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Abstract

Polarimetric structures detected by radar can characterize cloud microphysics and dynamics. Many
studies have indicated that differential reflectivity (Zpr) and specific differential phase (Kpp)
columns, which serve as proxies for updraft strength, are related to lightning activity; moreover, the
quantities of ice and supercooled liquid water strongly influence the occurrence of lightning flashes
via noninductive charging. However, the sequence or interactions among these factors with
dynamics and microphysics from the perspective of the cloud life cycle are uncertain. Here, we
improve the ‘3D mapping columns’ method to identify and quantify the Zpr/Kpp columns, which is
based on Cartesian grid datasets; this method is sensitive in the early phase of cloud formation. Our
study bridges the polarimetric structure and lightning activity within fifteen isolated thunderstorms
during the cloud life cycle. The results indicate that microphysical variations in supercooled liquid
water and graupel yield better correlation coefficients for the lightning activity prediction at short
warning times (e.g., 6 minutes) than dynamical variations in the Zpr column volume do; however,
the trend of the Zpr column volume implies good performance at longer warning times (e.g., 12
minutes). The Kpp column is likely absent in the early phase of convection development; however,
it will occur in the later stage with heavily cold cloud processes, replacing the Zpr column to indicate
updrafts within the reflectivity core when obvious graupels and hailstones occur. Our study
improves the understanding of the polarimetric structure, which is related to dynamics and
microphysics, and is also associated with lightning activity.

Short summary

Lightning activity is highly related to the signatures of polarimetric radar on the basis of cloud
electrification physics. However, few studies have focused on bridging the polarimetric structure
and lightning activity during the cloud life cycle. Here, we evaluated the sequence and interactions
of polarimetric parameters for indicating lightning activity from the perspective of the cloud life
cycle, and the cloud microphysics of the polarimetric structure were explored.

Keywords: thunderstorm; lightning activity; cloud microphysics; polarimetric radar

1.Introduction

Lightning is a traditional indication of severe weather (e.g., tornado, hail, microbursts, etc.).

Trends in lightning activity are useful for determining the severity of a thunderstorm (e.g., Gatlin
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and Goodman, 2010; Goodman, et al., 2005; Williams, et al., 1999; Zhang et al., 2009). Lightning
activity is the electrical response to dynamic conditions (updraft or turbulence) and cloud
microphysics during storm evolution, which is supported by both theoretical and field observational
studies of dynamics, microphysics and lightning activity (lightning initiation or total lightning flash
rate) (e.g., Baker, et al., 1999; Baker, et al., 1995; Carey and Rutledge, 2000; Mitzeva and Saunders,
1990; Souza and Bruning, 2021; Williams, et al., 1989; Zhang et al., 2004a; Zhao, et al., 2021a).
Notably, many studies have focused on the relationship between lightning activity and cloud updraft
or microphysics (e.g., Carey and Rutledge, 1996, 2000; Deierling and Petersen, 2008; Lang and
Rutledge, 2011; Lopez and Aubagnac, 1997; Sharma, et al., 2024; Sharma, et al., 2021).

Polarimetric radar can provide observations to improve our understanding of the coupling
between convective dynamics and storm microphysics (e.g., Sharma, et al., 2024). Lightning
location technology can be used to monitor the occurrence of lightning flashes in real time (e.g.,
Rison, et al., 1999). In this way, radar and lightning observations can be used to link cloud updrafts
and microphysics with lightning activity.

Carey and Rutledge (2000) utilized a C-band polarimetric radar to study the relationship
between precipitation and lightning during tropical island convection events; their results indicated
that lightning activity and the surface electric field are strongly correlated with the mixed-phase ice
mass and rainfall properties during the mature phase of convection. Cloud-to-ground (CG) lightning
was associated with the production and subsequent descent of graupel and frozen drops from the
—10 to —20°C region; moreover, peaks in the CG lightning flash rate typically lagged behind peaks
in the graupel mass aloft (Carey and Rutledge, 2000). This observational phenomenon reflects the
noninductive charging between ice-phase hydrometeors, mainly graupel and ice crystals (e.g.,
Latham and Dye, 1989; Reynolds, et al., 1957; Saunders, 2008; Takahashi, 1978).

Before the formation of ice particles (e.g., graupel), the supercooled raindrops present in the
mixed-phase zone throughout the developing and mature phases play crucial roles in storm
kinematics, microphysics, and electrification. During freezing, supercooled raindrops likely provide
(i) an instantaneous and abundant supply of millimetre-sized ice, (ii) a potential source of secondary
ice particles, and (iii) an enhancement in the updraft due to the latent heat of freezing (Carey and

Rutledge, 2000; Rosenfeld, et al., 2008; Zhao, et al., 2024; Zhao, et al., 2022). Moreover, millimetre-
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sized ice and secondary ice particles contribute to cloud electrification (Bringi, et al., 1996; Sharma,
et al., 2024). The intensity of convective updrafts through the modulation of microphysical factors,
the collision efficiency of ice particles, and the electrification temperature influence the charge
structure of storms (Liu, et al., 2024; Marshall, et al., 1995; Qie, et al., 2000; Yan et al., 1996a, b;
Zhang, et al., 2004D), the flash size (Bruning and MacGorman, 2013; Zheng and Zhang, 2021), and
the associated lightning flash rate (Deierling and Petersen, 2008; Deierling, et al., 2008; Fridlind, et
al., 2019; Souza and Bruning, 2021; Zhao, et al., 2021a).

Moreover, supercooled raindrops produce a differential reflectivity (Zpr) column, one of the
most notable polarimetric radar signatures of convective storms. High Zpr values (e.g., >1 dB)
above the 0°C isotherm height (melting level) are associated with large supercooled raindrops and
wet hail suspended in deep convective updrafts (e.g., Krause and Klaus, 2024; Kumyjian, et al., 2014;
Snyder, et al., 2015; Zhao, et al., 2020). Depending on the intensity of the updraft, the region of high
Zpr can extend several kilometres above the 0°C isotherm height. This narrow vertical extension of
high Zpr values above the environmental 0°C level associated with updrafts in strong convective
storms is called the Zpr column (Krause and Klaus, 2024; Kumjian, et al., 2014; Zhao, et al., 2020).

The Zpr columns, due to the vertical size sorting of drops in warm-rain precipitation processes,
encompass the signals of both microphysical features and updrafts; however, these signals are not
present throughout the life cycle of strong convective storms, except in the early phase of cloud
development. During the initial phase of a thunderstorm, the Zpr column above the melting level
indicates the presence of a low concentration of large raindrops (>2 mm); in addition, the Zpr
column expands downwards from above due to the collision and coalescence of drops and the
accretion of droplets, resulting in the formation of larger raindrops (>4—5 mm) (Kumjian, et al.,
2014). During the mature phase of a thunderstorm, the Zpr column above the melting level may
continue expanding upwards and outwards because stronger updrafts loft raindrops upwards into
the mixed-phase layer, but smaller drops reach their nucleation temperature and begin to freeze
while ascending to higher altitude. As these supercooled raindrops begin to freeze and mix with
water-coated graupel and hail, the corresponding Zpr values decrease, denoting top of the Zpr
column. As updrafts subsequently weaken and large ice particles (high-density graupel or hailstones)

increase in abundance, the Zpr column starts to collapse; however, lightning activity may exhibit
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an inverse trend compared with that of the Zpr column at this moment. For example, as shown by
Sharma et al. (2024), after the first lightning jump, the subsequent lightning jumps are associated
with a decreasing trend in the Zpr column volume.

On the other hand, in the specific differential phase (Kpp) column, high values (>0.75°/km, the
value reported by Loney et al. (2002)) above the melting level occur and are strongly associated
with a high concentration of water-coated ice (e.g., water-coated graupel and hail with a non-
spherical shape) and raindrops (1-2 mm) that shed from hailstones growing in a wet regime (Bringi,
et al., 1996; Hubbert, et al., 1998; Loney, et al., 2002). Thus, the formation of a Kpp column is tied
to cold cloud microphysics, which usually lag behind the appearance of the Zpr column.

van Lier-Walqui et al. (2016) attempted to constrain cloud-resolving models on the basis of
ground-based remote sensing observations, namely, polarimetric radar data. In their study, the Kpp
column (specifically, the column volume) was strongly related to the updraft mass flux, lightning
activity, and rainfall intensity in four deep convection events observed during the Midlatitude
Continental Convective Clouds Experiment. Recently, Sharma et al. (2024) utilized polarimetric
radar observations of three severe storms during the VORTEX-Southeast field campaign to quantify
the correlation between the volumes of Zpr and Kpp columns (representative of mixed-phase
microphysics as well as updraft intensity and size) and total lightning flash rates. They indicated
that the volume of the Kpp columns exhibited high co-variability with the total flash rate in three
such cases (a tornadic supercell embedded in a stratiform precipitation system, a non-tornadic
supercell, and a supercell embedded within a quasilinear convective system).

Sharma et al. (2024) conducted a study on the basis of hypotheses, namely, that the deeper and
wider the Zpr and Kpp columns were in cases with robust and wide updrafts (e.g., Homeyer and
Kumyjian, 2015; Snyder, et al., 2017), the more an increase in the volumes of the Zpr and Kpp
columns would correspond to an increase the mixed-phase ice mass flux, resulting in an increase in
the total flash rate; the correlation coefficient (—0.47~0.37 for the Zpr column; 0.54~0.74 for the
Kpp column) between Zpr or Kpp columns and lightning activity was not as high as the
microphysical parameters explored in previous studies (e.g., Carey and Rutledge, 2000). Moreover,
the results seem to be inconsistent with those of Sharma et al. (2021), who reported that the

variability in flash rates is best explained by fluctuations in the Zpr column volume, with a high
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correlation coefficient value (0.72). One possible explanation is that the effect of the time lag may
decrease this correlation coefficient. As reported by Carey and Rutledge (2000), they obtained a
very high one-lag (7 minutes) correlation coefficient (p = 0.9) between the graupel mass within the
mixed-phase zone and the CG lightning flash rate, suggesting that the directly related microphysics
with noninductive charging have a greater correlation coefficient with lightning activity. Another
possible way is that the interactions of the Zpr/Kpp column with dynamics and microphysics are
uncertain, which affects the results under the current hypotheses. This is also emphasized in Sharma
et al. (2021) and raised as a retained question in the appendix. Thus, further exploration is needed.

In summary, dynamical and microphysical characteristics derived from polarimetric radar can
provide forecasting information about lightning activity on the basis of noninductive charging: i)
the precipitation-sized (e.g., graupel) ice mass within the mixed-phase zone; ii) the content of
supercooled raindrops; and iii) the quantified Zpr and Kpp columns (e.g., the column volume or
height). Our goal in this study is to link these polarimetric radar variables for forecasting lightning
activity within isolated thunderstorm cells during the cloud life cycle over South China, and
determine how the cloud microphysics and dynamics related to these polarimetric radar variables
should be assessed. Notably, the close relationship between these polarimetric radar variables and
lightning activity has been noted in many studies (e.g., Carey and Rutledge, 2000; Hayashi et al.,
2021; Sharma et al., 2024; Sharma, et al., 2021; Snyder, et al., 2015; van Lier-Walqui, et al., 2016;
Woodard et al., 2012); thus, we believe that this study is sufficient for connecting these polarimetric
radar variables and lightning activity via the anatomy of an isolated thunderstorm cell during the
cloud life cycle and the statistical results of fifteen isolated thunderstorm cells.

This paper is organized as follows. In Section 2, an overview of the radar and lightning data is
given, and the analysis methods and the approach for quantifying the Zpr/Kpp columns are described.
Section 3 presents the results of Zpr/Kpp column quantification and the related characteristics of the
polarimetric structure and microphysics with the Zpr/Kpp column. The vertical structures of
polarimetric radar variables and microphysics are explored in combination with 3D lightning
location data. The relationship between lightning activity and these polarimetric characteristics in

cases and statistics is presented. Finally, we summarize the results in Section 4.
2.Data and methodology

2.1. Radar and lightning observations
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This study included 15 isolated thunderstorm cells that produced lightning, which was
observed via an S-band dual-polarization radar deployed in Guangzhou city (GZ radar) and a low-
frequency E-field detection array (LFEDA) (Table 1). These isolated thunderstorms were selected
in accordance with the rules in Zhao et al. (2021,2022). The initiation of such thunderstorms was
defined as the first radar volume scan in cases where the composite reflectivity was > 5 dBZ and
the locations of thunderstorms were within the effective range of the radar and lightning array. When
the maximum reflectivity of this cell starts to fade with a value of less than 30 dBZ later, the
evolutionary process of a cell is marked as the end. Moreover, we required the subsequent lightning
activity to be present after the first lightning occurrence in this study. The average 6-hourly
convective available potential energy (CAPE) of these thunderstorms was obtained from ERA-
Interim reanalysis data, as in Zhao et al. (2022). The detailed examination of lightning activity with
related dynamics and microphysics in case #1 was conducted first, and then the statistical results of
all cases were given. On 20 June 2016, one isolated thunderstorm cell was observed by the GZ radar
(Figure 1). The composite reflectivity data revealed that this thunderstorm (the boundary was
determined via manual inspection; the black lines in Figure 1) was nearly stationary and that the
cloud life cycle lasted approximately two hours. Lightning activity occurred when values of
composite reflectivity >35 dBZ were present; this phenomenon seemingly supported the results of

Hayashi et al. (2021), highlighting the importance of graupel in cloud electrification.

Table 1. The information of cases

Cases number Time information [CST] CAPE [Jkg']
#1 17:18 to 19:00, 20 June 2016 1277
#2 12:12 to 13:18, 26 June 2016 1225
#3 15:36 to 16:36, 3 July 2016 961
#4 16:06 to 17:06, S July 2016 412
#5 11:00 to 12:12, 6 July 2016 1202
#6 16:18 to 17:06, 6 July 2016 1202
#7 15:00 to 16:06, 16 July 2016 1425
#8 13:24 to 14:12, 27 July 2016 1203
#9 14:36 to 15:18, 27 July 2016 1376
#10 14:54 to 15:18, 27 July 2016 1286
#11 13:24 to 15:00, 29 May 2016 1339
#12 09:18 to 10:48, 18 June 2016 1437
#13 12:18 to 13:00, 18 June 2016 1375
#14 15:48 to 16:36, 18 June 2016 1475
#15 13:06 to 14:12, 7 July 2016 2537

7
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The beam width of the GZ radar is =< 1°, and the azimuth and range resolutions are 1° and 250
m, respectively. A full radar volume scan lasted 6 minutes at nine elevation angles. The GZ radar
data were processed via the Python ARM Radar Toolkit (Py-ART), including quality control
(Helmus and Collis, 2016; Li, et al., 2023; Li, et al., 2024). The Zpr offset of the raw data was
corrected via drizzle, and the calibration accuracy was expected to be 0.1-0.2 dB (Bringi and
Chandrasekar, 2001). We utilized two methods to smooth the differential phase ®pp, namely,
“lightly filtering” (2-km) and “heavily filtering” (6-km), as in Park et al. (2009). Two estimates of
Kpp were subsequently obtained from a slope of a least squares fit of the filtered ®pp; a lightly
filtered Kpp was subsequently used in the case of horizontal reflectivity > 40 dBZ, and a heavily
filtered Kpp was selected otherwise (Ryzhkov and Zrni¢, 1996). The radar data were gridded via Py-
ART gridding routines on a Cartesian grid with a 0.25-km horizontal resolution and a 500-m vertical

resolution (“Barnes2” method).
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Figure 1. The composite reflectivity of the isolated thunderstorm cell on 20 June 2016 (case #1), which initiated at
17:18 and ended at 19:00 (China Standard Time, CST). The black lines indicate the boundary of this thunderstorm.
The white squares (intracloud flashes) and triangles (CG flashes) indicate the lightning flashes, and the location of
once lightning flash is represented by the location of the first discharge pulse event. The positions for the plotted

cross section are shown as white lines over the composite reflectivity data.
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The lightning flashes within this thundercloud were detected via LFEDA, which is a 3-D
mapping detection system for intracloud and CG lightning, with 10 sensors. Previous studies (Fan,
et al., 2018; Shi, et al., 2017) utilized information from triggered lightning flashes to evaluate
LFEDA detection results; the results show the detection efficiency of the LFEDA can reach 100%,
and the mean location error is 102 m. Discharge pulse events were grouped into a lightning flash
via the same method as described by Liu et al. (2020). A potential discharge pulse event of one
lightning flash should occur within 0.4 s of the previous discharge pulse event and within 0.6 s and
4 km of any other discharge pulse event of this lightning flash. If any source within one lightning
flash is below the 2-km height, this lightning flash is regarded as one cloud-to-ground flash, as
suggested by Zhao et al. (2021a).

The lightning flashes were assigned to the isolated thunderstorm on the basis of the boundary
of the thunderstorm, as well as a constraint every 6 minutes (according to the duration of a full radar
volume scan). The life cycle of this isolated thunderstorm initiated from the first radar echo (i.e.,
the presence of a maximum horizontal reflectivity (Zx) > 5 dBZ in a full radar volume scan within
this cloud was first detected by the GZ radar, as suggested by Zhao et al. (2021a, 2022, 2024)) and
ended when the maximum Zj started to decrease and the Zy reached < 40 dBZ. The distributions of
these detection systems, including radar and lightning location system, were illustrated by in Zhao
et al. (2024).

2.2. Cloud microphysical parameter retrieval methods

To estimate the precipitation-sized ice mass (e.g., graupel, hail, and frozen drops) and the

content of supercooled raindrops within the mixed-phase zone, an approach on the basis of

difference reflectivity (Zpp, dB) is applied (Carey and Rutledge, 2000; Straka et al., 2000).

Zp = (42*/7*| Ky |*)|Snn ?) 6]
Z, = (42%/m* Ky [2X(1S 0 1?) @
ZDP = 1010g10(Zh - ZU)’ for Zh > ZU (3)

Sy refers to an element of the backscattering matrix of a hydrometeor (Zrni¢, 1991). The first
subscript i indicates the polarization of the backscattered field (% is horizontal, v is vertical), and the
second subscript ; indicates the polarization of the incident field. Ky=(ew—1)/ (ew+2) is the factor

associated with the dielectric constant of water, and €y is the dielectric constant. A is the radar
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wavelength. The brackets indicate expectations expressed in terms of the distribution of mean
hydrometeor properties such as shape, size, fall orientation, particle density, canting angle, dielectric
constant, and others.

Pruppacher and Klett (1997) assumed that precipitation-sized ice particles were more
spherically symmetrical or tumble. The low dielectric constant and significant canting behaviour of
ice particles likely result in a near-zero Zpr (e.g., Seliga and Bringi, 1976). Therefore, the horizontal
reflectivity and vertical reflectivity are equal for ice particles, as “effective spheres”, and Zpp is
solely influenced by raindrops. If the relationship between horizontal reflectivity and Zpp (raindrops)
is known, the horizontal reflectivity of raindrops can be derived. The relationship between the
horizontal reflectivity of raindrops and Zpp (raindrops) is derived from 2-year disdrometer data in
Guangdong Province (Li et al., 2019), which is suitable for the current radar used in this study:

Z5in=0 0044725+0.58054Zpp+16.591 4)

rain

ic¢ can be expressed as Zy — Z&™". The standard error for the

Then, the ice echo intensity Zy
relationship between horizontal reflectivity and Zpp is consistently approximately 1 dB (Carey and
Rutledge, 2000). If Zy — Z&" < 1 dB, which is below the melting layer, Zi® = 0 mméfm3,

Z5Ein=10 log, O(Zﬁf‘i“), and Z" =7,. In contrast, above the melting layer, if Ziy — ZI$¢ <1 dB, then

Zn = 0 mmém3, and Zi®® = Z, (Carey and Rutledge, 2000). The estimates of rain mass (M, g
m3) and ice mass (Mic., g m>) are derived via the following reflectivity—mass relationships (Chang
et al., 2015; Zhao et al., 2022):

4/7

M,, = 3.44 x 1073(Z;*™) %)
—18 ice 4’/7
M; = 1000mp; N>/ (W) (6)

where p; indicates the ice density (kg m™3), No=4 x 10°® m™*. The estimated ice mass from the
horizontal reflectivity of ice particles is proportional to the actual ice mass and depends on the
variability in the intercept parameter of an assumed inverse exponential distribution for ice and the
ice density; thus, the trends of the estimated ice mass are deemed sufficient to investigate lightning
activity. Importantly, the Zpp can differentiate between ice and rain only if the Zy is sufficiently
large (i.e., diameter > 1 mm); under such conditions, the raindrop is characterized by significant

oblateness (Carey and Rutledge, 2000; Green, 1975).
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The estimated ice masses are assigned to graupel masses on the basis of scattering properties,
namely, where the Zy values exceed 35 dBZ (Carey and Rutledge, 2000; Kumjian, 2013a, b; Zhao,
et al., 2021b). The threshold value is usually applied to identify graupel in hydrometeor
identification method (Park et al., 2009). The rain water content above the melting level (0°C
isotherm height; sounding data from the Qingyuan meteorological observatory are used to obtain
the environmental temperature) is defined as the supercooled raindrop mass.

Zpr columns are associated with low concentration of large raindrops (>2 mm); thus, the
median volume diameter Do of raindrops is retrieved via the method described by Hu and Ryzhkov
(2022) to provide supporting evidence for identifying Zpr columns. Notably, Dy is not used to
identify Zpr columns directly but rather to ensure the threshold value of Zpgr, which is utilized to
identify Zpr columns directly. The fractional standard deviation of the Do estimation is
approximately 10% (Hu and Ryzhkov, 2022).

To further explore the characteristics of the microphysics related to the Zpr/Kpp column and
lightning within these thunderstorms, hydrometeor identification method involving the fuzzy-logic
algorithm (as in Zhao et al., 2021b) and the microphysical fingerprint (following Kumjian et al.,
2022) are conducted. Identifying polarimetric radar “fingerprints” of ongoing microphysical
processes was introduced by Kumjian (2012); these fingerprints are defined as vertical changes in
two (e.g., Zu, Zpr) or more of the dual-polarization radar variables (Kumjian et al., 2022).

As suggested by Kumyjian et al. (2022), the co-polar correlation coefficient (CC) is neglected
in most of the fingerprints discussed but it is important to indicate the melting process; thus, we
added the changes in the CC towards the ground to identify the melting process. The changes in the
polarimetric radar variables towards the ground for riming and aggregation are the same (Kumjian
et al., 2022); however, the riming process is valuable for studying lightning activity. Thus, we
followed the method for identifying the aggregation and graupel particles in Park et al. (2009),
namely, we utilized the discriminated convective and stratiform echoes to determine where riming
or aggregation processes occur. If the echo is classified as convective, then the aggregation process
is not allowed within a whole vertical column; conversely, the riming process is excluded in the

stratiform case.

12
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In addition, the 0°C isotherm height is used to discriminate warm-rain processes and mixed-
phase processes; notably, this rule introduces potential errors when it is used where the Zpr/Kpp
column is used. Specifically, the polarimetric characteristics of collision-coalescence and size
sorting (or evaporation) processes above the 0°C isotherm height are regarded as vapour deposition
and refreezing processes, respectively. In this study, we utilize the identified and quantified Zpr/Kpp
columns to correct this possible error. A summary of the changes in the polarimetric radar variables
towards the ground and additional conditions for different microphysical processes is displayed in
Table 2. To characterize the microphysical fingerprints in this study, the changes in the polarimetric
radar variables towards the ground are computed between two adjacent grids in the vertical direction
(for example, AZu (X, Y, 21) = Zu (X, ¥, 22) — Zu (X, Y, Z1), X, ¥, and z are the three dimensions in the
Cartesian coordinate system; z; is 500 m in height, and z> is 1000 m in height). The minimum
thresholds of AZy > 0.002 dB/km and AZpr > 0.0001 dB/km are applied to avoid false classifications

based on noise present in the data, as in Kumjian et al. (2022).

Table 2. Changes in the polarimetric radar variables towards the ground for different microphysical processes. An
increase in that radar variable between the top and bottom of the profile is indicated by a positive sign +, whereas a

decrease is indicated by a negative sign.

Microphysical processes AZy AZpr  ACC  Convective/Stratiform area  Zpr/Kpp column
Collision-Coalescence + + / / \
Breakup - - / / /
Size Sorting/Evaporation - + / / v
Vapour Deposition + + / / X
Aggregation + - / Stratiform area /
Riming + - / Convective area /
Sublimation (with - - / / /

fragmentation)/Refreezing
Refreezing - + / / X
Melting + + - / /

2.3. Previous automatic identification and quantification methods for Zpr/Kpp columns
Currently, a few methods are available to automatically identify and quantify Zpr/Kpp columns
(e.g., Woodard et al., 2012; Krause and Klaus, 2024; Sharma, et al., 2024; Snyder, et al., 2015; van
Lier-Walqui, et al., 2016). These methods are constructed on the basis of the morphology of the
Zpr/Kpp columns and/or the high values (e.g., Zpr >1 dB; Kpp>1°/km) above the melting level.
In the stage of cloud formation, high Zpr values above the melting level are simply used to
identify Zpr columns; however, these high values are not always associated with the Zpr columns.
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Notably, three-body scatter signatures (Zrni¢, 1987), depolarization streaks associated with the
canting behaviour of ice in regions of strong electrification (Kumjian, 2013c), and oblate ice
particles can lead to enhanced positive Zpr values (Kumjian, 2013a). Thus, additional requirements
were imposed to avoid identification errors, e.g., the reflectivity threshold value (Zy >40 dBZ)
(Woodard et al., 2012) and the height should be below the homogeneous melting level, and the
maximum height of the Zpr column should be associated with the height at which Zpr displays a
negative vertical gradient (van Lier-Walqui, et al., 2016).

Recently, Krause and Klaus (2024) utilized the hotspot technique to identify the base of the
Zpr column on the basis of constant altitude plan projection indicators (CAPPIs). Although their
results indicated an improvement in the plan region identified on the basis of the Zpr column
approach over the results of two different existing algorithms (Thunderstorm Risk Estimation from
Nowecasting Development via Size Sorting algorithm and the algorithm introduced by Snyder et al.
(2015)), the depth and volume information for Zpr columns was lost, which was not beneficial for
forecasting lightning activity. In addition, the reflectivity threshold value (Zy >25 dBZ) was required
in this algorithm. Sharma et al. (2024) used an algorithm in the “scikit-image” Python package to
identify Zpr/Kpp columns from Cartesian grid data via threshold values (Zpr >1 dB; Kpp >1°/km);
they restricted the Zy values to exceed 20 dBZ, and any instances of obvious data contamination or
unrealistic values during the gridding process were manually removed prior to analysis. They
focused on three supercells during lightning activity, and violent convection in such case will ignore
the formation of Zpr/Kpp columns at weak echo intensities, i.e., in the initiation stage of convective
clouds.
2.4. Automatic 3D mapping of Zpr/Kpp columns during the life cycle of an isolated cell storm

Our objective in this study is to explore the performance of microphysics retrieved via radar
for forecasting lightning activity within isolated thunderstorm cells during the cloud life cycle. As
depicted in Figure 1, our radar observations indicate that before the initiation of lightning, the echo
intensity is weak during the early stage of a cloud. Moreover, we seek to determine whether Zpr
columns form in the early stages of cloud formation. In addition, Kpp columns are representative of
small drops with high concentration shed from large ice particles (e.g., hailstones) growing in a wet

regime (Hubbert, et al., 1998; Loney, et al., 2002).
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Figure 2 shows the first appearance of the Zpr column at 17:24 (China Standard Time, CST),
which is ~36 minutes earlier than the first lightning occurrence and only lags behind the first radar
echo by 6 minutes. The high values of Zpr extend to the mixed-phase region from the cloud bottom,
and the height of the Zpr column is approximately 1 km (Figure 2c). The corresponding Zy values
are smaller than 30 dBZ, but with the values of the co-polar correlation coefficient (CC) are
relatively high (Figure 2a, d). These characteristics indicate the presence of large raindrops with low
concentrations; the low Kpp values and large size of raindrops (exceeding 2 mm) support that
(Figure 2e, f). We illustrate the microphysical structure corresponding to high Zpr values in Figure
2b. The threshold value for identifying the Zpr column in this study is 1.5 dB, considering that the
size of raindrops should exceed 2 mm within the Zpr column during the initial phase of a storm
(e.g., Kumjian, et al., 2014). In addition, the Kpp column is absent in the initial phase of this storm,

not appearing until 18:30 CST.
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Figure 2. Cross section from the Cartesian grid of the studied isolated thunderstorm (case #1) at 17:24 CST. (a) Zn.
(b) Conceptual model of the microphysical structure within high Zpr values. (¢) Zpr, (d) CC, (¢) Kpp. (f) Median
volume diameter Do of raindrops. The black dashed line indicates the 0°C isotherm height. AGL (above ground
level).

In this study, we improved a method that only depends on the Zpr parameter for identifying
and easily quantifying the Zpr column (e.g., height and volume) during the whole life cycle of a

storm, specifically, including the initial phase of a convective cloud; the morphology of the Zpr
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column resulting from size sorting and the high Zpr values (>1.5 dB) in Cartesian grid data are
combined as the basis of this method. A flow chart of this method is depicted in Figure 3.

First, we establish logic matrices with the same specifications as the Zpr matrices and identify
the layer that corresponds to the 0°C isotherm height (with sounding data used to determine the
environmental temperature). Second, from the 1-km height below the melting level to the mixed-
phase region, if Zpr >1.5 dB, the corresponding logic values in the logic matrix are equal to 1.
Notably, we utilize the lower portion of the logic matrix to upwards restrict the possible errors
associated with including locations outside the successive column of high Zpr values (>1.5 dB).
This restriction condition is based on the column morphology (columnar shape), which results from
drop size sorting. Specifically, the region of the Zpr column contracts upwards from the 0°C
isotherm height below the mixed-phase region (e.g., as shown in Amiot et al. (2019), Hubbert et al.
(2018), Kumjian et al. (2014), Snyder et al. (2015) and Tuttle et al. (1989)). In the Cartesian grid
data, this phenomenon is particularly obvious (Figure 2c).

Third, the size distribution of raindrops within the Zpr column is determined by size sorting;
thus, we utilize the negative vertical gradient of Zpr on the basis of every grid between two adjacent
layers from the 0°C isotherm height to the uppermost limit height to further ensure that the grids are
associated with the Zpr column. Finally, a 3D mapping of the Zpr column is constructed. We can
use the grid information to compute the height and volume of the Zpr column. Although the
formation mechanism of the Kpp column is different from that of the Zpr column, the morphology
of the Kpp column is highly consistent with that of the Zpr column; thus, this method can be applied
to map the Kpp column with a 3D grid based on the threshold value for identifying the Kpp column

(e.g., >1°/km).
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Figure 3. Flow chart of 3D mapping of a Zpr column.

3.Results
3.1. Assessment of Zpr/Kpp columns identified via the “3D mapping columns” method

Snapshots of the identified Zpr columns via the “3D mapping columns” method at four
moments (the Kpp column only existed at one moment during the life cycle of this thunderstorm)
are shown in Figure 4. The identified regions of the Zpr/Kpp columns are represented by white dots.

We verify that the “3D mapping columns” method performs well in identifying the Zpr/Kpp columns

via manual inspection.
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407 The first Zpr column in this isolated thunderstorm occurred at 17:24 CST (Figure 4a, Figure

408  5a). The second Zpr column subsequently occurred at 17:42 CST after 18 minutes (Figure 4b, Figure
409  5a). At 18:06 CST, the lightning activity reached the first peak (Figure 6; to compare the radar and

410  lightning data, the lightning flash frequency was counted every 6 minutes), and the Zpr column was
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411  thelargest (in volume) at this time (Figure 5a). However, the overlap region between the Zpr column
412  and reflectivity core at 17:24 and 17:42 CST disappeared at 18:06 CST (Figure 4c); i.e., the Zpr
413  column within the reflectivity core began to collapse because of the falling of large-sized

414  (represented by Zy values exceeding 40 dBZ) ice particles.
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416 Figure 5. Time—height (volume) variation in the Zpr column (a) and Kpp column (b). The dark green bars indicate

417 the column heights and the light blue bars indicate the column volumes. The black (red) stepped line indicates the

418 total flashes (CG flashes) from the LFEDA. AGL (above ground level).

419 Although large ice particles form and fall, the Kpp column is absent. However, a Kpp core with

420  high values (=1°/km) occurs near the location where large ice particles (approximately 50 dBZ)
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melt, and a shedding process may occur, resulting in a Kpp core (Figure 4e). At 18:30 CST, the
lightning activity reaches the second peak (Figure 6), but the Zpr column almost disappears;
interestingly, the Kpp column forms, with high values expanding downwards to the bottom of the
cloud (Figure 4d, f). In addition, the Kpp column only occurs at 18:30 CST, which corresponds to

the second peak of lightning activity (Figure 5b).
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Figure 6. Time-height variation in flash source density (count per pixel, 6 min™!). The black (red) stepped line
indicates the total flashes (CG flashes) from the LFEDA. The dashed lines indicate the isotherm heights from 0 to
—38°C. AGL (above ground level).

3.2 Vertical structures of microphysics related to lightning activity

To study the vertical thunderstorm structure related to lightning activity, we explore the vertical
structures of polarimetric radar variables and microphysics, in combination with 3D lightning
location data. Figure 7 displays the cross sections of polarimetric radar variables (Zu, Zpr, and Kpp)
and microphysics (hydrometeor types and microphysical fingerprints) from the Cartesian grid of the
studied isolated thunderstorm. Figure 7 al-el shows the polarimetric structure prior to initiation of
lightning. The Zpr column and reflectivity core (= 25 dBZ) begin to separate, having previously
been overlapping during the initial development stage of the thunderstorm (Figure 4a, b). Riming
and graupel are present; specifically, the locations of graupel particles are associated with low Zpr
values. At 18:00 CST (Figure 7 a2-e2), the lightning activity begins, and the locations of the flash

sources are high and correspond mainly to graupel particles. Riming occurrence surrounds the flash
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sources. The Zpr column and reflectivity core (=40 dBZ) are almost separated. Then, at 18:06 CST
(Figure 7 a3-e3), riming has increased, the echoes strengthen (> 55 dBZ), and the heights of the
strong echoes are lifted. The lightning activity reached the first peak, where the locations of the flash
sources mainly corresponded to graupel and ice particles. This finding indicates that the convective
strength is obviously increased and that the cold cloud processes are heavily. Moreover, the Zpr
column is located at the periphery of the reflectivity core, and high Kpp values occur and correspond
to heavy rain particles, which are associated with large ice particles (e.g., hailstones) melting,
raindrops coalescence and/or break. This phenomenon is consistent with that the Kpp tends to be

directly proportional to the rain mixing ratio (Snyder et al., 2017).
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Figure 7. Cross sections of polarimetric radar variables (Zn, Zpr, and Kpp) and microphysics (hydrometeor types

and microphysical fingerprints) from the Cartesian grid of the isolated thunderstorm (case #1). At 17:54 CST (al-

el), 18:00 CST (a2-€2), 18:06 CST (a3-€3), 18:12 CST (ad-e4), 18:18 CST (a5-¢5), 18:24 CST (a6-¢6), and 18:30

CST (a7-e7). The black dashed line indicates the 0°C isotherm height. The white dots indicate the areas of the

identified Zpr/Kpp columns. The black contours with values indicate the reflectivity structure. The black dots

indicate the flash sources, the white square represents the first source of the intracloud flash, and the triangle
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represents the CG flash. Hydrometeor types are abbreviated: ‘DS’ is dry aggregate snow, ‘WS’ is wet snow, ‘CR’
indicates crystals of various orientations, ‘GR’ is graupel, ‘BD’ is big drops, ‘RA’ indicates light and moderate rain,
‘HR’ is heavy rain, and ‘RH’ indicates a mixture of rain and hail.

Subsequently, the lightning activity weakened at 18:12 and 18:18 CST. During this stage
(Figure 7 a4-e4, a5-e5), the reflectivity core is landing and large ice particles above the melting level
decrease, corresponding to heavy melting and indicating increasing downdrafts. Although Zpr
columns are present, they can only indicate updrafts around the reflectivity core. However, the
reflectivity core was lifted again at 18:24 CST (Figure 7 a6). The contents of rain and hail mixtures
and graupel clearly increased (Figure 7 d6). This indicates that the convective strength is increased.
Notably, the Zpr column and reflectivity core overlap again, just as occurred during the initial
development of the thunderstorm (Figure 4a, b; Figure 7 b6). Although a few high Kpp values
occurred above the melting level, a Kpp column formed during the next 6 minutes (Figure 7 c6, c7).
At 18:30 CST (Figure 7 a7-e7), the lightning activity reaches the second peak, and the riming
process surrounds these flash sources. The Zpr column within the reflectivity core quickly collapses
with the occurrence of abundant graupel particles.

In total, this thunderstorm shows two impulses in convective strength, which correspond to
two lightning activity peaks. When the first impulse event initially develops, the Zpr column is
obvious and overlaps or partly overlaps with the reflectivity core (Figure 4a, b, and Figure 7 bl);
however, the region of the Zpr column within the reflectivity core will collapse, with abundant
graupel particles forming by riming or freezing, stimulating updrafts and intensified lightning.
When large ice particles (e.g., graupel or hailstone) subsequently decrease, indicating the end of the
first impulse event, melting and shedding processes occur, resulting in more raindrops (many
moderate-to-large and small raindrops) contributing to high Zpr/Kpp values. These raindrops could
recirculate into the updrafts and be lifted to the mixed-phase region, forming the Zpr column first,
and raindrops could transfer to abundant graupel and even hailstones, promoting convection, i.e.,
increasing lightning activity (indicating the second impulse event). However, the Zpr column within
the reflectivity core will collapse with increasing amounts of graupel and/or hailstone particles, but

the Kpp column will occur; this can be explained by the increased Kpp values at the column top
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being associated with an increasing number of small-to-moderate hailstones with significant water
fraction (Snyder et al., 2017). The lightning activity also reaches a peak value.

Thus, the Zpr column within the reflectivity core is likely an indicator of imminent ice
microphysics, and then, the formation of abundant graupel particles promotes lightning activity via
noninductive charging; the Kpp column is highly related to cold cloud processes, replacing Zpr
column to indicate updrafts within the reflectivity core when obvious graupels and hailstones occur.
3.3. The polarimetric and microphysical characteristics within the Zpr columns

Figure 8 shows the normalized distributions of the polarimetric and microphysical
characteristics within the series of Zpr columns during the life cycle of the studied thunderstorm.
The Zu values within the Zpr columns range from approximately 10 to 55 dBZ; specifically, weak
reflectivity is present in the initial phase of the thundercloud (Figure 8a). This suggests the use of
the Zy threshold value (e.g., 25, 40, or 35-50 dBZ) to help select Zpr columns results in the loss of
information, especially for the initial phase of clouds. The increase in reflectivity intensity within
the Zpr columns can be used to predict lightning activity, and the peaks in both reflectivity intensity
and lightning activity are consistent. A strong reflectivity intensity peak is associated with a high
number of lightning flashes (Figure 8a).

The Zpr values within the Zpr columns range from approximately 1.5 to 4 dB, and the
increasing trend of the Zpr values is consistent with the first peak of lightning activity but has a low
correlation with the second peak of lightning activity (Figure 8b). The pattern of Dy within the Zpr
columns is similar to that of the Zpr values, depending on the strong linear relationship between Do
and Zpr (Figure 8c). The liquid water content within the Zpr columns ranges from approximately

0.1 to 4 gm™3, and the peaks correspond to the two peaks of lightning activity (Figure 8d).
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Figure 8. The normalized distributions of the polarimetric and microphysical characteristics within the series of
Zpr columns. (2) Zn. (b) Zpr. (¢) Median volume diameter (Do) of raindrops. (d) Liquid water content (LWC). The
blue solid line indicates the mean value. The shading indicates the normalized occurrence frequency (unit: %). The

blue dashed lines indicate the 25% and 75% percentiles. The black (red) stepped line indicates the total flashes

(CG flashes) from LFEDA, and the lightning flash frequency is counted every 6 minutes.

In addition, the percentage of hydrometeors within the Zpr columns is investigated on the basis
of the retrieved contents of ice (including graupel) or raindrops, as described in Section 2b. The
results of hydrometeor identification are dominated by large size particles. Thus, we count the grids
of ice (graupel) or raindrops via the results of the Zpp method to investigate the percentage of
hydrometeors within the Zpr columns, avoiding neglecting the grid that possesses both ice (graupel)
particles and liquid drops simultaneously. The obvious phenomenon is that the percentage of graupel
within the Zpr columns suddenly peaks before the first peak of lightning activity, but the second
peak of lightning activity is not related to the presence of graupel within the Zpr columns; the
hydrometeor type within the Zpr column at 18:30 CST is raindrops (Figure 9). Notably, the results
neglect raindrops that smaller than 1 mm; although these small raindrops are a minor within the Zpr
column. This indicate the collapse of the Zpr column within the reflectivity core at 18:30 CST,

which is consistent with the results shown in Figure 4d; the large-sized ice particles (i.e., graupel,
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corresponding to the reflectivity core) fall from aloft, and the smaller Zpr values of such ice particles
result in this collapse phenomenon. Thus, the retained Zpr column corresponds to the periphery of
the reflectivity core, indicating relatively weak updrafts and raindrops. Notably, the absence of
graupel within the Zpr columns does not mean that the graupel particles are eliminated within the
clouds. On the other hand, the sudden increase in graupel within the Zpr column at 18:00 CST may
support the presence of a coalescence—freezing mechanism that led to graupel formation in the
warm-based clouds. The hypothesis about coalescence—freezing mechanism was proposed in
previous studies (e.g., Braham, 1986; Bringi, et al., 1997; Carey and Rutledge, 2000; Herzegh and

Jameson, 1992).

100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [ 1 1 1 1 20
3? Raindrops
c 901 leq -18
£ Graupel
= -
5 80 | 18 e
£

& 70 L14 ©
N 0
£ 2
._‘:: 60 F12 %
z 50 10 €
'S - -
8 z
B s
2 40+ -8 ¢
g g
'g 30 F6 &
= @
S 20 — L4 ®
-’ [T
g
o 104 _l_l; -2
o
o |

0 T T 1 1 T T T 1 T T 1 1 T T T 1 T T T 0
) Y 9 3 o > S W ™ o
SO G S S A Gl A

Time [CST]

Figure 9. The percentages of hydrometeors within the series of Zpr columns. The orange bars indicate the
percentage of raindrops. The blue bars indicate the percentage of ice particles (including graupel). The pink bars
indicate the percentage of graupel. The black (red) stepped line indicates the total flashes (CG flashes) from

LFEDA, and the lightning flash frequency is counted every 6 minutes.

3.4. Statistical results

To determine the relationship between lightning activity and the quantified Zpr columns, the
height and volume of the Zpr column are calculated via the “3D mapping column” method; the
volume is based on the accumulation of all grids within the Zpr column, and the volume of a single

grid is 0.03125 km?, with 0.25-km horizontal and 500-m vertical resolutions. The height of the Zpr
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column is determined by counting the grid number (n) from the melting level to the highest grid
within the Zpr column; if # is determined, the Zpr column height is #x0.5 km.

The variations in the Zpr/Kpp column height and volume with the life cycle of the remaining
fourteen cases are displayed in Figure 10 (cases #2 to #15), as are the variations in the percentages
of hydrometeor types and microphysical fingerprints. The grid is assigned to specific particle type
based on the results of hydrometeor identification, and the percentage of grids for each hydrometeor
type is calculated. Similarly, this process is applied to determine the percentage of grids associated
with microphysical fingerprints. Each of them has a Zpr column (Figure 10 al-al4); however, the
absence of a Kpp column is possible (Figures 10 b1-b14). The results of our study, from 15 isolated
thunderstorms over South China, indicate lightning is not observed in the absence of a Zpr column,
and that a Kpp column is not observed without a Zpr column, which are consistent with the
observations of Bruning et al. (2024). Moreover, although the highest lightning flash frequency (in
case #11) is observed when the Zpr and Kpp columns are copresent, the total flashes in cases (e.g.,
#6, #10, and #15) with only the Zpr column are not lower than those in cases (e.g., #2, #3, and #5)
where both Zpr and Kpp columns are present. In addition, our results suggest that the signal in the
Kpp column within these small, isolated, subtropical thunderstorms over South China is not as
steady as that in the Zpr column during the life cycle.

The results show that the percentages of identified graupel particles and riming process are
closely related to lightning activities (Figures 10 c1-c14, d1-d14), which are consistent with that in
Figure 7. The cross-correlation approach can be used to examine the correlation considering the
time lag, which is important for verifying whether a parameter is appropriate for forecasting another
parameter. To further determine the correlation between lightning activity and the polarimetric
structure. The cross correlations between the lightning activity and polarimetric structure during the

life cycles in all the cases are examined, and the results are displayed in Figure 11.
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Figure 10. The variation in Zpr column height and volume with the life cycle of thunderstorms (cases #2 to #15)
(al-al4). The variation in the Kpp column height and volume with the life cycle of thunderstorms (cases #2 to #15)
(b1-b14). The dark green bars indicate the column heights, and the light blue bars indicate the column volumes.
The texts display the number of total flashes and CG flashes in a thunderstorm. The variation in percentages of
hydrometeor types with the life cycle of thunderstorms (cases #2 to #15) (c1-c14). The variation in percentages of
microphysical fingerprints with the life cycle of thunderstorms (cases #2 to #15) (d1-d14). The black stair lines
indicate the total flashes, and the red stair lines indicate the CG flashes. Hydrometeor types are abbreviated: ‘DS’
is dry aggregate snow, ‘WS’ is wet snow, ‘CR’ indicates crystals of various orientations, ‘GR’ is graupel, ‘BD’ is
big drops, ‘RA’ indicates light and moderate rain, ‘HR” is heavy rain, and ‘RH’ indicates a mixture of rain and hail.

Figure 11a shows that the variation in the graupel or rain water content above the melting level
within the cloud can predict the lightning activity (total flashes) after 6 minutes well, and the
correlation coefficient is approximately 0.8. However, other parameters (e.g., Zpr column volume,
ice content above the melting level, and graupel volume) also exhibit good performance in
forecasting lightning activity, and the correlation coefficient can reach approximately 0.7. The
graupel volume is calculated based on the identification results of hydrometeors. Although the
variation in the graupel or rain water content above the melting level within the cloud can also
forecast the lightning activity (CG flashes) after 6 minutes, the correlation coefficient decreases to
approximately 0.56 (Figure 11b). Notably, the trend of the Zpr column volume implies that it may
perform well with a longer warning time (e.g., 12 minutes) for lightning activity. In addition, the
autocorrelation of each variable in time series would overestimate the strength of the relationship

by approximately 0.15.
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Figure 11. Cross-correlations between flash frequency (total flashes (a), CG flashes (b)) and eight radar-retrieved
variables (Zpr column height/volume, rain water content below/above the melting level, ice content above the
melting level, graupel content above the melting level, graupel volume, and riming volume); the lines indicate the
mean values and the shaded area indicates the 95% confidence interval. Positive lagged time means that an
increase in the variable comes before the increase in lightning.

4. Conclusion and discussion

The relationship between the polarimetric structure and lightning activity is evaluated within
fifteen isolated thunderstorm cells during the cloud life cycle in this study. We focus on the proxies
of cloud updrafts and supercooled liquid raindrops (Zpr or Kpp columns) and the content of ice or
rainwater, which have been demonstrated to be related to the variations in the number of lightning
flashes in previous studies (e.g., Bruning et al., 2024; Carey and Rutledge, 2000; Hayashi et al.,
2021; Sharma et al., 2024; Sharma, et al., 2021; van Lier-Walqui, et al., 2016). Furthermore, we
explore the microphysical fingerprints, which should be related to column formation and lightning
activity. Therefore, the objective of this study is to clarify the sequence and interactions of these
parameters for predicting lightning activity during the cloud life cycle and understanding the
corresponding cloud microphysics.

To precisely identify and quantify the Zpr or Kpp columns within an isolated thunderstorm
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during the whole cloud life cycle, the “3D mapping columns” method is improved; it is based on
the morphology and high values of the Zpr or Kpp columns in Cartesian grid data. The “3D mapping
columns” method has advantages in identifying Zpr columns in the initiation phase of convective
clouds, avoiding the utilization threshold value of Zu. The volume and height of the Zpr columns
are quantified via the “3D mapping columns” method, and the correlation coefficient indicates that
the volume of the Zpr column is better for forecasting lightning activity than the column height is.
In addition, both the volume and height of a Zpr column have some limitations in forecasting
lightning activity, except during the early phase. This phenomenon is similar to the results of Sharma
et al. (2024). In their study, the correlation coefficient between the Zpr column volume and total
flash rate generally monotonically decreased after the initial lightning jump, and the volume of the
Kpp columns exhibited relatively high co-variability with the total flash rate, except in the early
phase. The time lag between the formation of the Zpr column and that of the Kpp column was
consistent with the results of this study, indicating the different formation mechanisms of the Zpr
and Kpp columns described in Section 1.

As discussed in Section 3.2, lightning activity is indeed related to dynamic and microphysical
variation and impulses in convective strength, which is consistent with the findings of previous
studies (e.g., Bruning et al., 2024; Sharma et al., 2024; Sharma et al., 2021). The unsteady Zpr and
Kpp columns are tied to unsteady convective strength associated with thermal bubbles, warm- and
cold-phase microphysics. In this way, the variations in the Zpr and Kpp columns can indicate
lightning activity. Although this hypothesis is reasonable and supported by observations through
the microphysical signatures of large-drop lofting and glaciation corresponding to the Zpr and Kpp
columns (Bruning et al., 2024; Fridlind et al., 2019); however, the observations of Sharma et al.
(2024) and Sharma et al. (2021) revealed that the Kpp column volumes (or mean Kpp values within
a segmented Kpp column) have noticeably different pattern than the Zpr column volumes (or mean
Zpr values within a segmented Zpr column), which has remained a question in Sharma et al. (2021).

In this study, we explore the polarimetric and microphysical structures related to impulse
events, indicated by lightning activity. The results indicate that the column within the reflectivity
core is only the Zpr column in which the impulse event initially develops; then, the supercooled

raindrops indicated by the Zpr column transfer to abundant graupel and/or hailstone particles;
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accompanying the Zpr column within the reflectivity core, it collapses, and lightning intensifies.
Moreover, the formation of the Kpp column requires melting and shedding processes from large ice
particles (e.g., graupel or hailstones) that produce many raindrops of moderate-to-large and small
sizes, which contribute to high Zpr/Kpp values. These raindrops can recirculate into updrafts and be
lifted to the mixed-phase region, forming the Zpr column first, but then, it collapses as graupel
and/or hailstone particles increase. Convection and lightning are enhanced, and a Kpp column is
formed, which is associated with an increasing number of small-to-moderate hailstones with a
significant water fraction. Thus, the Zpr and Kpp columns within the reflectivity core are associated
with the different stages of an impulse event, the Zpr column indicates the stage in which cold cloud
processes are weak, and the Kpp column is the opposite of the Zpr column. This may explain the
remaining question in Sharma et al. (2021), namely, why the Kpp column has a noticeably different
pattern than the Zpr column does. Notably, the Zpr column is located at the periphery of the
reflectivity core when the Zpr column collapses within the reflectivity core.

We bridged the polarimetric structure (the Zpr/Kpp column, supercooled liquid water, and
graupel content below 0°C) and lightning activity on the basis of observations of fifteen isolated
thunderstorm cells (the variation curve is conceptualized in Figure 12). The two peaks of lightning
activity in Figure 12 suggest multiple impulse events in convection; specifically, the first peak refers

specifically to the initial impulse event, but the second peak suggests subsequent impulse events.
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Figure 12. A conceptual model bridging the polarimetric structure and lightning activity. Cloud formation is
defined as the first radar volume scan in cases where the composite reflectivity is > 5 dBZ. The end of the
thunderstorm cloud lifecycle is defined as the radar volume scan in cases where the maximum reflectivity starts to
fade with a value of less than 30 dBZ. The impulse events in terms of the convective strength correspond to be
lightning activity peaks. The magnitude of the amplitudes among these curves has no practical meaning; it is
merely for visualization purposes.

In our opinion (Figure 12), the Zpr column within the reflectivity core is likely an indicator of
increasing convective strength, after which the formation of abundant graupel particles promotes
lightning activity via noninductive charging. Therefore, graupel content is more directly related to
lightning activity than is the Zpr column. Moreover, the observations reveal that the microphysical
variations in supercooled liquid water and graupel yield better correlation coefficients for the
prediction of lightning activity at short warning times (e.g., 6 minutes in this study) than do the
dynamical variations in the Zpr column volume. However, the trend of the Zpr column volume
implies that it may perform well with a longer warning time (e.g., 12 minutes in this study) for
lightning activity. The Kpp column is highly related to cold cloud processes. Thus, the Kpp column
is likely absent when the impulse event initially develops; however, it will be present later with
heavily cold cloud processes, replacing the Zpr column to indicate updrafts within the reflectivity
core when obvious graupels and hailstones are occurring. In addition, the 6-min or 12-min warning
time in our results is likely due to the temporal resolution (6 minutes) of the radar data used in this
study; the update time of a full volume scan of phased-array radar is approximately 1 min; thus, the
high temporal resolution observations provided by phased-array radar may decrease the uncertainty
resulting from the radar scanning strategy.

Notably, the threshold value for identifying the Zpr column (>1.5 dB) in this study is different
from that (>1 dB) in previous studies (e.g., Sharma et al., 2024). Although this threshold value is
selected according to the retrieved raindrop diameter, which should exceed 2 mm within the Zpr
column during the initial phase of a storm (Kumyjian, et al., 2014), the results for quantifying the
Zpr column (i.e., height and volume) may be different from those of previous studies that used the
1 dB threshold (e.g., Sharma et al., 2024). However, this study focuses on the trend of the Zpr

column height or volume; thus, the differences resulting from different thresholds are relieved. The
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threshold value for identifying the Kpp column (=1°/km) in this study is consistent with that used
by Sharma et al. (2024). However, the different estimation methods for Kpp may introduce
additional uncertainty, as discussed in Sharma et al. (2021).

Moreover, the height of the melting layer (0°C), which is derived from environmental
soundings, is assumed to be constant for identifying and quantifying the Zpr/ Kpp column; however,
the melting level is frequently elevated within updraft cores because of latent heat release, which is
influenced by the strength of updrafts relative to the ambient environment. Thus, a more accurate
melting level will decrease the biased estimations of the “3D mapping columns” method in this
study. In addition, although our results support some observations in Bruning et al. (2024) and seem
to explain the remaining question in Sharma et al. (2024) and Sharma et al. (2021), whether there
are differences between such small, isolated, subtropical thunderstorms and other thunderstorm
types (i.e., mesoscale convective systems, supercells, or tropical thunderstorms) should be further
analysed to reduce the probability of uncertainty in our study. Finally, although the results retrieved
from hydrometeor identification and microphysical fingerprint methods are reasonable and
consistent with [expectations from] theory in this study, the potentially biased estimates may result
from isothermal height and the status of the hydrometeor (e.g., canting angle).
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