

1 Global Sensitivity of Tropospheric Ozone to Precursor Emissions in

2 Clean and Present-Day Atmospheres: Insights from AerChemMIP

3 Simulations

4 Wei Wang¹ and Chloe Yuchao Gao^{2,3,*}

⁵ ¹ Nanjing-Helsinki Institute in Atmospheric and Earth System Sciences, Nanjing
⁶ University, Nanjing, 210023, China

⁷ ² Department of Atmospheric and Oceanic Sciences & Shanghai Key Laboratory of
⁸ Ocean-Land-Atmosphere Boundary Dynamics and Climate Change, Fudan
⁹ University, Shanghai, 200438, China

10 ³ Institute of Eco-Chongming (IEC), Shanghai, 202151, China

11

12 * Corresponding author: Chloe Yuchao Gao (gyc@fudan.edu.cn)

13 **Abstract**

14 Ozone (O_3) is a Short-lived Climate Forcer (SLCF) that contributes to radiative
15 forcing and indirectly affects the atmospheric lifetime of methane, a major
16 greenhouse gas. This study investigates the sensitivity of global O_3 to precursor
17 gases in a clean atmosphere, where hydroxyl (OH) radical characteristics are more
18 spatially uniform than in present-day conditions, using data from the *PiClim*
19 experiments of the Aerosols and Chemistry Model Intercomparison Project
20 (AerChemMIP) within the CMIP6 framework. We also evaluate the O_3 simulation
21 capabilities of four Earth system models (CESM2-WACCM, GFDL-ESM4, GISS-
22 E2-1-G, and UKESM1-0-LL). Our analysis reveals that the CESM and GFDL
23 models effectively capture seasonal O_3 cycles and consistently simulate vertical O_3
24 distribution. While all models successfully simulate O_3 responses to anthropogenic
25 precursor emissions, CESM and GFDL show limited sensitivity to enhanced natural
26 NO_x emissions (e.g., from lightning) compared to GISS and UKESM. The
27 sensitivities of O_3 to its natural precursors (NO_x and VOCs) in GISS and UKESM
28 models are substantially lower than their responses to anthropogenic emissions,
29 particularly for lightning NO_x sources. These findings refine our understanding of
30 O_3 sensitivity to natural precursors in clean atmospheres and provide insights for
31 improving O_3 predictions in Earth system models.

32 **1 Introduction**

33 Tropospheric ozone (O_3) is a key air pollutant and atmospheric oxidant, exerting
34 extensive influence on air quality and human health (Coffman et al., 2024; Lim et al.,
35 2019; Malley et al., 2017; Nuvolone et al., 2018), climate systems, and
36 biogeochemical processes (Hu et al., 2023; Fowler et al., 2009). As a Short-lived
37 Climate Forcer (SLCF), tropospheric O_3 exerts a radiative forcing of 0.35–0.5 $W\ m^{-2}$
38 and influences atmospheric processes such as evaporation, cloud formation, and
39 general circulation (Khomsi et al., 2022; Möller and Mauersberger, 1992; Rogelj et
40 al., 2014; Stevenson et al., 2013). Furthermore, O_3 plays a crucial role in regulating
41 the terrestrial carbon sink and enhancing the formation of the hydroxyl (OH) radical
42 (Naik et al., 2013b), which, in turn, affect the lifetime of methane (and halocarbons),
43 the second most prominent anthropogenic greenhouse gas after carbon dioxide
44 (KumAŞ et al., 2023). O_3 also contributes to an increased atmospheric oxidation
45 capacity, influencing the formation of secondary aerosols, such as organic aerosol,
46 sulfate, and nitrate, which have significant implications for radiative forcing (Karsel
47 et al., 2018).

48 While stratospheric O_3 entrainment contributes to tropospheric O_3 levels, the
49 primary source of tropospheric O_3 is photochemical production. This secondary
50 pollutant is formed through photochemical oxidation reactions involving oxides of
51 nitrogen ($NO + NO_2 = NO_x$) and volatile organic compounds (VOCs) in the presence
52 of OH and hydroperoxyl (HO_2) radicals (Monks et al., 2015). The relationship
53 between O_3 and its precursors is nonlinear, making it challenging to mitigate O_3
54 pollution through simple precursor reduction strategies. Regional-scale sensitivity to
55 O_3 precursors has been extensively investigated, such as emphasizing the diagnostic
56 utility of ratios including O_3/NO_x (Jin et al., 2023; Sillman and He, 2002) and
57 VOC/NO_x (Li et al., 2024) for assessing O_3 - NO_x -VOC sensitivity, and nations such
58 as the United Kingdom and the United States have demonstrated significant success
59 in controlling regional ozone levels by implementing measures to reduce NO_x
60 emissions (Hakim et al., 2019). However, the global-scale sensitivity of O_3 to its
61 precursors has received limited attention, despite evidence suggesting that global O_3
62 forcing may have a more substantial impact on climate forcing than localized O_3
63 enhancements. Consequently, improving our understanding of O_3 formation

64 mechanisms on a global scale is essential for effective air quality management and
65 climate change mitigation strategies (Yu et al., 2021).

66 Recent studies utilizing Coupled Model Intercomparison Project Phase 6
67 (CMIP6; Eyring et al., 2016) datasets have offered insights into the spatio-temporal
68 evolution of the global tropospheric O₃ budget from 1850 to 2100 (Griffiths et al.,
69 2021; Turnock et al., 2019) and have quantified the global stratosphere-troposphere
70 O₃ exchange process (Li et al., 2024; Griffiths et al., 2021). However, challenges
71 persist in quantifying the sensitivity of global O₃ to its precursors when assessing the
72 increasing global O₃ forcing attributed to these precursors. These challenges arise
73 from regional variability in meteorological conditions (Carrillo-Torres et al., 2017),
74 differences in NO_x and VOC volume mixing ratios (Jin et al., 2023; Sillman and He,
75 2002), and the distinct characteristics of OH and HO₂ influenced by varying degrees
76 of urbanization (Karl et al., 2023; Vermeuel et al., 2019). Furthermore, while the
77 observed upward trends in O₃ levels are primarily attributed to increased precursor
78 emissions, limited research has investigated whether contemporary atmospheric
79 conditions—shaped by climate warming and enhanced oxidation capacities—may be
80 creating a more favorable environment for O₃ formation.

81 To address these gaps, this study investigates the sensitivity of global-scale O₃
82 to its precursors under a pre-industrial background atmosphere, with approximate
83 uniform HO_x conditions in major continental areas. We also examine the feedback
84 mechanisms of different model responses to precursors from both anthropogenic and
85 natural sources, using *PiClim* experiment data from the Aerosols and Chemistry
86 Model Intercomparison Project (AerChemMIP) simulations (Collins et al., 2017)
87 within CMIP6. Additionally, this research evaluates the ozone formation potential in
88 the pre-industrial era based on contemporary (2014) emissions of O₃ precursors, with
89 the aim of elucidating whether shifts in the background atmosphere have rendered it
90 chemically more conducive to O₃ generation. Our analysis employs four models with
91 interactive stratospheric and tropospheric chemistry, which have been extensively
92 utilized in O₃-related research (Brown et al., 2022; Griffiths et al., 2021; Tilmes et
93 al., 2022; Zeng et al., 2022). This approach allows us to assess the global-scale
94 sensitivity of O₃ to its precursors, evaluate the consistency and discrepancies among
95 different models in representing O₃-precursor relationships, and provide insights into

96 the potential impacts of changing emissions on future global O₃ levels and associated
97 climate forcing, contributing to more accurate projections of future climate change.

98 **2 Models and methods**

99 **2.1 Model descriptions**

100 We use monthly-mean simulation data from four Earth system models in this
101 study. The four chosen models possess the benefit of extensive applicability and a
102 comprehensive *PiClim* computational framework. Table 1 summarizes key model
103 features, including model resolution, vertical stratification, complexity of gas-phase
104 chemistry, and relevant references. All models include interactive coupling of
105 tropospheric and stratospheric chemistry with O₃ dynamics integrated into the
106 radiation scheme, simulating the interaction between O₃ concentration and
107 temperature. The response of simulated reactive gas emissions to chemical
108 complexity is important. For example, changes in Biogenic Volatile Organic
109 Compounds (BVOCs) can impact O₃, methane lifetime, and potentially the oxidation
110 of other aerosol precursors in models with interactive tropospheric chemistry via OH
111 changes.

Table 1. Information on model resolution, vertical levels, property of gas-phase chemistry and references.

Model	Resolution (lat × lon)	Number of gridpoints	Vertical levels	Aerosol model	Simulation reference
CESM2-WACCM	192×288	55296	70 levels; top level 6×10^{-6} hPa	MAM4	(Gettelman et al., 2019)
GFDL-ESM4	180×288	51840	49 levels; top level 0.01 hPa	MATRIX	(Dunne et al., 2020; Horowitz et al., 2020)
GISS-E2-1-G	90×144	12960	40 levels; top level 0.1 hPa	OMA	(Miller et al., 2014; Kelley et al., 2020)
UKESM1-0-LL	144×192	27648	85 levels; top level 1 hPa	GLOMAP	(Mulcahy et al., 2018; Sellar et al., 2019)

114 CESM2-WACCM (hereafter “CESM”) is a fully coupled Earth system model
115 that integrates the Community Earth System Model version 2 (Emmons et al., 2020)
116 with the Whole Atmosphere Community Climate Model version 6 (WACCM6). The
117 atmospheric component operates at a horizontal resolution of 0.9375° latitude by 1.25°
118 longitude, with 70 hybrid sigma-pressure vertical layers extending from the surface
119 to 6×10^{-6} hPa. Its interactive chemistry and aerosol modules include the troposphere,
120 stratosphere, and lower thermosphere, with a comprehensive treatment of 231 species,
121 150 photolysis reactions, 403 gas-phase reactions, 13 tropospheric heterogeneous
122 reactions, and 17 stratospheric heterogeneous reactions (Emmons et al., 2020). The
123 model utilizes the four-mode Modal Aerosol Model (MAM4) (Emmons et al., 2020)
124 and features its secondary organic aerosol (SOA) framework based on the Volatility
125 Basis Set (VBS, Donahue et al., 2013) approach. The photolytic calculations use both
126 inline chemical modules and a lookup table approach, which does not consider
127 changes in aerosols.

128 The Atmospheric Model version 4.1 (AM4.1, Horowitz et al. (2020)) within the
129 GFDL Earth system model (Dunne et al., 2020) incorporates an interactive chemistry
130 scheme that spans both the troposphere and stratosphere (GFDL-ESM4; hereafter
131 “GFDL”). The atmospheric component operates at a horizontal resolution of 1°
132 latitude by 1.25° longitude, with 49 hybrid sigma-pressure vertical layers extending
133 from the surface to 0.01 hPa. This scheme includes 56 prognostic tracers, 36
134 diagnostic species, 43 photolysis reactions, 190 gas-phase kinetic reactions, and 15
135 heterogeneous reactions. Stratospheric chemistry accounts for key O_3 depletion
136 cycles (O_x , HO_x , NO_x , ClO_x , and BrO_x) and heterogeneous reactions on stratospheric
137 aerosols (Austin et al., 2013). Photolysis rates are calculated dynamically with the
138 FAST-JX version 7.1 code, which considers the radiative impacts of modeled
139 aerosols and clouds. The chemical mechanism is further elaborated in Horowitz et al.
140 (2020), and the gas-phase and heterogeneous chemistry are similar to those employed
141 by Schnell et al. (2018). Non-interactive natural emissions of O_3 precursors are
142 prescribed as outlined in Naik et al. (2013a).

143 The GISS model, developed by the NASA Goddard Institute for Space Studies,
144 integrates the chemistry-climate model version E2.1 with the GISS Ocean v1 (G01)
145 model (GISS-E2-1-G; hereafter “GISS”). The specific configurations of this model

146 utilized for the CMIP6 are detailed in Kelley et al. (2020). In this study, we focus on
147 the model subset that includes online interactive chemistry. The atmospheric
148 component operates at a horizontal resolution of 2° latitude by 2.5° longitude, with
149 40 hybrid sigma-pressure vertical layers extending from the surface to 0.1 hPa. The
150 interactive chemistry module employs the GISS Physical Understanding of
151 Composition-Climate Interactions and Impacts (G-PUCCINI) mechanism for gas-
152 phase chemistry (Kelley et al., 2020; Shindell et al., 2013). For aerosols, the model
153 utilizes either the One-Moment Aerosol (OMA) or the Multiconfiguration Aerosol
154 Tracker of Mixing state (MATRIX) model (Bauer et al., 2020). The gas-phase
155 chemistry involves 146 reactions, including 28 photodissociation reactions, affecting
156 47 species across the troposphere and stratosphere, along with an additional five
157 heterogeneous reactions. The model transports 26 aerosol particle tracers and 34 gas-
158 phase tracers (OMA).

159 UKESM represents the United Kingdom's Earth system model (Sellar et al.,
160 2019). It builds upon the Global Coupled 3.1 (GC3.1) configuration of HadGEM3
161 (Williams et al., 2018), incorporating additional Earth system components, such as
162 ocean biogeochemistry, the terrestrial carbon-nitrogen cycle, and atmospheric
163 chemistry (UKESM1-0-LL; hereafter "UKESM"). Walters et al. (2019) provided
164 descriptions of the atmospheric and land components. The atmospheric component
165 operates at a horizontal resolution of 1.25° latitude by 1.875° longitude, with 85
166 vertical layers extending from the surface to 85 km. The chemistry module in the
167 UKESM model is a unified stratosphere-troposphere scheme (Archibald et al., 2020)
168 including 84 tracers, 199 bimolecular reactions, 25 unimolecular and termolecular
169 reactions, 59 photolytic reactions, 5 heterogeneous reactions, and 3 aqueous-phase
170 reactions for the sulfur cycle from the United Kingdom Chemistry and Aerosols
171 (UKCA) model. The aerosol module is based on the two-moment scheme from
172 UKCA, known as GLOMAP mode, and is integrated into the Global Atmosphere
173 7.0/7.1 configuration of HadGEM3 (Walters et al., 2019). The UKESM uses
174 interactive Fast-JX photolysis scheme, which is applied to derive photolysis rates
175 between 177 and 850 nm, as described in Telford et al. (2013). In the lower
176 mesosphere, photolysis rates are calculated using lookup tables (Lary and Pyle, 1991).

177 Models differ in their representation of O₃ source and sink processes, as well as
178 in the definitions of the associated budget terms, which contributes to variability in

179 model outcomes (Stevenson et al., 2006; Young et al., 2018). For example, in the
180 GISS model, the tropospheric chemistry component simulates the $\text{NO}_x\text{-HO}_x\text{-O}_x\text{-CO}$ -
181 CH_4 system and the oxidation pathways for non-methane volatile organic compounds
182 (NMVOCs). Central to these discrepancies are the treatments of non-methane volatile
183 organic compound NMVOCs chemistry, which impacts both chemical production
184 and destruction rates, along with surface removal mechanisms and stratospheric
185 influences. Furthermore, the choice of tropopause definition can significantly alter
186 the diagnosed O_3 burden, as well as the flux from the stratosphere.

187 All four of the interactive tropospheric chemistry models contain
188 parameterizations of the nitrogen oxide (NO_x) emissions from lightning based on the
189 height of the convective cloud top (Price et al., 1997; Price and Rind, 1992; Price,
190 2013), and the tropopause height for each model based on the WMO definition. Each
191 model has a different way of implementing emissions and how much they are profiled.
192 For instance, online calculations of lightning NO_x emissions during deep convection
193 in the GISS model are based on the method described by (Kelley et al., 2020).
194 Lightning NO_x continues to be a major source of uncertainty in both model
195 comparisons and the temporal development of tropospheric O_3 because it has a
196 disproportionately significant influence on tropospheric- O_3 concentration relative to
197 surface emissions (Murray et al., 2013).

198 BVOC emissions are modeled as a function of vegetation type and cover, as well
199 as temperature and photosynthetic rates (gross primary productivity) (Unger, 2014;
200 Sporre et al., 2019; Pacifico et al., 2011; Guenther et al., 1995). While models vary
201 in the speciation of emitted VOCs, they commonly include isoprene and
202 monoterpenes, each with its own distinct emission parameterization. Despite the
203 common reliance on photosynthetically active radiation for the parameterization of
204 BVOC emissions across the four models, there exist notable distinctions. For instance,
205 the GFDL model exclusively considers the leaf area index, neglecting the impact of
206 temperature on BVOC emissions, and the CESM, GISS, and UKESM models omit
207 the influence of vegetation type from their calculations.

208 2.2 Simulation data and experimental design

209 The primary objective of AerChemMIP is to quantitatively ascertain the
210 influence of aerosols and reactive trace gases on the climate system, as well as the

211 bidirectional feedback mechanisms involved (Collins et al., 2017). Table 2 presents
212 a synopsis of the experimental configurations employed in this study. The control
213 experiment, denoted as *PiClim-control*, is designed to stabilize both atmospheric
214 composition and climatic conditions at a state reminiscent of the pre-industrial era,
215 where the natural fractions of stratospheric ozone forcing species such as halocarbons
216 was extremely low, specifically 1850. The *PiClim-2x* experiment involves doubling
217 of individual natural emission fluxes relative to the 1850 control, while the *PiClim-x*
218 experiments calibrate these fluxes to align with the emission levels prevalent in 2014
219 (Collins et al., 2017). *PiClim-2xNO_x* represents to doubling of the nitric oxide
220 emissions from natural sources due to lightning activity. *PiClim-2xVOC* represents to
221 doubling of the volatile organic compound emissions from natural sources, including
222 isoprene and monoterpenes. *PiClim-HC* represents the pre-industrial climatological
223 control with 2014 halocarbons emissions both from anthropogenic (CFCs, HCFCs
224 and compounds containing bromine) and natural sources. *PiClim-CH₄* represents the
225 pre-industrial climatological control with 2014 methane emissions both from
226 anthropogenic and natural sources. *PiClim-NO_x* represents the pre-industrial
227 climatological control with 2014 nitrogen oxide emissions both from anthropogenic
228 and natural sources. *PiClim-VOC* represents the pre-industrial climatological control
229 with 2014 VOC emissions both from anthropogenic and natural sources. *PiClim-*
230 *NTCF* represents the pre-industrial climatological control with 2014 near-term
231 climate forcers emissions, including aerosols and chemically reactive gases such as
232 tropospheric ozone and methane. *PiClim-N₂O* represents the pre-industrial
233 climatological control with 2014 nitrous oxide emissions both from anthropogenic
234 and natural sources. *PiClim-aer* represents the pre-industrial climatological control
235 with 2014 aerosol concentrations. *PiClim- O₃* represents the pre-industrial
236 climatological control with 2014 ozone concentrations. *PiClim-BC* represents the pre-
237 industrial climatological control with 2014 black carbon concentrations.

238

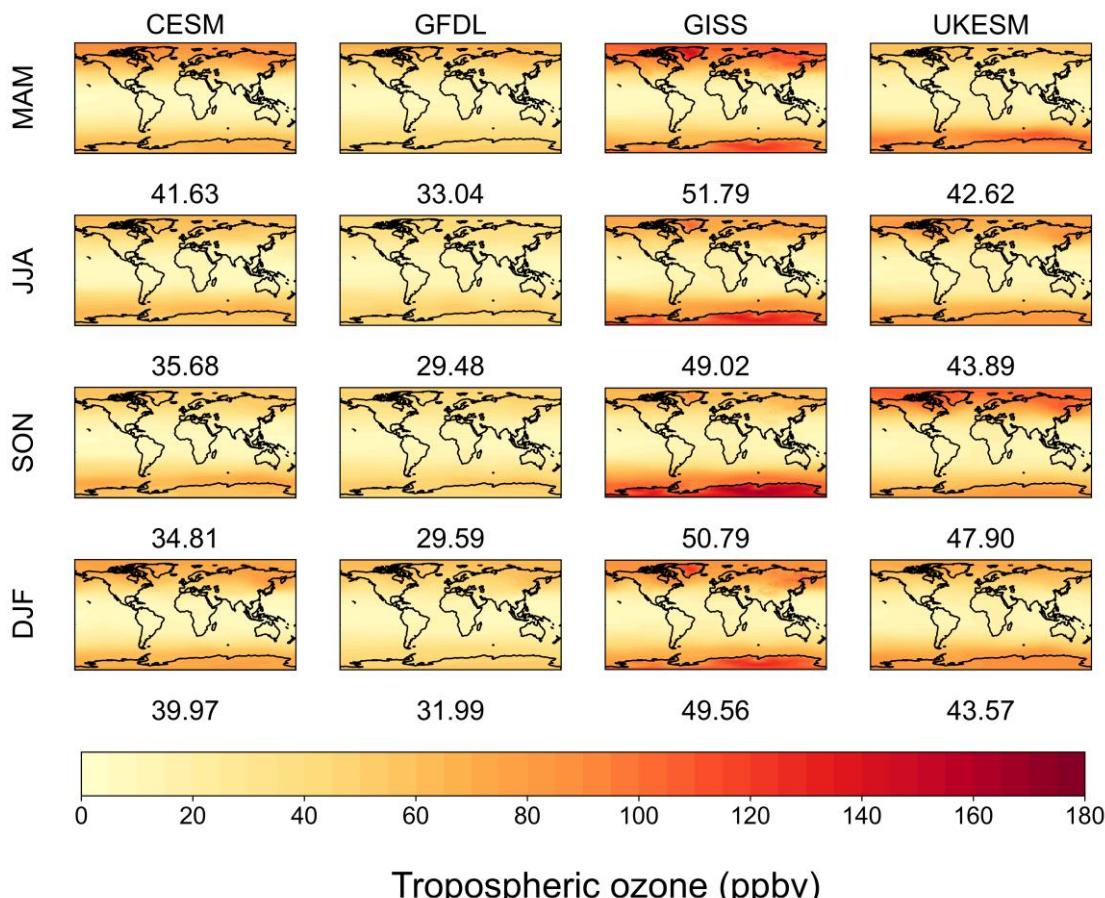
Table 2. The available experiments of selected models in this study. "X" represents the experiment is available

Model	<i>PiClim-</i>											
	<i>2xNO_x</i>	<i>2xVOC</i>	<i>HC</i>	<i>CH₄</i>	<i>NO_x</i>	<i>VOC</i>	<i>NTCF</i>	<i>N₂O</i>	<i>O₃</i>	<i>aer</i>	<i>control</i>	<i>BC</i>
CESM2-WACCM	X	X	X	X	X	X	X	X	X			
GFDL-ESM4	X	X	X		X	X			X	X	X	X
GISS-E2-1-G	X	X	X	X	X	X	X	X	X	X	X	X
UKESM1-0-LL	X	X	X	X	X	X	X	X	X	X	X	X

239

240 We analyzed models that had archived sufficient data in the Earth System Grid
241 Federation (ESGF) system to permit accurate characterization of tropospheric O₃. In
242 practice this meant we used archived O₃ data from the AERmon characterization of
243 the tropospheric O₃ (variable name: “o3”) on native model grids. Other variables used
244 include chemical production (variable name: “o3prod”), chemical destruction
245 (variable name: “o3loss”), nitrogen monoxide (variable name: “no”), nitrogen
246 dioxide (variable name: “no2”), isoprene (variable name: “isop”), organic dry aerosol
247 (variable name: “emioa”), and secondary organic aerosol (variable name: “mmrsoa”).
248 All data used in this paper are available on the Earth System Grid Federation website
249 and can be downloaded from <https://esgf-index1.ceda.ac.uk/search/cmip6-ceda/> (last
250 access: 4 July 2024, ESGF-CEDA, 2020).

251 A new set of historical anthropogenic emissions has been developed with the
252 Community Emissions Data System (CEDS, Hoesly et al., 2018). CEDS uses updated
253 emission factors to provide monthly emissions of the major aerosol and trace gas
254 species over the period 1750 to 2014 for use in CMIP6, and biomass burning
255 emissions are based on a different inventory developed separate from CEDS (Van
256 Marle et al., 2017). The primary analysis examines emissions of NO_x and VOCs from
257 anthropogenic (Hoesly et al., 2018) and biomass burning sources (van Marle et al.,
258 2017) that were provided as a common emission inventory to be used by all models
259 (including the four in this study) in CMIP6 simulations. In the CESM and GFDL
260 models, biogenic emissions, including isoprene and monoterpenes, are calculated
261 interactively using MEGAN version 2.1 (Guenther et al., 2012) and are further
262 utilized for SOA formation. While in the GISS model, biogenic emissions of isoprene
263 are computed online and are sensitive to temperature (Shindell et al., 2006), whereas
264 alkenes, paraffins, and terpenes are prescribed. And in the UKESM model, emissions
265 of isoprene and monoterpenes are interactively calculated using the iBVOC emission
266 model (Pacifico et al., 2011).


267 **3 Results and Discussions**

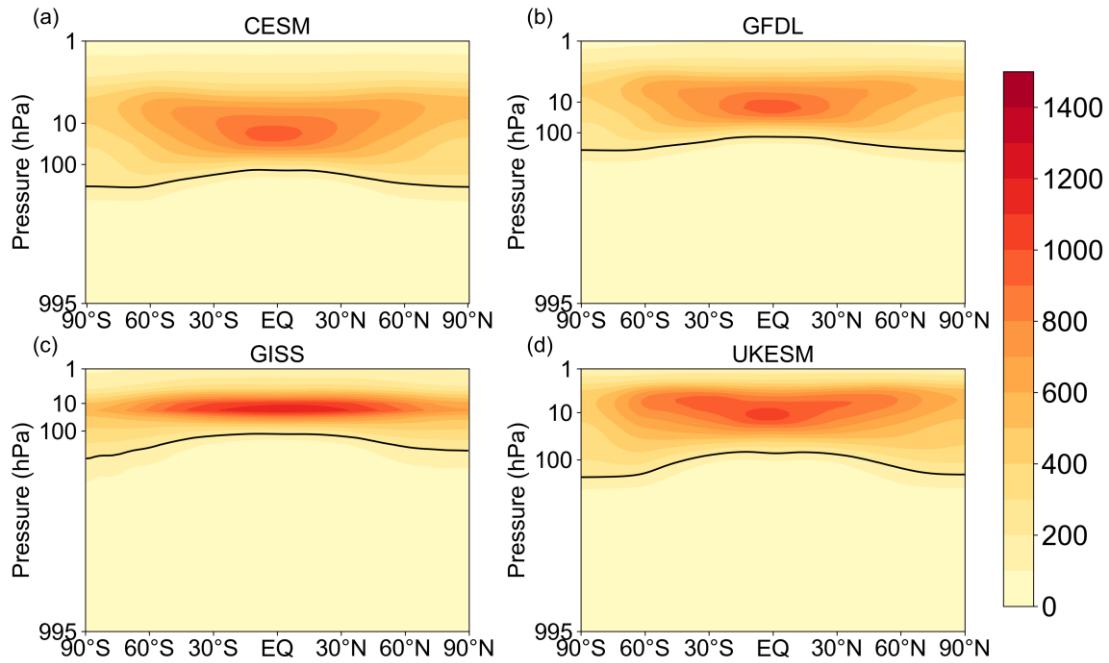
268 **3.1 Spatial, seasonal, and vertical distribution of tropospheric O₃**

269 We first investigate the seasonal and vertical variations of ozone volume mixing
270 ratio in the pre-industrial atmospheres simulated by four selected models. The
271 analysis of tropospheric O₃ data derived from the *PiClim* experiment outcomes of

272 CMIP6 models reveals distinct seasonal cycles and inter-model variations (Fig. 1).
 273 The GISS model demonstrates the highest simulated tropospheric column O₃ volume
 274 mixing ratio at 50.29 ppbv in the 29th and 30th year of simulation, followed by the
 275 UKESM (44.50 ppbv), CESM (38.02 ppbv), and GFDL (31.03 ppbv), where the
 276 height of the tropopause is based on the definition of WMO. These are consistent with
 277 previous findings from historical experiments (Griffiths et al., 2021).

278 Furthermore, our analysis indicates that the disparity in O₃ volume mixing ratio
 279 during the *PiClim* experiment primarily occurs in polar regions. This may be
 280 attributed to the GISS model's ability to replicate a more robust entrainment of
 281 stratospheric O₃, a key source of tropospheric O₃ in the pre-industrial atmosphere,
 282 particularly at the poles. Previous studies have demonstrated that elevated O₃ levels
 283 in the Arctic during MAM and DJF, as well as in the Antarctic during JJA and SON,
 284 result from the cumulative impact of the polar O₃ barrier (Romanowsky et al., 2019).

285
 286 **Figure 1.** Comparison of the seasonal cycle of tropospheric column averaged volume
 287 mixing ratio of O₃ (density weighted) of the *PiClim* experiment results in the 29th and
 288 30th year of simulation of the four models. Each row shows a separate meteorological
 289 season, arranged from top to bottom: March to May (MAM), June to August (JJA),


290 September to November (SON), and December to February (DJF). Each column
291 represents a selected model, listed from left to right: CESM, GFDL, GISS, and
292 UKESM. The figures displayed below each chart represent the global average ozone
293 volume mixing ratio.

294 Seasonal variations in tropospheric O₃ volume mixing ratio exhibit model-
295 specific patterns. The CESM, GFDL, and GISS models simulate peak tropospheric
296 O₃ volume mixing ratio in spring during the *PiClim* experiments. In contrast, the
297 UKESM model reproduces maximum O₃ volume mixing ratio in autumn, indicating
298 a limited capability in simulating dynamic circulations in the tropopause.
299 Furthermore, the seasonal O₃ cycle simulations in CESM, GFDL, and GISS exhibit
300 distinct discrepancies in their outcomes. For instance, the CESM model simulates the
301 lowest O₃ volume mixing ratio in SON, while the GFDL model exhibits the lowest
302 volume mixing ratio in JJA. The GISS model simulation indicates higher O₃ levels in
303 autumn compared to DJF, which is consistent with results from historical experiments
304 (Griffiths et al., 2021). Additionally, our analysis reveals that the CESM simulations
305 demonstrate the most pronounced seasonal oscillation amplitude in O₃ volume
306 mixing ratio, approximately 6.82 ppbv. This feature underscores the model's
307 sensitivity to seasonal factors affecting tropospheric O₃ dynamics.

308 In the *PiClim* experiments, all four models accurately reproduce the peak volume
309 mixing ratio of O₃ in the middle stratosphere at 10 hPa and the zonal average mixing
310 ratios reaching their peak in the upper troposphere, particularly in extratropical
311 regions, indicative of extended chemical lifetimes at higher altitudes. However,
312 notable disparities are observed in the vertical distribution characteristics of O₃
313 among the four models (Fig. 2). Specifically, the CESM model exhibits the highest
314 vertical extension, including an additional hotspot simulated in the thermosphere.
315 While the GFDL and CESM2 models exhibit consistent simulation outcomes below
316 0.01 hPa, GISS and UKESM simulate significantly higher stratospheric O₃ levels at
317 10 hPa in comparison.

318 Notable distinctions are observed in the spatial distribution of O₃. The GISS
319 model simulates a more vertically concentrated and latitudinally extended O₃
320 distribution. This characteristic may be a crucial factor contributing to the pronounced
321 impact of O₃ transport in the polar stratosphere, as simulated by GISS. The zonal
322 variability in O₃ distribution simulated by the UKESM falls between that of the GISS
323 and CESM models. These inter-model discrepancies in O₃ simulation results likely

324 reflect suboptimal representation of local and regional dynamics, as well as omitted
 325 chemical processes in corresponding models. The variability and uncertainty in O₃
 326 precursor emission estimates further exacerbate these disparities.

327
 328 **Figure 2.** The zonal mean O₃ distribution for the 29th and 30th year of the *PiClim*
 329 experiment results from the (a) CESM, (b) GFDL, (c) GISS, and (d) UKESM model.
 330 Thick black lines represent the tropopause height for each model based on the WMO
 331 definition.

322 3.2 Characteristics of tropospheric O₃ under various experiments

323 Tables 3 and 4 present the global O₃ volume mixing ratio and tropospheric O₃
 324 volume mixing ratio across all experiments from the four different models. The GISS
 325 model simulations show higher tropospheric O₃ volume mixing ratios, reflecting
 326 increased rates of stratospheric downwelling and surface O₃ precursor emissions.
 327 However, its overall O₃ volume mixing ratio is notably lower compared to the
 328 UKESM, CESM, and GFDL models, with reductions of 114.24, 76.16, and 47.04
 329 ppbv, respectively. Analysis reveals that in the CESM, GFDL, and GISS models, the
 330 global O₃ molar fraction in the *PiClim-2NO_x* and *PiClim-NO_x* experiments surpasses
 331 that in the *PiClim-2VOC* and *PiClim-VOC* experiments. This difference is most
 332 pronounced in the GISS model, aligning with previous findings indicating its
 333 heightened sensitivity to NO_x response (Turnock et al., 2019). Conversely, in the
 334 UKESM model, the global O₃ molar fraction of the *PiClim-2NO_x* experiment is lower
 335 than that of the *PiClim-2VOC* experiment. Interestingly, the tropospheric O₃
 336 volume mixing ratios in the *PiClim-2NO_x* experiment in the CESM and GFDL models

347 are notably lower than in their respective *PiClim-2VOC* experiments, with reductions
348 of 0.41 and 0.29 ppbv. This discrepancy challenges the conventional understanding
349 that increased NO_x emissions from lightning activity should lead to tropospheric O₃
350 generation, suggesting a need for enhanced sensitivity simulations in these two
351 models regarding O₃ and NO_x emissions from natural sources due to lightning activity.
352 In contrast, the *PiClim-2NO_x* experiments of the GISS and UKESM models
353 effectively simulate an increase in tropospheric O₃ volume mixing ratio compared to
354 their *PiClim-2VOC* experiments. Furthermore, across all four models, the
355 tropospheric O₃ volume mixing ratio of the *PiClim-NO_x* experiment surpasses that of
356 the *PiClim-VOC* experiment, indicating the models' ability to accurately replicate the
357 impact of rising anthropogenic emissions on O₃ production. Additionally, methane, a
358 crucial natural source of volatile organic compounds and a key greenhouse gas,
359 enhances tropospheric O₃ generation by CH₄ oxidation and influencing temperature,
360 thereby elevating global O₃ volume mixing ratio. This phenomenon contributes to the
361 heightened sensitivity of O₃ to methane volume mixing ratio in a clean atmosphere.
362 Elevated volume mixing ratios of HCFCs (*PiClim-HC*) and nitrous oxide (*PiClim-*
363 *N₂O*) lead to substantial stratospheric O₃ depletion, consequently affecting
364 tropospheric O₃ volume mixing ratio through the pod coil process. Other influencing
365 factors, such as aerosols and black carbon, induce warming through radiation effects,
366 thereby simulating elevated O₃ volume mixing ratio.

367
368

Table 3. The averaged volume mixing ratio of global stratospheric ozone at all simulated vertical levels in the 29th and 30th year for each experiment of four models (ppbv).

Model	<i>PiClim-</i>											
	<i>2xNO_x</i>	<i>2xVOC</i>	<i>HC</i>	<i>CH₄</i>	<i>NO_x</i>	<i>VOC</i>	<i>NTCF</i>	<i>N₂O</i>	<i>O₃</i>	<i>aer</i>	<i>control</i>	<i>BC</i>
CESM2-WACCM	726.06	725.95	662.71	713.80	728.61	727.06	725.42	710.94				
GFDL-ESM4	628.63	626.68	571.32		632.03	628.92			632.70	628.44	629.98	629.78
GISS-E2-1-G	490.91	482.13	422.65	493.27	490.22	480.93	486.46	471.84	485.17	486.54	484.76	484.82
UKESM1-0-LL	707.27	707.93	613.89	697.32	716.14	704.78	723.99	694.44	714.27	697.04	702.88	701.81

369

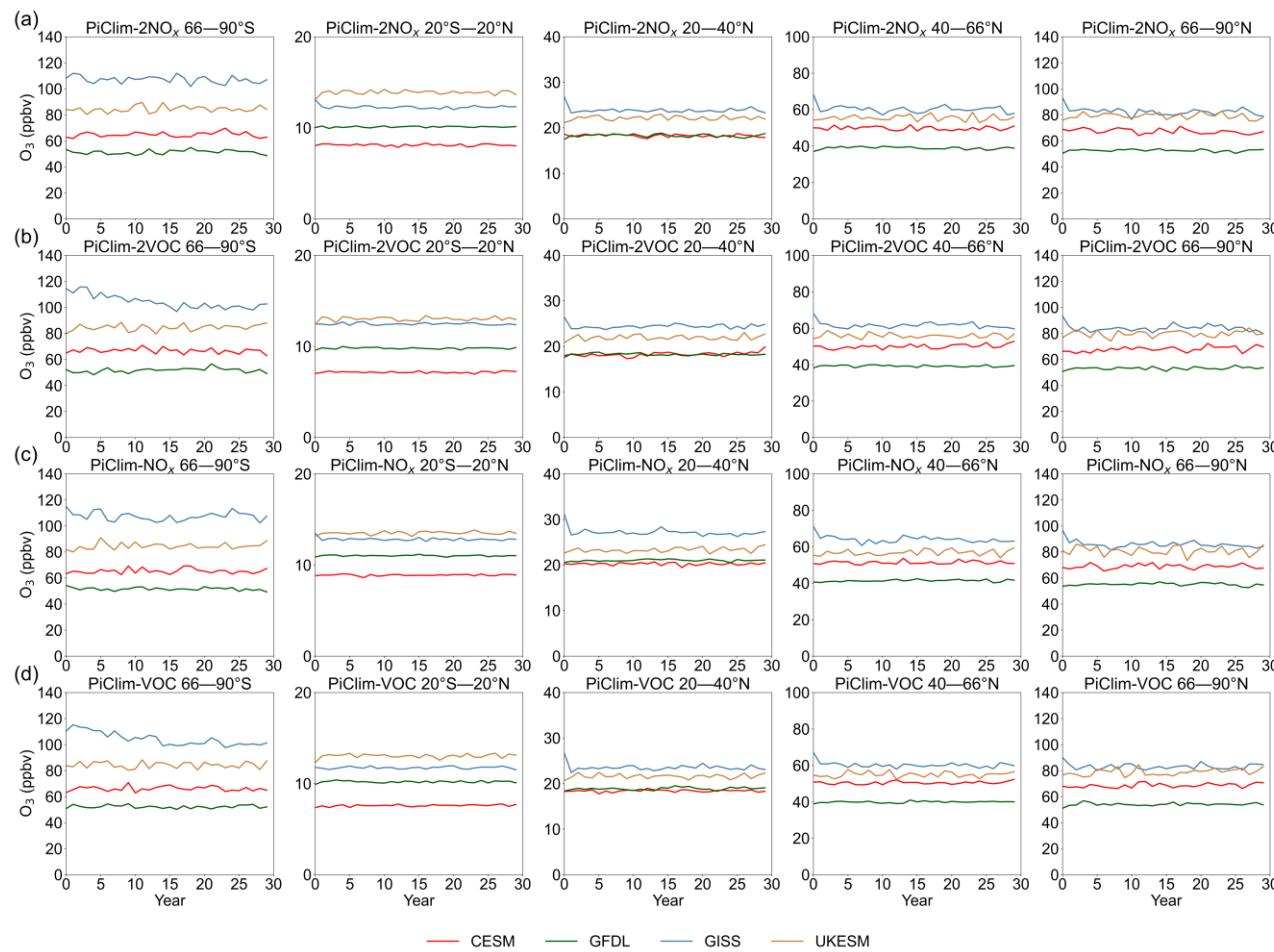

370

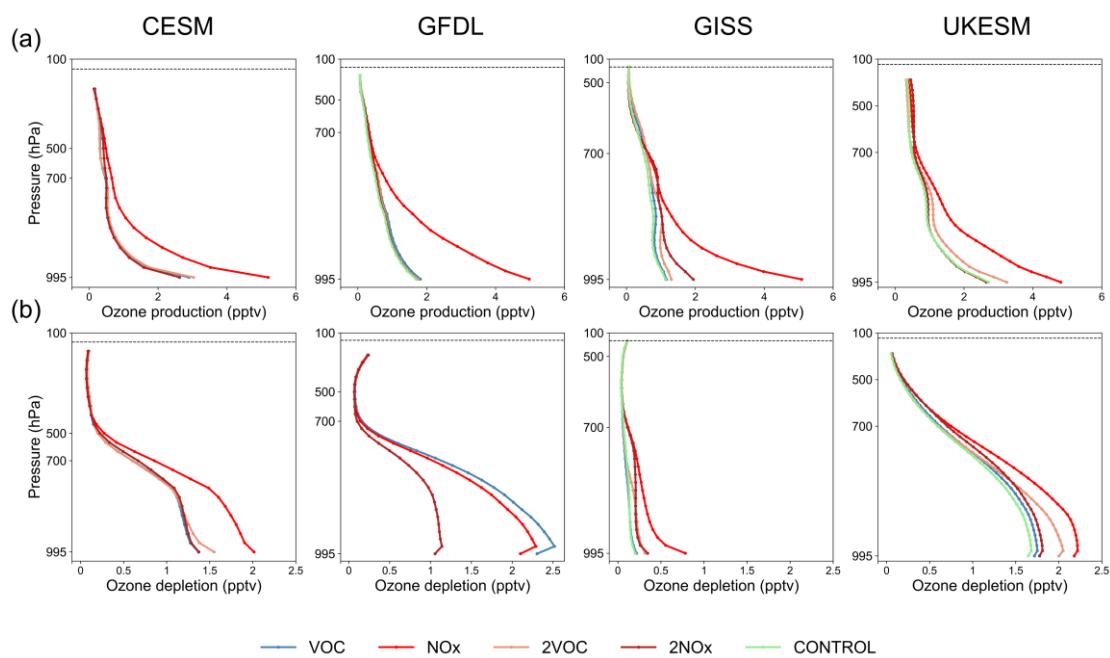
Table 4. The averaged volume mixing ratio of global tropospheric ozone in the 29th and 30th year for each experiment of four models (ppbv).

Model	<i>PiClim-</i>											
	2xNO _x	2xVOC	HC	CH ₄	NO _x	VOC	NTCF	N ₂ O	O ₃	aer	control	BC
CESM2-WACCM	38.17	38.58	33.44	39.42	39.16	39.14	41.33	38.10				
GFDL-ESM4	31.33	31.62	24.42		32.64	32.25			34.09	31.01	30.79	30.95
GISS-E2-1-G	52.30	50.96	44.18	53.08	52.14	50.21	51.65	48.36	52.47	50.36	49.27	50.02
UKESM1-0-LL	47.53	46.14	31.04	45.55	46.02	45.97	47.29	45.04	46.65	43.69	46.70	45.11

371

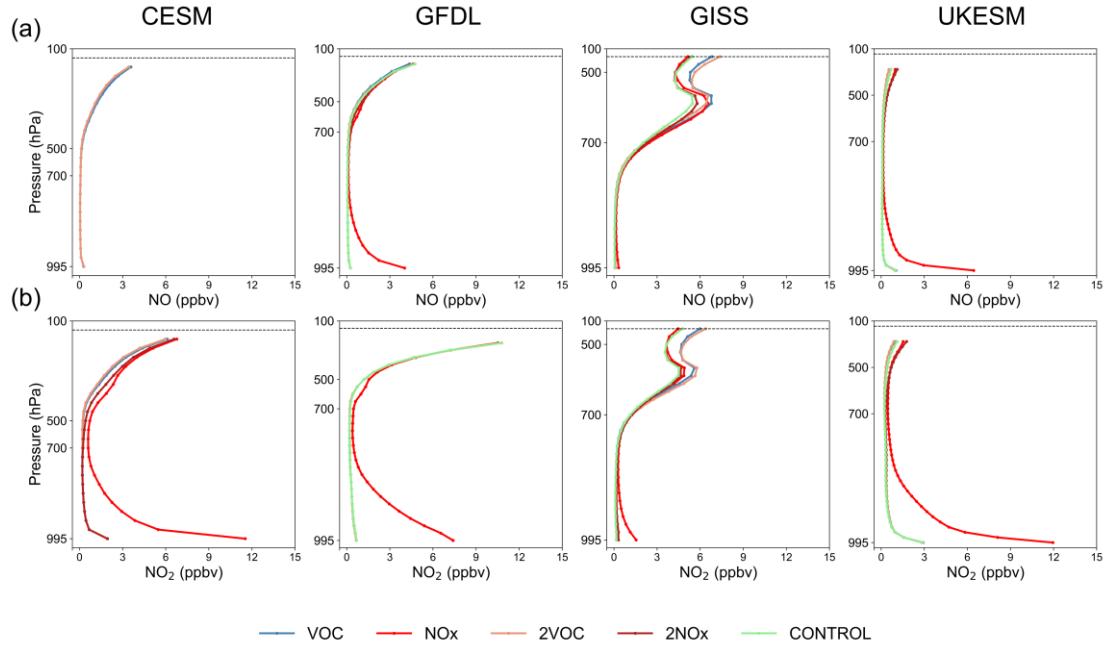
372 Figure 3 shows the temporal evolution of tropospheric O₃ levels across various
373 latitudes, as simulated by four distinct models in O₃ precursor experiments. In the
374 *PiClim* experiments, none of the models predicted an enhancement in O₃ volume
375 mixing ratio with simulation time at all latitudes, reflecting the consistent chemical
376 lifetime of O₃ within the pristine atmospheric conditions. However, discrepancies in
377 O₃ predictions among the models become more pronounced with increasing latitudes.
378 While the CESM model generally exhibits higher tropospheric O₃ volume mixing
379 ratios compared to the GFDL model, it paradoxically portrays the lowest O₃ levels in
380 the equatorial region. The GISS model demonstrates a marked disparity in
381 tropospheric O₃ volume mixing ratios between the Antarctic and Arctic regions, with
382 the former registering notably higher levels. In contrast, the CESM and GFDL models
383 exhibit similar patterns in this regard. A unique feature of the GISS model is a notable
384 declining trend in Antarctic tropospheric O₃ levels during the initial 15 years of both
385 the *PiClim-2VOC* and *PiClim-VOC* experiments. This trend is not observed in the
386 CESM, GFDL, and UKESM models, highlighting the sensitivity of the GISS model
387 to precursors in simulating ozone is still higher than that of other models even in the
388 pre-industrial clean atmosphere. The same conclusion was reached for NO_x
389 experiments, but the ozone forcing was less than that in the VOC experiments. The
390 UKESM model stands out with its pronounced simulation of elevated O₃ volume
391 mixing ratios in the tropical belt. Furthermore, the *PiClim-2xVOC* experiment
392 conducted within the UKESM model demonstrates a significant O₃ response to
393 enhanced emissions of VOCs from natural sources in the equatorial region. This
394 suggests a strong sensitivity of O₃ in the UKESM to increases in VOC emissions from
395 natural sources.

396


397 **Figure 3.** The temporal evolution characteristics of annual mean tropospheric column averaged O_3 volume mixing ratio at different latitudes for
 398 each model are presented for the (a) *PiClim-2NO_x*, (b) *PiClim-2VOC*, (c) *PiClim-NO_x*, and (d) *PiClim-VOC* experiment, the 4 models are
 399 represented by different line colors.

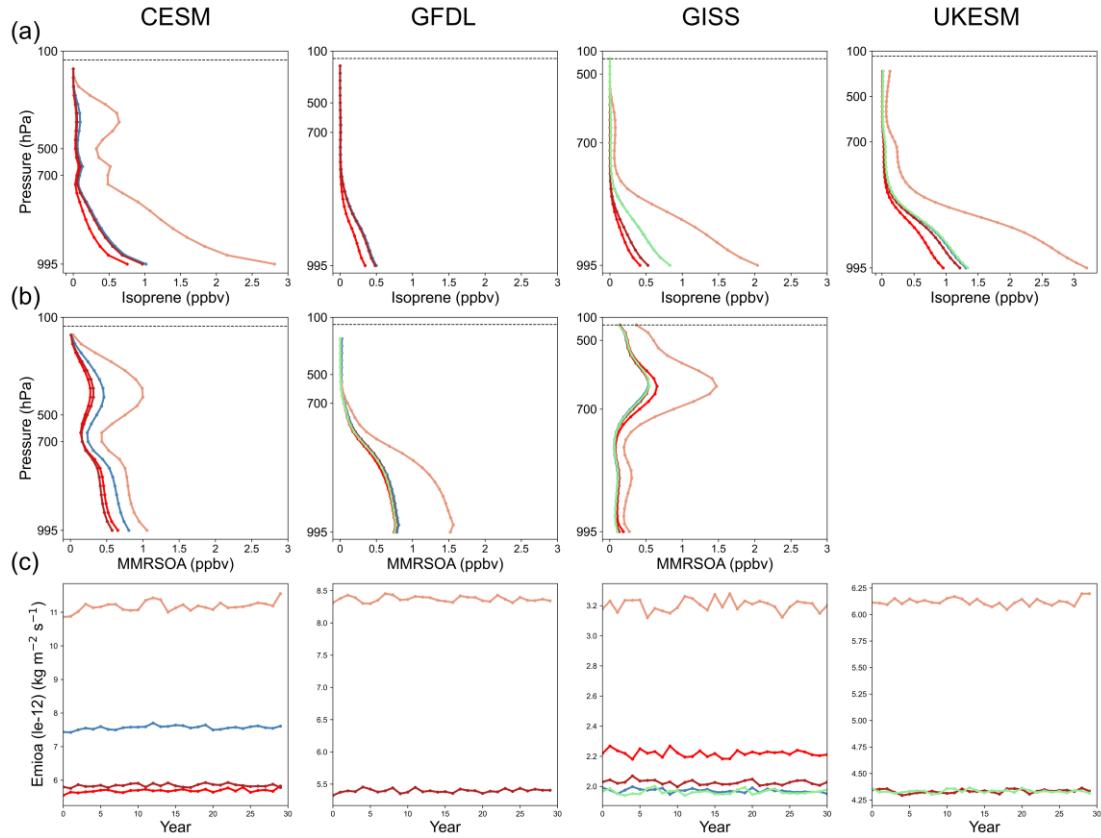
400 **3.3 Analysis of O₃ generation in precursor experiments**

401 In the shown subset of *PiClim* experiments, the O₃ production was defined as
402 the cumulative tendency from HO₂, CH₃O₂, RO₂, and NO reactions, while O₃ loss
403 encompassed the sum of O(1D) + H₂O, O₃ + HO₂, OH + O₃, and O₃ + alkene reactions.
404 Figure 4 depicts the chemical production and consumption of tropospheric ozone in
405 the five simulations performed by the four models. The GISS demonstrates the lowest
406 O₃ chemical production among the models, whereas the other three models show
407 generally consistent production levels. Notably, the GISS model exhibits a relatively
408 low efficiency in O₃ chemical consumptions, primarily due to missing the loss of O₃
409 with isoprene and terpenes process. The low offset of ozone production and depletion
410 in the pre-industrial atmosphere by the GISS model provides a new perspective based
411 on previous studies indicating the high offset of ozone production and depletion in
412 the present atmosphere by the GISS model. The four models all showed high ozone
413 chemical production in the *PiClim-NO_x* experiment, indicating that the four all have
414 perfect ability to simulate the photochemical generation mechanism of tropospheric
415 ozone. However, the CESM and GFDL models do not show a significant increase in
416 tropospheric O₃ chemical generation during the *PiClim-2NO_x* experiment. And
417 although the GISS and UKESM models successfully simulated an increase in the O₃
418 chemical generation rate due to heightened lightning activity in this experiment, these
419 increases in ozone production are also much smaller than the chemical production
420 generated by the *PiClim-NO_x* experiment, which might show that the theoretical
421 mechanism of ozone sensitivity to natural precursors in pre-industrial atmosphere
422 differs from the present mechanism due to the differences in the characteristics of
423 intermediate products such as OH. Furthermore, in either model, the ozone chemical
424 production from the *PiClim-NO_x* experiment, while higher than in other experiments
425 other than *PiClim-NTCF*, is much smaller than the ozone chemical production caused
426 by this emission inventory in the atmosphere today (Fig. S5). Today's NO_x emission
427 forcing has not led to a sustained increase in the ozone volume mixing ratio in the
428 pre-industrial atmosphere over a long-time scale, which indicates important
429 differences between the pre-industrial atmosphere and the present atmosphere in
430 terms of the ozone generation environment and the ozone depletion environment.


431 Furthermore, the *PiClim-2VOC* experiment in the CESM and GFDL models lead
432 to an increase in tropospheric O₃ volume mixing ratio, despite not reproducing higher

433 O₃ chemical production. The UKESM model successfully captures the enhancement
 434 of O₃ chemical formation due to increased emissions of VOCs from natural sources,
 435 underscoring its precise sensitivity to these emissions and validating its capability to
 436 simulate O₃ dynamics influenced by them. However, the global O₃ volume mixing
 437 ratio in the *PiClim-2xVOC* experiment of these models is lower than that of the
 438 *PiClim-VOC* experiment. These observations illustrate the variability among models
 439 in capturing the O₃ response to its precursor species, stemming from varied treatments
 440 of critical atmospheric processes, including photolysis, dry deposition, transport
 441 mechanisms, and mixing dynamics. Furthermore, these findings highlight the
 442 variability in global O₃ sensitivity compared to local O₃ sensitivity, underscoring the
 443 complexity of studying O₃ sensitivity on a global scale to mitigate its climate impacts.

444
 445 **Figure 4.** Vertical profiles of O₃ volume mixing ratio (a) chemical production and (b)
 446 chemical depletion rate for the 30th year across five experiments in the four models.


447 Figure 4b illustrates that, apart from the O₃ chemical formation mechanism, the
 448 CESM, GFDL, and UKESM models in the *PiClim-2NO_x* experiment do not
 449 accurately depict the O₃ chemical depletion process induced by NO_x. Despite
 450 successfully replicating the rise in NO and NO₂ levels (Fig. 5a, b) in the upper
 451 troposphere, these models fall short in capturing the NO_x-related O₃ depletion
 452 phenomenon. Moreover, the GISS model stands out with notably elevated NO_x
 453 volume mixing ratios attributed to heightened lightning activity compared to the other
 454 models. Additionally, it demonstrates a peak NO_x volume mixing ratio near 500 hPa
 455 across these four experiments conducted, a feature not observed in the other models.

456
457 **Figure 5.** Vertical profiles of (a) NO and (b) NO₂ volume mixing ratios for the 30th
458 year across five experiments in the four models.

459 Figure 6 illustrates a notable inverse correlation between the consumption of
460 isoprene and the chemical production of O₃ in four models, when the rise in VOCs
461 emissions is not factored in. This relationship is attributed to the significance of
462 isoprene as a natural VOC source in unpolluted atmospheres and highlights the
463 absence of O₃ generation simulation due to lightning activity in the CESM, GFDL,
464 and UKESM models. In the *PiClim* experiments, the UKESM model did not provide
465 mass fraction of secondary particulate organic matter dry aerosol particles in the air
466 (mmrsoa), and so we only include its volume mixing ratio of isoprene in the air (isop)
467 and the primary emissions and chemical production of dry aerosol organic matter
468 (emioa) in Fig. 6. Additionally, the CESM model exhibits higher emissions and
469 chemical formation of organic dry aerosol particles compared to the GFDL and GISS
470 models. This difference potentially contributes to the observed variation in global O₃
471 volume mixing ratios, with the highest levels recorded in the CESM model and the
472 lowest in the GISS model.

473

474
475 **Figure 6.** Vertical profiles of (a) isoprene volume mixing ratio and (b) secondary
476 organic aerosol mass mixing ratio for the 30th year of all available experiments across
477 the three models. (c) Temporal evolution characteristics of major emissions and the
478 chemical production of organic dry aerosol particles from five experiments of the four
479 models.

480 4. Conclusions

481 This study assessed the sensitivity of global-scale ozone (O_3) to precursor gases
482 in a clean atmosphere and evaluated the simulation capabilities of four Earth system
483 models using data from the *PiClim* experiments within the AerChemMIP framework.
484 Our results highlight both strengths and limitations of these models in capturing O_3
485 response. The CESM and GFDL models excelled in reproducing seasonal O_3 cycles
486 and the vertical distribution of O_3 , but they showed limitations in simulating the
487 tropospheric O_3 response to NO_x emissions from natural sources, such as lightning
488 activity. Conversely, the GISS and UKESM models effectively simulated the positive
489 correlation between tropospheric O_3 and temperature but were less sensitive to natural
490 precursors compared to anthropogenic sources. Discrepancies, such as zonal

491 temperature biases in the GISS model and stratospheric temperature inconsistencies
492 in the GFDL model, underscore areas for improvement.

493 Our findings suggest that existing assumptions regarding O₃ sensitivity to
494 natural precursors may require refinement in clean atmospheric conditions. This
495 research provides critical insights into the interplay between O₃ and its precursors,
496 enhancing the accuracy of O₃ simulations in Earth system models. Given the
497 significant role of O₃ in radiative forcing, atmospheric oxidation, and climate
498 feedback mechanisms, our study reinforces the necessity of precise modeling to better
499 predict and mitigate future climate scenarios. Additionally, the results underscore the
500 importance of controlling anthropogenic precursor emissions as an essential strategy
501 to manage tropospheric O₃ volume mixing ratios and address broader climate change
502 challenges. Furthermore, among the models analyzed, only the GISS model
503 demonstrates a significant increase in Antarctic ozone levels compared to the Arctic
504 (Fig. 3); the other three models yield similar ozone concentrations at both polar
505 regions. This discrepancy seems to result from a distinct characteristic of the GISS
506 model's dynamical representation of the Antarctic polar vortex. Figure 1 also reveals
507 that the ozone difference in the GISS model is predominantly confined to JJA and
508 SON (Antarctic winter-spring).

509 It is important to acknowledge that the results generated by the models are
510 accompanied by a degree of uncertainty. Variations in the methodologies employed
511 by different models to address chemical reactions, including the production and
512 depletion of ozone, contribute to the uncertainty surrounding the ozone budget.
513 Furthermore, discrepancies in the data pertaining to anthropogenic and natural
514 emissions, particularly concerning NO_x and BVOC emissions, substantially influence
515 the outcomes of these models. Additionally, the uncertainty associated with the
516 stratosphere-troposphere exchange process represents a critical factor in the ozone
517 budget, with notable divergences in the treatment of this process across various
518 models.

519 **Acknowledgement**

520 We acknowledge the World Climate Research Programme, which, through its
521 Working Group on Coupled Modelling, coordinated and promoted CMIP6. We thank
522 the climate modelling groups for producing and making available their model output,

523 the Earth System Grid Federation (ESGF) for archiving the data and providing access,
524 and the multiple funding agencies who support CMIP6 and ESGF. We acknowledge
525 the AerChemMIP groups of the four models used in the study (Vaishali Naik and
526 Larry Horowitz for the GFDL simulations, Susanne E. Bauer and Kostas Tsigaridis
527 for the GISS simulations, Fiona O'Connor and Jonny Williams for the UKESM
528 simulations, as well as Louisa K. Emmons for the NCAR simulations). Particularly,
529 we are grateful to Dr. Vaishali Naik for her comments and suggestions during the
530 revision of this manuscript. We also thank the editor and anonymous reviewers for
531 their time and comments, which helped improve the quality of this work greatly.

532 **Data availability**

533 All data from the Earth system models used in this paper are available on the
534 Earth System Grid Federation website and can be downloaded from <https://esgf-index1.ceda.ac.uk/search/cmip6-ceda/> (last access: 4 July 2024, ESGF-CEDA, 2024).

536 **Author contributions**

537 WW and CYG provided data analysis and contributed to the writing and
538 discussion of this paper.

539 **Competing interests**

540 The authors declare that they have no conflict of interest.

541 **References**

542 Archibald, A. T., O'Connor, F. M., Abraham, N. L., Archer-Nicholls, S., Chipperfield,
543 M. P., Dalvi, M., Folberth, G. A., Dennison, F., Dhomse, S. S., Griffiths, P. T.,
544 Hardacre, C., Hewitt, A. J., Hill, R. S., Johnson, C. E., Keeble, J., Kohler, M. O.,
545 Morgenstern, O., Mulcahy, J. P., Ordonez, C., Pope, R. J., Rumbold, S. T., Russo, M.
546 R., Savage, N. H., Sellar, A., Stringer, M., Turnock, S. T., Wild, O., and Zeng, G.:
547 Description and evaluation of the UKCA stratosphere-troposphere chemistry scheme
548 (StratTrop vn 1.0) implemented in UKESM1, Geoscientific Model Development, 13,
549 1223-1266, 10.5194/gmd-13-1223-2020, 2020.

550 Austin, J., Horowitz, L. W., Schwarzkopf, M. D., Wilson, R. J., and Levy, H., II:
551 Stratospheric ozone and temperature simulated from the preindustrial era to the
552 present day, Journal of Climate, 26, 3528-3543, 10.1175/jcli-d-12-00162.1, 2013.

553 Bauer, S. E., Tsigaridis, K., Faluvegi, G., Kelley, M., Lo, K. K., Miller, R. L.,
554 Nazarenko, L., Schmidt, G. A., and Wu, J.: Historical (1850-2014) Aerosol evolution
555 and role on climate forcing using the GISS ModelE2.1 contribution to CMIP6,
556 Journal of Advances in Modeling Earth Systems, 12, 10.1029/2019ms001978, 2020.

557 Brown, F., Folberth, G. A., Sitch, S., Bauer, S., Bauters, M., Boeckx, P., Cheesman,
558 A. W., Deushi, M., Dos Santos, I., Galy-Lacaux, C., Haywood, J., Keeble, J.,
559 Mercado, L. M., O'Connor, F. M., Oshima, N., Tsigaridis, K., and Verbeeck, H.: The
560 ozone-climate penalty over South America and Africa by 2100, *Atmospheric
561 Chemistry and Physics*, 22, 12331-12352, 10.5194/acp-22-12331-2022, 2022.

562 Carrillo-Torres, E. R., Hernandez-Paniagua, I. Y., and Mendoza, A.: Use of combined
563 observational-and model-derived photochemical indicators to assess the O₃-NO_x-
564 VOC system sensitivity in urban areas, *Atmosphere*, 8, 10.3390/atmos8020022, 2017.

565 Coffman, E., Rappold, A. G., Nethery, R. C., Anderton, J., Amend, M., Jackson, M.
566 A., Roman, H., Fann, N., Baker, K. R., and Sacks, J. D.: Quantifying multipollutant
567 health impacts using the environmental benefits mapping and analysis program-
568 community edition (BenMAP-CE): A case study in Atlanta, Georgia, *Environment
569 Health Perspect*, 132, 37003, 10.1289/EHP12969, 2024.

570 Collins, W. J., Lamarque, J.-F., Schulz, M., Boucher, O., Eyring, V., Hegglin, M. I.,
571 Maycock, A., Myhre, G., Prather, M., Shindell, D., and Smith, S. J.: AerChemMIP:
572 quantifying the effects of chemistry and aerosols in CMIP6, *Geoscientific Model
573 Development*, 10, 585-607, 10.5194/gmd-10-585-2017, 2017.

574 Dunne, J. P., Horowitz, L. W., Adcroft, A. J., Ginoux, P., Held, I. M., John, J. G.,
575 Krasting, J. P., Malyshev, S., Naik, V., Paulot, F., Shevliakova, E., Stock, C. A.,
576 Zadeh, N., Balaji, V., Blanton, C., Dunne, K. A., Dupuis, C., Durachta, J., Dussin, R.,
577 Gauthier, P. P. G., Griffies, S. M., Guo, H., Hallberg, R. W., Harrison, M., He, J.,
578 Hurlin, W., McHugh, C., Menzel, R., Milly, P. C. D., Nikonorov, S., Paynter, D. J.,
579 Poshay, J., Radhakrishnan, A., Rand, K., Reichl, B. G., Robinson, T., Schwarzkopf,
580 D. M., Sentman, L. T., Underwood, S., Vahlenkamp, H., Winton, M., Wittenberg, A.
581 T., Wyman, B., Zeng, Y., and Zhao, M.: The GFDL earth system model version 4.1
582 (GFDL-ESM 4.1): Overall coupled model description and simulation characteristics,
583 *Journal of Advances in Modeling Earth Systems*, 12, 10.1029/2019ms002015, 2020.

584 Fowler, D., Pilegaard, K., Sutton, M. A., Ambus, P., Raivonen, M., Duyzer, J.,
585 Simpson, D., Fagerli, H., Fuzzi, S., Schjoerring, J. K., Granier, C., Neftel, A., Isaksen,
586 I. S. A., Laj, P., Maione, M., Monks, P. S., Burkhardt, J., Daemmggen, U., Neirynck,
587 J., Personne, E., Wichink-Kruit, R., Butterbach-Bahl, K., Flechard, C., Tuovinen, J.
588 P., Coyle, M., Gerosa, G., Loubet, B., Altimir, N., Gruenhage, L., Ammann, C.,
589 Cieslik, S., Paoletti, E., Mikkelsen, T. N., Ro-Poulsen, H., Cellier, P., Cape, J. N.,
590 Horvath, L., Loreto, F., Niinemets, U., Palmer, P. I., Rinne, J., Misztal, P., Nemitz,
591 E., Nilsson, D., Pryor, S., Gallagher, M. W., Vesala, T., Skiba, U., Brueggemann, N.,
592 Zechmeister-Boltenstern, S., Williams, J., O'Dowd, C., Facchini, M. C., de Leeuw,
593 G., Flossman, A., Chaumerliac, N., and Erisman, J. W.: Atmospheric composition
594 change: Ecosystems-atmosphere interactions, *Atmospheric Environment*, 43, 5193-
595 5267, 10.1016/j.atmosenv.2009.07.068, 2009.

596 Gettelman, A., Hannay, C., Bacmeister, J. T., Neale, R. B., Pendergrass, A. G.,
597 Danabasoglu, G., Lamarque, J. F., Fasullo, J. T., Bailey, D. A., Lawrence, D. M., and
598 Mills, M. J.: High climate sensitivity in the Community Earth System Model Version
599 2 (CESM2), *Geophysical Research Letters*, 46, 8329-8337, 10.1029/2019gl083978,
600 2019.

601 Griffiths, P. T., Murray, L. T., Zeng, G., Shin, Y. M., Abraham, N. L., Archibald, A.
602 T., Deushi, M., Emmons, L. K., Galbally, I. E., Hassler, B., Horowitz, L. W., Keeble,

603 J., Liu, J., Moeini, O., Naik, V., O'Connor, F. M., Oshima, N., Tarasick, D., Tilmes,
604 S., Turnock, S. T., Wild, O., Young, P. J., and Zanis, P.: Tropospheric ozone in
605 CMIP6 simulations, *Atmospheric Chemistry and Physics*, 21, 4187-4218,
606 10.5194/acp-21-4187-2021, 2021.

607 Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P.,
608 Klinger, L., Lerdau, M., Mckay, W. A., Pierce, T., Scholes, B., Steinbrecher, R.,
609 Tallamraju, R., Taylor, J., and Zimmerman, P.: A global model of natural volatile
610 organic compound emissions, *Journal of Geophysical Research-Atmospheres*, 100,
611 8873-8892, <https://doi.org/10.1029/94JD02950>, 1995.

612 Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons,
613 L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature
614 version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic
615 emissions, *Geoscientific Model Development*, 5, 1471-1492, 10.5194/gmd-5-1471-
616 2012, 2012.

617 Hakim, Z. Q., Archer-Nicholls, S., Beig, G., Folberth, G. A., Sudo, K., Abraham, N.
618 L., Ghude, S., Henze, D. K., and Archibald, A. T.: Evaluation of tropospheric ozone
619 and ozone precursors in simulations from the HTAPII and CCMI model
620 intercomparisons — a focus on the Indian subcontinent, *Atmospheric Chemistry and
621 Physics*, 19, 6437-6458, 10.5194/acp-19-6437-2019, 2019.

622 Horowitz, L. W., Naik, V., Paulot, F., Ginoux, P. A., Dunne, J. P., Mao, J., Schnell,
623 J., Chen, X., He, J., John, J. G., Lin, M., Lin, P., Malyshev, S., Paynter, D.,
624 Shevliakova, E., and Zhao, M.: The GFDL global atmospheric chemistry-climate
625 model AM4.1: Model description and simulation characteristics, *Journal of Advances
626 in Modeling Earth Systems*, 12, 10.1029/2019ms002032, 2020.

627 Hu, L., Wang, Z., Huang, M., Sun, H., and Wang, Q.: A remote sensing based method
628 for assessing the impact of O₃ on the net primary productivity of terrestrial
629 ecosystems in China, *Frontiers in Environmental Science*, 11,
630 10.3389/fenvs.2023.1112874, 2023.

631 Jin, X., Fiore, A. M., and Cohen, R. C.: Space-based observations of ozone precursors
632 within California wildfire plumes and the impacts on ozone-NO_x-VOC chemistry,
633 *Environmental Science & Technology*, 57, 14648-14660, 10.1021/acs.est.3c04411,
634 2023.

635 Karl, T., Lamprecht, C., Graus, M., Cede, A., Tiefengraber, M., de Arellano, J. V. -
636 G., Gurarie, D., and Lenschow, D.: High urban NO_x triggers a substantial chemical
637 downward flux of ozone, *Science Advances*, 9, 10.1126/sciadv.add2365, 2023.

638 Karset, I. H. H., Berntsen, T. K., Storelvmo, T., Alterskjaer, K., Grini, A., Olivie, D.,
639 Kirkevag, A., Seland, O., Iversen, T., and Schulz, M.: Strong impacts on aerosol
640 indirect effects from historical oxidant changes, *Atmospheric Chemistry and Physics*,
641 18, 7669-7690, 10.5194/acp-18-7669-2018, 2018.

642 Kelley, M., Schmidt, G. A., Nazarenko, L. S., Bauer, S. E., Ruedy, R., Russell, G. L.,
643 Ackerman, A. S., Aleinov, I., Bauer, M., Bleck, R., Canuto, V., Cesana, G., Cheng,
644 Y., Clune, T. L., Cook, B. I., Cruz, C. A., Del Genio, A. D., Elsaesser, G. S., Faluvegi,
645 G., Kiang, N. Y., Kim, D., Lacis, A. A., Leboissetier, A., LeGrande, A. N., Lo, K. K.,
646 Marshall, J., Matthews, E. E., McDermid, S., Mezuman, K., Miller, R. L., Murray, L.
647 T., Oinas, V., Orbe, C., Perez Garcia-Pando, C., Perlitz, J. P., Puma, M. J., Rind,

648 D., Romanou, A., Shindell, D. T., Sun, S., Tausnev, N., Tsigaridis, K., Tselioudis, G.,
649 Weng, E., Wu, J., and Yao, M.-S.: GISS-E2.1: Configurations and climatology,
650 Journal of Advances in Modeling Earth Systems, 12, 10.1029/2019ms002025, 2020.

651 Khomsi, K., Chelhaoui, Y., Alilou, S., Souri, R., Najmi, H., and Souhaili, Z.:
652 Concurrent heat waves and extreme ozone (O_3) episodes: Combined atmospheric
653 patterns and impact on human health, International Journal of Environmental
654 Research and Public Health, 19, 10.3390/ijerph19052770, 2022.

655 Kumaş, K., Akyüz, A. J. I. J. o. E., and Geoinformatics: Estimation of greenhouse
656 gas emission and global warming potential of livestock sector; Lake District, Türkiye,
657 2023.

658 Li, M., Huang, X., Yan, D., Lai, S., Zhang, Z., Zhu, L., Lu, Y., Jiang, X., Wang, N.,
659 Wang, T., Song, Y., and Ding, A.: Coping with the concurrent heatwaves and ozone
660 extremes in China under a warming climate, Science Bulletin, 69, 2938-2947,
661 <https://doi.org/10.1016/j.scib.2024.05.034>, 2024.

662 Lim, C. C., Hayes, R. B., Ahn, J., Shao, Y., Silverman, D. T., Jones, R. R., Garcia,
663 C., Bell, M. L., and Thurston, G. D.: Long-term exposure to ozone and cause-specific
664 mortality risk in the United States, American Journal of Respiratory and Critical Care
665 Medicine, 200, 1022-1031, 10.1164/rccm.201806-1161OC, 2019.

666 Malley, C. S., Henze, D. K., Kuylenstierna, J. C. I., Vallack, H. W., Davila, Y.,
667 Anenberg, S. C., Turner, M. C., and Ashmore, M. R.: Updated global estimates of
668 respiratory mortality in adults ≥ 30 years of age attributable to long-term ozone
669 exposure, Environment Health Perspect, 125, 087021, 10.1289/EHP1390, 2017.

670 Miller, R. L., Schmidt, G. A., Nazarenko, L. S., Tausnev, N., Bauer, S. E., DelGenio,
671 A. D., Kelley, M., Lo, K. K., Ruedy, R., Shindell, D. T., Aleinov, I., Bauer, M., Bleck,
672 R., Canuto, V., Chen, Y., Cheng, Y., Clune, T. L., Faluvegi, G., Hansen, J. E., Healy,
673 R. J., Kiang, N. Y., Koch, D., Lacis, A. A., LeGrande, A. N., Lerner, J., Menon, S.,
674 Oinas, V., Garcia-Pando, C. P., Perlitz, J. P., Puma, M. J., Rind, D., Romanou, A.,
675 Russell, G. L., Sato, M., Sun, S., Tsigaridis, K., Unger, N., Voulgarakis, A., Yao, M.-
676 S., and Zhang, J.: CMIP5 historical simulations (1850-2012) with GISS ModelE2,
677 Journal of Advances in Modeling Earth Systems, 6, 441-477, 10.1002/2013ms000266,
678 2014.

679 Möller, D. and Mauersberger, G.: Cloud chemistry effects on tropospheric
680 photooxidants in polluted atmosphere — Model results, Journal of Atmospheric
681 Chemistry, 14, 153-165, 10.1007/BF00115231, 1992.

682 Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M., Derwent, R.,
683 Fowler, D., Granier, C., Law, K. S., Mills, G. E., Stevenson, D. S., Tarasova, O.,
684 Thouret, V., von Schneidemesser, E., Sommariva, R., Wild, O., and Williams, M. L.:
685 Tropospheric ozone and its precursors from the urban to the global scale from air
686 quality to short-lived climate forcer, Atmospheric Chemistry and Physics, 15, 8889-
687 8973, 10.5194/acp-15-8889-2015, 2015.

688 Mulcahy, J. P., Jones, C., Sellar, A., Johnson, B., Boutle, I. A., Jones, A., Andrews,
689 T., Rumbold, S. T., Molland, J., Bellouin, N., Johnson, C. E., Williams, K. D.,
690 Grosvenor, D. P., and McCoy, D. T.: Improved aerosol processes and effective
691 radiative forcing in HadGEM3 and UKESM1, Journal of Advances in Modeling Earth
692 Systems, 10, 2786-2805, 10.1029/2018ms001464, 2018.

693 Murray, L. T., Logan, J. A., and Jacob, D. J.: Interannual variability in tropical
694 tropospheric ozone and OH: The role of lightning, *Journal of Geophysical Research-Atmospheres*, 118, 11,468-411,480, <https://doi.org/10.1002/jgrd.50857>, 2013.

695

696 Naik, V., Horowitz, L. W., Fiore, A. M., Ginoux, P., Mao, J., Aghedo, A. M., and
697 Levy, H., II: Impact of preindustrial to present-day changes in short-lived pollutant
698 emissions on atmospheric composition and climate forcing, *Journal of Geophysical
699 Research-Atmospheres*, 118, 8086-8110, 10.1002/jgrd.50608, 2013a.

700 Naik, V., Voulgarakis, A., Fiore, A. M., Horowitz, L. W., Lamarque, J. F., Lin, M.,
701 Prather, M. J., Young, P. J., Bergmann, D., Cameron-Smith, P. J., Cionni, I., Collins,
702 W. J., Dalsøren, S. B., Doherty, R., Eyring, V., Faluvegi, G., Folberth, G. A., Josse,
703 B., Lee, Y. H., MacKenzie, I. A., Nagashima, T., van Noije, T. P. C., Plummer, D.
704 A., Righi, M., Rumbold, S. T., Skeie, R., Shindell, D. T., Stevenson, D. S., Strode,
705 S., Sudo, K., Szopa, S., and Zeng, G.: Preindustrial to present-day changes in
706 tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry
707 and Climate Model Intercomparison Project (ACCMIP), *Atmospheric Chemistry and
708 Physics*, 13, 5277-5298, 10.5194/acp-13-5277-2013, 2013b.

709 Nuvolone, D., Petri, D., and Voller, F.: The effects of ozone on human health,
710 *Environmental Science and Pollution Research*, 25, 8074-8088, 10.1007/s11356-017-
711 9239-3, 2018.

712 Pacifico, F., Harrison, S. P., Jones, C. D., Arneth, A., Sitch, S., Weedon, G. P.,
713 Barkley, M. P., Palmer, P. I., Serca, D., Potosnak, M., Fu, T. M., Goldstein, A., Bai,
714 J., and Schurgers, G.: Evaluation of a photosynthesis-based biogenic isoprene
715 emission scheme in JULES and simulation of isoprene emissions under present-day
716 climate conditions, *Atmospheric Chemistry and Physics*, 11, 4371-4389,
717 10.5194/acp-11-4371-2011, 2011.

718 Price, C. and Rind, D.: A simple lightning parameterization for calculating global
719 lightning distributions, *Journal of Geophysical Research-Atmospheres*, 97, 9919-
720 9933, <https://doi.org/10.1029/92JD00719>, 1992.

721 Price, C., Penner, J., and Prather, M.: NO_x from lightning: 1. Global distribution based
722 on lightning physics, *Journal of Geophysical Research-Atmospheres*, 102, 5929-5941,
723 <https://doi.org/10.1029/96JD03504>, 1997.

724 Price, C. G.: Lightning applications in weather and climate research, *Surveys in
725 Geophysics*, 34, 755-767, 10.1007/s10712-012-9218-7, 2013.

726 Rogelj, J., Schaeffer, M., Meinshausen, M., Shindell, D. T., Hare, W., Klimont, Z.,
727 Velders, G. J. M., Amann, M., and Schellnhuber, H. J.: Disentangling the effects of
728 CO₂ and short-lived climate forcer mitigation, *Proceedings of the National Academy
729 of Sciences of the United States of America*, 111, 16325-16330,
730 10.1073/pnas.1415631111, 2014.

731 Romanowsky, E., Handorf, D., Jaiser, R., Wohltmann, I., Dorn, W., Ukita, J., Cohen,
732 J., Dethloff, K., and Rex, M.: The role of stratospheric ozone for Arctic-midlatitude
733 linkages, *Scientific Reports*, 9, 7962, 10.1038/s41598-019-43823-1, 2019.

734 Schnell, J. L., Naik, V., Horowitz, L. W., Paulot, F., Mao, J., Ginoux, P., Zhao, M.,
735 and Ram, K.: Exploring the relationship between surface PM_{2.5} and meteorology in

736 Northern India, *Atmospheric Chemistry and Physics*, 18, 10157-10175, 10.5194/acp-
737 18-10157-2018, 2018.

738 Sellar, A. A., Jones, C. G., Mulcahy, J. P., Tang, Y., Yool, A., Wiltshire, A., O'Connor,
739 F. M., Stringer, M., Hill, R., Palmieri, J., Woodward, S., de Mora, L., Kuhlbrodt, T.,
740 Rumbold, S. T., Kelley, D. I., Ellis, R., Johnson, C. E., Walton, J., Abraham, N. L.,
741 Andrews, M. B., Andrews, T., Archibald, A. T., Berthou, S., Burke, E., Blockley, E.,
742 Carslaw, K., Dalvi, M., Edwards, J., Folberth, G. A., Gedney, N., Griffiths, P. T.,
743 Harper, A. B., Hendry, M. A., Hewitt, A. J., Johnson, B., Jones, A., Jones, C. D.,
744 Keeble, J., Liddicoat, S., Morgenstern, O., Parker, R. J., Predoi, V., Robertson, E.,
745 Siahaan, A., Smith, R. S., Swaminathan, R., Woodhouse, M. T., Zeng, G., and
746 Zerroukat, M.: UKESM1: Description and evaluation of the UK earth system model,
747 *Journal of Advances in Modeling Earth Systems*, 11, 4513-4558,
748 10.1029/2019ms001739, 2019.

749 Shindell, D. T., Faluvegi, G., Unger, N., Aguilar, E., Schmidt, G. A., Koch, D. M.,
750 Bauer, S. E., and Miller, R. L.: Simulations of preindustrial, present-day, and 2100
751 conditions in the NASA GISS composition and climate model G-PUCCINI,
752 *Atmospheric Chemistry and Physics*, 6, 4427-4459, 10.5194/acp-6-4427-2006, 2006.

753 Shindell, D. T., Pechony, O., Voulgarakis, A., Faluvegi, G., Nazarenko, L., Lamarque,
754 J. F., Bowman, K., Milly, G., Kovari, B., Ruedy, R., and Schmidt, G. A.: Interactive
755 ozone and methane chemistry in GISS-E2 historical and future climate simulations,
756 *Atmospheric Chemistry and Physics*, 13, 2653-2689, 10.5194/acp-13-2653-2013,
757 2013.

758 Sillman, S. and He, D.: Some theoretical results concerning O₃-NO_x-VOC chemistry
759 and NO_x-VOC indicators, *Journal of Geophysical Research-Atmospheres*, 107, ACH
760 26-21-ACH 26-15, <https://doi.org/10.1029/2001JD001123>, 2002.

761 Sporre, M. K., Blichner, S. M., Karset, I. H. H., Makkonen, R., and Berntsen, T. K.:
762 BVOC-aerosol-climate feedbacks investigated using NorESM, *Atmospheric
763 Chemistry and Physics*, 19, 4763-4782, 10.5194/acp-19-4763-2019, 2019.

764 Stevenson, D. S., Young, P. J., Naik, V., Lamarque, J. F., Shindell, D. T., Voulgarakis,
765 A., Skeie, R. B., Dalsoren, S. B., Myhre, G., Berntsen, T. K., Folberth, G. A.,
766 Rumbold, S. T., Collins, W. J., MacKenzie, I. A., Doherty, R. M., Zeng, G., van Noije,
767 T. P. C., Strunk, A., Bergmann, D., Cameron-Smith, P., Plummer, D. A., Strode, S.
768 A., Horowitz, L., Lee, Y. H., Szopa, S., Sudo, K., Nagashima, T., Josse, B., Cionni,
769 I., Righi, M., Eyring, V., Conley, A., Bowman, K. W., Wild, O., and Archibald, A.:
770 Tropospheric ozone changes, radiative forcing and attribution to emissions in the
771 Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP),
772 *Atmospheric Chemistry and Physics*, 13, 3063-3085, 10.5194/acp-13-3063-2013,
773 2013.

774 Stevenson, D. S., Dentener, F. J., Schultz, M. G., Ellingsen, K., van Noije, T. P. C.,
775 Wild, O., Zeng, G., Amann, M., Atherton, C. S., Bell, N., Bergmann, D. J., Bey, I.,
776 Butler, T., Cofala, J., Collins, W. J., Derwent, R. G., Doherty, R. M., Drevet, J., Eskes,
777 H. J., Fiore, A. M., Gauss, M., Hauglustaine, D. A., Horowitz, L. W., Isaksen, I. S.
778 A., Krol, M. C., Lamarque, J. F., Lawrence, M. G., Montanaro, V., Müller, J. F., Pitari,
779 G., Prather, M. J., Pyle, J. A., Rast, S., Rodriguez, J. M., Sanderson, M. G., Savage,
780 N. H., Shindell, D. T., Strahan, S. E., Sudo, K., and Szopa, S.: Multimodel ensemble

781 simulations of present-day and near-future tropospheric ozone, *Journal of*
782 *Geophysical Research-Atmospheres*, 111, 10.1029/2005jd006338, 2006.

783 Tilmes, S., Visioni, D., Jones, A., Haywood, J., Seferian, R., Nabat, P., Boucher, O.,
784 Bednarz, E. M., and Niemeier, U.: Stratospheric ozone response to sulfate aerosol
785 and solar dimming climate interventions based on the G6 Geoengineering Model
786 Intercomparison Project (GeoMIP) simulations, *Atmospheric Chemistry and Physics*,
787 22, 4557-4579, 10.5194/acp-22-4557-2022, 2022.

788 Unger, N.: On the role of plant volatiles in anthropogenic global climate change,
789 *Geophysical Research Letters*, 41, 8563-8569,
790 <https://doi.org/10.1002/2014GL061616>, 2014.

791 van Marle, M. J. E., Kloster, S., Magi, B. I., Marlon, J. R., Daniau, A. L., Field, R.
792 D., Arneth, A., Forrest, M., Hantson, S., Kehrwald, N. M., Knorr, W., Lasslop, G.,
793 Li, F., Mangeon, S., Yue, C., Kaiser, J. W., and van der Werf, G. R.: Historic global
794 biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite
795 observations with proxies and fire models (1750–2015), *Geoscientific Model
796 Development*, 10, 3329-3357, 10.5194/gmd-10-3329-2017, 2017.

797 Vermeuel, M. P., Novak, G. A., Alwe, H. D., Hughes, D. D., Kaleel, R. J., Dickens,
798 A., Kenski, D., Czarnetzki, A. C., Stone, E. A., Stanier, C. O., Pierce, R. B., Millet,
799 D. B., and Bertram, T. H. J. J. o. G. R. A.: Sensitivity of ozone production to NO_x
800 and VOC along the lake michigan coastline, *Journal of Geophysical Research-
801 Atmospheres*, 124, 10989 - 11006, 2019.

802 Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J., Furtado,
803 K., Hi, P., Lock, A., Manners, J., Morcrette, C., Mulcahy, J., Sanchez, C., Smith, C.,
804 Stratton, R., Tennant, W., Tomassini, L., Van Weverberg, K., Vosper, S., Willett, M.,
805 Browse, J., Bushell, A., Carslaw, K., Dalvi, M., Essery, R., Gedney, N., Hardiman,
806 S., Johnson, B., Johnson, C., Jones, A., Jones, C., Mann, G., Milton, S., Rumbold, H.,
807 Sellar, A., Ujiie, M., Whitall, M., Williams, K., and Zerroukat, M.: The met office
808 unified model global atmosphere 7.0/7.1 and JULES global land 7.0 configurations,
809 *Geoscientific Model Development*, 12, 1909-1963, 10.5194/gmd-12-1909-2019,
810 2019.

811 Williams, K. D., Copsey, D., Blockley, E. W., Bodas-Salcedo, A., Calvert, D., Comer,
812 R., Davis, P., Graham, T., Hewitt, H. T., Hill, R., Hyder, P., Ineson, S., Johns, T. C.,
813 Keen, A. B., Lee, R. W., Megann, A., Milton, S. F., Rae, J. G. L., Roberts, M. J.,
814 Scaife, A. A., Schiemann, R., Storkey, D., Thorpe, L., Watterson, I. G., Walters, D.
815 N., West, A., Wood, R. A., Woollings, T., and Xavier, P. K.: The met office global
816 coupled model 3.0 and 3.1 (GC3.0 and GC3.1) configurations, *Journal of Advances
817 in Modeling Earth Systems*, 10, 357-380, 10.1002/2017ms001115, 2018.

818 Young, P. J., Naik, V., Fiore, A. M., Gaudel, A., Guo, J., Lin, M. Y., Neu, J. L.,
819 Parrish, D. D., Rieder, H. E., Schnell, J. L., Tilmes, S., Wild, O., Zhang, L., Ziemke,
820 J., Brandt, J., Delcloo, A., Doherty, R. M., Geels, C., Hegglin, M. I., Hu, L., Im, U.,
821 Kumar, R., Luhar, A., Murray, L., Plummer, D., Rodriguez, J., Saiz-Lopez, A.,
822 Schultz, M. G., Woodhouse, M. T., and Zeng, G.: Tropospheric ozone assessment
823 report: assessment of global-scale model performance for global and regional ozone
824 distributions, variability, and trends, *Elementa-Science of the Anthropocene*, 6,
825 10.1525/elementa.265, 2018.

826 Zeng, G., Morgenstern, O., Williams, J. H. T., O'Connor, F. M., Griffiths, P. T.,
827 Keeble, J., Deushi, M., Horowitz, L. W., Naik, V., Emmons, L. K., Abraham, N. L.,
828 Archibald, A. T., Bauer, S. E., Hassler, B., Michou, M., Mills, M. J., Murray, L. T.,
829 Oshima, N., Sentman, L. T., Tilmes, S., Tsigaridis, K., and Young, P. J.: Attribution
830 of stratospheric and tropospheric ozone changes between 1850 and 2014 in CMIP6
831 models, *Journal of Geophysical Research-Atmospheres*, 127, 10.1029/2022jd036452,
832 2022.

833