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Abstract. Grasslands make up the majority of agricultural land and provide fodder for livestock. Information on grassland 

yield is very limited as the fodder is directly used at the farms. Data on grassland yields would be needed, however, to inform 25 

politics and stakeholders on grassland ecosystem services and inter-annual variations. Grassland yield patterns are often 

varying on small scales in Germany and estimations are further complicated by missing information on grassland management. 

Here, we present compare three different approaches to estimate annual grassland yield for a study region in southern Germany. 

We apply (i) a novel approach based on a model derived from field samples, satellite data and mowing information (RS), (ii) 

the biogeochemical process-based model LandscapeDNDC (LDNDC) and (iii) a rule-set approach based on field 30 

measurements and spatial information on grassland productivity (RVA) to derive grassland yields per parcel for the Ammer 

catchment area in 2019. All three approaches reach plausible results of annual yields of around 4-9 t/ha and show overlapping 

as well as diverging spatial patterns. For example, direct comparisons show that higher yields were derived with LDNDC 

compared to RS and RVA, in particular related to the first cut and for grasslands mown only one or two times per year. The 

mowing frequency was found to be the most important influencing factor for grassland yields of all three approaches. There 35 

were no significant differences found in the effect of abiotic influencing factors, such as climate or elevation, on grassland 
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yields derived from the different approaches. The potentials and limitations of the three approaches are analysed and discussed 

in depth, such as the level of detail of required input data, or the capability of regional and inter-annual yield estimations. For 

the first time, three different approaches to estimate grassland yields were compared in depth resulting in new insights in their 

potentials and limitations. Grassland productivity maps provide the basis for long-term analyses of climate and management 40 

impacts and comprehensive studies of the functions of grassland ecosystems. 

 

1 Introduction 

Grassland ecosystems provide fodder for livestock, apart from many other ecosystem services, such as carbon storage, 

provision of habitats, water purification, recreation and erosion control (Bengtsson et al., 2019; Le Clec’h et al., 2019; Gibon, 45 

2005; Gibson, 2009; Richter et al., 2021; White et al., 2000). In Germany, grasslands cover almost one third of the 

agriculturally used area (Statistisches Bundesamt, 2023) and are of central importance for the meat and dairy industry (Schoof 

et al., 2020b; Soussana and Lüscher, 2007). In large parts of Europe, grassland ecosystems are managed, hence strongly shaped 

by human activities. In Germany, for example, almost all of the grassland is under some form of agricultural use; i.e. grazed 

and/or mown in different frequency (Dengler et al., 2014; Schoof et al., 2020a, c). Grassland management and use intensity, 50 

i.e. the number and timing of grazing and/or mowing as well as fertilization events, have a strong impact on grassland functions 

and ecology (Gossner et al., 2016; Neyret et al., 2021; Socher et al., 2012). Apart from climate and soil conditions, grassland 

management determines the productivity, thus yields, and species diversity of these ecosystems (Gilhaus et al., 2017). In 

Germany, grasslands are managed on small units (parcels) individually, resulting in a wide variety of combinations of the 

number and timing of mowing events on small spatial scales. As a consequence, grassland landscapes can show high spatial 55 

and temporal variability in their biomass availability and species composition (Gerowitt et al., 2013). 

 

Grassland biomass is usually directly used on farms as fodder for livestock and not traded, which is why there is usually no 

data on grassland yields resulting from sales statistics. The lack of information on yields exacerbates extensive spatio-temporal 

analyses of drivers of grassland productivity, as well as modelling of grassland ecosystem services, e.g. nitrogen and carbon 60 

fluxes. Long-term effects of climate change as well as short-term weather extremes influence grassland productivity and yields 

(Beniston, 2003; Berauer et al., 2019). In the Alpine and pre-Alpine regions of southern Germany this is of particular 

importance, since temperature increases twice as fast as the global average (Auer et al., 2007; Kiese et al., 2018). In addition, 

drought and heat episodes are expected to increase in the region. Therefore, information on grassland yields and the 

dependency on climate conditions is needed to support the planning of fodder production and imports for farmers and to inform 65 

administration and politics. Furthermore, information on grassland yields is required for a comprehensive assessment of 

grassland ecosystem services and sustainable management also under changing climate conditions. Despite these information 

needs, continuous and large-scale monitoring is lacking. 
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There are different approaches to retrieve grassland yield information. Ground-measurements alone such as cutting and 70 

removing herbage from the grassland for direct analysis or estimating yields by the use of a rising plate meter are usually time 

intensive, can hardly provide regular information and might not represent the conditions on broader spatial scales (Murphy et 

al., 2021). This holds in particular in grassland ecosystems characterized by a high small-scale variability, like in southern 

Germany. To retrieve spatially continuous and multi-temporal information, grassland yields can be (i) modelled empirically 

in different degree of complexity, e.g. taking in-situ and remote sensing data into account, (ii) modelled bio-geochemically, 75 

e.g. with process-based models, or (iii) derived from simple rule sets used by authorities based on yield surveys and further 

spatially extensive data, e.g. elevation and soil fertility index.  

 

Remotely sensed reflectance, and in particular vegetation indices derived from them, depict vegetation greenness, structure 

and photosynthetic activity and, thus, relate to vegetation biomass (Holtgrave et al., 2020; Huete et al., 2002). Grassland traits, 80 

such as above-ground biomass, can be estimated using an empirical relationship employing remote sensing and in-situ data to 

train and validate models, as shown in many studies summarized in Reinermann et. al. (2020). Space-borne remote sensing-

based biomass models have been applied in many different grassland ecosystems using various sensors and regression models. 

Using satellite remote sensing data to quantify vegetation properties enables large-scale, continuous, reproducible and 

comparatively cost-sensitive monitoring. Compared with the relatively frequent application of empirical remote sensing data-85 

based biomass models for mostly grazed grassland ecosystems (Wu et al., 2024; Yao and Ren, 2024), the number of studies 

using this approach for grasslands dominated by mowing is more limited (Reinermann et al., 2020). Previous studies from 

regions characterized by mown grasslands investigated the potential of various vegetation indices derived from medium 

resolution sensors (moderate resolution imaging spectroradiometer (MODIS), moderate resolution imaging spectrometer 

(MERIS)) to estimate grassland biomass for single sites in Ireland and the Netherlands (Ali et al., 2017a; Ullah et al., 2012). 90 

Based on Landsat and Sentinel-2, grassland biomass and height were estimated for study regions in Germany, France, Spain 

and Austria using various regressors, such as multi-linear regression, random forest or deep learning models (Barrachina et al., 

2015; Dusseux et al., 2022; Eder et al., 2023; Muro et al., 2022; Schwieder et al., 2020). However, despite the strong influence 

of grassland management on the productivity, to our knowledge none of the previous remote sensing-based studies have 

directly included mowing information in the biomass estimation approach.  Further, grassland biomass estimates are only a 95 

snapshot in time. In particular for grasslands dominated by frequent mowing activities, the amount of standing biomass varies 

a lot in the course of a year. A single biomass estimation is therefore not sufficient to inform on annual grassland productivity 

and yields. One way to approach this is the combination of multi-temporal biomass estimations informed by timing of mowing 

events to retrieve annual grassland yields. To our knowledge, there is no remote sensing-based study that estimated annual 

grassland yields using this approach so far.  100 
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Another method to obtain grassland yield estimates are deterministic process-based models, such aslike LandscapeDNDC 

(Haas et al., 2013; Kraus et al., 2015; Petersen et al., 2021), Daycent (Del Grosso and Parton, 2019; Parton et al., 1998), PaSIM 

(Riedo et al., 1998, 2000), LPJmL (Bondeau et al., 2007; Schaphoff et al., 2018), APSIM (Holzworth et al., 2014), or 

ORCHIDEE-GM (Chang et al., 2013). The general idea is to describe the most relevant processes determining plants or plant 105 

community behavior and their dependence on environmental conditions by a set of differential equations connecting 

atmospheric, plant and soil processes. An advantage of process-based models is the possibility to assess all spatial levels 

ranging from the site (Chang et al., 2013; Liebermann et al., 2020; Petersen et al., 2021) to continental (Vuichard et al., 2007) 

and global (Rolinski et al., 2018) scale. Additionally, the application of process-based models opens the possibility to evaluate 

ecosystem productivity under various scenarios including climate change (Petersen et al., 2021), or management changes like 110 

adaptions in fertilization regimes (Hong et al., 2023; Reis Martins et al., 2024), or shifts in cutting frequencies (Rolinski et al., 

2018). However, as process-based models rely on the availability of data for model development, testing, and, in particular, 

up-scaling large-scale applications are limited.While model input data is generally available for model development and testing 

at the site scale, up-scaling of results is often limited by uncertainty or even lack of detailed information particularly on 

grassland management.  115 

 

A third approach to estimate grassland yield is by making use of measurements from field experiments or regional census 

statistics (Smit et al., 2008). In Germany, some federal states provide reference values for grassland yields at county level that 

can be used by farmers to derive their grassland’s fertilizer requirements. For instance, the reference values provided in the 

guideline for fertilization of crop- and grassland by the Bavarian State Institute for Agriculture (LfL) (LfL, 2018) are 120 

aggregated values for Bavaria based on LfL internal research and field experiments (Diepolder et al., 2016). Thus, grassland 

yields can be derived from rule-based calculations based on grassland yield reference values and data e.g. on soil properties, 

climate, and use intensity to adapt these values to local conditions and management.  

 

Here, a novel remote sensing-based approach to derive grassland yield in southern Germany is presented and applied. three 125 

approaches to derive grassland yield  Annual grassland yields are compared to yield estimates of the same year and region 

derived from two other approaches – either established in the scientific community or used by authorities, however optimized 

for the study region – are applied for the same region and year. Annual yields are compared and advantages and disadvantages 

are highlighted. We estimate annual grassland yields for a study area in southern Germany in 2019 using (a) a novel empirical 

satellite remote sensing model (RS), which is compared with results of (b) a process-based biogeochemical model 130 

(LandscapeDNDC) and with (c) a simple rule-set reference value approach used by authorities (RVA). To represent grassland 

management intensity, all three approaches use information on satellite-derived mowing dates retrieved from Reinermann et 

al. (2023) and (2022). To examine under which conditions the results of the three different approaches differ, we examined 

the influence of various factors – management and climate – on the grassland yields resulting from the three methods. By 

examining the spatial and temporal patterns of yields derived from the three approaches and analyzing the influence of various 135 
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factors, we assess the differences and similarities in the methods. We aim to determine which method best represents specific 

conditions and under which circumstances it is most reliable. 

2 Study area 

The study area is located in the pre-Alpine and Alpine region of southern Germany (Figure 1) and consists of the broader 

Ammer catchment area including the Pre-Alpine TERENO Observatory (Kiese et al., 2018). The area belongs to the temperate 140 

oceanic climate according to Köppen and Geiger (Kottek et al., 2006). The mean annual temperature was 8.9 °C in 2019, the 

long-term average (2012-2021) is 8.1 °C for the region. The mean precipitation sum was 1175 mm in 2019 and the long-term 

average 1141 mm (Boos et al., 2024; Petersen et al., 2021). The elevation of the study area with grassland land use ranges 

between 500 and 1100 m a.s.l. with grasslands dominating agricultural land use which totals to about 38% of the region area 

(Kiese et al., 2018). In the region, grasslands are of economic importance, in particular for meat and dairy production, but also 145 

for tourism (Schmitt et al., 2024; Soussana and Lüscher, 2007). The grasslands of the Ammer region are grazed and/or mown 

at intensities ranging from extensive (with one to two mowing events) to highly intensive use with up to six mowing events 

per year (Reinermann et al., 2022, 2023). The timing of the management activities varies from grassland parcel to parcel. Here, 

we focus on meadows and mowing pastures which make up around 657 km² (27138 parcels). 
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 150 

Figure 1: Study area in southern Germany showing land use, elevation and hexagon averages of 2019 of the mowing frequency, 

mean annual air temperature, mean annual precipitation, and elevation (see Section 3.2.2). The hexagon diagonal size is 1 km. 
Formatiert: Schriftfarbe: Rot
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3 Material and methods 

3.1 Spatial and field data 

3.1.1 Spatial management data 155 

All three yield modelling approaches used the same parcel boundary and mowing information data. Parcel boundaries were 

taken from the EU’s Integrated Administration and Control System (IACS) provided by the Bavarian State Institute for 

Agriculture (LfL). The same data source was used to exclude all parcels which were not used as meadows or mowing pastures 

in 2019.  

 160 

The dates of mowing events originate from Reinermann et al. (2023) and (2022) where mowing events were detected based 

on Sentinel-2 time series. However, differing from the original approach, for this study no grassland mask was used to ensure 

that all meadows and mowing pastures identified by the IACS data are covered. To transfer the 10x10 m² pixel-based mowing 

dates to parcel level, detected dates within a time frame of three weeks were agglomerated per parcel using the majority vote. 

Only when at least for 20 % of the parcel the date was detected, the mowing event remained in the dataset. Regional validation 165 

using information from farmers and webcam images showed an accuracy (F1-Score) of 0.65 for the mowing dates on parcel 

level in the Ammer region in 2019. The validation was conducted only with data from the study region but in the same manner 

as in Reinermann et al. (2022). 

 

3.1.2 Biomass field data 170 

To train and validate the empirical remote sensing model as well as for regional quality evaluation of LandscapeDNDC, in-

situ biomass measurements were used. A total of 14 grassland plots  of (20 m x 20 m) in the Ammer region (Figure 1) were 

sampled in the period 2019-2021 to obtain in-situ above-ground biomass (AGB) information (for sampling design see 

Schucknecht et al. (2023), and Schucknecht et al. (2020)). The sampling plots are constituted by homogeneous vegetation 

coverage and placed to be representative for the entire grassland parcel. The sampled grassland parcels are characterized by 175 

different land management intensities ranging from one to six mowing events per year. The sampling campaigns took place at 

multiple times during the growing season to ensure that biomass samples from a variety of growth stages before and after 

mowing events were included. For each plot, above-ground biomass was collected on four randomly placed subplots of 50 cm 

x 50 cm. The plot was divided into four equal quadrants, with each subplot being randomly positioned in one of the quadrants. 

The position of each subplot varied with every measurement. To account for mowing height, AGB was sampled from >7cm 180 

on all subplots and complemented by one biomass sampling from 2-7 cm vegetation height at one of the four subplots. The 

samples were dried for at least 48 hours until constant weight at 60 °C and weighed. The weight of the dried biomass of the 

four samples from above 7 cm were averaged and added to the measurements of 2-7 cm to obtain total AGB per site and date 

as well as scaled to 1 m². In total, 111 biomass samples were collected. Apart from three grassland plots which were used as 
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alternatives when the actual plots were freshly mown at the time of the campaign, all plots were sampled five times in 2019, 185 

three times in 2020 and one time in 2021 between March and October. Among the 14 grassland plots, one was mown six times, 

two five times, four four times, three three times, one two times and three only once per year.  

 

3.2 Yield estimation approaches 

The three grassland yield estimation approaches applied in this study, i.e., the remote sensing (RS) approach, the process-based 190 

LandscapeDNDC model approach (LDNDC) and an estimation based on reference values (RVA), are described in detail in 

Sect. 3.2.1-3.2.3. (Figure 2). 

 

Figure 2: Conceptual scheme of the three yield estimation approaches. 

 195 

3.2.1 Remote sensing-based approach 

For the remote sensing model, MAJA (version 3.3) Sentinel-2 (S2) level 2a (Hagolle et al., 2017) time series from the years 

2019-2021 and tiles 32TPT and 32UPU were used to match the biomass sampling campaigns. The optical satellite reflectance 

data consists of acquisitions from two identical satellites (S2A and S2B) acquiring information in 12 spectral bands (Drusch 

et al., 2012). The bands used here are the 10 bands relevant for vegetation monitoring, namely bands 2, 3, 4, 5, 6, 7, 8, 8A, 11 200 



9 

 

and 12, covering the red, green, vegetation red edge, near-infrared and shortwave-infrared wavelengths. The bands which have 

a 20 m spatial resolution were resampled to 10 m by the nearest-neighbour method to achieve a consistent spatial resolution 

of 10 m for all bands. 

 

Based on S2 satellite data and in-situ total AGB samples (Section 3.1.2), an empirical model was trained and optimized to 205 

estimate grassland biomass. Satellite data influenced by clouds, cloud shadows or unfavourable terrain conditions were 

excluded according to the MAJA algorithm. The empirical model was built based on the S2 reflectances from the 10 selected 

bands and additional spectral indices as predictor variables. Specifically, the Enhanced Vegetation Index (Huete et al., 2002) 

(EVI, Equation 1) and the Tasseled Cap Wetness Index (Indexdatabase, 2024; Krauth and Thomas, 1976) (wetness, Equation 

2) were calculated and included as they relate to vegetation biomass: 210 

𝐸𝑉𝐼 = 2.5
2.5∗𝐵8−𝐵4

𝐵8+6∗𝐵4−7.5∗𝐵2+1
 ,            (1) 

Wetness = 0.1509 ∗ 𝐵2 + 0.1973 ∗ 𝐵3 + 0.3279 ∗ 𝐵4 + 0.3406 ∗ 𝐵8 − 0.7112 ∗ 𝐵11 − 0.4572 ∗ 𝐵12,                 (2) 

 

where B2, B3, B4, B8 and B11 are reflectance bands in the blue, green, red, near infrared and short-wave infrared area, 

respectively. 215 

 

In addition, information on timing of mowing events (Section 3.1.1) was directly included in the modelling process by adding 

an additional predictor variable representing the days since the last mowing event. For each S2 acquisition, a layer was 

calculated giving the days since the last mowing event on pixel basis. When no mowing event took place before the S2 

acquisition, the number of days since the start of the growing season was calculated. To retrieve the start of the growing season, 220 

the Copernicus Land Monitoring Service (CLMS) High Resolution Vegetation Phenology and Productivity (HR VPP) Start of 

Season product was used (CLMS, 2019). Further, the S2 acquisition date was included into the mode as predictor variable. 

This resulted in 14 input features for the empirical modelling, i.e. 10 spectral bands, 2 spectral indices, the days since last 

mowing/start of growing season, and the date of the satellite acquisition. 

 225 

To prepare the input data for model training, pairs of cloud-free S2 acquisitions and corresponding in-situ biomass samples 

were built by allowing a maximum of five days between satellite acquisition and field sampling in both directions. If there 

were multiple satellite acquisitions in the allowed range, closer ones were preferred as well as satellite acquisitions after field 

sampling dates. It was also checked that there was no mowing event in between a satellite acquisition and a field sampling to 

maintain representative data pairs. Due to cloud conditions in 2021, only data from 2019 and 2020 remained in the data table 230 

after this procedure. Data pairs from sampling campaigns from every month between April and October, apart from July and 

August, were available.  
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An extreme gradient boosting model was trained on the input features and the corresponding AGB values (Friedman, 2001). 

Initial tests showed that the extreme gradient boosting model outperformed others, such as Random Forest, Support Vector 235 

Machines or multi-linear models. The xgboost package (version 1.5.2) was used in Python. In total, 74 data pairs were available 

from which 82% (n=61) were used for training and testing and 18% (n=13) as independent test of the trained model. A stratified 

sampling of the test data was conducted to ensure that the value range of the test data was representative. With the data used 

for training the hyperparameters for an optimized model were searched for, using grid search, 5-fold cross-validation (CV) 

and ten iterations each. To find the best model the coefficient of determination (R²) was used. The best model according to the 240 

training was then tested against the independent test data set.  

 

The best trained biomass model was applied to estimate the AGB of all available S2 scenes to generate a biomass time series. 

This biomass time series was used in combination with the mowing dates and IACS parcel information to estimate annual 

yields per parcel. This was approached by going through the parcel-based mowing dates. For each mowing date, the pixel-245 

based biomass estimates from all observations of up to three weeks before and one week after the mowing date were extracted. 

The 95 % percentile was calculated from this biomass data to estimate the yield per mowing event and parcel, minimizing the 

influence of parcel boundaries. This time frame was used to ensure that the biomass was captured shortly before a mowing 

event as there is an uncertainty in the timing of the mowing dates. These single mowing event yields were afterwards summed 

up to annual yields per parcel. 250 

3.2.2 LandscapeDNDC modelling approach 

The process-based biogeochemical model LDNDC was run for the whole study region with individual high-quality input data 

combinations of soil, climate and management for every field (Boos et al., 2024). This became possible by the availability of 

accurate small-scale grassland soil profile data, interpolated reference climate data based on continuous measurements from 

weather stations, and cutting dates from remote sensing on a field level. 255 

 

The model calibration and validation for yields was performed on extensive measurements on lysimeters from the TERENO 

pre-Alpine observatory covering three sites in different elevations within the study area with intensive and extensive 

management (Kiese et al., 2018; Petersen et al., 2021). For the harvested dry weight biomass at individual cutting events, 

coefficients of determination between 0.52 and 0.61 with relative root mean square errors (RRMSEs) (RMSEs) between 0.32 260 

and 0.37 (0.72 t ha-1 to 0.92 t ha-1) are found for the sites at 864 m a.s.l. and 595 m a.s.l. in 2012-2018 in Petersen et al. (2021). 

In a further model validation, considering the period 2012-2021 and also adding the mid-elevation site at 769 m a.s.l., yields 

from individual mowing events were captured with a coefficient of determination (r2) of 0.61 and a RMSE of 0.94 t ha -1 

(RRMSE 0.39) (Boos et al., 2024). Running the model with regional input data for the sites, which are used for RS-training 

and validation, compare Sect. 3.1.2., and comparing to standing biomass before cutting events, lead to a coefficient of 265 

determination of 0.67 and a RMSE of 1.46 t ha-1 a-1 (Boos et al., 2024). 
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Climate inputs were generated from the reference data of the Climex project (Poschlod et al., 2020; Willkofer et al., 2020), 

which have been -  interpolated from station measurements of the German Weather Service into a product of 3-hourly temporal 

and 500 m x 500 m spatial resolution of virtual climate stations. For this study, -, which we aggregated this data to daily climate 270 

inputs (minimum, maximum, and mean air temperature, precipitation sum, mean relative humidity, mean global radiation, and 

mean wind speed) and assigned the nearest virtual climate station to every field to run LDNDC. Further, seasonal and yearly 

mean temperatures and summed precipitations for result analysis were derived. Regional soil data was derived from the soil 

database of the Bavarian State Office of the Environment (LfU) (LfU, 2020). Only mineral grassland soils were considered 

and a unique, i.e. with a single profile per polygon, soil map was compiled.  More details can be found in Boos et al. (2024).  275 

 

The model simulates plant growth depending on factors like photosynthesis, nitrogen and water availability, phenology, and 

temperature (Petersen et al., 2021). At a prescribed cutting date, the above ground biomass is reduced to a pre-set value for the 

remaining biomass, which equals the standing biomass after the cutting event and is according to farmers’ practice calibrated 

to a cutting height of about 7 cm. The harvested biomass from all events in a year is then summed up to calculate annual yields 280 

per field. Therefore, the management is another key model driver and was set for every parcel individually. The cutting dates 

in the study year 2019 were taken from the dataset generated by Reinermann et al. (2022), as described in Sect. 3.1.1. Fertilizer 

in the form of slurry was applied according to the mowing information following farmers’ practice in the study region. For 

parcels with three or more mowing events per year, the number of manuring events equalled the number of cuts. For parcels 

with less than three mowing events per year, the number of fertilizer applications was one less than the number of cuts which 285 

corresponds to local farmers practices. The amount of manure varied between 40 and 55 kgNha-1 per event and decreased per 

application.  For further details on the applied regional model drivers for LDNDC, see Boos et al. (2024). 

 

For every grassland field simulation (N=27138), climate, soil, and management input were derived from superimposing field 

boundaries with the respective spatial products. The model (LDNDC revision: 10786, Crabmeat revision: 8136) was run with 290 

an hourly time step and the submodels CanopyECM (Grote et al., 2009) as the microclimate module, WatercycleDNDC (Kiese 

et al., 2011) as the watercycle module, MeTrx (Kraus et al., 2015) as the soil-chemistry module, and PlaMox (Kraus et al., 

2016; Liebermann et al., 2020) employing the PhotoFarquhar model (Ball et al., 1987; Farquhar et al., 1980) for photosynthesis 

as the physiology module. For a general description of LDNDC and the functioning and interaction of the different sub-

modules see Petersen et al. (2021). 295 

3.2.3 Reference values approach 

The reference values approach (RVA) is mainly based on a look-up table from the Bavarian State Institute for Agriculture 

(LfL) that includes yield reference values of the farmer’s yield for Bavaria for (i) different types of grassland uses and 

intensities (number of cutting events, low/medium/high grazing intensity) as well as yield levels (low, medium, high) (see  
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Appendix Table A1). Apart from the mowing information (Section 3.1.1), cattle numbers (Section 3.1.1) were used to identify 300 

the management intensity (i). We further used the land appraisal dataset (LDBV, 2018) to obtain grassland indices (German 

“Grünlandzahl”) for each field to get the yield levels (ii). This index represents the quality of a location for grassland 

production, considering factors such as soil type, soil properties, climate, and water availability. The index ranges from 1 

(poor) to 100 (best). As the grassland index can vary within a parcel, we assigned the value that covered the largest portion of 

the parcel area. In cases, where the grassland index was unavailable, we substituted it with the field’s maximum slope (ASTER 305 

GDEM, 2018) instead. 

 

The yield estimation approach based on reference values is based on Kaim et al. (under review).  Table A1 provides reference 

yield values for meadows and mowing pastures, categorized by different use intensities and yield levels (low, medium, and 

high). To derive the yield for each grassland parcel, we defined a set of rules based on use intensities and yield levels. We 310 

determined the yield of each parcel based on the grassland index, i.e. the higher the grassland index, the higher the yield level. 

For a few fields, the grassland index was not available due to data gaps and we used the maximum slope to substitute the 

missing information on grassland site conditions. The assumption was that with increasing slope the management intensity 

decreases, consequently also the grassland yields. The management intensity dataset described in Sect. 3.1.1 was used to 

allocate the number of cutting events to each grassland field. For mowing pastures, firstly, the share between mowing and 315 

grazing had to be identified in order to determine their use intensities. Mowing pastures with one cutting event were defined 

as being used up to 60 % for grazing and all mowing pastures with at least two cutting events as being used up to 20 % for 

grazing. Secondly, the management intensity of mowing pastures was approximated by the farm’s stocking rate (SR) for all 

parcels with zero to three cuts, i.e. the higher the SR, the higher the use intensity. SR is defined as LSU⁄P, with LSU being the 

number of cattle per farm in livestock units and P the farm’s total grazing area. Mowing pastures with more than three cuts 320 

were assumed to have a high use intensity (Table A21). All assumptions regarding slope, share of grazing in mowing pastures, 

and SR were discussed with and approved by grassland experts from science and the Office of Food, Agriculture and Forestry 

(AELF) Weilheim, Germany – a local stakeholder from the study region. More information can be found in Kaim et al. (2025). 

 

Table 1: Grassland yield level (/grazing intensity) according to grassland index or slope (/stocking rate). 325 

Yield level / grazing intensity Grassland index (GI) Slope Stocking rate (SR) 

Low   0 ≤ GI ≤ 33 50 % ≤ slope    0 = SR ≤ 1.5 

Medium 33 < GI ≤ 67 25 % ≤ slope < 50 % 1.5 < SR ≤ 3 

High 67 < GI ≤ 100   0 % ≤ slope < 25 %    3 < SR 
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3.3 Spatial aggregation of yield data and comparisons 

The annual yields estimated by all three approaches are compared for any individual parcel (N = 27138 meadows and mowing 

pastures) as well as for mean values of hexagons (1 km diagonal) with a total of 2571 hexagons covering the full study region. 

The yields were averaged per hexagon by weighting with the parcel areas. The aggregation on hexagons has several reasons: 330 

Firstly, it is not allowed to publish the parcel shapes and locations, due to data privacy regulations, secondly, the visibility of 

spatial patterns is improved and, lastly, outlier effects are minimized.   

 

To compare the yields per parcel and hexagon resulting from the three different approaches, the Pearson correlation coefficient 

was calculated. To analyse the effect of influencing factors, the relationships between yields and mowing frequency, 335 

temperature, precipitation and elevation were plotted and Pearson correlation coefficients calculated. 

4 Results 

4.1 Grassland biomass estimation 

4.1.1 Biomass estimation based on the RS approach 

 340 

Sub-parcel biomass estimations are intermediate products of the RS approach. Fig. 3 shows the estimated biomass for single 

satellite observations on pixel resolution (10 m x 10 m) highlighting the potential to capture small scale variability in patterns 

of standing biomass and grassland productivity of the RS approach. 
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Figure 3: Estimated grassland biomass based on the RS approach for single time steps (30th March, 19th April, 24th May, 13th 345 

June, 23rd July, 27th August, 16th September and 16th October) and annual mean biomass for the entire study region in 10x10 

m² pixel resolution. The top panel location is indicated as a square in the map of the whole study region. 

 

The estimated biomasses from RS were validated with a part (18%) of the in-situ measurements that were not used for model 

training (i.e., the test data). The best RS model – extreme gradient boosting regressor, parameterized with a learning rate of 350 

0.05, a maximum depth of each tree of three and a number of features used in each tree of 40 % – reached an average R² (CV) 

of 0.97 and a root mean square error (RMSE) (CV) of 0.18 t ha-1 during the internal validation. Band 12 (short-wave infrared), 

wetness index and days since the last mowing were the most important features according to the relative influence measure. 

The validation of the model with the test dataset (n=13) lead to a R² of 0.68 and a RMSE of 0.43 t ha-1 (compare Figure 4).  

 355 
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Figure 4: Predicted against sampled biomass (AGB) [g m-²] for cross-validation and test data of the RS approach. 

 

4.1.2 Comparison of RS and LDNDC biomass estimations 

 360 

The yield estimation methods LDNDC and RS involve an estimation of grassland biomass over time.  

Time series of AGB for the year 2019 are illustrated in Fig. 53 for three example parcels from the measurement campaign 

which were used for the RS biomass model training and validation (Section 3.1.2.). The figures include the AGB of in-situ 

measurements, estimated AGB derived by the RS and LDNDC approach (not available for RVA) and the annual yield based 

on all three estimation methods. The temporal pattern of LDNDC biomass estimations shows an increase in spring, drops after 365 

mowing and increase thereafter. The LDNDC biomass at the first cut is the highest. The temporal profile of the RS-based 

biomass follows the mowing dates less strictly as compared to LDNDC; however, for most mowing events there is a peak 

before the mowing event, followed by a drop and a regrowth pattern (Figure 53). When comparing the two biomass time series 

Formatiert: Überschrift 3



16 

 

it becomes clear that the yield of the first mowing event from LDNDC is notably higher than from RS. In contrast to that, RS 

shows only at times a gradual decline in the local maxima during the growing season (e.g. Figure 53 top). 370 

 

Figure 53: Temporal patterns of grassland AGB estimated by the RS and LDNDC models, in-situ measurements of AGB, annual 

yields of all three models (on the right of each sub-figure), and mowing dates (horizontal dashed lines) of three grassland parcels in 

the study area. 
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The estimated biomasses from RS were validated with a part (18%) of the in-situ measurements that were not used for model 375 

training (i.e., the test data). The best RS model – extreme gradient boosting regressor, parameterized with a learning rate of 

0.05, a maximum depth of each tree of three and a number of features used in each tree of 40 % – reached an average R² (CV) 

of 0.97 and a root mean square error (RMSE) (CV) of 1.84 t ha-1 during the internal validation. Band 12 (short-wave infrared), 

wetness index and days since the last mowing were the most important features according to the relative influence measure. 

The validation of the model with the test dataset (n=13) lead to a R² of 0.68 and a RMSE of 1.87 t ha-1. 380 

 

The LDNDC model together with the regional input data was also evaluated against the AGB measurements/in-situ data of 

the above-mentioned field campaign (Section 2.2.2) in a previous study (Boos et al., 2024). To this end, only biomass 

measurements from within one week before a mowing event were considered and summed to yearly values per parcel. With 

this procedure an R² of 0.67 and a RMSE of 1.46 t ha-1 a-1 were found. 385 

4.2 Estimated annual grassland yields 

The spatial patterns of annual grassland yield averaged per hexagon estimated with each method are depicted in Fig. 46. All 

three models achieve plausible results of annual grassland yields ranging mostly between 3 to 9 t ha-1 t/ha for the Ammer 

region in 2019. The annual grassland yields of the entire study region are on average 6.5 t ha-1 (372.9 kt) estimated by RS, 7.4 

t ha-1 (445.5 kt) estimated by LDNDC and 6.9 t ha-1 (419 kt) estimated by RVA. The yield maps highlight the spatial variability 390 

of grassland yields in the study region, which is consistent in many cases for the three modelling approaches. Noticeable 

patterns are grasslands with relatively high annual yields in the north of the study region according to the RS and LDNDC 

models and to a lesser degree also according to the RVA. Grasslands with lower annual yields are present in the northeast and 

the east of the study area, which is mostly visible in the RS and RVA maps. The centre of the study area shows grasslands 

with above-average yields mostly based on the RS and even more the LDNDC model results. Grassland in the south of the 395 

study area located within Alpine valleys show lower yields in particular for the RS and RVA maps. The entire south-western 

part of the region shows overall lower grassland yields from the RS and LDNDC, but not the RVA models (Figure 46). 
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Figure 64: Spatially aggregated (hexagon diagonal length of 1km) annual yield estimates for meadows and mowing pastures in the 

study area in 2019 based on Remote Sensing, LandscapeDNDC simulations and the reference values approach. Hexagons for which 400 
the grassland area is smaller than 1 ha are not shown. 

The differences in yields based on RS and LDNDC are not concentrated to specific locations but rather distributed throughout 

the Ammer region (Figure 57). The yield differences between RS and LDNDC to RVA shows in both cases a north-east, south-

west pattern as yields derived from RVA are higher in the south-western part of the study region compared to the yields based 

on RS and LDNDC. Direct comparisons of hexagon yields reveal that 36 % of the Ammer region shows differences smaller 405 

than 1 t ha-1 among all three approaches. The standard deviation of yield averages of all three methods shows no distinctive 

spatial patterns (compare A2). 

 

Figure 75: Differences between spatially aggregated (hexagon diagonal length of 1km) annual yield estimates for meadows and 

mowing pastures in the study area in 2019 based on Remote Sensing, LandscapeDNDC simulations and the reference values 410 
approach. Hexagons for which the grassland area is smaller than 1 ha are not shown.annual yields from different models in the 

study area in 2019. Hexagons for which the grassland area is smaller than 1 ha are not shown. 
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In order to compare the estimated annual grassland yields averaged per hexagon of the three approaches, the frequency 

distributions were plotted together with the correlation of the annual yield estimates from the different approaches (Figure 68). 

The frequency distribution shows the largest range for the RS method (variance of 2.0 compared to 0.9 for LDNDC and 1.2 415 

for RVA). The peaks showing the highest number of estimated yield ranges around 7 t ha-1 for RS and 7.8 t ha-1 for LDNDC 

and RVA. The comparison of the hexagon yields of the RS and LDNDC approaches shows they largely overlap, in particular 

for the most common yield values of 6-8 t ha-1. The Pearson’s correlation coefficient is 0.67 for the hexagon yields based on 

RS and LDNDC. It shows significant relationships for all combinations of methods. It shows significant relationships in all 

combinations of methods. In general, but particularly for yields approximately below 5 t ha-1, LDNDC shows higher values 420 

compared to the RS (and RVA) results. The comparison of annual yields averaged per hexagon from the RS and RVA models 

also show a generally good agreement (Pearsons’s r = 0.64), but an overall larger scattering. The hexagon yields of RVA 

compare well with the RS yields and also show a tendency for over- or underestimation, respectively, for smaller value ranges 

below approximately 6 t ha-1 when compared to LDNDC yields (Figure 68). The relationship between RVAC and LDNDC 

yields is the weakest with a Pearson’s r of 0.47. 425 

 

Figure 86: Pairwise relationships of spatially aggregated (hexagon diagonal length of 1km) hexagon annual yield estimates for 

meadows and mowing pastures in the study area in 2019 annual yields based on Remote Sensing, LandscapeDNDC simulations and 

the reference values approach with histograms of the three modelling approaches. 

The frequency distribution and pairwise comparison of the estimated annual grassland yields per single parcel is shown in Fig. 430 

7A1. The higher spatial resolution leads to increased scattering for all three approaches compared to the hexagon averages. 

The RS method shows the largest value range which is particularly visible from the histogram. The yields derived from RS 

show a variance of 4.6, 95%-percentile of 9.7 and 5%-percentile of 2.5 t ha-1. LDNDC and RVA yields have a variance of 2.2 

and 2.7, a 95%-percentile of 9.8 and 9.4 as well as a 5%-percentile of 4.9 and 3.9 t ha-1. Hence, the LDNDC method covers a 

wider value range compared to the hexagon yield value distribution, too, but still not as wide as RS. The RVA method results 435 

in discrete values in contrast to the other two approaches and does not predict values higher than 10 t ha-1. Due to the discrete 

values of RVA, there is a much higher overlap of yield values resulting in higher counts for the relationships including RVA 



20 

 

and varying count scales in Fig. A17. The relationships between estimated yield based on the three approaches are relatively 

similar as for the hexagon means with a Pearson’s r of 0.64 between RS and LDNDC, 0.54 between RS and RVA and 0.44 

between LDNDC and RVA. As seen for the hexagon means, even though many pairs differ from the diagonal, there is a good 440 

agreement between the annual yields estimated with the RS and the LDNDC models (Pearson’s r = 0.64). The largest deviation 

between these two model results occurs for low yields below roughly 5 t ha-1, where LDNDC estimates higher values than RS. 

While the LDNDC yields shows maximum values around 12 t ha-1, there are a few values reaching up to 15 t ha-1 based on the 

RS model. The comparison of the RS and RVA results reveals a scattered pattern; however, the high number of pairs close to 

the diagonal in Fig. 7 indicates that there is a good agreement between the models (Pearson’s r = 0.54). Similar to the RS and 445 

LDNDC relationship, RVA shows overall higher estimated yield values than RS. The LDNDC-RS relationship leads to the 

lowest Pearson’s r of 0.44 (Figure 7).  LDNDC overestimates lower yields compared to RVA and RS. 

 

Figure 7: Pairwise relationships of parcel-level yields with histograms of the three modelling approaches.  Note, that the colour 

ranges differ for the subplots. 450 

 

4.3 Yield estimates in relation to influencing factors 

4.3.1 Impact of mowing frequency 

 

It can be assumed that the number of mowing and associated fertilization events per year largely influences temporal grassland 455 

vegetation growth dynamics and annual yields. We therefore investigated the estimated annual yields per mowing frequency 

to compare how the relationship found for the remote sensing-based approach differs from the results of the other two 

approaches. The RS and LDNDC models consider the same mowing dates and all approaches the same frequencies of mowing 

events. Boxplots of parcel-based annual yields per mowing frequency show that the estimated yield rises with the number of 

mowing events per year for all models (Figure 98). The mowing frequency has the strongest impact on the yield derived by 460 

the RS method, as the estimated yields show a continuous and clear increase with each additional number of annual mowing 

events. The Pearson’s correlation coefficient, which is significant for all three approaches, is 0.81 for the number of mowing 

events and the RS yields, 0.74 for LDNDC and 0.66 for RVA. While the average yields for parcels mown 3-5 times correspond 

relatively well for all three methods, the yields for parcels mown only 1-2 times per year are lower for the RS model compared 

to the other two models. For a single (two-) cut field, the RS approach shows an average annual yield of 2.1 t ha-1 (4.3 t ha-1), 465 

whereas LDNDC predicts 4.4 t ha-1 (6.5 t ha-1) and RVA 4.4 t ha-1 (5.7 t ha-1).   
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Figure 98: Estimated annual grassland yields per mowing frequency, based on the three models RS, LDNDC and RVA. *Only six 

parcels were mown six times per year which might not be representative. 

4.3.2 Precipitation, temperature and elevation 470 

The annual grassland yields increase with increasing mean annual temperature (MAT) mainly for RS and LDNDC but less for 

RVA (Figure 109), however the increase of yields is associated with a higher variability of yields at higher temperature classes. 

RVA yields stagnate at MAT above 12.25 °C. The Pearson’s r is significant for all relationships of annual yield and MAT but 

shows in general a low positive correlation ((RS: r = 0.2; LDNDC: r = 0.26; RVA: r = 0.1). The yields estimated by all three 

methods stay relatively constant for all precipitation levels present in the study region. Pearson’s r values are -0.2 (RS), -0.18 475 

(LDNDC) and -0.05 (RVA). The relationship between yield and elevation show a negative relationship as annual yields 

decrease with elevation for all methods. Pearson’s r for the relationships between the estimated yields and elevation are -0.19 

(RS), -0.23 (LDNDC) and -0.08 (RVA). However, for the RVA yield estimates stay on average constant for an elevation of 

500-900 m a.s.l. and only afterwards decline. Overall, the relationships between estimated yields and site conditions, such as 

temperature, precipitation and elevation, are relatively low and similar for the three methods (Figure 109). These patterns 480 

stayed the same when the relationships were tested for individual mowing frequencies (compare Fig. A3). 
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Figure 109: Aggregation statistics of estimated annual yields based on the three models per temperature, precipitation and elevation 

classes. 
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5 Discussion 485 

5.1 Performance of biomass modelling results 

Despite the numerous studies of empirical grassland biomass modelling based on satellite and field data, only few studies were 

carried out in areas characterized by heterogeneous and small grassland parcels which are mowed multiple times at different 

dates during the year. Of these previous studies the potential of various vegetation indices derived from medium resolution 

sensors (MODIS, MERIS) to estimate grassland biomass for single sites in Ireland and the Netherlands were investigated (Ali 490 

et al., 2017b; Ullah et al., 2012). Based on Landsat and Sentinel-2 data, grassland biomass and height were estimated for study 

regions in Germany, France, Spain and Austria using various regressors, such as multi-linear regression, random forest or deep 

learning models, resulting in accuracies (R²) of 0.45-0.79 (Barrachina et al., 2015; Dusseux et al., 2022; Eder et al., 2023; 

Muro et al., 2022; Schwieder et al., 2020). The performance of empirical models seems to depend more on the number of the 

training data and the variety of grassland types and use intensities included than the tested regressors and model parameters. 495 

Regarding the tested indices and bands, wetness indices (Barrachina et al., 2015) and red-edge, near-infrared and short-wave 

infrared bands (Dusseux et al., 2022) were found to be valuable for grassland biomass modelling. With an R² of 0.68 for the 

test data set, we reach comparable results with the RS approach. In our case, the R² of the cross-validation was relatively high 

(0.97) which might indicate overfitting which should be avoided. As far as we know, information on the time since the last 

mowing event was not included in previous studies so far. This parameter, however, was among the most important input 500 

features for the extreme gradient boosting model applied. Including information on mowing dates seems to be advantageous 

for grassland biomass estimation in study regions characterized by intensive grassland management. 

 

The performance of LDNDC to reproduce grassland yields of individual mowing events was found to be comparable or better 

than other process-based models. For the annual yields, where regional input data was employed, the performance measures 505 

were even better than for single cuts. For further details, see Boos et al. (2024). We assume that the results of LDNDC can be 

transferred to other process-based models (e.g. Daycent, APSIM). 

 

The comparison of the temporal patterns on estimated above-ground biomass shows that both results (RS and LDNDC) follow 

the mowing dynamics closely. This behaviour is expected as the mowing dates are directly included in both modelling 510 

approaches. However, the RS biomass estimates fluctuate more than the ones stemming from LDNDC and clearly depend on 

the availability of cloud-free satellite observations. LDNDC biomasses show a very high peak in the first growth cycle which 

is often double the amount of the RS-based estimates. It is known from previous works that LandscapeDNDC overestimates 

yields from the first cut of the year and underestimates the ones of later cuts (Boos et al., 2024). However, it is also possible 

that the RS method underestimates the first cut yield as the AGB estimation might be prone to a saturation effect. In addition, 515 

AGBs at the higher end of the training data distribution are less likely predicted and strongly depend on a well-balanced 

training data set. 
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Another important aspect is the AGB that needs to be estimated. Here, the goal was to estimate the biomass per cut, which 

corresponds to the yield. Farmers are generally advised to cut at 7 cm, though this can vary in practice. In the RS approach, 

total AGB was used because the sensor not only provides data from a certain height upwards. The LDNDC was calibrated 520 

using AGB samples taken from 7 cm. The cutting height for the reference values in the RVA approach likely varies 

considerably and cannot be reconstructed. Therefore, potential uncertainties due to AGB information of different cutting 

heights must be assumed. 

5.2 Spatial patterns of annual grassland yield and influencing factors 

The spatial yield patterns from all three methods match in some regions and differ in others. The spatial patterns mostly 525 

resemble the mowing frequency which is a major influencing factor determining grassland yields (Bernhardt-Römermann et 

al., 2011). In many cases, areas with high yield match with areas showing a higher number of mowing events. For example, in 

the East or the North of the study area, for many grasslands, high annual yield estimates, in particular from the LDNDC and 

RS models, fit well to a large number of mowing events. This relationship is also underlined by the significant Pearson 

correlation coefficients of 0.66-0.81 between annual yield and number of mowing events for the three models. Other regions, 530 

for example, East of lake Starnberg and in the centre of the study area show high yield estimates but rather low to intermediate 

mowing frequencies (compare Figures 1 and 63). This discrepancy must be explained by other factors influencing grassland 

yields, which were not looked into in detail here, such as soil conditions or an optimal interplay of influencing factors. 

Intensified mowing, usually accompanied by more fertilization, enhances biomass production and changes species composition 

towards more productive vegetation with less species in systems not strongly limited by other factors (Isbell et al., 2013; Mayel 535 

et al., 2021; Savage et al., 2021). The influence of site conditions, in particular climatic conditions, on the spatial annual yield 

patterns is twofold. Firstly, the conditions in the year of interest influence vegetation growth in that particular year. Secondly, 

climatic site conditions determine species composition and management options of grasslands in the long-term as well as soil 

properties like soil organic carbon. There are overall smaller yields visible in the south and southwest of the study region which 

matches the temperature patterns. Apart from that, the resemblance between annual yield maps and temperature, precipitation 540 

and elevation is relatively low (compare Figures 1 and 63). Pearson correlation coefficients were significant but low for all 

combinations (-0.23-0.26). For correlation tests with as many data as in our case, correlations tend to be significant (Rouder 

et al., 2009). It can be assumed that climatic effects have a more significant influence on grassland yields on a larger spatial 

scale, e.g. continental scale (Emadodin et al., 2021; Goliski et al., 2018; Zhang et al., 2018). Either the climatic gradients are 

not large enough in our study area to explain grassland yields or climatic conditions play only a minor role as yields are mostly 545 

determined by management. A beforehand anticipated difference in the relationship between site conditions and yields for the 

three models, as LDNDC includes these data directly and RS captures the effects indirectly, was not found. Furthermore, in 

this study only one year was examined which showed relatively normal climatic conditions. The differences between the 

models are most probably higher in extreme years, e.g. 2018, as extreme climatic effects can be depicted by LDNDC and RS, 

but not the RVA (compare Boos et al. (2024)). 550 
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5.3 Differences between the modelling results 

When comparing the annual yield values, the RS method leads to overall lower estimates compared to LDNDC and RVA, 

which can be explained in several ways. On the one hand, the RS method is prone to underestimation of annual yields as the 

empirical model of above-ground biomass is rather underestimating. This is related to the available training data which stem 

from field measurements throughout the year with only a few samples from shortly before a mowing event. In this regard, the 555 

distribution of training samples might not be optimal and rather missing data of high biomass, which results in an 

underestimation of the empirical model. In addition, the biomass estimation and the mowing detection are both dependent on 

the availability of cloud-free satellite observations. Biomass estimates from periods shortly before mowing events might be 

missed and, consequently, the yield related to the mowing event is potentially lower than in reality. Further, mowing events 

are potentially missed entirely due to cloud coverage (Reinermann et al., 2023) which additionally leads to these yields missing 560 

in the annual estimate. As the mowing information is included in all three approaches, missed mowing events due to clouds 

also affects the LDNDC and RVA yields. 

 

On the other hand, while the RS method is more likely underestimating yields, LDNDC and RVA are more prone to 

overestimation. This is related to the fact that some factors which negatively influence vegetation growth and, therefore, yields 565 

are not included in the LDNDC and RVA models. For LDNDC, these are neglected local factors, like north-facing slopes and 

lateral run-off as well as the calibration on lysimeter data taken under favourable conditions (Haas et al., 2013). The input into 

the RVA model is very limited in the sense that local factors influencing the current growing conditions as well as yearly 

climate data are not included. Both models therefore tend to represent optimal growing conditions and hence overestimate 

yields. Even though the RS model is not specifically addressing these factors, they are captured by the spatially varying 570 

reflectance signal. 

 

When examining the lower yields resulting from the RS model compared to the other model estimates, it becomes clear that 

this effect is most prominent for grasslands mown one or two times per year (compare Figure 98). This could be related to a 

grazing effect. Such extensively used grasslands are very often also grazed (Schoof et al., 2020a, c). In the LandscapeDNDC 575 

simulations, the amount of grazed material remains on the field and leads to an overestimation of the yield from the next cut, 

either directly within the same year or via plant storage over the winter in the first cut of the following year. The RS method 

does not specifically account for grazing, and as the estimated biomass before mowing events is used, there is no such 

accumulation effect. Assuming that the difference between the RS and LDNDC yields of extensively used grasslands stems 

mostly from the grazing effect, it might be used to calculate grazed yields (e.g. Chang et al. (2015)). The RVA considers 580 

grazing on mowing pastures. However, it follows a rather simple approach estimating the grazing intensities with the farm’s 

stocking rate. The stocking density, i.e. the number of LSU per ha field area, would be a more meaningful measure but the 

IACS data does not include any information on the type of animal husbandry or grazing intensities. Therefore, yields of 
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mowing pastures might be over- or underestimated in the RVA resulting from lack of detail in the information on grazing 

intensity. 585 

 

It is also important to mention that all three approaches depend on mowing information as input data. RS and LDNDC use the 

mowing dates and RVA the mowing frequency of grassland parcels in their algorithms. As the same mowing data was used 

for all three approaches, the results are comparable to each other. The importance of the mowing data for model performance 

is difficult to assess, as the methods do not work without it, however one could investigate the impact of using various sources 590 

for mowing dates. In addition, there is also an uncertainty in the mowing data as it was derived from Sentinel-2 time series 

which is prone to gaps due to cloudy weather conditions. The R² for the mowing detection in the study area is 0.65. 

 

Other studies investigating grassland yield in Europe mostly focus on a continental scale and are not conducted on parcel level. 

However, the estimated yields are in similar value ranges compared to our results, e.g. (Chang et al., 2015; Smit et al., 2008). 595 

5.4 Advantages and limitations of the approaches and implications drawn from them 

All of the three approaches investigated in this study hold individual advantages and limitations to estimate annual grassland 

yields in southern Germany (compare Table 1). The RS approach depends on well distributed training data and cloud-free 

satellite observations. The value distribution of the training data determines the range of potential predictions of the empirical 

model and is, therefore, crucial. This also plays an important role considering the transferability (in space and time) of the 600 

approach. Without additional training data, the approach can hardly be applied in regions with different conditions. The 

necessity of satellite data can be particularly problematic for regions or time periods with relatively high cloud coverage. For 

instance, in Germany, the year 2021 was characterized by an overall relatively low number of cloud-free satellite observations 

making satellite data-based products as the mowing detection or biomass estimation more challenging (Reinermann et al., 

2023). Despite these limitations, estimating grassland yields based on RS has several advantages. Even small-scale spatial 605 

effects are depicted enabling the detection of parcels with reduced yields. Current spatio-temporal variation is mirrored, such 

as yield reduction through drought periods. In addition, despite the need of training data, no large input data set or 

parametrisation is needed for the RS approach, which might even enhance the transferability. 

 

Major advantages of LandscapeDNDC – as a bio-geochemical model – are that firstly, spatial and temporal variations are 610 

accounted for, secondly, the direct relation to input data like climate, soil, and air chemistry is possible, thirdly, carbon, nitrogen 

and water budgets are modelled as well, and at last, scenarios (climate or management) can be studied. This also means, that 

high resolution input data (climate, soil, management and air chemistry) needs to be available for the modelled domains.  

Generally, the model performs best, if individual detailed simulations are performed, which are than aggregated to a larger 

spatial-temporal scale (e.g. field scale to hexagons). However, slope and orientation as well as species composition not 615 

accounted for. To transfer the model, it is ideally recalibrated based on local measurements even though for crops it has 
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performed very well even on a global scale without this step (Jägermeyr et al., 2021). For grasslands, so far, LDNDC has been 

used successfully in Switzerland, the UK, and Germany (Houska et al., 2017; Molina-Herrera et al., 2016; Petersen et al., 

2021). 

 620 

The RVA is based on field measurements and mostly static input data, apart from the mowing frequency and stocking rate. It 

is therefore not able to depict spatial and temporal variations, such as drought episodes (Diepolder et al., 2016). It also needs 

input data, first of all the yield reference values which are rarely provided on a larger scale. Further, cattle numbers, land-use 

type (i.e. meadow or mowing pasture), and mowing frequencies are needed, which is – especially on scales larger than farm 

scale – at times difficult to obtain as it is not openly accessible or does not exist. An advantage of the RVA is that the approach 625 

is relatively straight forward and does not need large amounts of computational power. Additionally, reference values are 

usually used by farmers to calculate their field’s fertilizer requirements. The approach is thus more useful at farm scale where 

data can easily be obtained and becomes more difficult to use at larger scales due to restricted data availability. 

 

All three approaches are in a way calibrated with regional data and, therefore, their applicability limited to regions with 630 

relatively similar grassland ecosystems. The RS approach relies on biomass samples, LDNDC on regional model calibration 

(input data) and RVA on the grassland index. As the management is highly relevant for the productivity and yield of grasslands 

in intensively used areas, such as in our study area, not only the geographic conditions and species composition but also the 

management strategies and use intensities of grassland ecosystems need to be comparable to transfer the calibrated models. 

Including additional ground-truth data from the target region for calibration would largely improve the transferability. 635 

However, the models also rely on data, such as IACS or mowing information, which need to be available in potential target 

regions.  

 

Table 1: Overview of methodological properties, both advantages and drawbacks, comparing the three yield estimation approaches. 

The strongest relative fit between method and property is indicated by +++, the weakest fit by +. 640 

Methodological Properties Yield Estimation Approaches 

 RS LDNDC RVA 

Applicability without expert knowledge + + ++ 

Low in necessary hardware and processing time + + +++ 

Independent of closed access data ++ + + 

Low in required data ++ + +++ 

Sub-parcel variability +++ + + 

Interannual variability +++ +++ + 

Internal test accuracy ++ ++ * 

Plausibility of results +++ +++ ++ 
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Distribution range and data continuity of results +++ +++ + 

Transferability + ++ ++ 

*unknown 

 

6 Conclusions and outlook 

Within this study, annual grassland yield was estimated for a study region in southern Germany in 2019 based on three different 

approaches: i) an empirical remote sensing model, ii) a bio-geochemical model (LandscapeDNDC) and iii) a rule-based 645 

reference value approach. It was shown that grassland yields can be estimated based on three completely different approaches, 

as plausible and comparable results were reached for the study area. The three models contain varying input data sets, however, 

all use mowing information as a driver. The mowing frequency was found to be the most important influencing factor for 

grassland yields in the study region for all three approaches. 

 650 

Yield patterns and comparisons between the approaches showed that all three methods can be legitimately used for yield 

estimation (value ranges of approximately 4-9 t ha-1) in pre-Alpine grassland ecosystems considering individual limitations. 

All approaches need the mowing information on parcel level as input data. When a training data set of well-balanced AGB 

samples and cloud-free satellite observations are available, it is advisable to use the RS approach. Depending on the training 

data distribution the RS approach is capable to estimate grassland yields on a regional level and also capture small-scale 655 

patterns on field level (and beyond). LandscapeDNDC is also recommended to be used on a regional or even continental level. 

Detailed data on climate, soil and management is needed and strongly determines the performance. For the field scale, also the 

RVA can be used as the needed data can be obtained more easily for this rather than the regional level. To investigate single 

cut yields only RS and LDNDC can be used as RVA provides solely an annual yield estimate. 

 660 

The expected biases include a likely overestimation of LDNDC of the first cut yield and an underestimation of the first cut 

yield – and to a lesser degree annual yields in general – of the RS approach. To investigate yield patterns over time, only RS 

and LDNDC are useful as the RVA does not include actual conditions. Improved grassland yield estimations could be obtained 

with more AGB sample data, in particular when analysing years with climatic extremes as the AGB data might not be 

representative. In addition, validation data on annual grassland yields would be needed to evaluate the approaches in more 665 

detail. 

 

The study presents synergies of grassland yield estimation approaches which is particularly important as spatial information 

on grassland yield is limited. Based on robust grassland yield estimations multi-annual analyses can be conducted and effects 
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of climate change, for instance, investigated. In addition, a comprehensive understanding of grassland ecosystems is facilitated 670 

supporting authorities and science. 
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Appendix 

Table A1: Bavarian reference values for farmer’s grassland yield from field measurements for meadows and mowing pastures of 945 
different use types and yield levels. 

Use type and intensity  Farmer ‘s yield [t ha-1 a-1] 

 Low Medium High 

https://geoservice.dlr.de/web/datasets/agriculture


37 

 

Meadow 1 cut 2.8 3.4 4.0 

Meadow 2 cuts 3.9 4.7 5.5 

Meadow 3 cuts 5.6 6.8 8.0 

Meadow 4 cuts 6.3 7.7 9.0 

Meadow 5 cuts 7.7 9.4 11.0 

Meadow 6 cuts 8.4 10.2 12.0 

Mowing pasture extensive, 

20 % pasture 

4.8 5.9 6.9 

Mowing pasture medium 

intensive, 20 % pasture 

6.9 8.3 9.8 

Mowing pasture intensive, 

20 % pasture 

7.7 9.4 11.0 

Mowing pasture extensive, 

60 % pasture 

4.7 5.7 6.7 

Mowing pasture medium 

intensive, 60 % pasture 

5.7 6.9 8.1 

Mowing pasture intensive, 

60 % pasture 

6.6 8.0 9.4 

 

Table A21: Grassland yield level (/grazing intensity) according to grassland index or slope (/stocking rate) which is used as input for 

table A1. 

Yield level / grazing intensity Grassland index (GI) Slope Stocking rate (SR) 

Low   0 ≤ GI ≤ 33 50 % ≤ slope    0 = SR ≤ 1.5 

Medium 33 < GI ≤ 67 25 % ≤ slope < 50 % 1.5 < SR ≤ 3 

High 67 < GI ≤ 100   0 % ≤ slope < 25 %    3 < SR 

 950 
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Figure A1: Pairwise relationships of parcel-level annual yield estimates for meadows and mowing pastures in the study area in 2019 

based on Remote Sensing, LandscapeDNDC simulations and the reference values approach with histograms of the three modelling 

approaches.  Note, that the colour ranges differ for the subplots. 

 955 

 

Figure A21: Mean and standard deviation of spatially aggregated (hexagon diagonal length of 1km) annual yield estimates for 

meadows and mowing pastures in the study area in 2019 of all three approaches. Hexagons for which the grassland area is smaller 

than 1 ha are not shown. 
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Figure A3: Aggregation statistics of estimated annual yields based on the three models per temperature, precipitation and 

elevation classes for grasslands mown one to five times per year. 
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