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Abstract. Ozone (0Os) pollution poses an escalating threat to rice production and food security in China, with
concentrations projected to rise under future climate scenarios. Accurately quantifying Os impacts on rice is thus
crucial for informed agricultural planning. This study is the first to utilise Free Air Concentration Enrichment
(FACE) observations specific to rice for calibrating a crop model (JULES-crop) and assessing the impacts of Os.
FACE experiments, which involve growing crops under natural field conditions while exposing them to elevated
O:s levels, provide an ideal approach for studying the effects of Os on crops. Utilising data from the only Os-FACE
facility dedicated to rice, we calibrated physiological and Os-response parameters in JULES-crop and evaluated
the model against additional independent FACE observations. The calibration establishes this as the first crop
model refined with ideal open-air field observations, significantly enhancing its capability to simulate rice growth
processes and Os-induced yield losses, surpassing the performance of simulations based on the default parameters
in JULES-crop. With this newly calibrated model, JULES-crop is now equipped to assess the impacts of Os on

agriculture, offering a valuable tool to inform mitigation strategies.
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1 Introduction

Rice is the staple food for over half of the world’s population and plays a crucial role in global food security. The
rising concentration of ozone (Os) is a major concern, contributing to significant losses in crop production
worldwide (Van Dingenen et al., 2009). Mills et al. (2018) estimated that the average global yield loss of rice due
to Os was 4.4% between 2010 and 2012. In China, Os caused relative rice yield losses of 6.2—-52.9% between 2014
and 2018, and 23% between 2017 and 2019 (Feng et al., 2022; Xu et al., 2021). Consequently, assessing the impact
of Os on rice growth is essential, especially as Os-polluted areas overlap with crop-growing regions and pose a

long-term threat to food security (Emberson et al., 2018).

The main Os dose-response functions used to assess rice yield loss include concentration-based methods, such as
the accumulated dose of Os over 40 ppb (AOT40) and the daily mean seven-hour concentrations (M7), and flux-
based methods, such as the phytotoxic Os dose (POD) (Tai et al., 2021). Both concentration-based and flux-based
methods can establish a relationship with relative yield loss based on field experiments. The relationship between
relative yield loss and Os level, known as the Os response function, is a valuable tool that underpins extensive

research into crop yield losses caused by Os exposure (Ramya et al., 2023).

Some crop models have incorporated Os parameters to better understand its impacts (Guarin et al., 2024; Leung
et al., 2020; Ewert and Porter, 2000). For instance, the Decision Support System for Agrotechnology Transfer
(DSSAT) crop model established an Os stress factor using the M7 metric (Guarin et al., 2024). GLAM-ROC
simulated Os effects by reducing evapotranspiration, transpiration efficiency, and harvest index based on AOT40
metric (Droutsas et al., 2020). The Joint UK Land Environment Simulator with crops (JULES-crop) integrated a
flux-based Os damage scheme developed by Sitch et al. (2007) to assess reductions in net photosynthesis. Flux-
based methods account for stomatal conductance and environmental conditions, such as temperature and vapour
pressure deficit, to modify Os uptake and thus directly link absorbed O3 dose to physiological damage. Compared
with concentration-based methods, flux-based methods exhibit enhanced performance in correlating Os levels
with relative yield loss, enabling more precise assessments (Pleijel et al., 2004; Pleijel et al., 2022; Mills et al.,
2011; Ronan et al., 2020). Nonetheless, Os-related parameters in crop models require calibration to ensure reliable

performance, even when using a flux-based Os scheme.

Open-top chambers (OTC) and free air concentration enrichment (FACE) experiments are two major methods
used to help calibrate parameters in crop models. State-of-the-art FACE experiments, which provide more natural
environments for crops, are ideal for establishing Os exposure metrics and investigating the impacts of Os on crops
(Montes et al., 2022; Feng et al., 2018). To date, only four Os-FACE facilities have been established for crops
worldwide (Montes et al., 2022): wheat and rice experiments in China (Tang et al., 2011), wheat experiments in
India (Yadav et al., 2019), grape experiments in Italy (Moura et al., 2023), and soybean experiments in the United
States (Aspray et al., 2023). However, the rice-specific Os-FACE experiment has not yet been used to calibrate

any crop models.

The parameterisation of crops in JULES was developed by Osborne et al. (2015). JULES-crop incorporates flux-
based Os exposure metrics to analyse the loss of accumulated carbon based on the exact Os flux entering the crop
stomata, which is influenced by environmental conditions (Sitch et al., 2007). The impact of Os on crops is also

reflected in reductions in crop height, leaf area index (LAI), and crop yields. Additionally, Tai et al. (2021)
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highlighted that mechanistic crop models such as JULES-crop can combine the fertilisation effects of atmospheric
carbon dioxide (CO2) with the Os influence. Thus, JULES-crop is a suitable tool for investigating the effects of
Os on crops, accounting for environmental factors that modify the mechanisms of O; effects (Leung et al., 2022).
However, the crop growth and development parameters for rice, as well as the Os impact parameters within
JULES-crop, have not yet been calibrated. Calibrating JULES-crop would enhance its performance in simulating

rice production under Os influence.

In this research, we calibrated the rice parameters in JULES-crop using novel Os-FACE data, enabling leading-
edge future assessments of Os damage to rice. The study has three key objectives: (1) to calibrate JULES-crop
using novel Os-FACE field data; (2) to evaluate the model’s performance in capturing crop growth characteristics
using independent observations; and (3) to assess the impact of Os on rice physiology, phenology, and yields. This
research enhances understanding of the mechanisms through which Os affects rice growth and development,

providing a stronger basis for characterising the future impact of Os on rice production.

2 Method
2.1 Description of the JULES-crop

JULES-crop is an extension of JULES, a land surface model designed to simulate the fluxes of carbon, water,
energy, and momentum between the land surface and the atmosphere (Best et al., 2011; Clark et al., 2011). JULES-
crop was developed to simulate the growth and development of major crops, including wheat, soybean, maize,
and rice, under a range of environmental influences such as temperature, precipitation, radiation, and soil moisture
(Osborne et al., 2015). Its structure, illustrated in Fig. 1, incorporates the physiological processes of crops,

including photosynthesis, respiration, and biomass accumulation.

JULES-crop simulates the physiological and phenological processes of crops, predicting yields at both field and
global scales. This capability makes it a valuable tool for understanding the impacts of climate change and air
pollution on agriculture (Leung et al., 2022; Wolffe et al., 2021; Vianna et al., 2022). To date, winter wheat (in
preparation), maize (Williams et al., 2017), and soybean (Leung et al., 2020) within JULES-crop have been
calibrated using observational data. Mathison et al. (2021) updated several rice and wheat parameters in JULES-
crop, relying primarily on literature, but did not account for Os effects. In this study, novel Os-FACE experimental
data was utilised to calibrate rice parameters in JULES-crop for the first time, improving its ability to assess Os

impacts on rice growth.
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Figure 1. Schematic of JULES-crop.

JULES-crop utilises a flux-based approach to simulate the Os damage following Sitch et al. (2007). It assumes
that the potential net photosynthesis A, was suppressed by Os:

A=A,F

where A is leaf-level net photosynthesis with the Os effects and F is the reduction factor:
F=1—a-max|Fy, — Fy,crit, 0]

where Fj, represents instantaneous leaf uptake of Os. Fy, .+ and a are plant-functional-type-specific threshold

and sensitivity factor respectively.

The Os flux Fy, (nmol m™ s™) is calculated as:

[05]

FO :—K.
0]
ra+[g_l3]

3

where [05] (nmol m) is the molar Os concentration at the reference level, 7, (s m™') is the aerodynamic
resistance and the boundary layer resistance between the leaf surface and reference level (Monin and Obukhov,
1954), ko, is the ratio of leaf conductance for Os to leaf conductance for water vapour (1.67), and g, represents

the leaf conductance for H2O as a linear function of photosynthetic rate (Cox et al., 1999):
g =9giF
where g; is the leaf conductance in the absence of Os effects.

2.2 03-FACE experiments

The Os-FACE experiment was conducted in Xiaoji, China (32°35°5"N, 119°42'0"E) in 2012. It features four
regular octagonal Os-FACE fields (14 m in diameter) and four control fields, each covering an area of
approximately 120 m?. The experimental fields are spaced over 70 m apart to minimise the influence of Os release
on neighbouring fields. Pipes positioned 50-60 cm above the crops released pure Os gas into each Os-FACE field

between 09:00 and 16:00 during the rice growing period. The mean daytime Os concentration during the
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experimental period was approximately 46 ppb under the elevated Os treatment, compared to 37 ppb in the ambient
environment—an increase of around 25%. The environmental conditions in the Os-FACE and control fields were
identical, except for the presence of Os pipes in the Os-FACE fields. Samples from the Os-FACE fields were
collected from the field centre, at least 1.5 m away from the Os pipes, to ensure that the sampled rice had grown

under stable Os conditions. Further details of the Os-FACE system can be found in Wang et al. (2012).

The rice cultivar used was II You 084. The rice was planted on 30th May 2012 and reached maturity on 19th
October 2012 in the ambient Os environment and 12th October 2012 in the elevated O environment. During the
growth period, key developmental stages, such as jointing and flowering, were recorded, and crop growth
characteristics—including dry biomass of leaves, stems, and panicles, leaf area index, and plant height—were

measured at these stages to calibrate the model.

Three planting densities were employed during transplantation: low density (16 plants m~2), medium density (24
plants m2), and high density (32 plants m ). In addition to standard growth measurements, photosynthesis-related
variables—including leaf temperature, internal leaf CO- concentration, stomatal conductance, and photosynthesis
rate (CO: assimilation rate}—were assessed using a LI-6400 portable photosynthesis system. After the rice
reached maturity, 64 plants from each experimental field were harvested and dried to calculate the average rice

yields.

2.3 FACE experiment for JULES-crop evaluation

Following calibration, observations of rice yields, height, and the dry weight of leaves, stems, and panicles from
an independent FACE experiment were then used to evaluate the performance of JULES-crop. These additional
field experiments were conducted in Danyang, China (31°54'31"N, 119°2821"E), and provided rice data for the
2022 and 2023 growing seasons. Two cultivars, Yangdao 6 and Wuyungeng 23, were transplanted on 20th July
2022 and 21st July 2023, respectively, and harvested between late October and early November. Yangdao 6 is an
Indica rice cultivar, while Wuyungeng 23 belongs to the Japonica subspecies group, both of which represent the

two major rice subspecies cultivated in China.

2.4 Data preparation

JULES-crop requires driving data, ancillary data, and control files to configure the model. Observations of hourly
air pressure, specific humidity, air temperature, precipitation, wind speed, and shortwave radiation (SW) recorded
during the Os-FACE experiments were used as driving data. Diffuse radiation was calculated using a constant
diffuse fraction in the model, with the default value of 0.4 applied in this study due to the absence of observational
data. Surface downward longwave radiation (LW) was not measured in the Os-FACE experiment and was instead

estimated using an empirical model based on local observations (Chang and Zhang, 2019):
e
R =0 (T)*- clf+(1—clf)-(a-ln(T—a)+b-<p+c)]
a

where R| is the downward LW under all kinds of sky (clear and cloudy), T, is the air temperature; e, is the water
vapour pressure; @ is the relative humidity; o is the Stefan-Boltzmann constant; a, b, and ¢ are the empirical

coefficients (Table 1); and clf is the cloud modification factor, set to 0 under clear sky conditions:
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clf =1-K,
where K, is the clearness index which was calculated as follows:

Hp,

K =-2
t HO

where H,, represents the hourly measured solar radiation, and H, denotes the hourly extraterrestrial solar radiation.

Detailed calculation for H, can be found in Kumar and Umanand (2005).

Table 1 Empirical coefficients used in the longwave radiation model.

Period a b c
Daytime with the cloud impact 0.118 0 1.033
Nighttime 0.08 0.0014 1.026

For the ancillary data, soil property values were extracted from the ancillary dataset used in the HadGEM2-ES
model, which also underpins global simulations (Osborne et al., 2015). Another crucial factor influencing crop
growth, the annual average CO: concentration, was set based on data provided by the Global Monitoring

Laboratory (GML) of the National Oceanic and Atmospheric Administration (NOAA).

The weather station for the evaluation experiments provided only daily temperature and precipitation data.
Consequently, additional meteorological variables, including wind, humidity, and longwave radiation, were
sourced from the ECMWF Reanalysis v5 (ERAS) dataset. However, the ERA5-generated shortwave radiation
(SW) for 2022 and 2023 disrupted the JULES-crop simulations leading to unrealistically high leaf area index
(LAI) values (exceeding 15). The overestimation of SW in ERAS5 has been widely reported, with studies
attributing it to the omission of aerosol variations and a limited capacity to simulate clouds and water vapour,
resulting in an overestimation of hourly SW in China by approximately 73.95 W m™ (He et al., 2021; Jiang et al.,
2020; Tong et al., 2023; Li et al., 2023). To address this, SW was bias-corrected using observations from the Os-
FACE experiment conducted in 2012.

Additionally, Os concentration observations were unavailable for the evaluation experiments. Hourly Os data from
the nearest station of the China National Environmental Monitoring Centre (https://www.cnemc.cn/) were used
instead. Aside from these driving data, e.g. weather variables, Os concentrations, CO: concentrations, and crop

stage dates, the evaluation simulations applied the same settings and parameters as those used in the calibration.

3 Results
3.1 Calibration

All parameters calibrated using the Os-FACE experiment are listed in Tables 2 and 3. The calibration process for
rice involved four main steps. First, leaf-level simulations were calibrated by fitting simulated photosynthesis
rates with observed values. Nitrogen content in leaves, stems, and roots was obtained from observations and

literature. Observed leaf temperature, internal CO: concentration, and stomatal conductance were used as model
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inputs. Photosynthesis-related parameters were adjusted based on discrepancies between observed and simulated

photosynthesis rates. Notably, Os damage was not considered during this step.

Second, canopy-level simulations were calibrated by determining the rice growth rate and partitioning of
assimilated carbon. Air temperature data were used to calculate the accumulated temperature required for rice

growth stages and the allocation of carbon to various carbon pools was also defined during this phase.

Third, model simulations were evaluated against observed LAI and crop height following the calibration of crop
physiology parameters. Lastly, rice yields were compared with observations under both ambient and elevated O3

concentrations.

The calibration process involved iteratively adjusting parameters manually until the model simulations fell within
the range of observed values. Additional adjustments were made to refine results, aiming to align them closer to
the central tendency of the observations. Although the number of simulations was constrained by computational
limitations, the process successfully achieved agreement with all available observations, ensuring no discrepancies
remained. While finer and finer incremental adjustments were not feasible due to computational limitations, the
approach effectively balanced precision and generalisation, capturing the essential crop observations without

overfitting.

Table 2 Calibrated plant functional types (PFT) parameters representing rice.

Osborne et al.

Parameters This study The meaning of parameters
(2015)
n nl0_io 0.073 0.065 Leaf nitrogen concentration (kg N/kg C).
] Ratio of stem nitrogen concentration to leaf
Ust ns_nl io 1 0.52 ) )
nitrogen concentration.
Ratio of root nitrogen concentration to leaf
I nr nl io 1 0.46 ) )
nitrogen concentration.
Scale factor relating Vemax with leaf nitrogen
n, neff io 8E-4 1.28E-3 )
concentration.
far fd_io 0.015 0.008 Scale factor for dark respiration.
Upper temperature parameter for
Tupp tupp_io 36 38 )
photosynthesis (°C).
Q10,leaf ql0_leaf io 2 2.1 Q10 factor for plant respiration.
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Table 3 Calibrated crop-related parameters representing rice.

Parameters Osborne etal. This study The meaning of parameters
(2015)
TTormr tt emr io 60 50 Thermal time between sowing and
emergence (°C d).
TTyeq tt veg 980* 1300 Thermal time between emergence and
flowering (°C d).
TTep tt rep 653* 880 Thermal time between flowering and
harvest (°C d).
Aroot alphal_io 18.5 17.4
Agtem alpha2_io 19.0 17.4
Ajear alpha3 io 19.5 17.9 Coefficient for determining partitioning.
Broot betal_io —-19.0 —20
Bstem beta2 io —-17.0 —-16.7
Bieay beta3 io —-18.5 —-18.5
Y gamma_io 20.9 24.5 Coefficient for determining specific leaf
) delta_io -0.2724 —0.145 area (m%*/kg).
T remob_io 0.25 0.12 Remobilisation factor. Fraction of stem
growth partitioned to reserve carbon.
fe.stem cfrac_s io 0.5 0.404 Carbon fraction of dry matter for stems.
feroot cfrac r io 0.5 0.337 Carbon fraction of dry matter for roots.
fetear cfrac 1 io 0.5 0.399 Carbon fraction of dry matter for leaves.
K allol io 1.4 1.27 Allometric coefficient relating stem carbon
A allo2 io 0.4 0.24 to crop height.
U mu_io 0.05 2 Allometric coefficient for calculation of
senescence.
v nu_io 0 6 Allometric coefficient for calculation of
senescence.
fyieta yield frac io 1.0 0.8 Fraction of the harvest carbon pool
converted to yield carbon (yield is the
economically valuable component of the
harvest pool e.g. kernel).
Cinit initial carbon io  0.01 0.01 Carbon in crop at emergence in kgC/m?.
DVIipit initial ¢ dvi_io 0.0 0.1 Development Index (DVI) at which the crop
carbon is set to initial carbon _io.
DVli,, sen_dvi_io 1.5 1.25 DVI at which leaf senescence begins.

* These parameters were spatially varying in Osborne et al. (2015).
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3.1.1 Photosynthesis

The potential leaf-level photosynthesis, unaffected by water stress and Os effects, is calculated based on three
potentially limiting rates: Rubisco-limited rate (W), light-limited rate (W;), and the rate of transport of
photosynthetic products (W) for Cs plants, as detailed in Clark et al. (2011).

Following Farquhar et al. (1980) and Collatz et al. (1991), several parameters in the photosynthesis scheme are
temperature-dependent, including the maximum rate of Rubisco carboxylation, V,, (mol CO, m~2 s), which is
critical for calculating both W, and W,. V., is calculated assuming an optimal temperature range defined by

T,

upp and Ty, -

VCmaxZSfT (Tc)
[1 + 9{0-3(Tc—Tupp)}] [1 4 e03(Tow=Tc)}]

chax -

where V4125 T€presents the maximum rate of carboxylation of the enzyme Rubisco at 25°C and is assumed to
be linear dependent on the leaf nitrogen concentration. For Cs crop, Vi,ax25 = NeNy, Where 1, is the scale factor

and n; is the leaf nitrogen concentration (kg N/kg C). T, is the leaf temperature in °C, T,,,,,, and T},,, are PFT-

pp

dependent parameters, and f; depends on the parameter gy ¢q5, the factor by which plant respiration increases

by a 10°C increase in temperature:

fr= Q10,leaf0'1(Tc_25)

Changes in PFT parameters primarily influences the simulations of photosynthesis rate, which in turn affects the
accumulation of carbon in rice. In JULES-crop, the photosynthesis process is closely linked to the nitrogen content
of the crop. Leaf nitrogen concentration (n;) is a key factor impacting the photosynthesis rate and was estimated
based on literature sources (Fig.2a). As leaf nitrogen concentration declines from the vegetative to the ripening

stage, the rice plant’s capacity for carbon accumulation diminishes.

The ratio of the nitrogen content of roots relative to leaves (u,;) was also derived from literature (Fig.2b). This
ratio determines the nitrogen content in the roots, which further influences the respiration rate. The maturity stage
was excluded when calculating the average values for each stage. The values presented in Fig.2 were collected
from peer-reviewed studies conducted across China over the past 20 years (listed in the supplementary file),

encompassing several rice cultivars grown in major rice-producing regions.
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Figure 2. Leaf nitrogen concentration (kg N/kg C) (left) and the ratio of root nitrogen concentration to leaf nitrogen
concentration (right). The grey dashed line represents the values selected for the simulation, while the dots indicate the

observed values.

The ratio of the nitrogen content of stems to leaves (ug;) was determined from the O3-FACE observations. The
ratio varied across growth stages, reaching its highest value during the maturity stage (Fig. 3). This is because at
maturity the leaves consist solely of yellow leaves, which have lower nitrogen content compared to the green
leaves present during earlier stages. The calibrated pg; is the average value during the tillering, jointing, and

heading stages.
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Figure 3. Ratio of the stem nitrogen concentration to the leaf nitrogen concentration. The grey dashed line and the dots show

the values for the simulation and observations respectively.

The simulations of net leaf photosynthesis rate, using the default parameters from Osborne et al. (2015),
underestimated the observed values (Fig. 4a). Several parameters including n;, ne, fur, Tupp» and q1g a5, Were
calibrated to make the simulation results in better agreement with observations. The standard photosynthesis

model assumes that the upper temperature limit for C3 crops is 36°C. However, when the temperature exceeded

10
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36°C, the simulated photosynthesis rates were still underestimated (Fig. 4b). This suggests that temperatures

above 36°C should be increased to 38°C to obtain improved agreement with observations, as shown in Figures 4c

and 5.
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Figure 4. Simulated photosynthesis rate (umol CO, m~

Observed Photosynthesis Rate

(umol CO; m=2 s~

2

)

without (b) or with (c) changing the upper temperature limitation parameter (T,;,,). The dashed line is the 1:1 line.

s71) using parameters before (a) calibration and after calibration

Figure 5 shows that the simulated leaf photosynthetic rate starts to decrease at approximately 30 °C using the

calibrated temperature parameters while the simulated curves using the default T,,,,,, from Osborne et al. (2015)

reached the optimum temperature at about 29 °C. The exact optimum temperature for simulations varied with

the intercellular CO2 concentration of leaves (Ci). According to the experimental data collected from the

literature, the optimum temperature should be around 30 °C, depending on the environmental conditions such as

nitrogen content of leaves, light intensity, and CO2 concentration as well as growth stages. After calibration, the

response of leaf photosynthetic rate to leaf temperature was closer to observations both from this study and the

literature.
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Figure 5. The coloured lines are simulated temperature responses of photosynthesis rate using the mean value of the
observed intercellular CO, concentration of leaves (Ci) and calibrated (38 °C) or default (36 °C) T,,;,,. The filled dots and
open circles represent the observations used in this study and simulations generated by calibrated parameters, respectively.
The error bars were taken from five independent studies (Table S1), which span multiple rice cultivars, nitrogen regimes,

CO; levels, and light intensity.

3.1.2 Rice development and assimilate partitioning

The development status of rice is closely linked to its phenological progression and is represented by the
Development Index (DVI). The DVI increases as the ratio of accumulated thermal time to the prescribed thermal
time for each developmental phase rises. Initially, the DVI is set to —1 at sowing, increases to 0 at emergence,

completes accumulation before flowering at a value of 1, and reaches a value of 2 at maturity.

Once rice is sown, its developmental rate, defined by the DVI, depends on the prescribed thermal time, which
includes the thermal time between sowing, emergence, flowering, and maturity stages (Osborne et al., 2015). The

thermal time (T, f5) can be calculated as follows:

0 forT <T,
T-T, forT, <T<T,
= T-T,
Tery (To —Tp) (1_T _;) forT,<T<T,
m o
0 forT =T,

where T, T},, T,,, and T, are air temperature, base temperature (8 °C), optimum temperature (30 °C), and

maximum temperature (42 °C) respectively, remaining the values from Osborne et al. (2015).
The changes in the value of DVI during the simulation is determined by:

oy (Terr/Temr  for —1<DVI<0
Torf/Trep  for 1<DVI<1

Where Ty, Tyeg, and Ty, represent the thermal time intervals between sowing and emergence, emergence and

flowering, and flowering and maturity, respectively.

The field experiment recorded the dates for sowing, transplanting, panicle initiation, heading, and maturity when
collecting samples. In China, most rice is grown in puddled fields after transplanting (Wang et al., 2017). Before
transplanting, rice is cultivated in nurseries and is not moved to the field until it has developed five or six leaves.
The prescribed thermal time was estimated based on the calculated thermal time from the observations (Table 4).
The observed development stages and crop characteristics are used to determine the thermal time required for the
model, ensuring that the following conditions are met: the model's predicted maturity stage coincides with the
actual timing observed in the experiment, and the DVI of crop characteristics from simulations agrees with the
observations. For example, the transplanting stage falls within the vegetative phase, so the DVI of observations

should fall within the range of O to 1.
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Table 4 Thermal time of rice between transplanting and maturity.

Period Thermal time (°C d)

Seedling to transplanting 327.2

Transplanting to panicle initiation ~ 788.0

Panicle initiation to heading 427.2
Heading to maturity 590.0
Seedling to maturity 21324

Once the development rate is determined, the accumulated net primary productivity (NPP) of each time-step was
partitioned into four main carbon pools: root, stem (including structural stem and stem reserves), leaves, and the

harvest pool (including yellow leaves and harvested organs which are panicles for rice).

The partition coefficients (p) are calculated as follows (Osborne et al., 2015):

e_aroot‘*‘ﬁrootDVI

Proot e_aroot‘*‘ﬁrootDVI + e_astem+ﬁstemDV1 + e_aleaf"'ﬂleafDVI +1
e ~stem+BstemDVI
Pstem e~ root*+BrootDVI 4 o—astem*BstemDVI | e—aleaf‘*‘ﬁleafDVI +1
e‘“leaf+ﬁleafDVI
Pieas e~ root*+BrootDVI 4 o—astem*BstemDVI | e—aleaf‘*‘ﬁleafDVI +1
1
Pharv =

e~ root+BrootDVI 4 o—astem+BstemDVI | e_aleaf"'ﬁleafDVI +1

Six parameters, @roor> Astem» Lieafs Broots Bstem» aANd Bleqy, determine the partitioning process during the whole
growth period. And the NPP accumulated through photosynthesis for each time step is distributed to the four

carbon pools according to the partition coefficients.

The parameters for carbon distribution were calibrated based on the dry weights of the stem, leaves, and panicles
from field experiments. Since root carbon is not included in the observations, its partitioning value is estimated
as a fraction of rice yield. Liu et al. (2023) suggested that the ratio of root dry weight to grain yield is approximately
0.13, although it can vary depending on the cultivar and nitrogen application rate. Figure 6 shows the fraction of

accumulated NPP partitioned into the different carbon pools using the calibrated parameters.

13



N

O 0 3 N W

10

11
12

13

14

15

16

17
18

0.8

o
=2}

Partition Fraction
o
»

0.2

0.0
0.00

025 050 075 100 125

Development Index

150 175 200

Figure 6. Fraction of daily accumulated net primary productivity partitioned to roots (purple), stems (blue), leaves (yellow),
and harvested parts (red) of the crop as a function of development index (DVI; 0 = emergence, 1 = flowering, 2 = maturity)

for rice. The black dashed line is the fraction based on parameters used in Osborne et al. (2015).

The accumulated carbon in different carbon pools directly affects the biomass of various rice organs. The model
calculates carbon accumulation and distribution, so the fractions of carbon-to-dry matter in the root, stem, and
leaf (f¢ roots fc,stem» @a0d fc 1eqr) must be defined prior to running the model. The values used in our calibrated

simulations were taken from the observations and are listed in Table 2, along with the default values from Osborne

et al. (2015). The value of the carbon fraction impacts the root growth, crop height, and LAIL

3.1.3 LAI and crop height

Leaf Area Index (LAI) is an important attribute of crops, reflecting their capacity for carbon accumulation. In

JULES-crop, LAI is linked to the leaf carbon pool (Osborne et al., 2015):

C
LAI = =2 g1.4

cleaf

where Cj. ¢ indicates the amount of carbon in leaves, f; oo represents the carbon fraction of dry matter in leaves,

and SLA is the specific leaf area (m™ leaf kg™'):
SLA = y(DVI + 0.06)%

where y and § were determined by fitting the curve between DVI and SLA (De Vries et al., 1989) from

observations (Fig.7).
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Figure 7. Specific leaf area against development index. Coloured symbols indicate observations, and the colour shows the
data from different experiment fields. The black dashed line and the black solid line show the fit using parameters from
Osborne et al. (2015) and our calibrated parameters, respectively. Note that various symbols correspond to successive

sampling dates from the same experimental field, thereby illustrating the temporal progression of the observations.

As green leaves begin to turn yellow, leaf senescence starts and is represented by the parameter DVI,,. The
change from green to yellow signals the transition of carbon from the leaf carbon pool to the harvest carbon pool.

The transition rate is simulated by reducing C.4f by a specific fraction (De Vries et al., 1989),
Charv = Charv T+ M(DVI - DVIsen)v ' Cleaf

where p and p were determined by fitting the declining trend of carbon in green leaves following leaf senescence.

The simulation results are presented in Section 3.1.4.

The calculation of crop height (h) depends on the amount of carbon in the stem (Cg,,,) (Hunt, 2012):

h= K( Cstem ),1

fC,stem

where f . represents the carbon fraction of dry matter in the stem, and x and A were determined by fitting the

relationship between h and stem dry matter of stems, which is equal to fcsﬂ (Fig.8).
C,stem
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the same experimental field, thereby illustrating the temporal progression of the observations.

Similar to leaf senescence, the carbon stored in the stem reserves is mobilised into the harvest carbon pool at a

rate of 10% per day, once the partition coefficient for stems drops below 0.01 (De Vries et al., 1989).
Charv = Chary T 0.1 st
where 1 represents the fraction of stem growth partitioned to reserve carbon.

The observations did not include the carbon fraction, such as Cjqf and Cytep, required for the model simulation;
therefore, these values were sourced from peer-reviewed rice field studies (listed in the supplementary file). Some
studies evaluated varied stressors or environmental treatments. Thus, to ensure consistency with calibration, only
the control-plot values under default (unstressed) conditions were used. All the literature data were derived from
rice field experiments conducted in China, involving several rice cultivars to enhance representativeness (Fig. 9).
The carbon content of panicles was also obtained from literature and combined with the carbon in yellow leaves
during the ripening phase to calculate the total carbon in the harvest pool. Additionally, the fractions of carbon-
to-dry matter were used to compare the simulation results with the observations, which only provided dry biomass

data for rice.
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the root, stem, and leaf respectively.

3.1.4 Comparison with O3-FACE experiments

Figure 10 illustrates the changes in the main carbon pools throughout the entire growing period. The accumulated
carbon was reduced under elevated Os conditions, highlighting the detrimental impact of Os on crop growth. At
the maturity stage, total aboveground carbon under elevated Os was 22%-29% lower compared to ambient O
conditions, as shown in the observations (Fig. 10(e)(f)). Carbon levels in both the leaf and stem exhibited a similar
decreasing trend due to the Os-induced damage to the photosynthesis process and carbon accumulation. The
simulations closely matched the observations, using the average carbon-to-dry biomass fraction for different
growth stages to convert observed data into carbon weights (Fig. 9). It is important to note that the carbon fraction
varies with cultivar and growing environment. To align the model results, which are based on carbon weight

instead of dry weight, with the observed data, the average carbon-to-dry biomass ratio across all stages was applied.
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Figure 10. Leaf, stem, and total aboveground carbon against day of year under ambient and elevated Os conditions. Box
plots are observations, whereas lines show the simulations results using parameters from Osborne et al. (2015) (grey) and
calibrated (green) parameters under ambient Os conditions, including high (blue) and low (orange) Os sensitivity under

elevated Os conditions, respectively, with units of g m™.

There are two parameters in the simulations that directly relate to the impact of O3 on the rice (Clark et al., 2011;
Sitch et al., 2007) (Table 5).The reduction of the net photosynthesis rate was determined by the value of the
instantaneous leaf uptake of O3 above the threshold Fy, ¢, multiplied by a sensitivity parameter a (Pleijel et al.,

2004). Observations using three planting densities of rice observations were used to calibrate the model. As can
be seen from Fig.11, the high sensitivity and low sensitivities coincided with the upper and lower boundaries of

relative yield (RY) which is calculated as follows:

_Yo,

RY =
Yo

where Yy, represents the crop yield including Os damage and Y, represents the crop yield with no effects of Os.

In the Fig.11, AOT40 was used to represent the O3 concentrations in the environment,

AOT40 = Z([ogi —0.04)

i=1
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where [0;]; stands for the hourly Oz concentration level (unit: ppm h) during daylight hours (08:00-19:59), and

n represents the total hours of the growing season.

Table 5 O3 parameters calibrated for high and low sensitivity to Os damage.

Parameters Osborne et High Low The meaning of parameters
al. (2015) sensitivity ~ sensitivity
Foscrit fl Os ctio 5.0 7.0 8.0 Critical flux of Os to vegetation

(nmol m2 s,
a dfp dcuo io 0.25 1.2 0.7 Plant type specific O3 sensitivity

parameter (nmol m?2 s,

1.00 4 —— Obs: High Density
Obs: Medium Density
—— Obs: Low Density
0.95 4 N U R Sim: High Sensitivity
N -=-- Sim: Low Sensitivity
0.90 -
o
2
=
2 o085
T
[}
o
0.80
0.75 A
0.70
4 6 8 10 12 14

AQOT40 (ppm h)

Figure 11. Relative yield against AOT40 (ppm h). Coloured lines show the relative yield of rice planted in high (green),
medium (orange), and low (blue) density. The grey lines show the simulations of relative yield with high (dotted) and low

(dashed) sensitivity to Os damage respectively.

Figure 12 illustrates the height and LAI of rice under both elevated and ambient Os conditions. The difference in
LAI and height between these two environments underscores the negative impact of Os on rice carbon
accumulation. Post-calibration, the simulations for both LAI and height align well with observational data (Fig.
11 (a)(c)). Prior to the new calibration, simulations with default parameters from Osborne et al. (2015)
significantly underestimated both LAI and height largely due to the underestimated photosynthesis rate (Fig. 4).
This underestimation led to reduced carbon assimilation and storage, resulting in insufficient carbon allocation to
stems and leaves, which directly impacted LAI and height. It is worth noting that all plots comparing simulation

and observation begin after the model’s initialisation phase.
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sensitivity under elevated Os conditions, respectively.

3.2 Evaluation

Figure 13 compares simulated and observed values of leaf carbon, stem carbon, total aboveground biomass, and
rice height for the years 2022 and 2023, based on data from an independent FACE experiment (see section 2.2).
The observations were limited to heading and maturity stages. These observations were compared to our newly
calibrated JULES-crop model simulations using these FACE observations. The calibrated O3-damage parameters

were applied to model the impact of Os on rice biomass and carbon content.

The simulated stem carbon was marginally lower than the average observed values (Fig.13 (c)(d)), while total
aboveground biomass was overestimated when using low Os sensitivity parameters (Fig.13 (e)(f)). These
variations can be attributed to differences in the carbon allocation between the calibration and evaluation
experiments. The seeding depth notably influenced stem weight since stems thickened nearer the root, and only
aboveground stems were harvested and measured. Consequently, deeper seeding resulted in a smaller fraction of
stem biomass relative to total aboveground biomass (Gong et al., 2023). This slight underestimation of stem

carbon was also evident in the simulation of crop height, which was similarly affected by seeding depth.

The total biomass observed in the evaluation experiment surpassed that measured in the Os-FACE experiment,
particularly with a notably larger stem weight. Crop parameters were calibrated using data from the Os-FACE

experiment, but differences in agronomic practices across experiments may have introduced uncertainties.
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Figure 13. Leaf, stem, total aboveground biomass, and crop height against day of year for 2022 and 2023. Box plots are

observations, and coloured lines show the simulation results using low (orange) and high (blue) Os sensitivity, respectively.

While the simulated crop height fell within the range of observed values, it was marginally lower than the average
measured height (Fig.13 (g)(h)). Despite variations in seeding practices between the calibration and evaluation
field experiments, the carbon distribution and levels aligned well with the observations. Overall, JULES-crop

demonstrated the ability to accurately predict rice growth and carbon allocation across various carbon pools.

3.3 Limitations

While this study provides a rice model calibration based on the novel Os-FACE experiments, several limitations

must be acknowledged. The calibrated Os parameters influence modelled net photosynthesis, biomass, and yield
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through the control on stomatal uptake and instantaneous photosynthesis. Due to limited O3-FACE observations,

our calibration did not represent differences in Os sensitivity due to rice cultivar.

Additionally, the calibrated thermal time was specific to a particular location and should be recalculated using
local air temperature and rice phenology data if simulations are performed for other regions. For example, the
evaluation experiment conducted in 2023 in a nearby county exhibited a relatively higher thermal time than the
calibration experiment, primarily due to the longer growth duration. Rice growth in the 2022 and 2023 evaluation
experiments was severely affected by crop pests and diseases at the maturity stage, leading to significant yield

loss. As a result, only crop growth characteristics were used to validate the model.

Furthermore, although the model was calibrated and evaluated using independent experimental data, directly
applying the parameters to global simulations may introduce significant uncertainties. As such, global simulations
using the parameters derived in this study should incorporate further evaluations to verify model performance

(Miiller et al., 2017).

4 Conclusion

This study marks a significant advancement in modelling rice growth and O effects by providing the first
calibration of the JULES-crop model using rice-specific data from Os-FACE experiments. These experiments
offer a realistic field setting to assess the impacts of Os on crops, addressing limitations of alternative setups such
as OTC by simulating more natural environmental conditions. Initial simulations with the default rice parameters
in JULES-crop revealed substantial underestimation of carbon accumulation throughout the growth cycle.
Calibration using the most recent Os-FACE data significantly improved the model's ability to replicate rice

physiology, phenology, yield, and Os sensitivity.

The calibration process involved adjusting key parameters to align simulations with observed data, including leaf
area indices, crop height, yield, and the biomass of leaves, stems, and panicles. The model was refined to
accurately represent yield reductions caused by elevated Os levels. Evaluation against independent field
experiments demonstrated good agreement between simulated outcomes and observed results, affirming the

model's robustness.

This study deepens our understanding of Os’s impact on rice production and delivers a newly calibrated model
suitable for assessing future climate scenarios and Os effects. The study lays the groundwork for future agricultural
research aimed at mitigating Os-induced yield losses, providing a valuable framework for enhancing food security

as Os levels continue to rise.

Code availability. This study used the JULES (Joint UK Land Environment Simulator) version 7.4, which was
released in November 2023. The model is available for download from the UK Met Office Science Repository
Service (MOSRS) (https://code.metoffice.gov.uk/trac/jules), with registration required. For simulating
photosynthesis rates, we used the Leaf Simulator (Williams et al, 2019), which is accessible at

https://code.metoffice.gov.uk/trac/utils.
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Data availability. The calibrated driving data in this study are openly available in Zenodo at https://doi.org/
10.5281/zenodo.14008269. The O3-FACE data that supports the calibration of this study is available on request
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