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Abstract 13 

Ozone (O3) is a Short-lived Climate Forcer (SLCF) that contributes to radiative 14 

forcing and indirectly affects the atmospheric lifetime of methane, a major 15 

greenhouse gas. This study investigates the sensitivity of global O3 to precursor 16 

gases in a clean atmosphere, where hydroxyl (OH) radical characteristics  are more 17 

spatially uniform than in present-day conditions, using data from the PiClim 18 

experiments of the Aerosols and Chemistry Model Intercomparison Project 19 

(AerChemMIP) within the CMIP6 framework. We also evaluate the O3 simulation 20 

capabilities of four Earth system models (CESM2-WACCM, GFDL-ESM4, GISS-21 

E2-1-G, and UKESM1-0-LL). Our analysis reveals that the CESM and GFDL 22 

models effectively capture seasonal O₃ cycles and consistently simulate vertical O₃ 23 

distribution. While all models successfully simulate O3 responses to anthropogenic 24 

precursor emissions, CESM and GFDL show limited sensitivity to enhanced natural 25 

NOx emissions (e.g., from lightning) compared to GISS and UKESM.The 26 

sensitivities of O3 to its natural precursors (NOx and VOCs) in GISS and UKESM 27 

models are substantially lower than their responses to anthropogenic emissions, 28 

particularly for lightning NOx sources. These findings refine our understanding of 29 

O3 sensitivity to natural precursors in clean atmospheres and provide insights for 30 

improving O3 predictions in Earth system models.31 
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1 Introduction 32 

Tropospheric ozone (O3) is a key air pollutant and atmospheric oxidant, exerting 33 

extensive influence on air quality and human health (Coffman et al., 2024; Lim et al., 34 

2019; Malley et al., 2017; Nuvolone et al., 2018), climate systems, and 35 

biogeochemical processes (Hu et al., 2023; Fowler et al., 2009). As a Short-lived 36 

Climate Forcer (SLCF), tropospheric O3 exerts a radiative forcing of 0.35–0.5 W m−2 37 

and influences atmospheric processes such as evaporation, cloud formation, and 38 

general circulation (Khomsi et al., 2022; Möller and Mauersberger, 1992; Rogelj et 39 

al., 2014; Stevenson et al., 2013). Furthermore, O3 plays a crucial role in regulating 40 

the terrestrial carbon sink and enhancing the formation of the hydroxyl (OH) radical 41 

(Naik et al., 2013b), which, in turn, affect the lifetime of methane (and halocarbons), 42 

the second most prominent anthropogenic greenhouse gas after carbon dioxide 43 

(Kumaş et al., 2023). O3 also contributes to an increased atmospheric oxidation 44 

capacity, influencing the formation of secondary aerosols, such as organic aerosol, 45 

sulfate, and nitrate, which have significant implications for radiative forcing (Karset 46 

et al., 2018).  47 

While stratospheric O3 entrainment contributes to tropospheric O3 levels, the 48 

primary source of tropospheric O3 is photochemical production. This secondary 49 

pollutant is formed through photochemical oxidation reactions involving oxides of 50 

nitrogen (NO + NO2 = NOx) and volatile organic compounds (VOCs) in the presence 51 

of OH and hydroperoxyl (HO2) radicals (Monks et al., 2015). The relationship 52 

between O3 and its precursors is nonlinear, making it challenging to mitigate O3 53 

pollution through simple precursor reduction strategies. Regional-scale sensitivity to 54 

O3 precursors has been extensively investigated, such as emphasizing the diagnostic 55 

utility of ratios including O3/NOx (Jin et al., 2023; Sillman and He, 2002)  and 56 

VOC/NOx  (Li et al., 2024) for assessing O3-NOx-VOC sensitivity, and nations such 57 

as the United Kingdom and the United States have demonstrated significant success 58 

in controlling regional ozone levels by implementing measures to reduce NOx 59 

emissions (Hakim et al., 2019). However, the global-scale sensitivity of O₃ to its 60 

precursors has received limited attention, despite evidence suggesting that global O₃ 61 

forcing may have a more substantial impact on climate forcing than localized O₃ 62 

enhancements. Consequently, improving our understanding of O₃ formation 63 
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mechanisms on a global scale is essential for effective air quality management and 64 

climate change mitigation strategies (Yu et al., 2021). 65 

Recent studies utilizing Coupled Model Intercomparison Project Phase 6 66 

(CMIP6; Eyring et al., 2016) datasets have offered insights into the spatio-temporal 67 

evolution of the global tropospheric O3 budget from 1850 to 2100 (Griffiths et al., 68 

2021; Turnock et al., 2019) and have quantified the global stratosphere-troposphere 69 

O3 exchange process (Li et al., 2024; Griffiths et al., 2021). However, challenges 70 

persist in quantifying the sensitivity of global O₃ to its precursors when assessing the 71 

increasing global O₃ forcing attributed to these precursors. These challenges arise 72 

from regional variability in meteorological conditions (Carrillo-Torres et al., 2017), 73 

differences in NOx and VOC volume mixing ratios (Jin et al., 2023; Sillman and He, 74 

2002), and the distinct characteristics of OH and HO2 influenced by varying degrees 75 

of urbanization (Karl et al., 2023; Vermeuel et al., 2019). Furthermore, while the 76 

observed upward trends in O₃ levels are primarily attributed to increased precursor 77 

emissions, limited research has investigated whether contemporary atmospheric 78 

conditions—shaped by climate warming and enhanced oxidation capacities—may be 79 

creating a more favorable environment for O₃ formation. 80 

To address these gaps, this study investigates the sensitivity of global-scale O3 81 

to its precursors under a pre-industrial background atmosphere, with approximate 82 

uniform HOx conditions in major continental areas. We also examine the feedback 83 

mechanisms of different model responses to precursors from both anthropogenic and 84 

natural sources, using PiClim experiment data from the Aerosols and Chemistry 85 

Model Intercomparison Project (AerChemMIP) simulations (Collins et al., 2017) 86 

within CMIP6. Additionally, this research evaluates the ozone formation potential in 87 

the pre-industrial era based on contemporary (2014) emissions of O₃ precursors, with 88 

the aim of elucidating whether shifts in the background atmosphere have rendered it 89 

chemically more conducive to O₃ generation. Our analysis employs four models with 90 

interactive stratospheric and tropospheric chemistry, which have been extensively 91 

utilized in O3-related research (Brown et al., 2022; Griffiths et al., 2021; Tilmes et 92 

al., 2022; Zeng et al., 2022). This approach allows us to assess the global-scale 93 

sensitivity of O3 to its precursors, evaluate the consistency and discrepancies among 94 

different models in representing O3-precursor relationships, and provide insights into 95 
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the potential impacts of changing emissions on future global O3 levels and associated 96 

climate forcing, contributing to more accurate projections of future climate change. 97 

2 Models and methods 98 

2.1 Model descriptions 99 

We use monthly-mean simulation data from four Earth system models in this 100 

study. The four chosen models possess the benefit of extensive applicability and a 101 

comprehensive PiClim computational framework. Table 1 summarizes key model 102 

features, including model resolution, vertical stratification, complexity of gas-phase 103 

chemistry, and relevant references. All models include interactive coupling of 104 

tropospheric and stratospheric chemistry with O3 dynamics integrated into the 105 

radiation scheme, simulating the interaction between O3 concentration and 106 

temperature. The response of simulated reactive gas emissions to chemical 107 

complexity is important. For example, changes in Biogenic Volatile Organic 108 

Compounds (BVOCs) can impact O3, methane lifetime, and potentially the oxidation 109 

of other aerosol precursors in models with interactive tropospheric chemistry via OH 110 

changes. 111 
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Table 1. Information on model resolution, vertical levels, property of gas-phase chemistry and references. 112 

Model 

Resolution 

(lat × lon) 
Number of gridpoints Vertical levels Aerosol model Simulation reference 

CESM2-WACCM 192 × 288 55296 

70 levels;  

top level 6 × 10-6 hPa 

MAM4 (Gettelman et al., 2019) 

GFDL-ESM4 180 × 288 51840 

49 levels;  

top level 0.01 hPa 

MATRIX 
(Dunne et al., 2020; 

Horowitz et al., 2020) 

GISS-E2-1-G 90 × 144 12960 

40 levels;  

top level 0.1 hPa 

OMA 
(Miller et al., 2014; Kelley 

et al., 2020) 

UKESM1-0-LL 144 × 192 27648 

85 levels;  

top level 1 hPa 

GLOMAP 
(Mulcahy et al., 2018; 

Sellar et al., 2019) 

113 
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CESM2-WACCM (hereafter “CESM”) is a fully coupled Earth system model 114 

that integrates the Community Earth System Model version 2 (Emmons et al., 2020) 115 

with the Whole Atmosphere Community Climate Model version 6 (WACCM6). The 116 

atmospheric component operates at a horizontal resolution of 0.9375° latitude by 1.25° 117 

longitude, with 70 hybrid sigma-pressure vertical layers extending from the surface 118 

to 6 × 10−6 hPa. Its interactive chemistry and aerosol modules include the troposphere, 119 

stratosphere, and lower thermosphere, with a comprehensive treatment of 231 species, 120 

150 photolysis reactions, 403 gas-phase reactions, 13 tropospheric heterogeneous 121 

reactions, and 17 stratospheric heterogeneous reactions (Emmons et al., 2020). The 122 

model utilizes the four-mode Modal Aerosol Model (MAM4) (Emmons et al., 2020) 123 

and features its secondary organic aerosol (SOA) framework based on the Volatility 124 

Basis Set (VBS, Donahue et al., 2013) approach. The photolytic calculations use both 125 

inline chemical modules and a lookup table approach, which does not consider 126 

changes in aerosols.  127 

The Atmospheric Model version 4.1 (AM4.1, Horowitz et al. (2020)) within the 128 

GFDL Earth system model (Dunne et al., 2020) incorporates an interactive chemistry 129 

scheme that spans both the troposphere and stratosphere (GFDL-ESM4; hereafter 130 

“GFDL”). The atmospheric component operates at a horizontal resolution of 1° 131 

latitude by 1.25° longitude, with 49 hybrid sigma-pressure vertical layers extending 132 

from the surface to 0.01 hPa. This scheme includes 56 prognostic tracers, 36 133 

diagnostic species, 43 photolysis reactions, 190 gas-phase kinetic reactions, and 15 134 

heterogeneous reactions. Stratospheric chemistry accounts for key O3 depletion 135 

cycles (Ox, HOx, NOx, ClOx, and BrOx) and heterogeneous reactions on stratospheric 136 

aerosols (Austin et al., 2013). Photolysis rates are calculated dynamically with the 137 

FAST-JX version 7.1 code, which considers the radiative impacts of modeled 138 

aerosols and clouds. The chemical mechanism is further elaborated in Horowitz et al. 139 

(2020), and the gas-phase and heterogeneous chemistry are similar to those employed 140 

by Schnell et al. (2018). Non-interactive natural emissions of O3 precursors are 141 

prescribed as outlined in Naik et al. (2013a).   142 

The GISS model, developed by the NASA Goddard Institute for Space Studies, 143 

integrates the chemistry-climate model version E2.1 with the GISS Ocean v1 (G01) 144 

model (GISS-E2-1-G; hereafter “GISS”). The specific configurations of this model 145 
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utilized for the CMIP6 are detailed in Kelley et al. (2020). In this study, we focus on 146 

the model subset that includes online interactive chemistry. The atmospheric 147 

component operates at a horizontal resolution of 2° latitude by 2.5° longitude, with 148 

40 hybrid sigma-pressure vertical layers extending from the surface to 0.1 hPa. The 149 

interactive chemistry module employs the GISS Physical Understanding of 150 

Composition-Climate Interactions and Impacts (G-PUCCINI) mechanism for gas-151 

phase chemistry (Kelley et al., 2020; Shindell et al., 2013). For aerosols, the model 152 

utilizes either the One-Moment Aerosol (OMA) or the Multiconfiguration Aerosol 153 

Tracker of Mixing state (MATRIX) model (Bauer et al., 2020). The gas-phase 154 

chemistry involves 146 reactions, including 28 photodissociation reactions, affecting 155 

47 species across the troposphere and stratosphere, along with an additional five 156 

heterogeneous reactions. The model transports 26 aerosol particle tracers and 34 gas-157 

phase tracers (OMA).  158 

UKESM represents the United Kingdom's Earth system model (Sellar et al., 159 

2019). It builds upon the Global Coupled 3.1 (GC3.1) configuration of HadGEM3 160 

(Williams et al., 2018), incorporating additional Earth system components, such as 161 

ocean biogeochemistry, the terrestrial carbon-nitrogen cycle, and atmospheric 162 

chemistry (UKESM1-0-LL; hereafter “UKESM”). Walters et al. (2019) provided 163 

descriptions of the atmospheric and land components. The atmospheric component 164 

operates at a horizontal resolution of 1.25° latitude by 1.875° longitude, with 85 165 

vertical layers extending from the surface to 85 km. The chemistry module in the 166 

UKESM model is a unified stratosphere-troposphere scheme (Archibald et al., 2020) 167 

including 84 tracers, 199 bimolecular reactions, 25 unimolecular and termolecular 168 

reactions, 59 photolytic reactions, 5 heterogeneous reactions, and 3 aqueous-phase 169 

reactions for the sulfur cycle from the United Kingdom Chemistry and Aerosols 170 

(UKCA) model. The aerosol module is based on the two-moment scheme from 171 

UKCA, known as GLOMAP mode, and is integrated into the Global Atmosphere 172 

7.0/7.1 configuration of HadGEM3 (Walters et al., 2019). The UKESM uses 173 

interactive Fast-JX photolysis scheme, which is applied to derive photolysis rates 174 

between 177 and 850 nm, as described in Telford et al. (2013). In the lower 175 

mesosphere, photolysis rates are calculated using lookup tables (Lary and Pyle, 1991).  176 

Models differ in their representation of O3 source and sink processes, as well as 177 

in the definitions of the associated budget terms, which contributes to variability in 178 
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model outcomes (Stevenson et al., 2006; Young et al., 2018). For example, in the 179 

GISS model, the tropospheric chemistry component simulates the NOx-HOx-Ox-CO-180 

CH4 system and the oxidation pathways for non-methane volatile organic compounds 181 

(NMVOCs). Central to these discrepancies are the treatments of non-methane volatile 182 

organic compound NMVOCs chemistry, which impacts both chemical production 183 

and destruction rates, along with surface removal mechanisms and stratospheric 184 

influences. Furthermore, the choice of tropopause definition can significantly alter 185 

the diagnosed O3 burden, as well as the flux from the stratosphere. 186 

All four of the interactive tropospheric chemistry models contain 187 

parameterizations of the nitrogen oxide (NOx) emissions from lightning based on the 188 

height of the convective cloud top (Price et al., 1997; Price and Rind, 1992; Price, 189 

2013), and the tropopause height for each model based on the WMO definition. Each 190 

model has a different way of implementing emissions and how much they are profiled. 191 

For instance, online calculations of lightning NOx emissions during deep convection 192 

in the GISS model are based on the method described by (Kelley et al., 2020). 193 

Lightning NOx continues to be a major source of uncertainty in both model 194 

comparisons and the temporal development of tropospheric O3 because it has a 195 

disproportionately significant influence on tropospheric-O3 concentration relative to 196 

surface emissions (Murray et al., 2013).  197 

BVOC emissions are modeled as a function of vegetation type and cover, as well 198 

as temperature and photosynthetic rates (gross primary productivity) (Unger, 2014; 199 

Sporre et al., 2019; Pacifico et al., 2011; Guenther et al., 1995). While models vary 200 

in the speciation of emitted VOCs, they commonly include isoprene and 201 

monoterpenes, each with its own distinct emission parameterization. Despite the 202 

common reliance on photosynthetically active radiation for the parameterization of 203 

BVOC emissions across the four models, there exist notable distinctions. For instance, 204 

the GFDL model exclusively considers the leaf area index, neglecting the impact of 205 

temperature on BVOC emissions, and the CESM, GISS, and UKESM models omit 206 

the influence of vegetation type from their calculations. 207 

2.2 Simulation data and experimental design 208 

The primary objective of AerChemMIP is to quantitatively ascertain the 209 

influence of aerosols and reactive trace gases on the climate system, as well as the 210 
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bidirectional feedback mechanisms involved (Collins et al., 2017). Table 2 presents 211 

a synopsis of the experimental configurations employed in this study. The control 212 

experiment, denoted as PiClim-control, is designed to stabilize both atmospheric 213 

composition and climatic conditions at a state reminiscent of the pre-industrial era, 214 

where the natural fractions of stratospheric ozone forcing species such as halocarbons 215 

was extremely low, specifically 1850. The PiClim-2x experiment involves doubling 216 

of individual natural emission fluxes relative to the 1850 control, while the PiClim-x 217 

experiments calibrate these fluxes to align with the emission levels prevalent in 2014 218 

(Collins et al., 2017). PiClim-2xNOx represents to doubling of the nitric oxide 219 

emissions from natural sources due to lightning activity. PiClim-2xVOC represents to 220 

doubling of the volatile organic compound emissions from natural sources, including 221 

isoprene and monoterpenes. PiClim-HC represents the pre-industrial climatological 222 

control with 2014 halocarbons emissions both from anthropogenic (CFCs, HCFCs 223 

and compounds containing bromine) and natural sources. PiClim-CH4 represents the 224 

pre-industrial climatological control with 2014 methane emissions both from 225 

anthropogenic and natural sources. PiClim-NOx represents the pre-industrial 226 

climatological control with 2014 nitrogen oxide emissions both from anthropogenic 227 

and natural sources. PiClim-VOC represents the pre-industrial climatological control 228 

with 2014 VOC emissions both from anthropogenic and natural sources.  PiClim-229 

NTCF represents the pre-industrial climatological control with 2014 near-term 230 

climate forcers emissions, including aerosols and chemically reactive gases such as 231 

tropospheric ozone and methane. PiClim-N2O represents the pre-industrial 232 

climatological control with 2014 nitrous oxide emissions both from anthropogenic 233 

and natural sources. PiClim-aer represents the pre-industrial climatological control 234 

with 2014 aerosol concentrations. PiClim- O3 represents the pre-industrial 235 

climatological control with 2014 ozone concentrations. PiClim-BC represents the pre-236 

industrial climatological control with 2014 black carbon concentrations. 237 
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Table 2. The available experiments of selected models in this study. "X" represents the experiment is available 238 

PiClim- 

Model 

2xNOx 2xVOC HC CH4 NOx VOC NTCF N2O O3 aer control BC 

CESM2-WACCM X X X X X X X X     

GFDL-ESM4 X X X  X X   X X X X 

GISS-E2-1-G X X X X X X X X X X X X 

UKESM1-0-LL X X X X X X X X X X X X 

239 
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We analyzed models that had archived sufficient data in the Earth System Grid 240 

Federation (ESGF) system to permit accurate characterization of tropospheric O3. In 241 

practice this meant we used archived O3 data from the AERmon characterization of 242 

the tropospheric O3 (variable name: “o3”) on native model grids. Other variables used 243 

include chemical production (variable name: “o3prod”), chemical destruction 244 

(variable name: “o3loss”), nitrogen monoxide (variable name: “no”), nitrogen 245 

dioxide (variable name: “no2”), isoprene (variable name: “isop”), organic dry aerosol 246 

(variable name: “emioa”), and secondary organic aerosol (variable name: “mmrsoa”). 247 

All data used in this paper are available on the Earth System Grid Federation website 248 

and can be downloaded from https://esgf-index1.ceda.ac.uk/search/cmip6-ceda/ (last 249 

access: 4 July 2024, ESGF-CEDA, 2020). 250 

A new set of historical anthropogenic emissions has been developed with the 251 

Community Emissions Data System (CEDS, Hoesly et al., 2018). CEDS uses updated 252 

emission factors to provide monthly emissions of the major aerosol and trace gas 253 

species over the period 1750 to 2014 for use in CMIP6, and biomass burning 254 

emissions are based on a different inventory developed separate from CEDS (Van 255 

Marle et al., 2017). The primary analysis examines emissions of NOx and VOCs from 256 

anthropogenic (Hoesly et al., 2018) and biomass burning sources (van Marle et al., 257 

2017) that were provided as a common emission inventory to be used by all models 258 

(including the four in this study) in CMIP6 simulations. In the CESM and GFDL 259 

models, biogenic emissions, including isoprene and monoterpenes, are calculated 260 

interactively using MEGAN version 2.1 (Guenther et al., 2012) and are further 261 

utilized for SOA formation. While in the GISS model, biogenic emissions of isoprene 262 

are computed online and are sensitive to temperature (Shindell et al., 2006), whereas 263 

alkenes, paraffins, and terpenes are prescribed. And in the UKESM model, emissions 264 

of isoprene and monoterpenes are interactively calculated using the iBVOC emission 265 

model (Pacifico et al., 2011). 266 

3 Results and Discussions 267 

3.1 Spatial, seasonal, and vertical distribution of tropospheric O3 268 

We first investigate the seasonal and vertical variations of ozone volume mixing 269 

ratio in the pre-industrial atmospheres simulated by four selected models. The 270 

analysis of tropospheric O3 data derived from the PiClim experiment outcomes of 271 
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CMIP6 models reveals distinct seasonal cycles and inter-model variations (Fig. 1). 272 

The GISS model demonstrates the highest simulated tropospheric column O3 volume 273 

mixing ratio at 50.29 ppbv in the 29th and 30th year of simulation, followed by the 274 

UKESM (44.50 ppbv), CESM (38.02 ppbv), and GFDL (31.03 ppbv), where the 275 

height of the tropopause is based on the definition of WMO. These are consistent with 276 

previous findings from historical experiments (Griffiths et al., 2021).  277 

Furthermore, our analysis indicates that the disparity in O3 volume mixing ratio 278 

during the PiClim experiment primarily occurs in polar regions. This may be 279 

attributed to the GISS model’s ability to replicate a more robust entrainment of 280 

stratospheric O3, a key source of tropospheric O3 in the pre-industrial atmosphere, 281 

particularly at the poles. Previous studies have demonstrated that elevated O3 levels 282 

in the Arctic during MAM and DJF, as well as in the Antarctic during JJA and SON, 283 

result from the cumulative impact of the polar O3 barrier (Romanowsky et al., 2019). 284 

 285 

Figure 1. Comparison of the seasonal cycle of tropospheric column averaged volume 286 

mixing ratio of O3 (density weighted) of the PiClim experiment results in the 29th and 287 

30th year of simulation of the four models. Each row shows a separate meteorological 288 

season, arranged from top to bottom: March to May (MAM), June to August (JJA), 289 
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September to November (SON), and December to February (DJF). Each column 290 

represents a selected model, listed from left to right: CESM, GFDL, GISS, and 291 

UKESM. The figures displayed below each chart represent the global average ozone 292 

volume mixing ratio. 293 

Seasonal variations in tropospheric O3 volume mixing ratio exhibit model-294 

specific patterns. The CESM, GFDL, and GISS models simulate peak tropospheric 295 

O3 volume mixing ratio in spring during the PiClim experiments. In contrast, the 296 

UKESM model reproduces maximum O3 volume mixing ratio in autumn, indicating 297 

a limited capability in simulating dynamic circulations in the tropopause. 298 

Furthermore, the seasonal O3 cycle simulations in CESM, GFDL, and GISS exhibit 299 

distinct discrepancies in their outcomes. For instance, the CESM model simulates the 300 

lowest O3 volume mixing ratio in SON, while the GFDL model exhibits the lowest 301 

volume mixing ratio in JJA. The GISS model simulation indicates higher O3 levels in 302 

autumn compared to DJF, which is consistent with results from historical experiments 303 

(Griffiths et al., 2021). Additionally, our analysis reveals that the CESM simulations 304 

demonstrate the most pronounced seasonal oscillation amplitude in O3 volume 305 

mixing ratio, approximately 6.82 ppbv. This feature underscores the model’s 306 

sensitivity to seasonal factors affecting tropospheric O3 dynamics. 307 

In the PiClim experiments, all four models accurately reproduce the peak volume 308 

mixing ratio of O3 in the middle stratosphere at 10 hPa and the zonal average mixing 309 

ratios reaching their peak in the upper troposphere, particularly in extratropical 310 

regions, indicative of extended chemical lifetimes at higher altitudes. However, 311 

notable disparities are observed in the vertical distribution characteristics of O3 312 

among the four models (Fig. 2). Specifically, the CESM model exhibits the highest 313 

vertical extension, including an additional hotspot simulated in the thermosphere. 314 

While the GFDL and CESM2 models exhibit consistent simulation outcomes below 315 

0.01 hPa, GISS and UKESM simulate significantly higher stratospheric O3 levels at 316 

10 hPa in comparison. 317 

Notable distinctions are observed in the spatial distribution of O3. The GISS 318 

model simulates a more vertically concentrated and latitudinally extended O3 319 

distribution. This characteristic may be a crucial factor contributing to the pronounced 320 

impact of O3 transport in the polar stratosphere, as simulated by GISS. The zonal 321 

variability in O3 distribution simulated by the UKESM falls between that of the GISS 322 

and CESM models. These inter-model discrepancies in O3 simulation results likely 323 
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reflect suboptimal representation of local and regional dynamics, as well as omitted 324 

chemical processes in corresponding models. The variability and uncertainty in O3 325 

precursor emission estimates further exacerbate these disparities. 326 

 327 
Figure 2. The zonal mean O3 distribution for the 29th and 30th year of the PiClim 328 

experiment results from the (a) CESM, (b) GFDL, (c) GISS, and (d) UKESM model. 329 

Thick black lines represent the tropopause height for each model based on the WMO 330 

definition. 331 

3.2 Characteristics of tropospheric O3 under various experiments 332 

Tables 3 and 4 present the global O3 volume mixing ratio and tropospheric O3 333 

volume mixing ratio across all experiments from the four different models. The GISS 334 

model simulations show higher tropospheric O3 volume mixing ratios, reflecting 335 

increased rates of stratospheric downwelling and surface O3 precursor emissions. 336 

However, its overall O3 volume mixing ratio is notably lower compared to the 337 

UKESM, CESM, and GFDL models, with reductions of 114.24, 76.16, and 47.04 338 

ppbv, respectively. Analysis reveals that in the CESM, GFDL, and GISS models, the 339 

global O3 molar fraction in the PiClim-2NOx and PiClim-NOx experiments surpasses 340 

that in the PiClim-2VOC and PiClim-VOC experiments. This difference is most 341 

pronounced in the GISS model, aligning with previous findings indicating its 342 

heightened sensitivity to NOx response (Turnock et al., 2019). Conversely, in the 343 

UKESM model, the global O3 molar fraction of the PiClim-2NOx experiment is lower 344 

than that of the PiClim-2VOC experiment.  Interestingly, the tropospheric O3 345 

volume mixing ratios in the PiClim-2NOx experiment in the CESM and GFDL models 346 
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are notably lower than in their respective PiClim-2VOC experiments, with reductions 347 

of 0.41 and 0.29 ppbv. This discrepancy challenges the conventional understanding 348 

that increased NOx emissions from lightning activity should lead to tropospheric O3 349 

generation, suggesting a need for enhanced sensitivity simulations in these two 350 

models regarding O3 and NOx emissions from natural sources due to lightning activity. 351 

In contrast, the PiClim-2NOx experiments of the GISS and UKESM models 352 

effectively simulate an increase in tropospheric O3 volume mixing ratio compared to 353 

their PiClim-2VOC experiments. Furthermore, across all four models, the 354 

tropospheric O3 volume mixing ratio of the PiClim-NOx experiment surpasses that of 355 

the PiClim-VOC experiment, indicating the models' ability to accurately replicate the 356 

impact of rising anthropogenic emissions on O3 production. Additionally, methane, a 357 

crucial natural source of volatile organic compounds and a key greenhouse gas, 358 

enhances tropospheric O3 generation by CH4 oxidation and influencing temperature, 359 

thereby elevating global O3 volume mixing ratio. This phenomenon contributes to the 360 

heightened sensitivity of O3 to methane volume mixing ratio in a clean atmosphere. 361 

Elevated volume mixing ratios of HCFCs (PiClim-HC) and nitrous oxide (PiClim- 362 

N2O) lead to substantial stratospheric O3 depletion, consequently affecting 363 

tropospheric O3 volume mixing ratio through the pod coil process. Other influencing 364 

factors, such as aerosols and black carbon, induce warming through radiation effects, 365 

thereby simulating elevated O3 volume mixing ratio. 366 
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Table 3. The averaged volume mixing ratio of global stratospheric ozone at all simulated vertical levels in the 29th and 30th year for each 367 

experiment of four models (ppbv). 368 

PiClim- 

Model 

2xNOx 2xVOC HC CH4 NOx VOC NTCF N2O O3 aer control BC 

CESM2-WACCM 726.06 725.95 662.71 713.80 728.61 727.06 725.42 710.94     

GFDL-ESM4 628.63 626.68 571.32  632.03 628.92   632.70 628.44 629.98 629.78 

GISS-E2-1-G 490.91 482.13 422.65 493.27 490.22 480.93 486.46 471.84 485.17 486.54 484.76 484.82 

UKESM1-0-LL 707.27 707.93 613.89 697.32 716.14 704.78 723.99 694.44 714.27 697.04 702.88 701.81 

 369 
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Table 4. The averaged volume mixing ratio of global tropospheric ozone in the 29th and 30th year for each experiment of four models (ppbv). 370 

PiClim- 

Model 

2xNOx 2xVOC HC CH4 NOx VOC NTCF N2O O3 aer control BC 

CESM2-WACCM 38.17 38.58 33.44 39.42 39.16 39.14 41.33 38.10     

GFDL-ESM4 31.33 31.62 24.42  32.64 32.25   34.09 31.01 30.79 30.95 

GISS-E2-1-G 52.30 50.96 44.18 53.08 52.14 50.21 51.65 48.36 52.47 50.36 49.27 50.02 

UKESM1-0-LL 47.53 46.14 31.04 45.55 46.02 45.97 47.29 45.04 46.65 43.69 46.70 45.11 

371 
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Figure 3 shows the temporal evolution of tropospheric O3 levels across various 372 

latitudes, as simulated by four distinct models in O3 precursor experiments. In the 373 

PiClim experiments, none of the models predicted an enhancement in O3 volume 374 

mixing ratio with simulation time at all latitudes, reflecting the consistent chemical 375 

lifetime of O3 within the pristine atmospheric conditions. However, discrepancies in 376 

O3 predictions among the models become more pronounced with increasing latitudes. 377 

While the CESM model generally exhibits higher tropospheric O3 volume mixing 378 

ratios compared to the GFDL model, it paradoxically portrays the lowest O3 levels in 379 

the equatorial region. The GISS model demonstrates a marked disparity in 380 

tropospheric O3 volume mixing ratios between the Antarctic and Arctic regions, with 381 

the former registering notably higher levels. In contrast, the CESM and GFDL models 382 

exhibit similar patterns in this regard. A unique feature of the GISS model is a notable 383 

declining trend in Antarctic tropospheric O3 levels during the initial 15 years of both 384 

the PiClim-2VOC and PiClim-VOC experiments. This trend is not observed in the 385 

CESM, GFDL, and UKESM models, highlightingthe sensitivity of the GISS model 386 

to precursors in simulating ozone is still higher than that of other models even in the 387 

pre-industrial clean atmosphere. The same conclusion was reached for NOx 388 

experiments, but the ozone forcing was less than that in the VOC experiments. The 389 

UKESM model stands out with its pronounced simulation of elevated O3 volume 390 

mixing ratios in the tropical belt. Furthermore, the PiClim-2xVOC experiment 391 

conducted within the UKESM model demonstrates a significant O3 response to 392 

enhanced emissions of VOCs from natural sources in the equatorial region. This 393 

suggests a strong sensitivity of O3 in the UKESM to increases in VOC emissions from 394 

natural sources. 395 
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 396 

Figure 3. The temporal evolution characteristics of annual mean tropospheric column averaged O3 volume mixing ratio at different latitudes for 397 

each model are presented for the (a) PiClim-2NOx, (b) PiClim-2VOC, (c) PiClim-NOx, and (d) PiClim-VOC experiment, the 4 models are 398 

represented by different line colors. 399 
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3.3 Analysis of O3 generation in precursor experiments 400 

In the shown subset of PiClim experiments, the O3 production was defined as 401 

the cumulative tendency from HO2, CH3O2, RO2, and NO reactions, while O3 loss 402 

encompassed the sum of O(1D) + H2O, O3 + HO2, OH + O3, and O3 + alkene reactions. 403 

Figure 4 depicts the chemical production and consumption of tropospheric ozone in 404 

the five simulations performed by the four models. The GISS demonstrates the lowest 405 

O3 chemical production among the models, whereas the other three models show 406 

generally consistent production levels. Notably, the GISS model exhibits a relatively 407 

low efficiency in O3 chemical consumptions, primarily due to missing the loss of O3 408 

with isoprene and terpenes process. The low offset of ozone production and depletion 409 

in the pre-industrial atmosphere by the GISS model provides a new perspective based 410 

on previous studies indicating the high offset of ozone production and depletion in 411 

the present atmosphere by the GISS model. The four models all showed high ozone 412 

chemical production in the PiClim-NOx experiment, indicating that the four all have 413 

perfect ability to simulate the photochemical generation mechanism of tropospheric 414 

ozone. However, the CESM and GFDL models do not show a significant increase in 415 

tropospheric O3 chemical generation during the PiClim-2NOx experiment. And 416 

although the GISS and UKESM models successfully simulated an increase in the O3 417 

chemical generation rate due to heightened lightning activity in this experiment, these 418 

increases in ozone production are also much smaller than the chemical production 419 

generated by the PiClim-NOx experiment, which might show that the theoretical 420 

mechanism of ozone sensitivity to natural precursors in pre-industrial atmosphere 421 

differs from the present mechanism due to the differences in the characteristics of 422 

intermediate products such as OH. Furthermore, in either model, the ozone chemical 423 

production from the PiClim-NOx experiment, while higher than in other experiments 424 

other than PiClim-NTCF, is much smaller than the ozone chemical production caused 425 

by this emission inventory in the atmosphere today (Fig. S5). Today’s NOx emission 426 

forcing has not led to a sustained increase in the ozone volume mixing ratio in the 427 

pre-industrial atmosphere over a long-time scale, which indicates important 428 

differences between the pre-industrial atmosphere and the present atmosphere in 429 

terms of the ozone generation environment and the ozone depletion environment.  430 

Furthermore, the PiClim-2VOC experiment in the CESM and GFDL models lead 431 

to an increase in tropospheric O3 volume mixing ratio, despite not reproducing higher 432 
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O3 chemical production. The UKESM model successfully captures the enhancement 433 

of O3 chemical formation due to increased emissions of VOCs from natural sources, 434 

underscoring its precise sensitivity to these emissions and validating its capability to 435 

simulate O3 dynamics influenced by them. However, the global O3 volume mixing 436 

ratio in the PiClim-2xVOC experiment of these models is lower than that of the 437 

PiClim-VOC experiment. These observations illustrate the variability among models 438 

in capturing the O3 response to its precursor species, stemming from varied treatments 439 

of critical atmospheric processes, including photolysis, dry deposition, transport 440 

mechanisms, and mixing dynamics. Furthermore, these findings highlight the 441 

variability in global O3 sensitivity compared to local O3 sensitivity, underscoring the 442 

complexity of studying O3 sensitivity on a global scale to mitigate its climate impacts. 443 

444 
Figure 4. Vertical profiles of O3 volume mixing ratio (a) chemical production and (b) 445 

chemical depletion rate for the 30th year across five experiments in the four models. 446 

Figure 4b illustrates that, apart from the O3 chemical formation mechanism, the 447 

CESM, GFDL, and UKESM models in the PiClim-2NOx experiment do not 448 

accurately depict the O3 chemical depletion process induced by NOx. Despite 449 

successfully replicating the rise in NO and NO2 levels (Fig. 5a, b) in the upper 450 

troposphere, these models fall short in capturing the NOx-related O3 depletion 451 

phenomenon. Moreover, the GISS model stands out with notably elevated NOx 452 

volume mixing ratios attributed to heightened lightning activity compared to the other 453 

models. Additionally, it demonstrates a peak NOx volume mixing ratio near 500 hPa 454 

across these four experiments conducted, a feature not observed in the other models. 455 
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 456 
Figure 5. Vertical profiles of (a) NO and (b) NO2 volume mixing ratios for the 30th 457 

year across five experiments in the four models. 458 

Figure 6 illustrates a notable inverse correlation between the consumption of 459 

isoprene and the chemical production of O3 in four models, when the rise in VOCs 460 

emissions is not factored in. This relationship is attributed to the significance of 461 

isoprene as a natural VOC source in unpolluted atmospheres and highlights the 462 

absence of O3 generation simulation due to lightning activity in the CESM, GFDL, 463 

and UKESM models. In the PiClim experiments, the UKESM model did not provide 464 

mass fraction of secondary particulate organic matter dry aerosol particles in the air 465 

(mmrsoa), and so we only include its volume mixing ratio of isoprene in the air (isop) 466 

and the primary emissions and chemical production of dry aerosol organic matter 467 

(emioa) in Fig. 6. Additionally, the CESM model exhibits higher emissions and 468 

chemical formation of organic dry aerosol particles compared to the GFDL and GISS 469 

models. This difference potentially contributes to the observed variation in global O3 470 

volume mixing ratios, with the highest levels recorded in the CESM model and the 471 

lowest in the GISS model. 472 

 473 
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 474 
Figure 6. Vertical profiles of (a) isoprene volume mixing ratio and (b) secondary 475 

organic aerosol mass mixing ratio for the 30th year of all available experiments across 476 

the three models. (c) Temporal evolution characteristics of major emissions and the 477 

chemical production of organic dry aerosol particles from five experiments of the four 478 

models. 479 

4. Conclusions 480 

This study assessed the sensitivity of global-scale ozone (O3) to precursor gases 481 

in a clean atmosphere and evaluated the simulation capabilities of four Earth system 482 

models using data from the PiClim experiments within the AerChemMIP framework. 483 

Our results highlight both strengths and limitations of these models in capturing O3 484 

response. The CESM and GFDL models excelled in reproducing seasonal O3 cycles 485 

and the vertical distribution of O3, but they showed limitations in simulating the 486 

tropospheric O3 response to NOx emissions from natural sources, such as lightning 487 

activity. Conversely, the GISS and UKESM models effectively simulated the positive 488 

correlation between tropospheric O3 and temperature but were less sensitive to natural 489 

precursors compared to anthropogenic sources. Discrepancies, such as zonal 490 
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temperature biases in the GISS model and stratospheric temperature inconsistencies 491 

in the GFDL model, underscore areas for improvement. 492 

Our findings suggest that existing assumptions regarding O3 sensitivity to 493 

natural precursors may require refinement in clean atmospheric conditions. This 494 

research provides critical insights into the interplay between O3 and its precursors, 495 

enhancing the accuracy of O3 simulations in Earth system models. Given the 496 

significant role of O3 in radiative forcing, atmospheric oxidation, and climate 497 

feedback mechanisms, our study reinforces the necessity of precise modeling to better 498 

predict and mitigate future climate scenarios. Additionally, the results underscore the 499 

importance of controlling anthropogenic precursor emissions as an essential strategy 500 

to manage tropospheric O3 volume mixing ratios and address broader climate change 501 

challenges. Furthermore, among the models analyzed, only the GISS model 502 

demonstrates a significant increase in Antarctic ozone levels compared to the Arctic  503 

(Fig. 3); the other three models yield similar ozone concentrations at both polar 504 

regions. This discrepancy seems to result from a distinct characteristic of the GISS 505 

model’s dynamical representation of the Antarctic polar vortex. Figure 1  also reveals 506 

that the ozone difference in the GISS model is predominantly confined to JJA and 507 

SON (Antarctic winter-spring). 508 

It is important to acknowledge that the results generated by the models are 509 

accompanied by a degree of uncertainty.Variations in the methodologies employed 510 

by different models to address chemical reactions, including the production and 511 

depletion of ozone, contribute to the uncertainty surrounding the ozone budget. 512 

Furthermore, discrepancies in the data pertaining to anthropogenic and natural 513 

emissions, particularly concerning NOx and BVOC emissions, substantially influence 514 

the outcomes of these models. Additionally, the uncertainty associated with the 515 

stratosphere-troposphere exchange process represents a critical factor in the ozone 516 

budget, with notable divergences in the treatment of this process across various 517 

models. 518 
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