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Abstract. While dynamical models are essential for seasonal Arctic sea ice prediction, they often exhibit significant errors that

are challenging to correct. In this study, we integrate a multilayer perceptron (MLP) machine learning (ML) model into the

Norwegian Climate Prediction Model (NorCPM) to improve seasonal sea ice predictions. We compare the online and offline

error correction approaches. In the online approach, ML corrects errors in the model’s instantaneous state during the model

simulation, while in the offline approach, ML post-processes and calibrates predictions after the model simulation. Our results5

show that the ML models effectively learn and correct model errors in both methods, leading to improved predictions of Arctic

sea ice during test periods (i.e., 2003-2021). Both methods yield the most significant improvements in the marginal ice zone,

where error reductions in sea ice concentration exceed 20%. These improvements vary seasonally, with the most substantial

enhancements occurring in the Atlantic, Siberian, and Pacific regions from September to January. The offline error correction

approach consistently outperforms the online error correction approach. Notably, in September, the online approach reduces10

the error of the pan-Arctic sea ice extent by 50%, while the offline approach achieves a 75% error reduction.

1 Introduction

According to satellite observations, the Arctic sea ice extent (SIE) rapidly declines throughout all calendar months during the

recent decades (e.g., Serreze et al., 2007). The most significant reductions occurred in the summer and autumn (e.g., September,

Stroeve et al., 2014). The wider open ocean leads to growing socioeconomic activities in the Arctic (e.g., fisheries, shipping,15

and resource extraction). These increased human activities highly demand accurate seasonal predictions of Arctic sea ice
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conditions (Jung et al., 2016; Wagner et al., 2020). The Sea Ice Outlook, managed by the Sea Ice Prediction Network, produces

monthly reports during the Arctic sea ice retreat season. These monthly reports synthesize input from the international research

community devoted to enhancing sea ice predictions. Recently, Bushuk et al. (2024) evaluated and compared 17 statistical

models, 17 dynamical models, and 1 heuristic approach in predicting September Arctic sea ice. They found that dynamical20

and statistical models are overall comparable in predicting the Pan-Arctic SIE, and dynamical models generally outperform

statistical models in predicting the regional SIE and sea ice concentration (i.e., local quantities). Bushuk et al. (2024) also

suggested the dynamical models must further improve their initialization and model resolution to reduce prediction errors.

Data assimilation (DA) integrates observations with dynamical models to optimally estimate the state of the climate sys-

tem (Carrassi et al., 2018; Penny and Hamill, 2017). It has widespread application in producing reanalysis (Saha et al., 2006;25

Dee et al., 2011; Zuo et al., 2019; Laloyaux et al., 2018; Hersbach et al., 2020), offering comprehensive, continuous, and

dynamically consistent reconstructions of past climate states. Simultaneously, many prediction centers are transitioning to

DA adoption to mitigate uncertainties in initial conditions (Kimmritz et al., 2019; Blockley and Peterson, 2018; Wang et al.,

2013, 2019; Bushuk et al., 2024; Vitart et al., 2017). The improved density and quality of observations across different climate

system components and advanced DA methods enable more precise initial conditions for seasonal predictions of Arctic sea30

ice. Nevertheless, even with perfect initial conditions, prediction errors escalate over time due to the inherent deficiencies of

dynamical models in emulating the true climate system (gray line and pink line in Figure 1). This underscores the necessity for

dealing with prediction errors.

Machine learning (ML) has recently emerged as a data-driven technique to mitigate dynamical prediction errors. Two preva-

lent approaches include constructing an ML-dynamical hybrid model (e.g., Brajard et al., 2021; Watt-Meyer et al., 2021) and35

post-processing/calibrating model output (e.g. Palerme et al., 2024; Yang et al., 2023). The former is considered as online error

correction, while the latter refers to offline error correction.

In the context of online error correction, ML is applied to correct errors in the instantaneous model state (i.e., initial con-

ditions for the following model integration) and sequentially applied to update the instantaneous model state during simu-

lation (e.g., Brajard et al., 2021), referring to an ML-dynamical hybrid model (purple line in Figure 1). Such online error40

correction approaches have been investigated in both an idealized framework (e.g., Watson, 2019; Brajard et al., 2021) and real

applications (e.g., Watt-Meyer et al., 2021).

Watson (2019) examined the tendency error correction approach in the Lorenz 96 model. Brajard et al. (2021) explored

the resolvent error correction approach in the two-scale Lorenz model as well as in a low-order coupled ocean-atmosphere

model called the Modular Arbitrary-Order Ocean-Atmosphere Model (MAOOAM) (De Cruz et al., 2016). Watt-Meyer et al.45

(2021) demonstrated that the online error correction can improve the short-term forecasting skills and accuracy of precipitation

simulation while the dynamical model can run indefinitely without numerical instabilities arising. Gregory et al. (2024) applied

ML to correct sea ice errors in an ocean-ice coupled model and demonstrated that ML can effectively reduce sea ice bias online

in a 5-year simulation. So far, the ML-based online error correction method has not been tested for seasonal sea ice prediction

in an Earth system model. In this study, we will build and assess a hybrid model combining ML and a state-of-the-art Earth50

system model for seasonal prediction of Arctic sea ice.
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On the other hand, the offline error correction consists in performing post-processing (also called calibration) of the dynam-

ical model predictions (blue line in Figure 1). ML is trained to predict errors for time-averaged model outputs (e.g., daily or

monthly outputs) and applied to correct errors present in raw predictions. The most common error correction methods em-

ployed in sea ice prediction (Bushuk et al., 2024) are relatively simple (e.g., correction of the mean error or a linear regression55

adjustment, Blanchard-Wrigglesworth et al., 2017). More recently, Palerme et al. (2024) applied ML to improve the skill of

sea ice concentration forecasts on the weather timescale. Overall, they illustrated that ML-based offline calibration reduced the

SIC prediction errors by 41% and the ice edge distance error by 44%. Their application is mainly focused on short-term sea

ice prediction within 10 days in an ocean-ice coupled model. We will apply and assess the ML-based calibration for seasonal

prediction of Arctic sea ice in a state-of-the-art fully-coupled Earth system model.60

In this study, we apply ML to the Norwegian Climate Prediction Model (NorCPM, Wang et al., 2019), a fully-coupled Earth

system model, for seasonal prediction of Arctic sea ice. We test and compare the ML-based online and offline error correction

approaches. In the online approach, we build a hybrid model combining ML and NorCPM to update the instantaneous sea ice

state during the production of seasonal predictions. In the offline approach, we use ML to calibrate raw seasonal predictions of

Arctic sea ice. The comparison between the two approaches within the same framework delivers new insights for the sea ice65

prediction community into how to effectively use ML for seasonal Arctic sea ice predictions.

The paper is organized as follows: section 2 presents the model, experimental design, and metrics for validation. Section 3

shows the results of different experiments. We finish with conclusions and discussions in section 4.

2 Methods and data

2.1 Norwegian Climate Prediction Model70

The dynamical model we used is NorCPM (Counillon et al., 2014, 2016; Kimmritz et al., 2018, 2019; Wang et al., 2016, 2017).

It combines the Norwegian Earth System Model version 1 (NorESM1, Bentsen et al., 2013) and an advanced flow-dependent

DA method named ensemble Kalman filter (EnKF, Evensen, 2003).

NorESM1 (Bentsen et al., 2013) is a fully-coupled Earth system model used for climate simulations. Its ocean component

is the Bergen Layered Ocean Model (BLOM, Bentsen et al., 2013) – an updated version of the isopycnal coordinate ocean75

model MICOM (Bleck et al., 1995). The sea ice component is the Los Alamos sea ice model version 4 (CICE4, Gent et al.,

2011; Holland et al., 2012). The atmospheric component is a variant of the Community Atmosphere Model version 4 (CAM4-

Oslo, Kirkevåg et al., 2018). The land component is the Community Land Model (CLM4, Lawrence et al., 2011; Thornton,

2010). Furthermore, the version 7 coupler (CPL7, Craig et al., 2012) is utilized for inter-component communication and

interaction. The external forcings follow the protocol of the Coupled Model Intercomparison Project Phase 5 (CMIP5) historical80

experiment (Taylor et al., 2012).

The atmospheric and land components are situated on the National Center for Atmospheric Research (NCAR) finite-volume

2◦ grid, featuring a regular 1.9◦× 2.5◦ latitude–longitude resolution with 26 hybrid sigma–pressure levels extending to 3 hPa.

The ocean and sea ice components utilize NCAR’s gx1v6 horizontal grid, which is a nominal 2◦ resolution curvilinear grid
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with the northern pole singularity shifted over Greenland (Bethke et al., 2021). This grid is enhanced both meridionally towards85

the equator and zonally and meridionally towards the poles. The ocean component comprises 51 isopycnic layers, featuring a

bulk mixed layer representation on top with two layers having time-evolving thicknesses and densities.

The sea ice component is equipped with several ice thickness categories (we use the predefined value of N=5) to account

for the different thermodynamic and dynamic properties of ice with different thicknesses. The volume of snow and ice, energy

content, as well as ice concentration, surface temperature, and the volume-weighted mean ice age are determined for each of90

the ice thickness categories (Bentsen et al., 2013; Kimmritz et al., 2018, 2019).

NorESM1 tends to overly produce thick sea ice, especially in the polar oceans adjacent to the Eurasian continent. This

is partly due to factors such as weaker winds across the polar basin and overestimated Arctic cloudiness, which slows little

summer snowmelt. Consequently, the summer sea ice extent in the Arctic is too large, contributing to an underestimation of

global temperatures (Bentsen et al., 2013; Bethke et al., 2021).95

NorCPM uses an EnKF-based anomaly-field DA scheme to update unobserved ocean and sea ice variables by leveraging

state-dependent covariance from the simulation ensemble (Kimmritz et al., 2018, 2019). The EnKF allows the assimilation

of observations of various types while accounting for observational errors, spatial coverage, and the evolving covariance with

the climate state. The EnKF ensures accurate ensemble predictions by representing uncertainties in the initial conditions,

propagating these uncertainties over time, and providing a spatiotemporal estimate.100

2.2 Data

The reanalysis of NorCPM combining observations with NorESM is a physically consistent construction of the Earth system

(Counillon et al., 2016; Kimmritz et al., 2019) and represents the upper limit of the sea ice predictability of NorCPM. In this

study, we use the reanalysis as the "truth" to assess the improvement achieved by the error correction methods.

The reanalysis is available from 1980 to 2021 with 30 ensemble members. The initial states of the reanalyses on 15 January105

1980 are taken from a NorESM ensemble run integrated from 1850 to 1980 with CMIP5 historical forcings. In this reanalysis,

NorCPM assimilates monthly anomalies of sea surface temperature (SST), SIC, and subsurface hydrographic profile data in

the middle of each month.

The DA setting slightly differs for two different periods 1980-2002 and 2003-2021. From 1980 to 2002, the climatology

used for anomaly assimilation is defined over the period 1980–2010. SST and SIC observations are from HadISST2 (Titchner110

and Rayner, 2014) and subsurface hydrographic profile data from EN4.2.1 (Good et al., 2013). The assimilation process

contains two steps addressed in Kimmritz et al. (2019): firstly, hydrographic DA updates the ocean state (Wang et al., 2017).

Subsequently, SST and SIC data assimilation occurs, updating the sea ice and ocean states within the ocean mixed layer. From

2003 to 2021, the climatology utilized for anomaly assimilation is defined from 1982 to 2016. SST and SIC observations are

from OISST (Reynolds et al., 2007) and subsurface hydrographic profile data from EN4.2.1 (Good et al., 2013). Strong-coupled115

DA is performed in a single step to simultaneously update the sea ice and ocean states.
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Figure 1. Schema for the online and offline ML-based error correction methods. The pink line represents the truth. The gray line represents

dynamical prediction without error correction. The purple (blue) line represents prediction with online (offline) ML-based error correction.

The purple dashed arrows indicate pauses during the prediction production, facilitating correction to the instantaneous model state.

2.3 Online error correction approach

The online error correction approach is built from the analysis increment of the reanalysis introduced in section 2.2 (Brajard

et al., 2021; Gregory et al., 2024) and sequentially applied to update the instantaneous model state in the middle of each month

during prediction simulation (purple line in Figure 1).120

The reanalysis (described in section 2.2) is used to produce a forecast following:

xf
k =M(xa

k−1) (1)

where xf
k represents the forecasted instantaneous model state at tk, M represents the dynamical model integration from time

tk−1 to tk (section 2.1). During the analysis, DA uses available observations to generate xa
k — an updated instantaneous model

state and initial conditions for the next model integration from time tk−1 to time tk.125

The online approach is to emulate the analysis increments of DA defined as xa
k −xf

k . The error correction model can be

expressed as follows:

ε =Me(xf ) (2)
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Table 1. Information about online and offline ML-based error correction models

Online ML-based model Offline ML-based model

Input features Instantaneous SST, SSS, latitude, 5 cat-

egories SIC and sea ice volume

Monthly SST, SSS, latitude, SIC and

sea ice volume

Output features Instantaneous SST, SSS and 5 cate-

gories SIC errors

Monthly SIC prediction error

Data The most recent eleven years data (ten years for training and one year for vali-

dation)

Remark Only apply to sea-ice covered grids in the Arctic with SIC values greater than

1%.

where Me represents the data-driven model taking the instantaneous model state xf as input and ε represents the estimated

model error. We aim to correct SIC, SST, and SSS errors in the ice-covered area, which are directly associated with the sea ice130

condition.

Considering the seasonality of the error of the sea ice state, we build one error model (Eq. 2) for each calendar month. Also,

we employ a running training strategy and use the most recent 11 years of data before the prediction month (the first 10 years

for training and the last year for validation). The input feature contains latitude, SST, SSS, five categories of SIC, and five

categories of sea ice volume in the middle of the month. The output feature consists of errors in SST, SSS, and 5 categories of135

SIC (Table 1). Please refer to section 2.5 for ML configuration.

The hybrid model incorporating the dynamic model and the online error correction model can be expressed as follows:

xh
l =M(xh

l−1) +Me(x
f
l ) (3)

where xh
l represents the error-corrected instantaneous model state at tl during the prediction.

It is crucial to ensure the physical consistency between the ice and ocean components. Inconsistencies can arise after online140

error correction, such as through the analysis variables update, which may yield unphysical values, or when certain variables

remain uncorrected and must be diagnosed from the updated variables. The post-processing method is specifically designed

for NorCPM (Kimmritz et al., 2018).

2.4 Offline error correction approach

The offline error correction approach refers to performing post-processing of the dynamical model predictions (blue line in145

Figure 1). The ML configuration is the same as the online configuration (section 2.5). The input features are monthly SST,

SSS, total SIC, and latitude. The output feature is the error in monthly SIC. For more details about the offline approach, please

refer to Table 1.
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It’s worth noting that the offline error correction approach targets directly monthly average model outputs, whereas online

error correction addresses instantaneous model errors (Figure 1) and indirectly changes the monthly model outputs during the150

production of predictions. Therefore, their input and output features are different (Table 1).

2.5 Machine learning configuration

As mentioned in the previous sections, the ML model configurations employed for online and offline error correction ap-

proaches differ in the input and output variables (for more details, please refer to Table 1), but share an identical architecture

(i.e. the same number of layers and the same number of neurons in each layer).155

The ML model uses the values from a single grid point as input to predict the value at the same grid point, meaning one ML

model for all grid points. This simplifies the training process while still enabling the development of efficient models.

The ML architecture employed in this study is a multilayer perceptron (MLP), a powerful model known for its ability to

capture complex nonlinear relationships in data. As a fully connected neural network, MLP excels in function approximation,

making it particularly well-suited for error correction in geophysical modeling (Yang et al., 2023). Its key advantages include160

flexibility in handling diverse input features, efficient training through backpropagation, and strong generalization when prop-

erly regularized. Moreover, MLP is computationally efficient compared to more complex deep learning architectures. As noted

by Jia et al. (2019) and Watson (2019), error-correcting learning problems generally require smaller ML models and fewer

training data, making MLP a practical choice for integrating data-driven corrections into NorCPM.

The MLP architecture consists of five layers:165

– The input layer includes a batch normalization layer (Ioffe, 2017), which helps to regularize and normalize the training

process.

– The second layer is a dense layer with 60 neurons. It applies the rectified linear unit (ReLU) activation function, which

introduces non-linearity into the network.

– The third layer has the same configuration as the second layer, with 30 neurons and ReLU activation function.170

– The fourth layer is the attention layer, which is used for helping better training.

– The output layer is a dense layer with a linear activation function.

We further implement the following settings:

– We employ a running training set approach using data from the most recent 11 years. For example, to build an error

correction model for 2021, data from 2010 to 2019 is used for training, and data in 2020 for validation. The primary rea-175

son for using running training is the pronounced decline in Arctic sea ice observed over recent decades, with substantial

differences between earlier ice conditions (e.g., the 1980s) and those of recent years (e.g., 2010s). We decided to only

use the data close to the test period. We also performed a sensitivity study on the length of the running training set (e.g.,
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the most recent 5 years or all years since 1980), which is not shown in the paper. We found that the data in the most

recent 11 years leads to the best performance for ML training.180

– The characteristic of model errors varies with the calendar month. For instance, the model errors mainly appear in the

marginal zone in winter but in the entire sea ice-covered region in summer. We train separately for each month, leading

to a distinct ML model for each month. This results in 236 neural network models (from February 2003 to September

2022 based on test months) for the online case. In the offline case, we consider also the start month, resulting in 836 (4

initialized months × 11 lead months × 19 test years) models. Despite the large number of models, the training process185

is highly efficient due to the simple architecture and low data dimensionality. As a result, training each model is very

quick, taking only one minute on a CPU, making this exhaustive approach computationally affordable.

– We train and apply an error correction model to grid points where the total SIC exceeds 1%. It avoids adding sea ice into

open water areas and thus dynamical inconsistency. It also means that our correction model can not create ice on a grid

point where the model predicted ice-free conditions.190

2.6 Hindcast experiments

The standard hindcasts (hereafter referred to as Reference) are initialized from the reanalysis presented in section 2.2 in the

middle of January, April, July, and October each year, spanning from 1991 to 2021, with a duration of 12 months. From 1991

to 2002, the first 9 ensemble members of the 30-member reanalysis are used to carry out the hindcast experiments, while after

2003, its first 10 ensemble members are used to initialize the hindcast experiments. It is worth noting that these differences (i.e.195

the number of ensemble members) would have minimal impact on the results of this study.

A new set of hindcasts (hereafter referred to as OnlineML), similar to Reference but with the online error correction ap-

proach (section 2.3), are initialized from the reanalysis in the middle of January, April, July, and October from 2003 to 2021.

In the production of a hindcast, NorCPM pauses in the middle of each lead month and uses the online error correction model

(Eq. 2) to predict the error and then update the instantaneous model state.200

The offline error correction approach (section 2.4) is applied to post-process the hindcasts of Reference (hereafter referred

to as OfflineML).

2.7 Metrics for evaluation

SIE is a commonly used metric in seasonal sea ice prediction (e.g., Bushuk et al., 2024). We evaluate the prediction skill of SIE

in the Pan-arctic and in six Arctic regions depicted in Fig. 2. These regional delineations adhere to the area definitions provided205

by Kimmritz et al. (2019), albeit with the consolidation of the original fourteen sea areas into six regions that are very similar

to the ones used in Bushuk et al. (2024). In this study, we compute an areal sum of all grid points in the region of interest with

SIC ≥ 15% for each ensemble member and evaluate the average of SIEs over different ensemble members.
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Figure 2. Regional domain definitions for Central Arctic, Atlantic, Siberian, Alaskan, Canadian, and Regions based on sea area definitions

in Kimmritz et al. (2019). Atlantic region: GIN Sea, Barents Sea, Kara Sea; Siberian region: Laptev Sea, East Siberian Sea; Alaskan region:

Chukchi Sea, Beaufort Sea; Canadian region: Canadian archipelago, Hudson Bay, Baffin Bay, Labrador Sea; Pacific region: Bering Sea, Sea

of the Okhotsk.

To evaluate the prediction skill of SIE, we employ the root mean square error (RMSE)

RMSE =

√√√√ 1
N

N∑

i=1

(Xprediction−Xreanalysis)2 (4)210

where Xprediction represents the prediction and Xreanalysis represents the reanalysis (i.e., the truth in this study). In this context,

X could refer to either the SIE in the Pan-Arctic/regional scale or the SIC at each grid point. N denotes the length of the

experiment period, which spans from 2003 to 2021.

The integrated ice-edge error (IIEE) is also a crucial metric for sea ice predictions (Goessling et al., 2016). It specifically

captures the discrepancies along the ice edge by quantifying the area where the predicted and true ice concentrations differ215

significantly. This makes IIEE particularly valuable for evaluating the spatial accuracy of the ice edge location, offering insight

into the performance of models in reproducing the dynamic boundary between ice-covered and open ocean regions. We define

the IIEE as the area where the prediction and the truth disagree on the ice concentration being above or below 15%:

IIEE =
∫

A

max(cp− ct,0)dA +
∫

A

max(ct− cp,0)dA (5)

9

https://doi.org/10.5194/egusphere-2024-4092
Preprint. Discussion started: 21 February 2025
c© Author(s) 2025. CC BY 4.0 License.



where A is the area of grid cell, c = 1 where the sea ice concentration is above 15% and c = 0 elsewhere, and subscripts p and220

t denote the prediction and the truth. The definition of the IIEE is equivalent to the so-called symmetric difference between the

areas enclosed by the predicted and true ice edges.

To evaluate the significance of prediction skill, we use a two-tailed Student’s t-test to compare IIEE or the squared errors

of SIE between two predictions. This statistical test determines whether the difference between the two sets is statistically

significant.225

To estimate the uncertainties of the RMSE, we apply the bootstrap method. Specifically, we randomly select, with replace-

ment, 10 data points from the 10 ensemble members, calculate the ensemble mean, and compute the RMSE (either SIC or SIE)

for this sampled data. This process is repeated 10,000 times, producing a distribution of 10,000 RMSE values. The standard

deviation of this distribution is then used to quantify the uncertainties associated with the RMSE values.

3 Results230

3.1 Error correction model performance

We first demonstrate the performance of ML-based error correction models in predict the model errors.

The ‘true’ errors obtained from analysis increments and the errors predicted by the online error correction model are averaged

over 2003-2021 and displayed in Fig. 3. The error patterns vary significantly across different dates. For instance, on August

15, the errors are predominantly positive in most regions due to that NorCPM underestimates SIC, with some negative errors235

occurring internally. On October 15, the errors shift to negative, due to SIC overestimation in NorCPM. On December 15, the

errors approach zero, appearing mainly in the marginal areas, with most grid points showing lower error magnitudes compared

to August and October. Additionally, the errors along the ice edge remain consistently positive.

For all those months and regions, it shows that the online error correction models can correctly predict the spatial pattern of

the prediction error (Figure 3d-f). The magnitude of the error is well reproduced with a slight underestimation.240

To assess the offline error correction model, we show its performance for hindcasts initialized in July (Figure 4). Similar

to the instantaneous fields (i.e., online errors in Figure 3), the monthly error patterns vary significantly across months. The

offline error correction model effectively predicts the spatial pattern of the prediction errors (Figure 4d-f). The prediction error

magnitude is also well captured, with only a slight underestimation.

In summary, the above results suggest that the ML error correction models in both online and offline scenarios can skillfully245

predict the large-scale patterns of the SIC error.

3.2 Application into seasonal predictions

3.2.1 Skill seasonality

In this section, we assess the three sets of hindcasts initialized in January, April, July, and October from 2003 to 2021. The

ensemble hindcasts are initialized with the first 10 members of the reanalyses and predict for 11 months.250
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Figure 3. Top row: true errors of SIC in the middle of the month based on the analysis increments. Bottom row: the errors predicted by the

online error correction model. These errors are averaged over the period 2003–2021.

Figure 5 presents a comparative analysis of the RMSE for SIE prediction and the IIEE for ice edge prediction in the pan-

Arctic across the three hindcast sets. The Reference hindcast shows higher RMSE in September and October (Figure 5a),

primarily due to several factors. NorCPM overestimates the Arctic cloudiness and its summer-season snowmelt is too slow. In

addition, NorCPM has slightly too weak winds across the polar basin. These factors lead to too thick sea ice in the polar oceans

and excessive Arctic SIE, in particular in summer (Bentsen et al., 2013).255

Both the OnlineML and OfflineML hindcasts exhibit similar behaviors regardless of the seasonality (Figure 5b and 5c):

small error reduction from January to July and a large error reduction from August to December. For OnlineML hindcasts,

although only the errors in Arctic SIC, SST, and SSS are corrected without adjusting atmospheric model errors, the predictions

show some improvements, particularly in January and from September to December. In contrast, from February to August, the

Reference hindcast already exhibits good performance, leading to no significant differences. Compared with the OnlineML260

hindcasts, the OfflineML hindcasts have a larger error reduction, particularly in September. The primary reason is that the

online approach corrects instantaneous model errors (15th day of the month). Still, during the one-month model integration,

the sea ice component dynamically interacts with the other components, leading to error growth. In terms of monthly averaged
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Figure 4. Top row: true errors of monthly SIC estimated by the reanalysis minus the reference hindcast initialized in July. Bottom row: the

errors predicted by the offline approach. The errors are averaged over the period 2003–2021.

model outputs, the correction is likely damped. In contrast, the offline approach aims to directly post-process monthly outputs

without model integration.265

The IIEE shows similar results to the RMSE of SIE. For the Reference hindcast, the IIEE is higher from July to September.

The online approach leads to some improvements over the Reference hindcast from July to December, but its error reduction

is small or not significant. In contrast, the offline approach consistently improves the performance across nearly all periods

and demonstrates larger error reductions in IIEE than the online approach, particularly from June to January. By directly

correcting monthly mean outputs, the offline approach avoids information loss during the model integration, leading to larger270

error reduction.

In summary, the Reference hindcast shows larger prediction errors from August to October, due to increased model uncer-

tainties related to atmospheric and sea ice processes. The offline approach outperforms the online approach in reducing both

RMSE for SIE and IIEE for ice edge, especially in months with higher prediction errors.
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Figure 5. (a) RMSE of SIE for the Reference hindcast, (b) ∆RMSE between the Reference and OnlineML hindcasts, (c) ∆RMSE between

the Reference and OfflineML hindcasts. (d) IIEE of the Reference hindcast, (e) ∆IIEE between the Reference and OnlineML hindcasts, (f)

∆IIEE between the Reference and OfflineML hindcasts. In b,c,e, and f, warm colors (red/yellow) indicate that the OnlineML or OfflineML

hindcasts are better than the Reference hindcasts, while cold colors (blue/green) indicate they are worse than the Reference hindcast. The

black dots represent regions where the ∆RMSE or ∆IIEE does not pass the 95% significance test.

3.2.2 Skill of seasonal predictions for different regions275

The previous section highlighted significant improvements in predictions, primarily evident from September to January. In this

section, we focus on analyzing the hindcasts initialized in July, and we show the performance for different regions and both

SIE and SIC. For validation on the other initialization months, please refer to Figures S1-S4.

We first investigate the seasonal prediction skill for pan-Arctic and regional SIE defined in Figure 2. For the pan-Arctic SIE,

previously assessed in Fig. 5, both the OnlineML and OfflineML hindcasts reduce the SIE RMSEs (Figure 6a). The RMSEs in280

the OnlineML hindcast have a strong seasonality as that in the Reference hindcast: higher in August, September, and October,

and lower in November, December, and January. The OfflineML hindcast has the lowest RMSEs, in particular, an RMSE

reduction of about 70% compared to the Reference hindcasts in September.
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Figure 6. RMSE of SIE in the Pan-Arctic and five subregions for the Reference hindcast (gray bar), the OfflineML hindcast (blue bar), and

the OnlineML hindcast (purple bar).
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Both error correction approaches reduce the RMSEs for regional SIE, and the offline approach overall outperforms the

online approach (Figure 6b-f). In the Atlantic region (Figure 6b), significant RMSE reduction is observed for the three first285

months, until October. The OfflineML hindcast has the lowest RMSEs until September and similar RMSEs to the OnlineML

hindcast from October. In the Siberian region (Figure 6c), the RMSE reduction due to error correction is significant only until

Ocotber but becomes almost zeros from November due to the region being fully covered by sea ice. The OfflineML hindcast

is significantly better than the OnlineML hindcast until September and similar aftetwards. In the Alaskan region (Figure 6d),

there is no significant RMSE reduction in August, but we observe significant RMSE reductions from September to November.290

In December and January, the region is almost fully covered by sea ice, leading to very tiny RMSEs for all three hindcast

experiments. In the Canadian region (Figure 6e), both approaches lead to significant RMSE reductions from September to

December and the offline approach outperforms the online approach. In addition, the online approach leads to a significantly

larger RMSE in August than that of the Reference hindcast. In the Pacific region, the RMSEs are near zeros from August to

October due to very limited sea ice coverage. The two error correction approaches lead to significant RMSE reductions after295

November, and the offline approach outperforms the online approach in December and January.

Compared with the online approach, the offline approach performs better in each region. The primary reason is that the

online approach corrects instantaneous model errors (15th day of the month). The corrected errors may reemerge due to errors

from other components, damping the error correction when computing monthly averaged model outputs. In contrast, the offline

approach directly corrects the monthly model outputs, which is consistent with the findings for the whole Arctic described in300

the previous section.

In summary, while the error correction performance varies by region and target month, overall, it improves the prediction of

SIE. In addition, the offline approach is more efficient than the online approach in reducing the SIE RMSEs for both pan-Arctic

and subregions. For the results of the seasonal predictions initialized in the other seasons, please refer to Figures S1-S4.

We take a closer look at the spatial aspects of the offline error correction approach in hindcasts initialized in July (Figure 7).305

We specifically focus on identifying local areas where error correction leads to improvements that may not be evident when

examining SIE alone.

The improvements in SIC due to error correction are more discernible near the ice edge (Figure 7). In August, only a few grid

points in the Siberian region and the Atlantic region showed improvements (Figure 7a). In September, significant improvements

are observed, particularly in the central Arctic, Atlantic, Siberian, and Canadian regions (Figure 7b). In October, significant310

enhancements are observed in the Atlantic and Canadian areas. Additionally, some gray areas appear in the central Arctic,

indicating significant differences between the Reference hindcast and the OfflineML hindcast, though the magnitude of these

differences is very small. This phenomenon does not occur in the OnlineML hindcast (Figure S5). It suggests that, due to the

lack of dynamical consistency, OfflineML introduces noises in fully ice-covered regions, but this noise is small. In November

and December, the positive impact of the error correction is concentrated in areas like the Hudson Bay and the Okhotsk Sea.315

In January, the improvements only appear at a few locations within the Okhotsk Sea.

The major improvements in SIC are evident near the ice edge, which is closely associated with SIE. This spatial distribution

highlights how error correction can enhance model performance in different regions, particularly during the ice-advance season,
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Figure 7. Differences between SIC RMSE of the Reference and OfflineML hindcasts initialized from July. Warmer (colder) colors indicate

that the OfflineML hindcast performs better (worse). The white color indicates the differences don’t exceed the significant test.

where broader SIE metrics might obscure these localized gains. It is noteworthy that the OfflineML and OnlineML hindcasts

exhibit similar error spatial distributions. For specific details about the OnlineML hindcast, please refer to Figure S5.320

4 Discussion and conclusion

In this study, we apply ML in NorCPM – a fully coupled Earth system model – in both online and offline scenarios to improve

seasonal sea ice predictions in the Arctic. In the context of online error correction, ML is utilized to rectify errors in the middle

of the month, providing instantaneous corrections that serve as initial conditions for subsequent model integration. The offline

error correction approach involves the post-processing of monthly sea ice predictions.325

Our results demonstrate that both the online and offline ML-based error models can well predict the spatial distribution

of errors, albeit with slight deficiencies in capturing amplitude. By applying the two approaches to seasonal Arctic sea ice

predictions initialized from January, April, July, and October, we found that both approaches can reduce SIE prediction er-

rors compared to the raw predictions without error correction. Moreover, the improvements vary with the lead month, e.g.,

significant improvements from August to October.330
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Comparing the two error correction approaches, we found that the offline approach overall yields smaller errors than the

online approach. This may be because the online approach corrects instantaneous model errors (observed on the 15th day

of the month). However, during the model integration, the impact of error correction gradually dissipates due to errors in

the other model components. As a result, when computing monthly averaged outputs, the impact of the error correction is

damped. It could be beneficial to apply the online error correction model more frequently in time (Gregory et al., 2024).335

However, the training would not be as straightforward since the analysis increment of NorCPM is only available once per

month. Alternatively, training the hybrid model as a whole was beneficial (Farchi et al., 2021) but it requires the external

constraint to compute the gradient of the dynamical model, which was not available in our case. In contrast, the offline approach

is designed to directly correct the monthly mean output without the need for model integration.

When examining the improvements in regional SIE or SIC, the most significant improvements are observed near the ice340

edge where sea ice dynamics are active. Overall, the error correction schemes demonstrate their effectiveness in these regions,

particularly during the periods when the sea ice dynamics are most pronounced and NorCPM exhibits large errors typically

from September to November. During these months, the sea ice margins are subject to rapid changes, and the error correction

approaches can capture and adjust for these variations accurately, leading to better model performance in these critical regions.

Our error correction schemes operate on a grid-point basis. As mentioned before, our ML model does not utilize spatial345

patterns, which explains some of the limitations of our approaches, particularly when the NorCPM’s raw hindcasts are already

accurate. However, this simplicity offers considerable flexibility in applying the error correction models and reduces the risk

of overfitting to specific spatial patterns.
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