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Abstract

Ozone (0O3) is a Short-lived Climate Forcer (SLCF) that contributes to radiative
forcing and indirectly affects the atmospheric lifetime of methane, a major
greenhouse gas. This study investigates the sensitivity of global O3 to precursor
gases in a clean atmosphere, where hydroxyl (OH) radical characteristics are more
spatially uniform than in present-day conditions, using data from the PiClim
experiments of the Aerosols and Chemistry Model Intercomparison Project
(AerChemMIP) within the CMIP6 framework. We also evaluate the O3 simulation
capabilities of four Earth system models (CESM2-WACCM, GFDL-ESM4,
GISS-E2-1-G, and UKESM1-0-LL). Our analysis reveals that the CESM and GFDL
models effectively capture seasonal Os cycles and consistently simulate vertical Os
distribution. While all models successfully simulate O3 responses to anthropogenic
precursor emissions, CESM and GFDL show limited sensitivity to enhanced natural
NOx emissions (e.g., from lightning) compared to GISS and UKESM. The
sensitivities of O3 to its natural precursors (NOx and VOCs) in GISS and UKESM
models are substantially lower than their responses to anthropogenic emissions,
particularly for lightning NOx sources. These findings refine our understanding of
O3 sensitivity to natural precursors in clean atmospheres and provide insights for

improving O;s predictions in Earth system models.
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1 Introduction

Tropospheric ozone (O3) is a key air pollutant and atmospheric oxidant,
exerting extensive influence on air quality and human health (Coffman et al., 2024;
Lim et al., 2019; Malley et al., 2017; Nuvolone et al., 2018), climate systems, and
biogeochemical processes (Hu et al., 2023; Fowler et al., 2009). As a Short-lived
Climate Forcer (SLCF), tropospheric O3 exerts a radiative forcing of 0.35-0.5 W
m 2 and influences atmospheric processes such as evaporation, cloud formation, and
general circulation (Khomsi et al., 2022; Moller and Mauersberger, 1992; Rogelj et
al., 2014; Stevenson et al., 2013). Furthermore, O3 plays a crucial role in regulating
the terrestrial carbon sink and enhancing the formation of the hydroxyl (OH) radical
(Naik et al., 2013b), which, in turn, affect the lifetime of methane (and halocarbons),
the second most prominent anthropogenic greenhouse gas after carbon dioxide
(Kumas et al., 2023). O3z also contributes to an increased atmospheric oxidation
capacity, influencing the formation of secondary aerosols, such as organic aerosol,
sulfate, and nitrate, which have significant implications for radiative forcing (Karset

et al., 2018).

While stratospheric Oz entrainment contributes to tropospheric O3 levels, the
primary source of tropospheric Oz is photochemical production. This secondary
pollutant is formed through photochemical oxidation reactions involving oxides of
nitrogen (NO + NO: = NOy) and volatile organic compounds (VOCs) in the
presence of OH and hydroperoxyl (HO:) radicals (Monks et al., 2015). The
relationship between O; and its precursors is nonlinear, making it challenging to
mitigate O3 pollution through simple precursor reduction strategies. Regional-scale
sensitivity to O3 precursors has been extensively investigated, such as emphasizing
the diagnostic utility of ratios including O3/NOx (Jin et al., 2023; Sillman and He,
2002) and VOC/NOyx (Li et al., 2024) for assessing O3-NOx-VOC sensitivity, and
nations such as the United Kingdom and the United States have demonstrated
significant success in controlling regional ozone levels by implementing measures
to reduce NOx emissions (Hakim et al., 2019). However, the global-scale sensitivity
of Os to its precursors has received limited attention, despite evidence suggesting
that global Os forcing may have a more substantial impact on climate forcing than

localized Os enhancements. Consequently, improving our understanding of Os
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formation mechanisms on a global scale is essential for effective air quality

management and climate change mitigation strategies (Yu et al., 2021).

Recent studies utilizing Coupled Model Intercomparison Project Phase 6
(CMIP6; Eyring et al., 2016) datasets have offered insights into the spatio-temporal
evolution of the global tropospheric O3 budget from 1850 to 2100 (Griffiths et al.,
2021; Turnock et al., 2019) and have quantified the global stratosphere-troposphere
O3 exchange process (Li et al., 2024; Griffiths et al., 2021). However, challenges
persist in quantifying the sensitivity of global Os to its precursors when assessing
the increasing global Os forcing attributed to these precursors. These challenges
arise from regional variability in meteorological conditions (Carrillo-Torres et al.,
2017), differences in NOx and VOC volume mixing ratios (Jin et al., 2023; Sillman
and He, 2002), and the distinct characteristics of hydroxyl radical (OH) and
hydroperoxyl radical (HO2-) influenced by varying degrees of urbanization (Karl et
al., 2023; Vermeuel et al., 2019). Furthermore, while the observed upward trends in
O:s levels are primarily attributed to increased precursor emissions, limited research
has investigated whether contemporary atmospheric conditions—shaped by climate
warming and enhanced oxidation capacities—may be creating a more favorable

environment for Os formation.

To address these gaps, this study investigates the sensitivity of global-scale O3
to its precursors under a pre-industrial background atmosphere, with approximate
unified HOx conditions in major continental areas. We also examine the feedback
mechanisms of different model responses to precursors from both anthropogenic
and natural sources, using PiClim experiment data from the Aerosols and Chemistry
Model Intercomparison Project (AerChemMIP) simulations (Collins et al., 2017)
within CMIP6. Additionally, this research evaluates the ozone formation potential
in the pre-industrial era based on contemporary (2014) emissions of Os precursors,
with the aim of elucidating whether shifts in the background atmosphere have
rendered it chemically more conducive to Os generation. Our analysis employs four
models with interactive stratospheric and tropospheric chemistry, which have been
extensively utilized in Os-related research (Brown et al., 2022; Griffiths et al., 2021;
Tilmes et al., 2022; Zeng et al., 2022). This approach allows us to assess the
global-scale sensitivity of O3 to its precursors, evaluate the consistency and

discrepancies among different models in representing Os-precursor relationships,
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and provide insights into the potential impacts of changing emissions on future
global O3 levels and associated climate forcing, contributing to more accurate

projections of future climate change.

2 Models and methods

2.1 Model descriptions

We use monthly-mean simulation data from four Earth system models in this
study. The four chosen models possess the benefit of extensive applicability and a
comprehensive PiClim experimental framework. Table 1 summarizes key model
features, including model resolution, vertical stratification, complexity of gas-phase
chemistry, and relevant references. All models include interactive coupling of
tropospheric and stratospheric chemistry with O3 dynamics integrated into the
radiation scheme, simulating the interaction between O3 concentration and
temperature. The response of simulated reactive gas emissions to chemical
complexity is important. For example, changes in Biogenic Volatile Organic
Compounds (BVOCs) can impact Oz, methane lifetime, and potentially the
oxidation of other aerosol precursors in models with interactive tropospheric

chemistry.



114 Table 1. Information on model resolution, vertical levels, property of gas-phase chemistry and references.

Resolution Tropospheric and
Model Vertical levels Acrosol model Simulation reference
(lat x lon) stratospheric chemistry
70 levels;
CESM2-WACCM 192 x 288 MAM4 (Gettelman et al., 2019)
top level 6 x 10-6 hPa
49 levels; (Dunne et al., 2020;
GFDL-ESM4 180 x 288 MATRIX .
top level 0.01 hPa Interactive Horowitz et al., 2020)
40 levels; (Miller et al., 2014; Kelley
GISS-E2-1-G 90 x 144 OMA
top level 0.1 hPa et al., 2020)
85 levels; (Mulcahy et al., 2018;
UKESMI1-0-LL 144 x 192 GLOMAP

top level 1 hPa Sellar et al., 2019)
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CESM2-WACCM (hereafter “CESM”) is a fully coupled Earth system model
that integrates the Community Earth System Model version 2 (Emmons et al., 2020)
with the Whole Atmosphere Community Climate Model version 6 (WACCMS6). The
atmospheric component operates at a horizontal resolution of 0.9375° latitude by
1.25° longitude, with 70 hybrid sigma-pressure vertical layers extending from the
surface to 6 x 107 hPa. Its interactive chemistry and aerosol modules include the
troposphere, stratosphere, and lower thermosphere, with a comprehensive treatment
of 231 species, 150 photolysis reactions, 403 gas-phase reactions, 13 tropospheric
heterogeneous reactions, and 17 stratospheric heterogeneous reactions (Emmons et
al., 2020). The model utilizes the four-mode Modal Aerosol Model (MAM4)
(Emmons et al., 2020) and features its secondary organic aerosol (SOA) framework
based on the Volatility Basis Set (VBS, Donahue et al., 2013) approach. The
photolytic calculations use both inline chemical modules and a lookup table

approach, which does not consider changes in aerosols.

The Atmospheric Model version 4.1 (AM4.1, Horowitz et al. (2020)) within
the GFDL Earth system model (Dunne et al., 2020) incorporates an interactive
chemistry scheme that spans both the troposphere and stratosphere (GFDL-ESM4;
hereafter “GFDL”). The atmospheric component operates at a horizontal resolution
of 1° latitude by 1.25° longitude, with 49 hybrid sigma-pressure vertical layers
extending from the surface to 0.01 hPa. This scheme includes 56 prognostic tracers,
36 diagnostic species, 43 photolysis reactions, 190 gas-phase kinetic reactions, and
15 heterogeneous reactions. Stratospheric chemistry accounts for key O3 depletion
cycles (Ox, HOx, NOx, ClOx, and BrOx) and heterogeneous reactions on
stratospheric aerosols (Austin et al., 2013). Photolysis rates are calculated
dynamically with the FAST-JX version 7.1 code, which considers the radiative
impacts of modeled aerosols and clouds. The chemical mechanism is further
elaborated in Horowitz et al. (2020), and the gas-phase and heterogeneous chemistry
are similar to those employed by Schnell et al. (2018). Non-interactive natural

emissions of O3 precursors are prescribed as outlined in Naik et al. (2013a).

The GISS model, developed by the NASA Goddard Institute for Space Studies,
integrates the chemistry-climate model version E2.1 with the GISS Ocean v1 (G01)
model (GISS-E2-1-G; hereafter “GISS”). The specific configurations of this model
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utilized for the CMIP6 are detailed in Kelley et al. (2020). In this study, we focus on
the model subset that includes online interactive chemistry. The atmospheric
component operates at a horizontal resolution of 2° latitude by 2.5° longitude, with
40 hybrid sigma-pressure vertical layers extending from the surface to 0.1 hPa. The
interactive chemistry module employs the GISS Physical Understanding of
Composition-Climate Interactions and Impacts (G-PUCCINI) mechanism for
gas-phase chemistry (Kelley et al., 2020; Shindell et al., 2013). For aerosols, the
model utilizes either the One-Moment Aerosol (OMA) or the Multiconfiguration
Aerosol Tracker of Mixing state (MATRIX) model (Bauer et al., 2020). The
gas-phase chemistry involves 146 reactions, including 28 photodissociation
reactions, affecting 47 species across the troposphere and stratosphere, along with
an additional five heterogeneous reactions. The model transports 26 aerosol particle

tracers and 34 gas-phase tracers (OMA).

UKESM represents the United Kingdom's Earth system model (Sellar et al.,
2019). It builds upon the Global Coupled 3.1 (GC3.1) configuration of HadGEM3
(Williams et al., 2018), incorporating additional Earth system components, such as
ocean biogeochemistry, the terrestrial carbon-nitrogen cycle, and atmospheric
chemistry (UKESM1-0-LL; hereafter “UKESM”). Walters et al. (2019) provided
descriptions of the atmospheric and land components. The atmospheric component
operates at a horizontal resolution of 1.25° latitude by 1.875° longitude, with 85
vertical layers extending from the surface to 85 km. The chemistry module in the
UKESM model is a unified stratosphere-troposphere scheme (Archibald et al., 2020)
including 84 tracers, 199 bimolecular reactions, 25 unimolecular and termolecular
reactions, 59 photolytic reactions, 5 heterogeneous reactions, and 3 aqueous-phase
reactions for the sulfur cycle from the United Kingdom Chemistry and Aerosols
(UKCA) model. The aerosol module is based on the two-moment scheme from
UKCA, known as GLOMAP mode, and is integrated into the Global Atmosphere
7.0/7.1 configuration of HadGEM3 (Walters et al., 2019). The UKESM uses
interactive Fast-JX photolysis scheme, which is applied to derive photolysis rates
between 177 and 850 nm, as described in Telford et al. (2013). In the lower
mesosphere, photolysis rates are calculated using lookup tables (Lary and Pyle,

1991).
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Models differ in their representation of O3 source and sink processes, as well as
in the definitions of the associated budget terms, which contributes to variability in
model outcomes (Stevenson et al., 2006; Young et al., 2018). For example, in the
GISS model, the tropospheric chemistry component simulates the
NOx-HOx-Ox-CO-CHj4 system and the oxidation pathways for non-methane volatile
organic compounds (NMVOCs). Central to these discrepancies are the treatments of
non-methane volatile organic compound NMVOCs chemistry, which impacts both
chemical production and destruction rates, along with surface removal mechanisms
and stratospheric influences. Furthermore, the choice of tropopause definition can

significantly alter the diagnosed O3 burden, as well as the flux from the stratosphere.

All  four of the interactive tropospheric chemistry models contain
parameterizations of the nitrogen oxide (NOx) emissions from lightning based on
the height of the convective cloud top (Price et al., 1997; Price and Rind, 1992;
Price, 2013), and the tropopause height for each model based on the WMO
definition. Each model has a different way of implementing emissions and how
much they are profiled. For instance, online calculations of lightning NOx emissions
during deep convection in the GISS model are based on the method described by
(Kelley et al., 2020). Lightning NOx continues to be a major source of uncertainty in
both model comparisons and the temporal development of tropospheric O3 because
it has a disproportionately significant influence on tropospheric-O3 concentration

relative to surface emissions (Murray et al., 2013).

BVOC emissions are modeled as a function of vegetation type and cover, as
well as temperature and photosynthetic rates (gross primary productivity) (Unger,
2014; Sporre et al., 2019; Pacifico et al., 2011; Guenther et al., 1995). While models
vary in the speciation of emitted VOCs, they commonly include isoprene and
monoterpenes, each with its own distinct emission parameterization. Despite the
common reliance on photosynthetically active radiation for the parameterization of
BVOC emissions across the four models, there exist notable distinctions. For
instance, the GFDL model exclusively considers the leaf area index, neglecting the
impact of temperature on BVOC emissions, and the CESM, GISS, and UKESM

models omit the influence of vegetation type from their calculations.
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2.2 Simulation data and experimental design

The primary objective of AerChemMIP is to quantitatively ascertain the
influence of aerosols and reactive trace gases on the climate system, as well as the
bidirectional feedback mechanisms involved (Collins et al., 2017). Table 2 presents
a synopsis of the experimental configurations employed in this study. The control
experiment, denoted as PiClim-control, is designed to stabilize both atmospheric
composition and climatic conditions at a state reminiscent of the pre-industrial era,
specifically 1850. The PiClim-2x experiment involves doubling of individual
natural emission fluxes relative to the 1850 control, while the PiClim-x experiments
calibrate these fluxes to align with the emission levels prevalent in 2014 (Collins et
al., 2017). PiClim-2xNOx represents the nitric oxide emissions from natural sources
due to lightning activity doubles. PiClim-2xVOC represents the volatile organic
compound emissions from natural sources, including isoprene and monoterpenes,
doubles. PiClim-VOC represents the pre-industrial climatological control with 2014
VOC emissions both from anthropogenic and natural sources. PiClim-aer represents
the pre-industrial climatological control with 2014 aerosol concentrations. HC
represents halocarbons include CFCs, HCFCs and compounds containing bromine.
NTCF represents near-term climate forcers, including aerosols and chemically
reactive gases such as tropospheric ozone and methane. BC represents black carbon

and N-O represents nitrous oxide.
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Table 2. The available experiments of selected models in this study. "X" represents the experiment is available

piClim-2x  piClim-2x  piClim- piClim- piClim-  piClim- piClim-N piClim- piClim piClim- piClim-co piClim

Model
NOx yocC HC CHy NO; yocC TCF N>O -0s; aer ntrol -BC
CESM2-W
X X X X X X X X
ACCM
GFDL-ESM
A X X X X X X X X X
GISS-E2-1-
G X X X X X X X X X X X X
UKESM1-0-
. X X X X X X X X X X X
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We analyzed models that had archived sufficient data in the Earth System Grid
Federation (ESGF) system to permit accurate characterization of tropospheric Os. In
practice this meant we used archived O3 data from the AERmon characterization of
the tropospheric Os (variable name: “03”) on native model grids. Other variables
used include chemical production (variable name: “o3prod”), chemical destruction
(variable name: “o03loss”), nitrogen monoxide (variable name: “no”), nitrogen
dioxide (variable name: “no2”), isoprene (variable name: “isop”), organic dry
aerosol (variable name: “emioa”), and secondary organic aerosol (variable name:
“mmrsoa”). All data used in this paper are available on the Earth System Grid
Federation website and can be downloaded from
https://esgf-index1.ceda.ac.uk/search/cmip6-ceda/ (last access: 4 July 2024,
ESGF-CEDA, 2020).

A new set of historical anthropogenic emissions has been developed with the
Community Emissions Data System (CEDS, Hoesly et al., 2018). CEDS uses
updated emission factors to provide monthly emissions of the major aerosol and
trace gas species over the period 1750 to 2014 for use in CMIP6, and biomass
burning emissions are based on a different inventory developed separate from
CEDS (Van Marle et al., 2017). The primary analysis examines emissions of NOx
and VOCs from anthropogenic (Hoesly et al., 2018) and biomass burning sources
(van Marle et al., 2017) that were provided as a common emission inventory to be
used by all models (including the four in this study) in CMIP6 simulations. In the
CESM and GFDL models, biogenic emissions, including isoprene and
monoterpenes, are calculated interactively using MEGAN version 2.1 (Guenther et
al., 2012) and are further utilized for SOA formation. While in the GISS model,
biogenic emissions of isoprene are computed online and are sensitive to temperature
(Shindell et al., 2006), whereas alkenes, paraffins, and terpenes are prescribed. And
in the UKESM model, emissions of isoprene and monoterpenes are interactively

calculated using the iBVOC emission model (Pacifico et al., 2011).

3 Results and Discussions

3.1 Spatial, seasonal, and vertical distribution of tropospheric Os;

We first investigate the seasonal and vertical variations of ozone volume

mixing ratio in the pre-industrial atmospheres simulated by four selected models.
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The analysis of tropospheric O3 data derived from the PiClim experiment outcomes
of CMIP6 models reveals distinct seasonal cycles and inter-model variations (Fig.
1). The GISS model demonstrates the highest simulated tropospheric column O3
volume mixing ratio at 50.29 ppbv in the 29" and 30" year of simulation, followed
by the UKESM (44.50 ppbv), CESM (38.02 ppbv), and GFDL (31.03 ppbv), where
the height of the tropopause is based on the definition of WMO. These are
consistent with previous findings from historical experiments (Griffiths et al.,

2021).

Furthermore, our analysis indicates that the disparity in O3 volume mixing ratio
during the PiClim experiment primarily occurs in polar regions. This may be
attributed to the GISS model’s ability to replicate a more robust entrainment of
stratospheric O3, a key source of tropospheric O3 in the pre-industrial atmosphere,
particularly at the poles. Previous studies have demonstrated that elevated Os levels
in the Arctic during MAM and DJF, as well as in the Antarctic during JJA and SON,
result from the cumulative impact of the polar O; barrier (Hamlin and Honrath,

2002).
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Figure 1. Comparison of the seasonal cycle of tropospheric column averaged
volume mixing ratio of O3 of the PiClim experiment results in the 29" and 30™ year
of simulation of the four models. Each row shows a separate meteorological season,
arranged from top to bottom: March to May (MAM), June to August (JJA),
September to November (SON), and December to February (DJF). Each column
represents a selected model, listed from left to right: CESM, GFDL, GISS, and
UKESM. The figures displayed below each chart represent the global average ozone
volume mixing ratio.

Seasonal variations in tropospheric O3 volume mixing ratio exhibit
model-specific patterns. The CESM, GFDL, and GISS models simulate peak
tropospheric Oz volume mixing ratio in spring during the PiClim experiments. In
contrast, the UKESM model reproduces maximum O; volume mixing ratio in
autumn, indicating a limited capability in simulating dynamic circulations in the
tropopause. Furthermore, the seasonal O3 cycle simulations in CESM, GFDL, and
GISS exhibit distinct discrepancies in their outcomes. For instance, the CESM
model simulates the lowest O3 volume mixing ratio in SON, while the GFDL model
exhibits the lowest volume mixing ratio in JJA. The GISS model simulation
indicates higher Os levels in autumn compared to DJF, which is consistent with
results from historical experiments (Griffiths et al., 2021). Additionally, our analysis
reveals that the CESM simulations demonstrate the most pronounced seasonal
oscillation amplitude in O3 volume mixing ratio, approximately 6.82 ppbv. This
feature underscores the model’s sensitivity to seasonal factors affecting tropospheric

O3 dynamics.

In the PiClim experiments, all four models accurately reproduce the peak
volume mixing ratio of O3 in the middle stratosphere at 10 hPa and the zonal
average mixing ratios reaching their peak in the upper troposphere, particularly in
extratropical regions, indicative of extended chemical lifetimes at higher altitudes.
However, notable disparities are observed in the vertical distribution characteristics
of O3 among the four models (Fig. 2). Specifically, the CESM model exhibits the
highest vertical extension, including an additional hotspot simulated in the
thermosphere. While the GFDL and CESM2 models exhibit consistent simulation
outcomes below 0.01 hPa, GISS and UKESM simulate significantly higher

stratospheric O3 levels at 10 hPa in comparison.

Notable distinctions are observed in the spatial distribution of Os. The GISS

model simulates a more vertically concentrated and latitudinally extended Os
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distribution. This characteristic may be a crucial factor contributing to the
pronounced impact of O3 transport in the polar stratosphere, as simulated by GISS.
The zonal variability in Os distribution simulated by the UKESM falls between that
of the GISS and CESM models. These inter-model discrepancies in O3 simulation
results likely reflect suboptimal representation of local and regional dynamics, as
well as omitted chemical processes in corresponding models. The variability and

uncertainty in O3 precursor emission estimates further exacerbate these disparities.
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Figure 2. The zonal mean O; distribution for the 29" and 30" year of the PiClim
experiment results from the (a) CESM, (b) GFDL, (c¢) GISS, and (d) UKESM model.
Thick black lines represent the tropopause height for each model based on the
WMO definition.

3.2 Characteristics of tropospheric Oz under various experiments

Tables 3 and 4 present the global O3 volume mixing ratio and tropospheric O3
volume mixing ratio across all experiments from the four different models. The
GISS model simulations show higher tropospheric O3 volume mixing ratios,
reflecting increased rates of stratospheric downwelling and surface O3z precursor
emissions. However, its overall O; volume mixing ratio is notably lower compared
to the UKESM, CESM, and GFDL models, with reductions of 114.24, 76.16, and
47.04 ppbv, respectively. Analysis reveals that in the CESM, GFDL, and GISS
models, the global O3 molar fraction in the PiClim-2NO. and PiClim-NOx
experiments surpasses that in the PiClim-2VOC and PiClim-VOC experiments. This

difference is most pronounced in the GISS model, aligning with previous findings
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indicating its heightened sensitivity to NOx response (Turnock et al., 2019).
Conversely, in the UKESM model, the global Os; molar fraction of the PiClim-2NOx
experiment is lower than that of the PiClim-2VOC experiment. Interestingly, the
tropospheric O3 volume mixing ratios in the PiClim-2NOx experiment in the CESM
and GFDL models are notably lower than in their respective PiClim-2VOC
experiments, with reductions of 0.41 and 0.29 ppbv. This discrepancy challenges the
conventional understanding that increased NOx emissions from lightning activity
should lead to tropospheric Os generation, suggesting a need for enhanced
sensitivity simulations in these two models regarding O3 and NOx emissions from
natural sources due to lightning activity. In contrast, the PiClim-2NO, experiments
of the GISS and UKESM models effectively simulate an increase in tropospheric Os
volume mixing ratio compared to their PiClim-2VOC experiments. Furthermore,
across all four models, the tropospheric O3 volume mixing ratio of the PiClim-NO.
experiment surpasses that of the PiClim-VOC experiment, indicating the models'
ability to accurately replicate the impact of rising anthropogenic emissions on O;
production. Additionally, methane, a crucial natural source of volatile organic
compounds and a key greenhouse gas, enhances tropospheric O3 generation by
influencing temperature, thereby elevating global O3 volume mixing ratio. This
phenomenon contributes to the heightened sensitivity of O3 to methane volume
mixing ratio in a clean atmosphere. Elevated volume mixing ratios of HCFCs
(PiClim-HC) and methane (PiClim-CH,) lead to substantial stratospheric O3
depletion, consequently affecting tropospheric O3 volume mixing ratio through the
pod coil process. Other influencing factors, such as aerosols and black carbon,
induce warming through radiation effects, thereby simulating elevated O3 volume

mixing ratio.



365  Table 3. The averaged concentrations of global ozone at all simulated vertical levels in the 29™ and 30™ year for each experiment of four models

366 (ppbv).
Model piClim-2x  piClim-2x  piClim- piClim- piClim-  piClim- piClim-N piClim- piClim piClim- piClim-co piClim
ode
NO, yoc HC CH, NO, yoc TCF N:O -0;3 aer ntrol -BC
CESM2-W
398.62 398.56 363.84 391.89 400.20  399.17 398.27 390.32
ACCM
GFDL-ESM
A 365.48 364.35 332.16 367.46  365.65 367.85 365.37 366.27 366.15
GISS-E2-1-
G 322.97 317.19 278.06 324.52 32251  316.40 320.04 31042  319.19 320.09 318.92 318.96
UKESM1-0-
. 435.24 435.65 377.78  429.12  440.70  433.71 445.53 427.35 439.55 428.95 432.54  431.88

367



368 Table 4. The averaged concentrations of global tropospheric ozone in the 29" and 30" year for each experiment of four models (ppbv).

Model piClim-2x  piClim-2x  piClim- piClim- piClim-  piClim- piClim-N piClim- piClim piClim- piClim-co piClim
ode
NOx yoc HC CH4 NOx yoc ICF N0 -0s aer ntrol -BC
CESM2-W
38.17 38.58 33.44 39.42 39.16 39.14 41.33 38.10
ACCM
GFDL-ESM
A 31.33 31.62 24.42 32.64 32.25 34.09  31.01 30.79 30.95
GISS-E2-1-
G 52.30 50.96 44.18 53.08 52.14 50.21 51.65 4836 5247  50.36 49.27 50.02
UKESM1-0-
. 47.53 46.14 31.04 45.55 46.02 45.97 47.29 45.04  46.65  43.69 46.70 45.11
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Figure 3 shows the temporal evolution of tropospheric O3 levels across various
latitudes, as simulated by four distinct models in O3 precursor experiments. In the
PiClim experiments, none of the models predicted an enhancement in O3 volume
mixing ratio, reflecting the consistent chemical lifetime of Os; within the pristine
atmospheric conditions. However, discrepancies in Oz predictions among the
models become more pronounced with increasing latitudes. While the CESM model
generally exhibits higher tropospheric O3 volume mixing ratios compared to the
GFDL model, it paradoxically portrays the lowest O3 levels in the equatorial region.
The GISS model demonstrates a marked disparity in tropospheric Oz volume mixing
ratios between the Antarctic and Arctic regions, with the former registering notably
higher levels. In contrast, the CESM and GFDL models exhibit similar patterns in
this regard. A unique feature of the GISS model is a notable declining trend in
Antarctic tropospheric O; levels during the initial 15 years of both the PiClim-2VOC
and PiClim-VOC experiments. This trend is not observed in the CESM, GFDL, and
UKESM models, highlighting a distinctive characteristic of the GISS model's
simulation. The UKESM model stands out with its pronounced simulation of
elevated O3 volume mixing ratios in the tropical belt. Furthermore, the
PiClim-2xVOC experiment conducted within the UKESM model demonstrates a
significant O3 response to enhanced emissions of VOCs from natural sources in the
equatorial region. This suggests a strong sensitivity of O3 in the UKESM to

increases in VOC emissions from natural sources.
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392 Figure 3. The temporal evolution characteristics of annual mean tropospheric column averaged Oz volume mixing ratio at different latitudes for
393  each model are presented for the (a) PiClim-2NOx, (b) PiClim-2VOC, (c) PiClim-NOx, and (d) PiClim-VOC experiment.
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3.3 Analysis of O3 generation in precursor experiments

In the PiClim experiments, the O3 production was defined as the cumulative
tendency from HO>, CH302, RO, and NO reactions, while O3 loss encompassed the
sum of O(1D) + H2O, O3z + HO2, OH + O3, and O3 + alkene reactions. Figure 4
depicts the chemical production and consumption of tropospheric ozone in different
experiments of the four models. The GISS demonstrates the lowest O3 chemical
production among the models, whereas the other three models show generally
consistent production levels. Notably, the GISS model exhibits a relatively low
efficiency in O3 chemical consumptions, primarily due to missing the loss of O3
with isoprene and terpenes process. The low offset of ozone production and
depletion in the pre-industrial atmosphere by the GISS model provides a new
perspective based on previous studies indicating the high offset of ozone production
and depletion in the present atmosphere by the GISS model. The four models all
showed high ozone chemical production in the PiClim-NOx experiment, indicating
that the four all have perfect ability to simulate the photochemical generation
mechanism of tropospheric ozone. However, the CESM and GFDL models do not
show a significant increase in tropospheric O3 chemical generation during the
PiClim-2NO; experiment. And although the GISS and UKESM models successfully
simulated an increase in the O3 chemical generation rate due to heightened lightning
activity in this experiment, these increases in ozone production are also much
smaller than the chemical production generated by the PiClim-NOy experiment,
which might show that the theoretical mechanism of ozone sensitivity to natural
precursors in pre-industrial atmosphere differs from the present mechanism due to
the differences in the characteristics of intermediate products such as OH.
Furthermore, in either model, the ozone chemical production from the PiClim-NOx
experiment, while higher than in other experiments other than PiClim-NTCF, is
much smaller than the ozone chemical production caused by this emission inventory
in the atmosphere today. Today’s NOx emission forcing has not led to a sustained
increase in the ozone volume mixing ratio in the pre-industrial atmosphere over a
long-time scale, which indicates important differences between the pre-industrial
atmosphere and the present atmosphere in terms of the ozone generation

environment and the ozone depletion environment.
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Furthermore, the PiClim-2VOC experiment in the CESM and GFDL models
lead to an increase in tropospheric Oz volume mixing ratio, despite not reproducing
higher O; chemical production. The UKESM model successfully captures the
enhancement of O3 chemical formation due to increased emissions of VOCs from
natural sources, underscoring its precise sensitivity to these emissions and
validating its capability to simulate O3 dynamics influenced by them. However, the
global O; volume mixing ratio in the PiClim-2xVOC experiment of these models is
lower than that of the PiClim-VOC experiment. These observations illustrate the
variability among models in capturing the O3z response to its precursor species,
stemming from varied treatments of critical atmospheric processes, including
photolysis, dry deposition, transport mechanisms, and mixing dynamics.
Furthermore, these findings highlight the variability in global O; sensitivity
compared to local O3 sensitivity, underscoring the complexity of studying Os

sensitivity on a global scale to mitigate its climate impacts.
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Figure 4. Vertical profiles of O3 volume mixing ratio (a) chemical production and
(b) chemical depletion rate for the 30™ year across five in the four models.

Figure 4b illustrates that, apart from the O3 chemical formation mechanism, the
CESM, GFDL, and UKESM models in the PiClim-2NOx experiment do not
accurately depict the Oz chemical depletion process induced by NOy. Despite
successfully replicating the rise in NO and NO: levels (Fig. 5a, b) in the upper
troposphere, these models fall short in capturing the NOy-related Os; depletion
phenomenon. Moreover, the GISS model stands out with notably elevated NOx

volume mixing ratios attributed to heightened lightning activity compared to the
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other models. Additionally, it demonstrates a peak NOx volume mixing ratio near
500 hPa across all experiments conducted, a feature not observed in the other

models.
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Figure 5. Vertical profiles of (a) NO and (b) NO; volume mixing ratios for the 30th
year across five experiments in the four models.

Figure 6 illustrates a notable inverse correlation between the consumption of
isoprene and the chemical production of O3 in four models, when the rise in VOCs
emissions is not factored in. This relationship is attributed to the significance of
isoprene as a natural VOC source in unpolluted atmospheres and highlights the
absence of O3 generation simulation due to lightning activity in the CESM, GFDL,
and UKESM models. In the PiClim experiments, the UKESM model did not provide
mass fraction of secondary particulate organic matter dry aerosol particles in the air
(mmrsoa), and so we only include its volume mixing ratio of isoprene in the air
(isop) and the primary emissions and chemical production of dry aerosol organic
matter (emioa) in Fig. 6. Additionally, the CESM model exhibits higher emissions
and chemical formation of organic dry aerosol particles compared to the GFDL and
GISS models. This difference potentially contributes to the observed variation in
global O; volume mixing ratios, with the highest levels recorded in the CESM
model and the lowest in the GISS model.
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Figure 6. Vertical profiles of (a) isoprene volume mixing ratio and (b) secondary
organic aerosol mass mixing ratio for the 30" year of all available experiments
across the three models. (c) Temporal evolution characteristics of major emissions
and the chemical production of organic dry aerosol particles from five experiments
of the four models.

4. Conclusions

This study assessed the sensitivity of global-scale ozone (Os3) to precursor
gases in a clean atmosphere and evaluated the simulation capabilities of four Earth
system models using data from the PiClim experiments within the AerChemMIP
framework. Our results highlight both strengths and limitations of these models in
capturing Oz dynamics. The CESM and GFDL models excelled in reproducing
seasonal O3 cycles and the vertical distribution of O3, but they showed limitations in
simulating the tropospheric O3 response to NOx emissions from natural sources,
such as lightning activity. Conversely, the GISS and UKESM models effectively
simulated the positive correlation between tropospheric O3 and temperature but
were less sensitive to natural precursors compared to anthropogenic sources.
Discrepancies, such as zonal temperature biases in the GISS model and stratospheric

temperature inconsistencies in the GFDL model, underscore areas for improvement.
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Our findings suggest that existing assumptions regarding O3 sensitivity to
natural precursors may require refinement in clean atmospheric conditions. This
research provides critical insights into the interplay between O3 and its precursors,
enhancing the accuracy of Oz simulations in Earth system models. Given the
significant role of O3 in radiative forcing, atmospheric oxidation, and climate
feedback mechanisms, our study reinforces the necessity of precise modeling to
better predict and mitigate future climate scenarios. Additionally, the results
underscore the importance of controlling anthropogenic precursor emissions as an
essential strategy to manage tropospheric O3 volume mixing ratios and address

broader climate change challenges.

It is important to acknowledge that the results generated by the models are
accompanied by a degree of uncertainty.Variations in the methodologies employed
by different models to address chemical reactions, including the production and
depletion of ozone, contribute to the uncertainty surrounding the ozone budget.
Furthermore, discrepancies in the data pertaining to anthropogenic and natural
emissions, particularly concerning NOx and BVOC emissions, substantially
influence the outcomes of these models. Additionally, the uncertainty associated
with the stratosphere-troposphere exchange process represents a critical factor in the
ozone budget, with notable divergences in the treatment of this process across

various models.
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