., 2014). Land cover data were derived from the MODIS 339 
dataset (MCD12Q1; Friedl and Sulla-Menashe, 2022), providing detailed global land 340 
classification information at a spatial resolution of 500 meters. 341 

The simulation of irrigation processes also required detailed data on crop areas, planting dates, 342 
irrigation areas and irrigation methods. Crop planting areas were derived from the 30-meter 343 
resolution CropScape and Cropland Data Layer (CDL) datasets (2008–2020) and aggregated to a 344 
spatial resolution of 5 arcminutes for analysis (USDA, 2019). These datasets, produced by the 345 
U.S. Department of Agriculture, provide annual, crop-specific land cover information using 346 
satellite imagery and ground reference data. For each pixel, we calculated the proportion of 347 
cropland relative to the pixel’s area (PCT_CROP) and the proportions of maize, wheat, and 348 
soybean relative to the cropland area (PCT_CFT). Pixels with a cropland percentage 349 
(PCT_CROP) exceeding zero were classified as crop pixels. The Plant Functional Type (PFT) 350 
approach employed in CoLM allowed different crops and vegetation types coexist within the 351 
same grid cell according to their percentages (PCT_CFT). To define planting and harvesting 352 
dates, we utilized an observation-based crop calendar dataset from the Global Gridded Crop 353 
Model Intercomparison (GGCMI), which provided information for 20 major crops under both 354 
rainfed and irrigated conditions at each grid cell for 1980–2010 (Jägermeyr et al., 2021).  355 

The irrigation map was derived using the 5' resolution data from the FAO Global Map of 356 
Irrigation Areas - Version 5 (Siebert et al., 2013). Since the CropScape data does not distinguish 357 
between rainfed and irrigated crops, we combined it with the irrigation map to determine the 358 
proportions of rainfed and irrigated crops. Irrigation water withdrawals were classified into 359 
surface water and groundwater sources following FAO data on regions equipped for groundwater 360 
extraction, which informed the allocation of irrigation demand across sources (Siebert et al., 361 
2010). The irrigation application method data was obtained from Yao’s global irrigation map, 362 
which details irrigation methods (drip, sprinkler, or flood) for 32 crop types, each assigned a 363 
single method (Yao et al., 2022). Jägermeyr et al. (2015) originally used a decision tree to refine 364 
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AQUASTAT's data, classifying irrigation methods for 14 Crop Functional Types (CFTs) based 365 
on crop area, soil characteristics, and socio-economic conditions. Yao et al. (2022) then matched 366 
these CFTs to 32 crop types in CLM5 and incorporated an additional irrigation method, paddy, 367 
specifically for rice-growing regions, creating a more detailed global irrigation dataset. 368 

For river routing simulations in CaMa-Flood, the baseline topography was derived from the 369 
Multi-Error-Removed Improved-Terrain Hydrography dataset (MERIT Hydro; Yamazaki et al., 370 
2019). Fundamental information on dams/reservoirs in the river network, including dam name, 371 
coordinates, total storage capacity, and drainage area, was obtained from the GRanD database 372 
(Lehner et al., 2011). GRanD version 1.3 contains data on 7,320 dams globally, along with their 373 
associated reservoirs. The locations of the dams in the 0.25° river map were determined 374 
following the method outlined by Hanazaki et al. (2022), which enabled the identification of 375 
1464 reservoirs across the contiguous United States (Figure S2). In addition to GRanD, the 376 
Global Reservoir Surface Area Data Set (GRSAD; Zhao and Gao, 2018) and the Global 377 
Reservoir Geometry Database (ReGeom; Yigzaw et al., 2018) were used to estimate reservoir 378 
parameters, such as storage capacity at emergency, flood control, and critical levels (Hanazaki et 379 
al., 2022). GRSAD provides a monthly time series of surface areas for 6,817 GRanD reservoirs 380 
from 1984 to 2015, based on global surface water occurrence data (Pekel et al., 2016). ReGeom 381 
contains storage-area-depth information for 6,824 reservoirs in GRanD, with geometry estimates 382 
derived from assumed surface and cross-sectional shapes, as well as data on reservoir extent, 383 
total storage, and surface area. 384 

2.3.2 Validation datasets 385 

To evaluate the scheme developed in this study, we focused on validating irrigation water 386 
withdrawal volumes, land fluxes (including energy fluxes and river flows) and crop yields in 387 
irrigated areas. We used hydrological survey data from the U.S. Geological Survey (USGS, 388 
2023), which provided detailed statistics on total irrigation water withdrawals, categorized by 389 
surface and groundwater sources, every five years since 2000. Within the timeframe of this 390 
study, data were available for the years 2005, 2010, and 2015. Building on this, Ruess et al. 391 
(2024) employed a global hydrological model (PCR-GLOBWB) to estimate annual, crop-392 
specific irrigation water withdrawals from 2008 to 2020. Additionally, we compared the 393 
irrigation water withdrawal volumes simulated by our model with those generated by six other 394 
hydrological models—VIC, PCR-GLOBWB, MATSIRO, LPJmL, H08, and DBH—that 395 
participated in ISIMIP2a (Gosling et al., 2019). Although more hydrological models were 396 
included in ISIMIP2a, our comparison was limited to these six because they provided irrigation 397 
water withdrawal outputs. The simulations were driven by the WFDEI climate dataset, with a 398 
spatial resolution of 0.5° and covering the period from 1971 to 2010. 399 

For land surface flux validation, we used monthly latent and sensible heat fluxes provided by 400 
FLUXCOM at a resolution of 0.5° (Jung et al., 2019). FLUXCOM leveraged FLUXNET site 401 
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observations and extended these globally through machine learning algorithms, resulting in a 402 
global dataset for latent heat, sensible heat, and carbon fluxes. For temperature validation, we 403 
used land surface temperature data from 2001 to 2016 at a spatial resolution of 0.1° from the 404 
ERA5-Land reanalysis dataset (Muñoz-Sabater et al., 2021). 405 

For streamflow validation, we utilized monthly streamflow data from the Global Runoff Data 406 
Centre (GRDC, 2023) for the period 2001–2016. To ensure robust validation, we excluded 407 
catchments with fewer than five years of data during the study period and focused on catchments 408 
significantly influenced by irrigation while minimizing the impacts of other anthropogenic 409 
activities. These selection criteria ultimately resulted in 77 catchments being included in the 410 
analysis (Figure S7). 411 

For crop yield validation, we relied on annual yield reports for irrigated and rainfed crops from 412 
the USDA NASS at the county level, which is regarded as a reliable source of yield statistics 413 
(USDA/NASS, 2023). The data for irrigated crops primarily covered the Central Plains of the 414 
United States, with limited coverage in the eastern and western regions. We aggregated our grid-415 
based yield simulation results to the county level and performed validation only for regions and 416 
years with available USDA data. 417 

2.4 Experimental Design 418 

This study conducted three simulation experiments to evaluate the effectiveness of the newly 419 
developed module by comparing their performance: (i) Non-Irrigation Experiment (abbreviated 420 
as noirrig): This scenario assumes all crops in the region are rainfed, with no irrigation applied. It 421 
serves as a baseline to represent natural surface water and energy balance conditions. (ii) 422 
Unlimited Irrigation Experiment (abbreviated as noirrig-unlim): This scenario distinguishes 423 
between irrigated and rainfed areas based on crop maps. In irrigated areas, crop water demands 424 
are fully satisfied throughout the growing season, without considering the limitations of water 425 
resources. (iii) Limited Irrigation Experiment (abbreviated as irrig-lim): In this scenario, 426 
irrigation water is supplied proportionally from surface water and groundwater based on 427 
availability, as illustrated in Figure 1. Here, irrigation is constrained by the availability of surface 428 
and groundwater, which may result in unmet crop water demands.  429 

The non-irrigation experiment was first simulated for the period 2001–2010 to stabilize 430 
vegetation carbon and nitrogen pools, soil moisture, and the groundwater table. This stabilized 431 
state served as the initial condition for all three experiments. The main simulation period spanned 432 
2001-2016, covering the contiguous United States at a spatial resolution of 0.25° × 0.25°. In the 433 
subsequent analysis, key evaluation metrics—bias, root-mean-square error (RMSE), Pearson 434 
correlation coefficient (r), and Kling-Gupta efficiency (KGE)—were employed to assess the 435 
performance of the simulations. 436 
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3. Results 437 

3.1 Evaluation of simulated irrigation water withdrawal 438 

3.1.1 Comparison with observations 439 

Based on annual irrigation withdrawal data from the USGS, states in the western and central 440 
United States withdraw significantly more water for irrigation than those in the eastern regions 441 
(Figure 3a). This is primarily due to the relatively low precipitation in the western and central 442 
regions, where the majority of irrigated areas are located, while crops in the eastern U.S. are 443 
predominantly rainfed. The top five states with the highest annual irrigation withdrawals—444 
California (CA), Idaho (ID), Colorado (CO), Arkansas (AR), and Montana (MT)—are all 445 
situated in the Midwest and West (Figure 3b). Nationally, the total annual irrigation withdrawal 446 
averages approximately 166.23 km3 yr-1, based on data from 2005, 2010 and 2015. In 447 
comparison, the irrig-unlim and irrig-lim schemes simulate national total withdrawals of 290.94 448 
km3 yr-1 and 120.81 km3 yr-1, respectively. As illustrated in Figure 3c-f, the simulations capture 449 
the spatial patterns of water withdrawals across different states effectively, with the irrig-lim 450 
scheme yielding better performance. The root-mean-square-error (RMSE) and correlation 451 
coefficient (r) for the irrig-lim scheme are 3.60 km3 yr-1 and 0.82, respectively, slightly 452 
outperforming the corresponding values for the irrig-unlim scheme (9.78 km3 yr-1 and 0.76). 453 

Irrigation water withdrawals draw from both surface water and groundwater sources. According 454 
to USGS reports, most irrigation withdrawals in the central U.S. come from groundwater (Dieter 455 
et al., 2018). In states such as Missouri (MO), Kansas (KS), Iowa (IA), Illinois (IL), Rhode 456 
Island (RI), and Mississippi (MS), the share of groundwater withdrawals exceeds 90% (Figure 457 
4c). In contrast, states with high surface water withdrawals are primarily in the eastern and 458 
western U.S., with states like Wyoming (WY), Connecticut (CT), Kentucky (KY), and Montana 459 
(MT) reporting surface water withdrawal proportions greater than 90%. These spatial variations 460 
in water source usage are primarily attributed to the central U.S.'s abundant groundwater 461 
resources and widespread groundwater extraction infrastructure.  462 

In our simulations, the irrig-lim scheme effectively accounts for irrigation water withdrawals 463 
from different sources, constrained by their availability. Encouragingly, the scheme generally 464 
reproduces observed annual surface water and groundwater withdrawals across states (Figure 4a-465 
b), achieving correlation coefficients of 0.68 and 0.95, respectively. Furthermore, the simulated 466 
proportions of water sources closely align with observed data (Figure 4c-d), with a correlation 467 
coefficient of 0.64 (p < 0.01). However, the model tends to underestimate the surface water 468 
withdrawal proportions in the northwestern regions of the U.S. (particularly in Montana and 469 
Colorado; Figure 4d), while slightly overestimating them in some central and eastern states. This 470 
discrepancy may stem from limitations in the data used to allocate water demand. Specifically, 471 
the model relies on pre-determined groundwater extraction infrastructure proportions, which may 472 
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not accurately reflect actual extraction practices, particularly as the dataset was published in 473 
2005 and may not account for subsequent changes in groundwater infrastructure in certain states. 474 
Alternatively, the discrepancy could arise from model biases in simulating surface and 475 
groundwater availability. For example, in the northwestern region, surface runoff is heavily 476 
influenced by snowmelt and glacial meltwater (Li et al., 2017), and biases in simulating these 477 
processes could lead to an underestimation of surface water availability. 478 

 479 
Figure 3. Comparison of reported and simulated irrigation water withdrawal in the United States. 480 
(a) Annual irrigation water withdrawal reported by the USGS for individual states. (b) Annual 481 
withdrawal amounts for the top 20 states by irrigation water withdrawal. (c) Annual irrigation 482 
water withdrawal simulated by CoLM using the unrestricted water supply (irrig-unlim) scheme 483 
for individual states. (d) Comparison of reported and simulated irrigation water withdrawal 484 
(using the irrig-unlim scheme) for individual states, with Pearson correlation coefficient (r) and 485 
root mean square error (RMSE) displayed, along with statistical significance (two-tailed 486 
Student’s t-test). (e) Annual irrigation water withdrawal simulated by CoLM using the restricted 487 
water supply (irrig-lim) scheme for individual states. (f) Comparison of reported and simulated 488 
irrigation water withdrawal (using the irrig-lim scheme) for individual states. 489 

https://doi.org/10.5194/egusphere-2024-4093
Preprint. Discussion started: 22 January 2025
c© Author(s) 2025. CC BY 4.0 License.



 

16 
 

 490 
Figure 4. Comparison of reported and simulated irrigation water withdrawal in the United States 491 
by water source. (a) Comparison of reported and simulated surface water withdrawal volumes for 492 
individual states. (b) Same as (a), but for groundwater withdrawal volumes. (c) Proportion of 493 
surface water in irrigation withdrawal, based on USGS reports for individual states. (d) 494 
Proportion of surface water in irrigation withdrawal, simulated by CoLM using the irrig-lim 495 
scheme for individual states.  496 

Ruess et al. (2024), using data from the USGS and model outputs from PCR-GLOBWB 2, 497 
generated an irrigation water withdrawal dataset that included withdrawal volumes for major 498 
crops in the U.S. According to this dataset (Figure 5), wheat is the largest consumer of irrigation 499 
water, with an average annual withdrawal of approximately 27.29 km3 yr-1, followed by maize at 500 
about 20.91 km3 yr-1. In contrast, soybean requires considerably less irrigation (i.e., 5.89 km3 yr-501 
1), partly due to its greater drought tolerance and smaller planted area compared to the other two 502 
crops. Under the irrig-unlim (irrig-lim) simulation scheme, the annual irrigation withdrawals for 503 
maize, wheat, and soybean are 53.98 km3 yr-1, 47.53 km3 yr-1, and 29.99 km3 yr-1 (19.19 km3 yr-1, 504 
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17.95 km3 yr-1, and 11.05 km3 yr-1), respectively. Once again, the irrig-lim scheme provides a 505 
closer alignment with observation-based data, as indicated by a lower RMSE (Figure 5). These 506 
results suggest that our irrigation module generally performs well in simulating total national 507 
annual water withdrawals, the spatial distribution of withdrawals (Figure 3), the proportion of 508 
water source types (Figure 4), and the irrigation volumes for different crops (Figure 5).  509 

 510 
Figure 5. Comparison of reported and simulated irrigation water withdrawal in the United States 511 
by crop type. (a) Comparison of reported and simulated irrigation water withdrawal for maize, 512 
using both the unrestricted (irrig-unlim, blue dots) and restricted (irrig-lim, purple dots) supply 513 
schemes for individual states. (b-c) Same as (a) but for soybean and wheat. 514 

3.1.2 Comparison with other models 515 

We further compare the irrigation water withdrawal simulations from this study with outcomes 516 
from six global hydrological models (VIC, PCR-GLOBWB, MATSIRO, LPJmL, H08, and 517 
DBH) that participated in ISIMIP2a. Notably, all simulations used the same climate forcing 518 
(WFDEI), ensuring consistency in the comparison. Our results, particularly from the irrig-lim 519 
scheme, closely align with observed total national annual irrigation withdrawals. By contrast, 520 
five of the six models, excluding LPJmL, exhibit larger absolute deviations from observed value 521 
(Figure 6a). Regarding spatial distribution, most models perform well (Figure 6b), with LPJmL 522 
(orange dots) achieving the highest correlation coefficient (0.89) and the lowest RMSE (2.86 km3 523 
yr-1). The irrig-lim scheme in this study (purple dots) performs comparably to LPJmL, 524 
demonstrating competitive accuracy. In terms of temporal dynamics, comparisons across models 525 
are limited due to the scarcity of observed data. However, the general seasonal patterns are 526 
consistent across models (Figure S5), with the highest irrigation withdrawals occurring in June 527 
and July, and the lowest in January and December. Most models exhibit similar seasonal 528 
fluctuations, with irrigation volumes during peak months approximately ten times greater than 529 
during off-peak months. Overall, these results suggest that our model performs similarly to, or 530 
even better than, existing models in simulating irrigation water withdrawals in the U.S. 531 
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 532 

 533 
Figure 6. Comparison of irrigation water withdrawal simulated by CoLM and six global 534 
hydrological models participating in ISIMIP2a. (a) Annual total irrigation water withdrawal 535 
amounts in the United States as reported by the USGS, compared with simulations from CoLM 536 
(using both the irrig-unlim and irrig-lim schemes) and the six global hydrological models. (b) 537 
Comparison of reported and simulated irrigation water withdrawal for individual states, with 538 
Pearson correlation coefficient (r) and root mean square error (RMSE) for each simulation 539 
displayed.  540 

3.2 Evaluation of simulated land energy and water fluxes 541 

3.2.1 Evaluation of simulated energy fluxes 542 

We evaluate CoLM's performance in simulating surface energy fluxes over irrigated areas in the 543 
U.S. using different schemes, with FLUXCOM monthly sensible heat (SH) and latent heat (LH) 544 
fluxes as observational references. Figure 7 compares multi-year monthly averages of observed 545 
and simulated SH and LH fluxes across irrigated grid points. Without irrigation (the noirrig 546 
scheme), the model significantly overestimates SH (Figure 7a) with an average bias of 16.89 W 547 
m-2 (44.53%) and underestimates LH (Figure 7c) with an average bias of 18.84 W m-2 (37.11%). 548 
In contrast, biases over non-irrigated grids are considerably lower, at 3.04% and 17.38% for SH 549 
and LH, respectively (Figure S6). This indicates that CoLM performs satisfactorily in simulating 550 
energy processes over natural vegetation and rainfed areas, but less so over irrigated regions. 551 

Upon introducing the irrigation module, the simulation errors in surface energy fluxes over 552 
irrigated areas are significantly reduced. Under the irrig-unlim and irrig-lim schemes, average SH 553 
biases decrease to 27.10% and 30.79%, respectively, while LH biases decrease to 18.41% and 554 
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22.18%. These improvements are evident across most irrigated grid points, as illustrated by the 555 
KDE curves of KGE, which indicate an increase in grid points with higher KGE values (Figure 556 
7). A KS test confirms that the differences between the irrigation (i.e., the irrig-unlim and irrig-557 
lim schemes) and noirrig simulations are statistically significant. Although the irrig-unlim 558 
scheme performs slightly better than irrig-lim for SH and LH, this difference is not significant. 559 

 560 
Figure 7. Evaluation of simulated energy fluxes and land surface temperature in the irrigation 561 
region. (a) Monthly sensible heat flux averaged from 2001 to 2016, based on FLUXCOM dataset 562 
and simulated by CoLM using the noirrig, irrig-unlim, and irrig-lim schemes in irrigation regions 563 
of the United States, with the bias between simulations and observations (i.e., FLUXCOM) 564 
indicated in the panel. (b) Kernel density estimate (KDE) curves for the Kling-Gupta efficiency 565 
(KGE) between observed and simulated monthly sensible heat flux for each irrigation grid, with 566 
mean KGE value indicated in the panel. (c-d) Same as (a-b) but for latent heat flux. (e-f) Same as 567 
(a-b) but for land surface temperature, using data from ERA5-Land reanalysis dataset. 568 

Additionally, the FLUXCOM data (red dashed line) show that the highest monthly SH and LH 569 
occur in May and July, respectively. However, the noirrig simulation (green solid line) fails to 570 
capture this seasonal peak, showing instead that SH peaks in July and LH in June. This 571 
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discrepancy is not present in non-irrigated areas (Figure S6), suggesting that irrigation in 572 
agricultural regions (and the subsequent crop growth it supports) substantially affects the 573 
seasonal pattern of regional energy balance. When the irrigation module is incorporated into the 574 
model, these seasonal patterns are more accurately reproduced, with the timing of the simulated 575 
peak months aligning more closely with FLUXCOM data (blue and purple solid lines). 576 

The incorporation of the irrigation module improves the simulation of energy partitioning in 577 
irrigated areas, enabling the model to better capture surface temperature dynamics (Figure 7e). 578 
Under the noirrig scheme, the average bias of monthly surface temperature is 0.6℃ (3.88%). 579 
This bias decreases to 0.20℃ (1.32%) with the irrig-unlim scheme and 0.29℃ (1.91%) with the 580 
irrig-lim scheme. However, even with irrigation included, the simulated total evapotranspiration 581 
remains systematically underestimated (Figure 7c). This underestimation is also evident in non-582 
crop areas (Figure S6c), suggesting that it may not be due to limitations in the irrigation module 583 
itself but rather to certain deficiencies in CoLM's evapotranspiration simulation approach.  584 

3.2.2 Evaluation of simulated river flow 585 

Irrigation processes can significantly alter natural hydrological dynamics and river flow patterns 586 
both temporally and spatially. To evaluate the effectiveness of the irrigation module in capturing 587 
these impacts, we compare model outputs with observed catchment streamflow data. We select 588 
catchments that are substantially influenced by irrigation while minimizing the effects of other 589 
anthropogenic activities. Figure S7 illustrates the locations of the selected 77 catchments. Figure 590 
8 shows that CoLM’s performance in simulating runoff—and consequently streamflow—591 
remains limited, with relatively low average KGE values across all three schemes. This 592 
limitation is likely due to the use of a simplified runoff parameterization scheme in CoLM (Li et 593 
al., 2011). However, it is encouraging to note that the irrig-lim scheme notably improves monthly 594 
streamflow simulations compared to the noirrig scheme, increasing the average KGE from -0.57 595 
to -0.49 and reducing the average percentage bias (PBIAS) from 117.28% to 106.54%. The 596 
enhancement can be largely attributed to the incorporation of irrigation effects, which account 597 
for reduced streamflow due to increased water use for evapotranspiration. This adjustment 598 
effectively mitigates the overestimation of streamflow observed in the noirrig scheme. 599 

Furthermore, our analysis reveals that the irrig-unlim scheme significantly reduces the accuracy 600 
of streamflow simulations compared to the noirrig scheme, leading to a pronounced 601 
overestimation of river discharge. The average relative bias increases substantially from 117.28% 602 
to 147.23% (Figure 8b). This issue arises because the irrig-unlim scheme meets any irrigation 603 
demand by introducing additional water directly into the system without considering its source. 604 
Such an approach is common among crop and land surface models that incorporate irrigation 605 
(Malek et al., 2017; Yao et al., 2022; Zhang et al., 2020b). However, our findings indicate that 606 
introducing extra water for irrigation without accounting for its specific sources and limitations 607 
may lead to an imbalance in the water budget from a comprehensive perspective of the entire 608 
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water system, undermining the model’s ability to accurately represent the dynamics of the 609 
hydrological system.  610 

 611 

Figure 8. Evaluation of simulated streamflow in 77 irrigation-affected catchments. (a) Multi-612 
year average monthly streamflow bias simulated using the noirrig, irrig-unlim, and irrig-lim 613 
schemes in the evaluation catchments. The boxes represent the interquartile range, black lines 614 
indicate median values, black dots show mean values, and dashed black whiskers extend to 1.5 615 
times the interquartile range; points outside the boxes represent outliers. (b) Percentage bias 616 
(PBIAS) between observed monthly streamflow and simulations from CoLM under the noirrig, 617 
irrig-unlim, and irrig-lim schemes, with the average PBIAS value indicated in the panel. (c) 618 
Same as (b) but for the Kling-Gupta efficiency (KGE) between simulated and observed 619 
streamflow.  620 

3.3 Evaluation of simulated crop yield 621 

Irrigation reflects a direct human influence on crop yields by providing supplemental water. Crop 622 
models primarily focus on this aspect, but they often neglect how irrigation affects other 623 
processes. Conversely, most hydrological models concentrate on the impact of irrigation 624 
withdrawals on the water cycle, with some also addressing energy fluxes, yet pay less attention 625 
to crop yield. From this perspective, land surface models offer distinct advantages; they provide 626 
a more detailed representation of hydrological and surface energy processes compared to crop 627 
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models, while also presenting more physics-based representations of crop growth than traditional 628 
hydrological models. Therefore, this study further evaluates whether incorporating the developed 629 
irrigation module can enhance crop yield the simulations. 630 

 631 
Figure 9. Evaluation of crop yield simulated using different schemes in the United States. (a) 632 
Maize yield in irrigated maize-growing regions of the United States, as reported by the USDA 633 
(orange boxes), compared with simulations by CoLM using the noirrig (green boxes), irrig-unlim 634 
(blue boxes), and irrig-lim (purple boxes) schemes. Since reported yields are at the county scale, 635 
grid-based simulation results were aggregated to corresponding counties. (b-c) Same as (a) but 636 
for soybean and wheat yields. 637 

Using county-scale crop yield data for irrigated and rainfed regions provided by the USDA, we 638 
assess simulated yields under both irrigated and non-irrigated scenarios. The dataset may not 639 
comprehensively cover all irrigated areas in the U.S. or all years during the study period, so 640 
comparisons are limited to regions and years with reported data. In rainfed regions, the model 641 
broadly reproduces average annual yields for the maize, soybean, and wheat (Figure S8). 642 
However, in irrigated regions, the model without irrigation significantly underestimates crop 643 
yields, with average underestimations of 31.95%, 44.45%, and 35.95% for maize, soybean, and 644 
wheat, respectively (Figure 9). Under both the irrig-umlim and irrig-lim schemes, despite slight 645 
differences in performance across crops, the model effectively simulates yield increases under 646 
irrigation, aligning well with observations. Differences between the two irrigation schemes are 647 
minimal: the irrig-unlim scheme performs slightly better for maize and soybean in terms of 648 
average biases, while the irrig-lim scheme shows better performance for wheat.  649 

Furthermore, based on limited annual yield data, we observe that considering irrigation generally 650 
improves the model's ability to capture inter-annual yield fluctuations (Figure S9). The KGE of 651 
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annual yields under the noirrig scheme are -1.342, -1.451, and -1.308 for maize, soybean, and 652 
wheat, respectively, while with the irrig-umlim and irrig-lim schemes, the KGE values increase 653 
to 0.101, -1.132, and 0.197, and -0.158, -1.449, and -0.144, respectively.  654 

4. Discussions 655 

4.1 Applications of the developed module 656 

4.1.1 Impacts of irrigation on energy budget 657 

Numerous studies have highlighted the impacts of irrigation on global and regional energy 658 
budgets and near-surface climates. In this study, we similarly examine the effects of irrigation on 659 
the energy budget over irrigated areas in the U.S. by comparing results from the irrig-lim and 660 
noirrig scheme. Consistent with prior research, we find that irrigation increases latent heat (LH) 661 
by 7.53 W m-2 (23.25 %) and decreases sensible heat (SH) by 5.18 W m-2 (9.48 %) averaged 662 
from 2001 to 2016, resulting in an approximately 0.30°C reduction in land surface temperature 663 
(Figure 10). Since land-atmosphere coupling is not included, the primary mechanisms driving 664 
these impacts are increased soil evaporation due to enhanced soil moisture and greater vegetation 665 
transpiration driven by improved crop growth following irrigation (Figure S10 a-b). Annually, 666 
these mechanisms contribute roughly equally to the increase in total evapotranspiration in 667 
irrigated regions, with pronounced seasonal differences: during the peak growing seasons 668 
(summer and autumn), the contribution was dominated by vegetation transpiration, while in other 669 
seasons, particularly winter, the increase in soil evaporation plays a larger role in affecting 670 
regional energy distribution and temperature (Figure S10c). 671 

This study further explores the spatial characteristics of these impacts, analyzing the correlations 672 
between irrigated area, irrigation water withdrawal, and changes in LH, SH, and land surface 673 
temperature (ΔLH, ΔSH, ΔTs) across different climate zones. Notably, irrigation has the most 674 
substantial impact in arid regions, especially on LH, where ΔLH is more than double that of 675 
semi-arid and humid regions, with a larger reduction in temperature by 0.36°C. Interestingly, 676 
while previous studies have emphasized irrigated area as the primary determinant of irrigation-677 
induced climate effects (Al-Yaari et al., 2022; Chen and Dirmeyer, 2019), our results indicate 678 
that irrigation water withdrawal has a stronger influence on the regional energy budget and 679 
temperature. Across all climate zones, ΔSH, ΔLH, and ΔTs are significantly correlated (p < 0.01) 680 
with irrigation water withdrawal, with correlation coefficients of -0.81, 0.79, and -0.82, 681 
respectively (Figure 10 (b, e and h)), which are higher than the correlations with irrigated area (-682 
0.59, 0.61, and -0.52; Figure 10 (c, f and i)). This emphasizes the critical role of water 683 
availability in modulating the climate effects of irrigation. 684 
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 685 

Figure 10. Impact of irrigation on local energy flux and surface temperature in the United States. 686 
(a) Impact of irrigation on sensible heat flux, quantified by the difference (Δ𝑆𝐻) between the 687 
noirrig and irrig-lim simulation results. (b) Relationship between irrigation amount and Δ𝑆𝐻, 688 
with grid colors indicating the climate zones (i.e., arid, semi-arid/semi-humid, humid). For each 689 
climate zone, the mean Δ𝑆𝐻, the regression line of irrigation amount versus Δ𝑆𝐻, and the 690 
regression equation are displayed. (c) Same as (b), but for the relationship between irrigation 691 
area and Δ𝑆𝐻. (d-f) Same as (a-c), but for the impact on latent heat flux (Δ𝐿𝐻). (g-i) Same as (a-692 
c), but for the impact on land surface temperature (Δ𝑇&). 693 

It is important to note that this study employs offline land simulations and does not account for 694 
land-atmosphere interactions, which may introduce biases in the estimated climate impacts. 695 
Future studies should include coupled land-atmosphere simulations to provide a more 696 
comprehensive assessment (Cook et al., 2015; Puma and Cook, 2010; Sacks et al., 2009). 697 
Another aspect worth considering is that some farmers irrigate not only to address water deficits 698 
but also to mitigate heat stress during high-temperature periods (Verma et al., 2020). This 699 
practice can notably affect local temperatures. For instance, surface water temperatures generally 700 
track air temperatures, whereas groundwater temperatures remain relatively stable throughout the 701 
year—typically warmer than air in winter and cooler in summer. This temperature difference, 702 
especially in regions relying on groundwater irrigation, may have non-negligible effects on local 703 
climate that should be incorporated into future modeling efforts.  704 
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4.1.2 Assessments of irrigation water security  705 

This study compares the irrigation schemes with and without water availability constraints, 706 
highlighting the necessity and importance of incorporating water limitations into simulations. 707 
Our results demonstrate that including these constraints improves simulation accuracy, 708 
particularly in the modeling of water systems. Specifically, irrigation water withdrawal simulated 709 
under the irrig-lim scheme aligns more closely with observational data (Figure 3 and Figure 6). 710 
Validation against river flow observations further supports the improved performance of the 711 
irrig-lim scheme. Importantly, this scheme avoids the risk of potential water imbalances in the 712 
modeled hydrological system—an issue commonly associated with non-constrained schemes 713 
(Figure 8). 714 

Additionally, incorporating water availability constraints more accurately reflects the reality of 715 
water resource utilization. By accounting for the interconnections between subsystems within the 716 
irrigation water demand-supply system, this approach enables simulation and prediction of 717 
irrigation water security issues. Here, we visualize the average number of days when water 718 
supply was insufficient to fully meet irrigation demand that simulated by the irrig-lim scheme 719 
(Figure 11). Spatially, in humid regions, where irrigation demand is low and water resources are 720 
abundant, fewer days of unmet irrigation needs occur. Conversely, in arid regions, where 721 
irrigation demand is high and water resources are often limited, the number of unmet irrigation 722 
days increases significantly. Figure 11a illustrates that states with a higher number of unmet 723 
irrigation days are also those with relatively scarce water resources (e.g., Montana and Nevada). 724 
From a temporal perspective, drought years lead to increased irrigation requirements due to 725 
reduced precipitation or higher evaporative demand. Although additional water withdrawals can 726 
partially address this increased demand, drought conditions often simultaneously result in 727 
deficits in both surface and groundwater resources within the water system. As a result, most 728 
states experience a substantial increase in unmet irrigation days during drought years (an average 729 
of 43 days). In contrast, during wetter years, the number of unmet days decreases significantly 730 
(an average of 31 days). 731 

Reported disaster data show that even with irrigation, significant crop losses can occur during 732 
drought years, aligning with broader water security challenges (Mieno et al., 2024). Our 733 
approach effectively captures this phenomenon by describing the connectivity between 734 
subsystems in the water demand-supply system and highlighting the impact of water limitations 735 
on irrigation. In contrast, ignoring these constraints risks underestimating potential food security 736 
issues in a future characterized by more frequent and/or severe droughts. This represents a 737 
critical limitation of crop and land surface models that adopt irrigation schemes without 738 
considering water availability constraints.  739 
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 740 
Figure 11. Days per year with unmet irrigation demand (i.e., irrigation deficit days) in the United 741 
States simulated by the irrig-lim scheme. (a) Multi-year average irrigation deficit days from 2001 742 
to 2015 for individual states. (b) Irrigation deficit days in drought year for individual states. (c) 743 
Irrigation deficit days in wet year for individual states. Drought year (wet year) is defined as the 744 
year with the lowest (highest) annual precipitation during 2001–2016. 745 

4.2 Limitations and a way forward 746 

While the developed module represents a significant advancement in modeling irrigation water 747 
system within land surface models by providing a comprehensive representation of the irrigation 748 
processes—including water demand, water withdrawal, and water utilization, several limitations 749 
and assumptions should be acknowledged. 750 

Irrigation water demand in this study is estimated using a soil moisture deficit method. However, 751 
the parameterization of certain key variables (e.g., target and threshold soil moisture levels) is 752 
overly simplified and does not account for variations among crop types. These parameters are 753 
adjustable, and their calibration could further enhance the model's accuracy in reproducing 754 
irrigation water use. Additionally, in some cases, farmers irrigate not only to address soil 755 
moisture deficits but also to reduce crop heat stress during high-temperature periods—a factor 756 
that should be incorporated into future modeling efforts. Furthermore, this study did not account 757 
for water losses during conveyance and application. Irrigation losses, as noted by Jägermeyr et 758 
al. (2015), include conveyance losses and on-field application losses. By ignoring conveyance 759 
losses, the model assumes that water withdrawn equals water applied, likely leading to an 760 
underestimation of total irrigation water use. Field application losses depend on irrigation 761 
methods (Leng et al., 2017), and while this study considered four irrigation systems with 762 
differentiated efficiencies, the reliance on simplified rules and a coarse irrigation map fails to 763 
reflect the diversity of irrigation methods and distributions. For example, actual sprinkler 764 
systems distribute water in specific spray patterns rather than uniformly. However, the model 765 
assumes uniform water distribution across each Crop Functional Type (CFT). Future models 766 
could benefit from parameterizations that capture spatial heterogeneity in irrigation distribution 767 
(Jägermeyr et al., 2015; Merriam et al., 1999). Moreover, irrigation water demand also depends 768 
on agricultural practices, such as crop types, cropping calendars, and planting intensities. While 769 
the model determines crop phenology based on meteorological data, real cropping calendars are 770 
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influenced by farmers’ decisions (Sacks et al., 2010). Incorporating satellite-derived phenology 771 
data could better represent these human factors. Addressing these agricultural practices is crucial 772 
for improving the accuracy and applicability of irrigation models. 773 

In simulations of irrigation water withdrawal, this study provides a detailed representation of 774 
reservoir water withdrawal but acknowledges several sources of uncertainty: First, the dataset 775 
includes fewer dams than exist, as it focuses primarily on large dams and may lack data due to 776 
protection policies. This omission likely contributes to the underestimation of surface water 777 
extraction in some states. Second, all dams are assumed to supply irrigation water, although 778 
some reservoirs may not serve this purpose. The irrigation areas served by each dam are 779 
unknown, and a generalized estimation method is employed in this study, introducing large 780 
uncertainties that remain difficult to validate. Third, dam operations are simplified, while in 781 
reality, they often involve complex considerations, such as multi-objective operations and 782 
coordinated management of multiple reservoirs. Advanced reservoir optimization strategies, 783 
which require predictive simulations and prior knowledge of future inflows and demands, are not 784 
incorporated into the model, presenting a significant challenge for considering the impacts of 785 
complex human decision-making in land surface models. 786 

Determining the division of irrigation water withdrawals between surface and groundwater 787 
sources, as well as the withdrawal sequence, is also critical. This study allocates irrigation 788 
demand based on pre-defined proportions and simultaneously withdraws water from both 789 
sources. Surface water demand is met sequentially through local runoff, river discharge, and 790 
upstream reservoir storages. This method, employed in models such as ORCHIDEE v2.2 791 
(Arboleda-Obando et al., 2024) and E3SM (Zhou et al., 2020), provides satisfactory simulations 792 
of water source allocation for irrigation (Figure 4 vs. Figure S11). However, its reliability 793 
depends on the accuracy of input data and may underestimate withdrawals if any water source is 794 
inadequately represented. Alternatively, some models (e.g., MATSIRO and CLM5; Pokhrel et al., 795 
2012; Yao et al., 2022) do not pre-allocate demand but set a fixed order of water withdrawals—796 
typically prioritizing surface water before groundwater. This method tends to satisfy more 797 
irrigation demand and provides better estimates in regions with unreported groundwater 798 
extraction. We propose that a hybrid approach, defining surface and groundwater proportions 799 
dynamically, warrants consideration in future study. For instance, during wet seasons, surface 800 
water extraction proportions could increase to reduce groundwater reliance and associated 801 
pumping costs. Conversely, during dry seasons, surface water may be more constrained, 802 
necessitating greater reliance on groundwater for irrigation. However, such an approach still 803 
needs to address challenges, including unreported groundwater use, data scarcity, and the 804 
physical, technical, and socio-economic constraints on groundwater use across regions.  805 

Additionally, this study does not account for restrictions beyond water availability, such as local 806 
regulations governing water allocation, including water rights and inter-basin water transfers. 807 
Alternative water sources, such as desalinated seawater and treated wastewater, also warrant 808 
consideration (Vliet et al., 2021). Recent assessments indicate that these unconventional water 809 
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sources are experiencing exponential growth (Jones et al., 2019). Although their contributions 810 
remain low globally, they play a significant role in water-scarce regions. Incorporating these 811 
factors into models could further improve simulations of irrigation water security. 812 

Finally, the developed module’s results and applicability are strongly influenced by the CoLM 813 
framework itself. A critical aspect requiring careful consideration is the evaluation and 814 
calibration of hydrological variables, such as soil moisture, runoff, river discharge, and 815 
groundwater levels, which are essential for water resource modeling. Currently, the CoLM 816 
employs the simplified top model (SIMTOP) developed by Niu et al. (2005) for runoff 817 
simulations. The excessive simplification of this approach, coupled with the lack of calibration, 818 
limits the model's accuracy in runoff simulations. Inadequate representation of snow and glacial 819 
melt processes introduces regional biases, particularly in northern and midwestern U.S. states 820 
where these factors are pivotal. For instance, surface water extraction is underestimated in some 821 
states within these regions, likely because the model fails to accurately capture snowmelt and 822 
glacial melt contributions to streamflow, leading to erroneous estimates of surface water 823 
availability. Similarly, simulated evapotranspiration is systematically underestimated, even in 824 
areas without crops or irrigation, likely due to more complex underlying causes. These biases, 825 
when aggregated at the watershed level, result in significant discrepancies in river discharge, 826 
thereby constraining the model’s applicability for water resource management and its ability to 827 
predict irrigation water security. Addressing these issues requires urgent improvements in the 828 
representation of related processes, along with further calibration and parameter tuning. 829 

5. Conclusions 830 

The growing challenges posed by increasing global food demand and water scarcity underscore 831 
the need for advanced modeling tools capable of accurately capturing human-water interactions. 832 
This study contributes to addressing this need by implementing a two-way coupled irrigation 833 
water system within the Common Land Model. The developed module provides a 834 
comprehensive representation of the entire irrigation water use process, including water demand, 835 
withdrawal, and utilization. It introduces a refined multi-source water withdrawal framework and 836 
achieves bidirectional coupling between water demand and withdrawal during simulation. 837 

The robustness of the new irrigation module is validated through simulations across the 838 
contiguous United States, focusing on regional-scale water, energy, and crop yield dynamics. The 839 
module effectively simulates total national annual irrigation withdrawals, their spatial 840 
distribution, the proportions of different water sources, and irrigation volumes for various crops. 841 
Compared to other hydrological models in ISIMIP2a, our model performs similarly or better in 842 
simulating U.S. irrigation withdrawals. Incorporating the new irrigation module also 843 
significantly improves the accuracy of simulated surface energy fluxes, both in magnitude and 844 
seasonal patterns, resulting in more accurate surface temperature predictions. For streamflow, the 845 
irrigation scheme accounting for water availability constraints enhances the model's 846 
representation of hydrological system dynamics, whereas the unrestricted irrigation scheme 847 
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introduces potential water budget imbalances. Additionally, the new module markedly improves 848 
the model's ability to simulate annual yields and interannual fluctuations of major crops, 849 
including maize, soybean, and wheat. 850 

We further apply the developed module in two novel analyses. First, the scheme effectively 851 
characterizes the climatic impacts of irrigation, revealing a stronger positive correlation between 852 
irrigation water volume, rather than irrigated area, and the intensity of irrigation-induced climatic 853 
effects. This highlights the critical role of water availability in modulating irrigation-driven 854 
climate impacts. Although more accurate simulation of these effects requires land-atmosphere 855 
coupled modeling, the enhanced CoLM is clearly ready for such tasks. Second, the module 856 
captures irrigation-related water security issues, particularly during drought years, where water 857 
shortages across the resource system lead to irrigation water deficits and associated food security 858 
challenges. These results demonstrate the promise of CoLM as a valuable tool for future water 859 
use and scarcity assessments, paralleling the functionality of global hydrological models and 860 
contributing to initiatives such as the Inter-Sectoral Impact Model Intercomparison Project. 861 

Data Availability Statement 862 

The meteorological variables from the WFDEI can be freely accessed from 863 
ftp://rfdata:forceDATA@ftp.iiasa.ac.at. The land cover type datasets (MCD12Q1) can be freely 864 
accessed from https://lpdaac.usgs.gov/products/mcd12q1v061/. The soil characteristics datasets 865 
(GSDE) can be freely accessed from http://globalchange.bnu.edu.cn/research/data/. The 866 
CropScape and Cropland Data Layer (CDL) datasets can be freely accessed from 867 
https://nassgeodata.gmu.edu/CropScape/. The crop calendar datasets can be freely accessed from 868 
https://zenodo.org/records/5062513/. The irrigation map and irrigation equipment percentage can 869 
be freely accessed from https://www.fao.org/aquastat/en/geospatial-information/global-maps-870 
irrigated-areas/latest-version/. The GRanD database can be freely accessed from 871 
https://www.globaldamwatch.org/grand/. The GRSAD database can be freely accessed from 872 
https://dataverse.tdl.org/dataset.xhtml?persistentId=doi:10.18738/T8/DF80WG/. The ReGeom 873 
database can be freely accessed from https://zenodo.org/records/1322884/. The USGS’s 874 
hydrological survey data can be freely accessed from https://water.usgs.gov/watuse/data/. The 875 
USDA NASS’s agricultural survey data can be freely accessed from 876 
https://quickstats.nass.usda.gov/. The crop-specific irrigation water withdrawals data can be 877 
freely accessed from https://doi.org/10.13012/B2IDB-2656127_V1/. The ISIMIP2a datasets can 878 
be freely accessed from https://data.isimip.org/search/. The FluxCom datasets can be freely 879 
accessed via ftp.bgc-jena.mpg.de. The ERA5-Land skin temperature data can be freely accessed 880 
from https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land-monthly-881 
means?tab=download/. The streamflow data (GRDC) can be freely accessed from 882 
https://www.bafg.de/GRDC/EN/Home/. CoLM codes are available for download from GitHub 883 
(https://github.com/CoLM-SYSU/CoLM202X/).  884 
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