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Abstract.

The Antarctic and Greenland Ice Sheets (AIS and GIS
::::
GrIS) are critical tipping points in the Earth’s climate system. Their

potential collapse could trigger cascading effects, significantly alter the global climate patterns, and cause large-scale, long-

lasting, and potentially irreversible changes within human timescales. This study investigates the large-scale climate response of

the Southern
::::
polar

:::::::
Southern

::::::::::
Hemisphere

::::::
(pSH;

:::::::::
comprising

:::
the

::::::::
Southern Ocean and Antarctica

::::::::
(60-90oS))

:
to the isolated effect5

of reducing ice sheet
::::::
change

::
in

::::::
albedo

::::::::
resulting

::::
from

::::::::
reducing

::::
AIS

:::
and

:::::
GrIS

::
to

:::::::::
prescribed

::::
Late

:::::::
Pliocene

::::
(LP)

:
extent. Using

well-documented paleogeography of the Late Pliocene (LP )
::
LP

:
from the PRISM4D reconstruction, where the West Antarctic

Ice Sheet (WAIS) and the northwestern GIS
::::
GrIS

:
were significantly diminished, we conducted 1450-year

:::::::::::::
multicentennial

simulations with the EC-Earth3 model at atmospheric CO2 2:
concentrations of 280 ppmv and 400 ppmv.

Our results reveal that the implementation of the LP ice sheet configuration
::::
extent

:
leads to a 9.5°C rise in surface air tem-10

perature, approximately 16% reduction in sea ice concentration , and a 0.63 mm/day increase in precipitation over Antarctica

and the Southern Ocean. These changes far exceed those driven by CO2 :2
increase alone, which result in a 2.5°C warming and

a 9.3% sea ice decline. Throughout the simulations, the positive phase of the
:::::
Under

::::
only

:::::
CO2,

::::
there

::
is
::
a
::::
shift

:::::::
towards

:
a
:::::
more

::::::
positive

:
Southern Annular Mode (SAM)persists, intensifying westerly winds and contributing to sea ice export and deep ocean

warming
:
,
::::::::
supported

:::
by

:
a
::::::::::::
strengthening

::
of

:::
the

::::::::
westerly

:::
jet.

::::::::
However,

::::
CO2::::::::

increase
:::::::
together

::::
with

::::::
change

::
in
:::

ice
:::::

sheet
::::::
extent15

:::::
results

::
in

::
a

:::::
highly

::::::
varied

:::::
SAM,

:
a
:::::
result

::
of

:
a
::::::::::
weakening

:::
and

:::
less

:::::
stable

::::::::
westerly

::
jet. The combined effects of ice sheet reduction

and CO2 forcing initially weakened
:2:::::::

forcing
::::::
initially

::::::
reduce

:
Antarctic Bottom Water formation, with major implications for

the
:::::::
transport

:::
of

:::::
water

::::::
masses

:::::::::
associated

::::
with

:::
the

:
Global Meridional Overturning Circulation due to stronger water column

stratification driven by surface freshening and subsurface warming.

By isolating the direct albedo effect of reducing GIS
::::
GrIS

:
and AIS extents, this study offers critical insights into the mecha-20

nisms driving atmospheric and oceanic variability around Antarctica and their broader implications for global climate dynam-

ics. Although the complete Late Pliocene boundary conditions may serve as a valuable analogue for current and future climate

change, excluding the orographic changes allows us to specifically assess the primary role of surface reflectivity. This tar-

geted approach lays the groundwork for future research to explore how the combined effects of albedo and paleogeographical

changes could influence interhemispheric climate feedbacks under scenarios of future ice sheet collapse or instability.25
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1
:::::::::::
Introduction

The Greenland and Antarctic ice sheets (GIS
::::
GrIS

:
and AIS hereafter) are pivotal components of the Earth’s climate system.

Their high albedo reflects a significant portion of solar radiation, thereby cooling surrounding regions and playing a critical role

in regulating global air and sea surface temperatures. In addition, these ice sheets influence atmospheric and oceanic processes

by driving
:::::
ocean

:::::::::
circulation

::
at

:::::::
various

::::::
scales,

::::::::::
modulating

::::
rates

::
of

:
sea ice and dense water formation , which are essential30

elements of global thermohaline circulation
::::
deep

:::::
water

::::::::
formation

::
as

::::
well

:::
as

:::
the

::::
wind

::::::
regime

::::::
across

:::::::
different

:::::::
oceanic

::::::
basins

(Clark et al., 1999). However, the stability of these ice sheets is increasingly at risk
:::::::
currently

::
at

:::
risk

::::
due

::
to

::::::::
enhanced

:::::::
melting

::
of

::::
their

:::
ice,

:::::::::
reduction

::
in

::::::::
snowfall,

:::
and

:::::
basal

:::::::
melting

::
of

:::
ice

:::::::
cavities

:::
that

:::::::
happen

:::
due

::
to
:::::::

climate
::::::
change

::::
and

:::
are

:::::::::
projecting

::
to

:::::::
intensify

::
in

:::
the

::::::::
following

:::::::
decades

::::::::::::::::::::::::::::::::
(Pollard et al., 2015; Song et al., 2025).

Projections indicate that the accelerated melt of the GIS and AIS , coupled with the retreat of their associated ice shelves35

(Naughten et al., 2023; Greene et al., 2024),
:::
loss

::
of

:::
the

::::
GrIS

:::
and

::::
AIS will have far-reaching implications for global climate dy-

namics (Buizert et al., 2018)
:::::::::::::::::::::::::::::::::::::::::::::::::::
(Naughten et al., 2023; Greene et al., 2024; Buizert et al., 2018). These changes are likely to dis-

rupt critical processes such as deep-water formation and the contribution of the southern ocean
::::::::
Southern

:::::
Ocean

:
to global heat

and carbon transport
:::::::
transport

::::
and

::::::
carbon

:::::::::::
sequestration

:::::::::::::::::::::::::::::::
(Cai et al., 2013; Menviel et al., 2023). Understanding these risks is

critical, as the potential collapse of the AIS and GIS
::::
GrIS

:
could trigger cascading climate feedbacks, leading to irreversible40

and long-lasting changes within human timescales.

Paleoclimate records offer unique insights into the behavior of these ice sheets during past warm periods, such as Marine

Isotope Stage 5e (∼125,000 years ago) in the Pleistocene (Steig et al., 2015) and the Late Pliocene epoch
::::
Age (LP ∼3,3 million

years ago) (Naish et al., 2009; Kim and Crowley, 2000). These periods were characterised by significantly smaller ice sheets

than today. Using these
::::::
periods

::
as analogs, we can better understand how ice sheet dynamics influence oceanic and atmospheric45

processes during these past warm periods
::
in

:::::::
climates

::::::
warmer

::::
than

:::::
today, which can offer valuable lessons for predicting future

climate behavior as the Earth continues to warm.

::::::::::
Paleoclimate

:::::::
insights

:::::
from

:::
the

::::
Late

::::::::
Pliocene

:::
are

::::::::::
increasingly

:::::
used

::
as

:::::::::
analogues

:::
for

:::::
future

:::::
warm

:::::::
climate

::::::
states,

:::::::
offering

::::::
critical

::::::
context

:::
for

:::
how

::::::
Earth’s

:::::::
climate

::::::
system

:::
may

:::::::
respond

::
to

:::::::
elevated

::::
CO2::::::

levels.
::::::
Studies

:::::::
focusing

::
on

:::
the

:::::::::
Greenland

:::
Ice

:::::
Sheet

::::
have

:::::::::::
demonstrated

:::
the

:::::::::
importance

::
of
:::::::
surface

::::::
albedo

::::::::
feedbacks

:::::
when

::::::::::
considering

:::::
future

::::::
climate

:::::::
change,

:::::
based

::
on

:::
LP

::::::::
evidence50

::::::::::::::::
(Power et al., 2023).

::::::::::::::::::::
de Nooijer et al. (2020)

::::::::::
investigation

::
of

::::::
Arctic

::::::::
conditions

::::::
during

:::
the

:::
LP

::::
gives

::::::
insight

::
to

:::::
future

::::::::::
conditions,

::
as

::::
does

:::::::::::::::
Feng et al. (2017)

::::
work

:::::::::
identifying

::::::::
amplified

:::
LP

:::::
Arctic

::::::::
warming

::::::
through

::::
key

::::::
oceanic

:::::::::
gateways,

:::
and

:::::::::::::::
Lunt et al. (2012)

:::::::::::
understanding

::
of
::::::::
Pliocene

::::
polar

::::::::::::
amplification

:::
has

::::
aided

::::
our

:::::::::
knowledge

::
of

:::::::::::
amplification

::
in

:
a
::::::::::
prospective

::::::::
warming

:::::
world.

:::::
Both

:::::::::::::::::::::::
Chandan and Peltier (2018)

::
and

::::::::::::::::
Lord et al. (2017)

::::::::::
demonstrate

::::
how

:::::::
bridging

:::
LP

::::::::::
knowledge

:::
and

::::::
future

:::::::::
projections

::::::::
improve

:::
our

::::::::::::
understanding.

:::
In

:::
the

::::::::
Southern

::::::::::
Hemisphere,

:::
the

::::
role

:::
of

:::
the

::::::::
Antarctic

:::
Ice

:::::
Sheet

::
in

::::::::::
modulating

:::::
future

:::::::
climate

::
is

:::::::
gaining55

:::::::
attention.

::::::::::::::::::::::
Weiffenbach et al. (2024)

::::
show

::::
that

::::::::::::
mid-Pliocene

::::::::::
simulations

::::
with

::
a

:::::::
reduced

::::
AIS

:::::
result

::
in

::::::::::
substantial

::::::::
Southern

:::::
Ocean

::::::::
warming.

::::
This

::
is

::::::::
primarily

::::::
driven

::
by

:::
sea

:::
ice

::::
loss,

:::::::
leading

::
to

:::::::
stronger

::::::
surface

::::::::::
stratification

::::
and

:
a
:::::::::
weakening

::
of
:::
the

:::::
deep

::::::
abyssal

::::::::::
overturning

:::::::::
circulation.

::::
Such

:::::::
changes

::
in

:::::
ocean

::::::::
structure

:::
and

:::::::::
circulation

:::::::
provide

:::::::
valuable

::::::
lessons

:::
for

::::::::::
interpreting

:::::
future

:::
AIS

::::::
retreat

:::::
under

::::::
global

::::::::
warming.

::::::::
Building

::
on

:::::
these

:::::::
studies,

:::
our

:::::
work

:::::
offers

::
a
::::::
unique

::::::::::
contribution

:::
by

::::::::
isolating

:::
the

::::::
impact
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::
of

::::::
surface

::::::::::
reflectivity

:::::::
changes

:::::::::
associated

:::::
solely

::::
with

:::::
GrIS

::::
and

::::
AIS

:::::::::
reduction,

::::::::::::
independently

::
of

::::::::::
topographic

:::
or

:::::::::
vegetation60

::::::::
feedbacks,

::::
and

::::::
without

:::::::::
freshwater

::::::
inputs.

::::
This

:::::
allows

::
us

::
to
:::::
better

:::::::::
understand

::::
how

::::::
albedo

::::::::
feedbacks

::::::::
influence

:::::::::::::::
ocean-atmosphere

:::::::::
interactions

::
in
:::
the

::::::::
Southern

::::::::::
Hemisphere

::
in

::
a

::::::
warmer

::::::
world.

In this study, we apply Late Pliocene ice sheet configurations to a modern geographic framework using sensitivity experiments

with the EC-Earth model .
::::::
replace

:::
the

:::::::
modern

:::
ice

:::::
sheet

:::::
mask

::
of

::::
the

:::::::::::
EC-EARTH3

::::::
model

::::
with

::::
that

::
of
::::

the
::::
Late

::::::::
Pliocene

:::::::::::
reconstruction

::::::::
provided

:::
by

:::
the

:::::::
Pliocene

::::::
Model

::::::::::::::
Intercomparison

::::::
Project,

::::::
phase

:
3
::::::::::
(PlioMIP3;

:::::::::::::::::::
(Haywood et al., 2024)

:
).

:::
We

:::
do65

:::
not

::::::
modify,

::::::::
however,

:::
any

:::::
other

:::::
model

::::::::
boundary

::::::::
condition

::::::::::::
representative

::
of

:::
the

:::::::::::
pre-industrial

:::
(PI;

:::::
1850

:::
CE)

::::::
Earth’s

::::::::::
geography.

:::
We

::::::
perform

:::::::::
sensitivity

::::::::::
experiments

::::::::
applying

::::
these

::::
two

::
ice

:::::
sheet

:::::
masks

::::
and

:::::::
multiple

::::
CO2::::::::::::

concentrations.
:
This approach allows

us to assess the sensitivity of the climate system to changes in ice sheet extent and varying CO2 :2:concentrations, using ice

sheet conditions of the past as an analogue for the future. By focusing on the albedo effect and excluding orographic changes,

our goal is to uncover the key mechanisms and processes that could profoundly influence Earth’s future climate, environment70

, and societies.

2 Model configuration and experiments setup

2.1 Model configuration

We use the low-resolution configuration of the EC-Earth model, EC-Earth3-LR, an Earth System Model (ESM) developed

collaboratively by the European research consortium EC-Earth. EC-Earth model has flexible configurations that allow for the75

inclusion or exclusion of various climate processes, making it a versatile tool for a wide range of climate studies (Döscher

et al., 2022). EC-Earth3 integrates several key components, including the atmospheric model IFS cycle 36r4, the land surface

module HTESSEL, the ocean model NEMO3.6 and the sea-ice module LIM3, all coupled via the OASIS3-MCT coupler. IFS

and HTESSEL have a horizontal linear resolution of TL159 (1.125°), and the ocean and sea-ice components (NEMO and LIM)

have a nominal resolution of 1° (Döscher et al., 2022).80

The low-resolution configuration was selected to significantly reduce computational demands
::::
costs, allowing for conducting

multi-century
::::::::::::::
multi-centennial simulations and various sensitivity experiments. This setup is particularly suited for exploring

slow processes in the deep ocean, which are central to the goals of this study. Such processes include changes in stratification,

overturning circulation, and the response of Antarctic Bottom Water formation
::
in

:::::::
response

:
to altered climate forcing.

The EC-Earth3 model has consistently demonstrated its effectiveness in capturing key climate dynamics, including temper-85

ature variability, heat fluxes and other essential aspects of the Earth’s System. This capability facilitates a more comprehen-

sive understanding of the impacts of natural and anthropogenic forcing on the global climate system (Koenigk et al., 2013;

Döscher et al., 2022; Cao et al., 2023). EC-Earth3 has been extensively validated in both modern and paleo-climate stud-

ies, showing robust performance in simulating the climates of past warm periods such as mid-Holocene, Last Interglacial

and mid-Pliocene epochs
::::
Late

:::::::
Pliocene

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Zhang et al., 2021; Chen et al., 2022; de Nooijer et al., 2020; Han et al., 2024). These90

simulations have provided valuable information that has been integrated to major model intercomparison projects, such as
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PMIP4 (Paleoclimate Model Intercomparison Project phase 4) and PlioMIP2 (Pliocene Model Intercomparison Project phase

2) (Zhang et al., 2021; Chen et al., 2022; Power et al., 2023; Han et al., 2024)
::::::::::::::::::::::::
(Haywood et al., 2020, 2024).

:

2.2 Experiments setup

To investigate the impacts of varying ice sheet configurations
:::::
extent

:
and CO2 concentrations in the Southern Ocean and95

Antarctica
::::
polar

::::::::
Southern

::::::::::
Hemisphere

::::::
(pSH), we performed a series of sensitivity experiments

:
,
::::::::
displayed

::
in

:::::
Table

:
1. These ex-

periments employed modern ice-sheet configurations
:::::
extent (labeled E) and Late Pliocene ice-sheet reconstructions

::::::::
ice-sheets

(labeled Ei) under two atmospheric CO2 levels: pre-industrial (280 ppmv) and intermediate (400 ppmv).
::::
Here

:::
we

::::::
define

:::
the

::::
polar

::::::::
Southern

::::::::::
Hemisphere

::
as

:::
our

:::::::
domain

::
of

:::::
study.

::::
That

::::::::
includes

::
the

::::::
entire

:::::::
Southern

::::::::::
Hemisphere

:::::
from

::::
60oS

::
to

:::::
90oS.

:

The Late Pliocene Antarctic ice sheet reconstruction used in these experiments (Haywood et al., 2016; Chandan and Peltier, 2018)100

were

Table 1.
::
The

::::
four

::::
Core

:::
and

::::
Tier

:
2
:::::::
Pliocene

:::
for

:::::
Future

::::::
protocol

::::::::::
experiments

::::::::
conducted.

::
PI

:::::
refers

::
to

::::::::::
pre-industrial

:::::::::
conditions,

::
LP

:::
for

::::
Late

:::::::
Pliocene.

::::
Name

::::::::::
terminology

:
is
::::
from

:::::::::::::::::
(Haywood et al., 2016)

::::::::
Experiment

:::
ID

::
Ice

:::::
sheet

::::
extent

: ::::
LSM

:::::::::
Topography

::::::::
Vegetation

::::
CO2:::::

(ppm)
::::
Orbit

::::
E280

::
PI

::
PI

::
PI

::
PI

:::
280

::
PI

::::
E400

::
PI

::
PI

::
PI

::
PI

:::
400

::
PI

::::
Ei280

: ::
LP

: ::
PI

::
PI

::
PI

:::
280

::
PI

::::
Ei400

: ::
LP

: ::
PI

::
PI

::
PI

:::
400

::
PI

:::
The

:::::::
protocol

:::
for

:::
our

:::::::::::
pre-industrial

::::
(PI)

::::::::
simulation

:::::::
follows

::::::::::::::::
Eyring et al. (2016)

:::::::::
framework

:::
for

::
the

::::::::
Coupled

:::::
Model

::::::::::::::
Intercomparison

::::::
Project

::::::
version

::
6
::::::::
(CMIP6)

::::::::
piControl

:::::::::
experiment.

:::
Ice

::::::
sheets,

::::
land

::::::::::
geography,

::::::::::
topography

:::
and

:::::::::
vegetation

:::
are

:::
all

::::::::::
unmodified

::::
from

:::
the

::::::
model.

:::::
GHG

::::::::::::
concentrations

:::
for

:::::
CO2,

::::
CH4:::

and
:::::

N2O
:::
are

:::::
284.3

:::::
ppmv,

::::::
808.2

::::
ppbv,

::::
and

:::::
273.0

:::::
ppbv,

::::::::::
respectively.

::::
For

:::::
orbital

::::::::::
parameters;

::::::::::
eccentricity

:::
set

::
at

::::::::
0.016764,

::::::::
obliquity

::::::
23.549

:::
and

:::::::::
perihelion

:
-
:::
180

::
is
:::::::
100.33.105

:::
The

::::
aim

::
of

:::::
these

:::::::::
sensitivity

::::::::::
experiments

::
is

::
to

::::::
unveil

:::
the

::::::
isolated

:::::::
impact

::
of

:::::::
abruptly

::::::::
shrinking

:::
of

:::
the

:::
AIS

::::
and

::::
GrIS

:::
to

:::
the

::::::
climate

::
of

:::
the

:::::
polar

:::::::
Southern

:::::::::::
Hemisphere.

:::::::::
Therefore,

::
Ei

::::::::::
simulations

::::::
involve

::::::::
changing

::::
only

:::
ice

:::::
sheet

:::::
extent

:::
for

:::
the

:::::::::
Greenland

::
Ice

::::
and

::::::::
Antarctic

:::
Ice

::::::
Sheets

:::::::::::::::::::::::::::::::::::::::::
(Haywood et al., 2016; Chandan and Peltier, 2018)

:
.
:::
LP

::::
AIS

:::
was

:
originally developed using the

high-resolution British Antarctic Survey Ice Sheet Model, integrated with climatologies from the Hadley Centre Global Cli-

mate Model (Hill et al., 2007; Hill, 2009), utilising PRISM2 boundary conditions (Dowsett et al., 1999). The mid-Pliocene110

Greenland Ice Sheet (GIS) reconstruction
::::::
Figure

:
1
::::::::
provides

:
a
::::::
visual

::::::::::
comparison

::
of

:::
the

:::::::
modern

:::
and

:::
LP

:::
ice

:::::
sheet

::::::
extent.

:::
LP

::::
GrIS

::::::::::::
reconstruction

::
is

:
provided for PlioMIP2 Haywood et al. (2016) is

:::
and

:
based on 30 modelling results from the PLIS-

MIP project Dolan et al. (2012). Given the focus of this study on the domain south of 60oS (Antarctic sector hereafter),

::::::::::::::::::::
Power and Zhang (2024)

:::::::
provides

:::::
more

::::::
detail,

::::::::
including

::::::
spatial

:::::::::::
configuration

:::
of the effects of Greenland ice sheet are not

explored in depth.115
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To isolate the impact of surface reflectivity (albedo ), we excluded orographic changes and freshwater input associated with

reduced ice sheet extent. This decision enables a targeted investigation of energy balance changes solely by surface albedo.

Figure 1 provides a visual comparison of the modern and Pliocene ice sheet configurations.
:::
LP

:::::
GrIS.

:::
The

:::::::
PlioMIP

:::
ice

:::::
sheet

:::::
mask

:::
was

::::::::::
interpolated

::::
onto

:::
the

::::
grid

::
of

:::::::::
EC-Earth’s

:::::::::::
atmospheric

::::::::::
component,

::::
IFS,

:::
and

:::::::::
substituted

::::
into

::
the

:::::
snow

:::::
depth

::::::::
variable

::
of

:::
the

:::::
initial

:::::::::
condition

:::
file.

::::
IFS

::::
does

::::
not

::::
have

::
a

::::::
specific

:::::::
variable

:::
for

:::
ice

:::::::
sheets,

::::::::
therefore,

:::::::
altering120

::
the

:::::
snow

::::::
depth

:::::::
provides

::::
only

::
a
::::::
change

:::
in

:::
the

:::
ice

:::::
sheet

::::::
extent,

:::::
being

:::
ice

::::::
sheets

:::
the

::::::
regions

::::::
where

:::::
snow

:::::
depth

:::::::
exceeds

:::
10

::::::
metres.

::
To

::::::
solely

:::::
focus

::
on

:::::::
climatic

:::::::::
feedbacks

:::::::
resulting

:::::
from

::::::
change

::
of

::::
AIS

:::
and

:::::
GrIS;

::::::
albedo

::::::
values

:::
and

:::
ice

:::::
sheet

:::::::::
orography

::::
were

:::
not

::::::::
modified,

:::
and

::::::::::::
accompanying

:::::::::
freshwater

::::::
hosing

::::::::::
experiments

::
to
:::::::
account

:::
for

::::::::
meltwater

:::::
from

:::
ice

::::
sheet

::::::
change

:::::
were

:::
not

:::::::::
performed.

::::
With

:::::
these

:::::::::
exclusions,

:::
we

::::
aim

::
to

:::::
create

::::::::
idealised

::::::::
sensitivity

:::::::::::
experiments.

Figure 1. Comparison of the modern and Pliocene
::
LP

:::::::
Antarctic

:
ice sheets

::::
sheet

::::
extent

:
as provided by the PLISMIP project.

These simulations are part of the Pliocene for Future (P4F) Tier 2 experiments (Haywood et al., 2016), which has been125

proposed for the second phase of the Pliocene Model Intercomparison Project (PlioMIP2) and will be included in the new

PlioMIP3 experiment list. The reliability of the Antarctic ice sheet configuration
:::::
extent is further supported by the results of

the PLISMIP results, which evaluated the dependencies of the ice sheet model for the warm period of the mid-Pliocene using

30 different models (Dolan et al., 2012). To ensure consistency across all simulations, modern vegetation, as simulated for the

year 1850 CE, was fixed using the off-line LPJ-GUESS dynamic vegetation model (Chen et al., 2021). Each simulation spans130

a minimum of 1450 years, with the final 200 years of model output used for analysis of the mean state. The pre-industrial

configuration (E280) serves as the PI control experiment for comparison.

3 Antarctica and
::::
The

:::::
polar Southern Ocean

:::::::::::
Hemisphere response to

::::::::
increased

:
CO2 forcing

:2 and
:::
LP ice sheet

reduction
:::::
sheets

3.1 Near Surface Processes135

Temperature, sea ice concentration and albedo anomalies resulting from increased CO2 levels and the reduction of the modern

ice sheet to Pliocene size. a) E400-E280 surface air temperature, b) Ei400-E280 surface air temperature, c) E400-E280 albedo,
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d) Ei400-E280 albedo, e) E400-E280 sea ice concentration, f) Ei400-E280 sea ice concentration. White areas indicate results

are not statistically significant at the 95% confidence level.

The interactions between the atmosphere, cryosphere and ocean are crucial in understanding how changes in CO2 levels140

and ice sheet configurations influence climate feedbacks . Surface warming driven by both atmospheric and albedo changes

directly impacts oceanic processes, particularly in the Southern Ocean. The delicate balance between surface stratification and

deep water formation in this region is critical to regulating global ocean circulation.
:::
the

::::::::
influence

::
of

::::::::
increased

:::::::::::
atmospheric

::::
CO2 ::::::::::::

concentrations
:::
and

:::::::
reduced

:::
ice

::::
sheet

::::::
extent

::
on

:::::::
climate

::::::::
feedbacks

::
in

:::
the

:::::
polar

::::::::
Southern

::::::::::
Hemisphere.

:

The simulations reveal that the near surface air temperature (TAS) increases by145

3.1
:::::::

Changes
::
to

::::::::::::
temperature,

::::::
albedo

::::
and

:::
sea

:::
ice

::::::::::::
concentration

::
In

:::
the

::::
E400

:::::::
scenario

::::
(400

::::
ppm

:::::
CO2,

::::::
relative

::
to
::::::
E280),

:::::::
average

::::::::
Antarctic

::::::
surface

::
air

::::::::::
temperature

:::::
rises

::
by 2.51°

::
C.

:::
The

::::::::
warming

:
is
:::::
most

::::::::::
pronounced

::
in

:::
two

:::::::
specific

:::::::
hotspots

::
-
:::::::
Weddell

:::
and

:::::
Ross

::::
seas,

::::
with

:::::::::::
temperatures

:::::::::
increasing

:::
up

::
to

:::
6°C

:::
in

:::
the

:::::::
Weddell

:::
Sea

::::::
(50°W,

:::::
75°S)

::::
and

:::
5°C

::
in

:::
the

:::::
Ross

:::
Sea

:::::::
(160°W,

:::::
73°S)

::::::
(figure

::::
2a).

:::::::
Changes

::
to

::::::
albedo

::::::
(Figure

:::
2c)

:::
are

::::::::
primarily

::::::::
confined

::
to

::::
these

:::::::
regions,

::::
with

:::
the

:::::
most

:::::::::
significant

:::::::
decrease

:::
(up

:::
to

:::::
20%)

::::::::
occurring

::
in

:::
the

:::::::
Weddell

::::
Sea,

:::::::::
extending

:::::::
between

:::
the

::::::::
coastline150

::
to

:::::
60°S,

:::
and

::::::::
clustered

::
to

:::
the

:::::::
coastline

:::::::
moving

::::::::
eastward.

::
A

:::::::
smaller

:::
area

:::
of

:::::
albedo

:::::::
decline

:::::
(10%)

::
is
::::::::
observed

::::
west

::
of

:::
the

:::::
Ross

:::
Sea.

::::
Sea

:::
ice

::::
loss

::::::::
replicates

::::
these

:::::::
patterns

:::::::::::
surrounding

:::
the

:::::::
hotspots.

:::::::
Largest

:::
sea

:::
ice

::::::
decline

::::::
occurs

::
to
:::

the
::::

east
::
of
::::

the
:::::::
Weddell

:::
Sea

::::::
(Figure

::::
2e)

:::
and

::::::::
clustered

:::
to

:::
the

:::::::
coastline

:::::::
moving

:::::::::
eastward,

:::
and

::
a
::::::
smaller

::::
area

:::
of

:::
sea

:::
ice

::::
loss

:::::
found

:::::
west

::
of

:::
the

:::::
Ross

:::
Sea.

:::::
More

::::::::
moderate

::::::::
warming

::::::
occurs

:::::
across

:::
the

:::::::
majority

:::
of

::
the

:::::::::
remaining

::::
area,

:::::
with

::::::::
generally

:::
less

::::
than

::::
2°C

:::::::
increase

::::
over

:::
the

::::::
interior

::
of

:::::::::
Antarctica

::::
and

:::
less

::::
than

::::
1°C

::
at

:::
the

::::::::
periphery

:::
of

:::
east

::::::::::
Antarctica.

::::
This

::
is

:::::::::::
accompanied

:::
by

::::
close

::
to
:::::

zero
:::::::
changes

::
in155

::::::
albedo.

::
A

::::::::
localised

::::::
cooling

:::
of

::::
1–2°C under increased CO2 (E400 relative to E280; Figure 2a). However, when Pliocene ice

sheet configurations are applied
:
is
::::::::
observed

::
in

:::
the

::::::::
southern

:::::
ocean

:::::::
between

::::::::::::
160°W-160°E,

:::::
62°S,

::::::
where

:
a
:::::
small

::::
loss

::
in

::::::
albedo

:
is
::::
also

::::::::
displayed

:::::::
(Figure

:::
2c).

:

::::
With

:::
LP

:::
ice

:::::
sheet

:::::
extent

:
(Ei400 relative to E280), the warming intensifies, reading

:::::::
warming

::
is

:::::
much

::::::
greater

::::
than

::::::
E400;

:::::::
Antarctic

:::::::::::
near-surface

::
air

::::::::::
temperature

::::::::
increases

:::
by

::
an

:::::::
average

::
of

:
9.49°C(Figure 2b). Similarly, sea surface temperature (SST)160

increased by 1.26
:
.
:::
The

::::::::
warming

:::::::
hotspots

::::
shift

::::::
further

::::::
inland,

::::
with

:::::::::::
temperatures

:::::
rising

:::
by

::::
over

::
17°C under CO2 forcing alone

but increased to 4.89
:::::
inland

:::::
from

:::
the

::::
Ross

::::
Sea

::::
(180°

:::::::
–155°W,

:::::::::
81°–83°S)

::::
and

::
up

:::
to

:::
16°C with the combined effects of CO2

and ice sheet changes (Figure ??a and b), compared to PI. These results underscore the amplified warming effect of reduced

ice sheet extent compared to CO2 increase alone.
:::::
inland

::::
from

:::
the

:::::::
Weddell

::::
Sea

::::::::::
(20°–35°W,

:::::::::
81°–83°S)

::::::
(Figure

:::::
??b).

:::
The

:::::
Ross

:::
and

:::::::
Weddell

::::
Seas

::::::::::
themselves

:::::::::
experience

:::::::
warming

::
of
:::
up

::
to

:::::
12°C

:::
and

:::::
13°C,

:::::::::::
respectively.

:::
The

:::::
most

:::::::::
substantial

::::::
albedo

:::::::
declines165

::::
occur

:::
at

::::
these

::::::
inland

::::::::
hotspots;

::::::
greater

::::
than

::::
50%

:::::::
decline

:::::
inland

:::
of

:::
the

::::
Ross

::::
Sea,

::::::
whilst

:::
the

::::
Ross

::::
Sea

::::
itself

::::::::::
experiences

:::::
30%

:::::::
decrease.

::::::
There

:
is
:::
an

::::::
albedo

::::::::
reduction

::
of

::::::
40-50%

::::::
inland

::
of

:::
the

:::::::
Weddell

::::
Sea,

:::::
which

:::::::
extends

::::
into

::
the

::::::::
Weddell

:::
Sea

::::
itself

:::::::
(Figure

:::
2d).

::::
Sea

:::
ice

:::::
losses

:::
are

:::::
most

::::::
drastic

::
in

::::
these

:::::::::
locations,

::::
with

::::
over

::::
65%

:::::::
decline

::
in

:::
the

:::::::
Weddel

:::
and

::::
60%

:::
in

:::
the

::::
Ross

::::
Sea.

:::::
High

::::
areas

::
of

:::
sea

:::
ice

::::
loss

:::
are

:::::::
observed

:::::::::
extending

:::::::
eastward

:::::
from

:::
the

:::::::
Weddell

:::
Sea

::::
and

::::::::
westward

::::
from

:::
the

::::
Ross

::::
Sea.

:

Sea Surface Temperature (SST), sea level pressure (SLP) and precipitation anomalies resulting from increased CO2 levels170

and the reduction of the modern ice sheet to Pliocene size. a) E400-E280 SST, b) Ei400-E280 SST, c) E400-E280 SLP, d)
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Figure 2.
:::::::::
Temperature,

::::::
Albedo

:::
and

::::
Sea

::
Ice

:::::::::::
Concentration

:::::
(SIC)

:::::::
variables

::::
from

:::
the

::::
only

:::::::
increased

::::
CO2::::

level
:::::::::
experiment

:::
and

::::::::
combined

:::
CO2:::

and
:::

LP
:::
Ice

::::
Sheet

::::::
extent,

:::::::
compared

::::
with

:::
the

::
PI

::::::
control.

::
a)

::::::::
E400-E280

::::::
surface

::
air

::::::::::
temperature,

::
b)

:::::::::
Ei400-E280

::::::
surface

::
air

::::::::::
temperature,

:
c)
:::::::::

E400-E280
::::::
albedo,

::
d)

:::::::::
Ei400-E280

::::::
albedo,

::
e)

:::::::::
E400-E280

::::::
Siconc,

::::::::::
f)Ei400-E280

::::::
Siconc.

::::
Only

:::::
results

:::::::::
statistically

::::::::
significant

::
at
:::
the

::::
95%

::::::::
confidence

::::
level

::
are

::::::::
displayed.

Ei400-E280 SLP, e) E400-E280 precipitation, f) Ei400-E280 precipitation. White areas indicate results are not statistically

significant at the 95% confidence level.
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The spatial pattern of TAS and SST warming strongly align with albedo changes (Figures2a and b, and ??a and b). Under

elevated CO2 (E400), albedo reductions are only due to sea ice loss, primarily in the Ross and Weddell Seas, leading to a175

9.25% decline in sea ice concentration (Figure 2e). In contrast, the configuration of the Pliocene ice sheet induces a widespread

decline in albedo throughout the Antarctic , resulting in a more
::::
Over

:::
the

::::::
interior

:::
of

:::::::::
Antarctica,

::::::::
warming

::::::
reaches

:::::::::
11–12°C,

:::::::::
decreasing

::::::
towards

:::
the

:::::::
eastern

:::::::
coastline

::::::
where

::::::::::
temperatures

::::::::
increase

::
by

::::::
6–7°C.

::
In
::::::

Ei400,
::::::
albedo

:::::::
changes

:::
are

:::
not

::::::::
confined

::
to

::::::
regions

:::::::
affected

::
by

:::
ice

::::
sheet

:::::::
change

:::
and

::::
there

::
is
:::
an

:::::
overall

::::::
albedo

::::::
decline

:::
of

::::
20%

:::::
across

:::
the

::::::::
Antarctic

:::::::
interior,

::::
with

:::::::::
decreasing

::::::
severity

::::::
toward

:::
the

:::::::
eastern

::::::::
coastline.

:::::
There

::
is
::

a
:::::
small

::::::
hotspot

::::::::
showing

:
pronounced loss of sea ice of 16. 25% (Figure 2 f).180

The loss of sea ice further reinforces the warming through a positive albedo feedback mechanism, exposing more of the ocean

surface to direct solar heating.
::::::
30-40%

:::
on

:::
the

::::
east

::::
coast

::
(
:::::::::
60°–70°E,

:::::
75°S).

:::::::::::
Additionally,

::::::
albedo

::::::::
decreases

:::
of

::
up

::
to
:::::

30%
:::
are

:::::::
observed

:::::
along

:::
the

::::::::
coastline

::
at
::::::::

0°–10°E
:::
and

:::::::::::
140°–160°E.

::::::
These

::::::::::
widespread

::::::
albedo

:::::::::
reductions

:::
are

:
a
:::::

result
:::

of
:::
the

::::::::
interplay

::
of

::::::
climate

:::::::::
feedbacks,

::::
with

:::::::
changes

:::
in

:::::
cloud

:::::
cover,

::::::::::
atmospheric

:::::::::::
temperature

:::
and

::::::::
moisture

:::::::
transport

::::::::::
influencing

:::
the

::::::::
radiation

::::::
balance

:::
and

:::::::
surface

:::::::::
reflectivity.

:
185

Precipitation patterns also exhibit significant changes. Under increased CO2, precipitation increases by 0.42 mm/day relative

to the PI control simulation, with the highest increases along Antarctic coasts (Figure ??e). When ice sheet reductions are

included, precipitation increases further to 0.63 mm/day (Figure ??f), driven by enhanced atmospheric moisture transport.

These changes are closely related to a persistent positive phase of the

3.2
:::::::

Changes
::
to

:::::::
regional

::::::::::::
atmospheric

:::::::::
circulation

::::::::
patterns190

::
As

:::
the

::::::
surface

::::::::::
temperature

:::::
rises

:::
due

::
to

:::
the

::::::
abrupt

::::::
change

::
in

:::::::
radiative

::::::
forcing

:::::::
applied

:::::::
through

:::
our

::::::::::
experiments,

:::
the

::::::::::
subsequent

::::
shifts

::
in
:::
the

:::::::
climate

:::::
create

:::::::::
significant

::::::::
feedbacks

::::
that

:::
can

::::::::
influence

:::::::::
large-scale

:::::::::::
atmospheric

:::::::::
circulation,

::::::::::
particularly

:::
the South-

ern Annular Mode (SAM)(Figure 4), which intensifies the westerly winds and enhances moisture convergence around the

Antarctic.

The positive SAM phase also influences the .
:::::
SAM

::
is

::
the

:::::::
leading

:::::
mode

::
of

::::::::::
atmospheric

::::::::
variability

::
in

:::
the

::::::::
Southern

::::::::::
Hemisphere,195

:::::::::::
characterised

::
by

::::::::::
fluctuations

::
in

:::
the

:::::::
strength

:::
and

:::::::
position

::
of

:::
the

:::::::
westerly

:::::
winds

:::::::::
encircling

:::::::::
Antarctica.

::
It

:::
has

:
a
::::
large

::::::::
influence

:::
on

::::
pSH

:::::::
climate,

:::
sea

:::
ice

::::
cover

::::
and

:::::
ocean

::::::::::
circulation.

:::::::::
Therefore,

::::::::::::
understanding

::::
how

:
it
::::::::
responds

::
to

::::::::
increased

::::
CO2:::::::::::::

concentrations

:::
and

:::
ice

::::
sheet

:::::::
changes

::
is

:::::
vital.

::::
Here

:::
we

:::::
derive

:::::
SAM

:::::
mean

::::
state

:::::::
anomaly

:::
of

::
the

:::::::::
sensitivity

::::::::::
experiments

::
in
:::::::
relation

::
to

::
PI

:::::::
(Figure

::
3)

::
by

::::::::
applying

::::::::
Empirical

::::::::::
Orthogonal

::::::::
Functions

::::::
(EOF)

::
to

:::
the Sea Level Pressure (SLP) patterns. Elevated CO2 levels lead to a

mean reduction in SLP of 0.55 hPa over Antarctica and the surrounding Southern Ocean, reflecting the weakened high-pressure200

system due to atmospheric warming (Figure ??c) . Conversely, reduced ice sheet extent results in a mean SLP increases of 1.37

hPa in most of Antarctica Figure ??d), strengthening the pressure gradient between the pole and mid-latitudes and intensifying

westerly winds
::::
field

:::
and

:::::::::
extracting

::
its

::::
first

::::::
mode.

:::::
SAM

::::::::
variability

:::
in

:::
the

::::
form

::
of

::
a
:::::::::
timeseries

:::::::
spanning

::::
200

:::::
years

::::::
(Figure

:::
4)

:::
was

::::::::
extracted

:::::::
through

:::
the

:::
first

::::::::
Principal

::::::::::
Component

::
of

:::
the

::::
EOF

::::::
(PC1),

::::::::::
standardized

:::::
using

::
a
:::::::::::::
Savitzky-Golay

::::
filter.

::
In

:::
the

::::::
control

::::::::
scenario,

:::::
SAM

:::::::
(Figure

:::
4a)

:::::::
displays

::
a

::::::::
relatively

::::
well

::::::::
balanced

:::::::::
variability,

:::::::::
oscillating

:::::::
between

:::::::
positive

::::
and205

:::::::
negative

::::::
phases,

:::
but

::::
with

:::::::::
marginally

:::::
more

::::::::::
occurrences

::
of

:::::::
positive

:::::
SAM

::::::
phases

:::::
during

:::
the

:::::::
period.

::::
This

:
is
::::::::::

recognised
::::
with

:::
the

:::::
spatial

::::::
pattern

::
of

::::::
EOF1,

:::::::
aligning

::::
with

::
a
::::
more

:::::::
positive

:::::
SAM.

:
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Figure 3.
:::::::
Anomaly

:::::::::
(experiment

:
-
:::::
E280)

::
of

:::
the

::::
(a,b) Southern Annular Mode

::::
mean

::::
state

::
as

:::
the

:::
first

::::
EOF

::
of

:::
the

:::
SLP

::
in
::::
hPa;

:::
and (SAM

::
c,d)

index timeseries
:::::::
Eastward

::::
Wind

:::::
speed

::
at

:::
850

::::
hPa, for the E

::::
E400 and Ei

::::
Ei400 experiments. a) At 280 ppmv CO2. b) At 400 ppmv CO2).

Thinner lines represent annual mean, while thicker lines are applied 10-year running to show the decadal variability
:::::::::
respectively.

:::::
Under

::::::::
increased

::::
CO2::::::

(E400)
:::::
there

::
are

:::::
more

:::::::
positive

::::
SAM

::::::
events

:::
and

:::::
fewer

::::::
strong

:::::::
negative

:::::
SAM

::::::
phases,

::::::::
occurring

::::
over

:::
the

::::
time

:::::
period

:::::::::
compared

::
to

::::::
control,

:::::::
(Figure

:::
4b).

::::::::
Spatially,

::
a

::::::
slightly

:::::::
stronger

::::
and

::::
more

::::::::
persistent

:::::
SAM

::::::
pattern

::
is

::::::
evident

:::::::
(Figure

:::
3a),

::::
with

:::
an

:::::::
increase

::
in

:::::::
pressure

:::::::::
variability

::::
north

::
of

:::::
60°S,

:::::::::
consistent

::::
with

:::::::
stronger

::::::::::
fluctuations

::
in

:::
the

:::::::
westerly

:::
jet

::::::
(Figure

::::
3c),210
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::
the

:::::::
primary

:::::::::::
characteristic

:::
of

:
a
:::::
SAM

:::::::
positive

:::::
phase.

::::::::
Pressure

::::::::
variability

::::::::
decreases

:::::
south

:::
of

::::
65°S,

::::::::
meaning

:
a
:::::
more

:::::
stable

:::::
polar

:::::
vortex

:::
and

:::::::
reduced

:::::::
pressure

::::::::::
fluctuations

:::::::
(Figure

:::
3a).

:

:
A
:::::
more

:::::::
positive

::::
SAM

:::::
phase

::
is
::::::::
typically

::::::::
associated

::::
with

::::::
cooler

::::::::::
temperatures

::::
over

:::::::::
Antarctica

::
in

:::::::
summer,

:::
as

:::::::
stronger

:::::::
westerly

:::::
winds

:::
act

::
as

:
a
::::::

barrier
:::

to
:::::
warm

::
air

::::::::
transport

:::::
from

:::::
lower

::::::::
latitudes.

::::::::
However,

::::::
despite

:::
the

::::
shift

:::::::
toward

:
a
:::::
more

:::::::
positive

:::::
SAM

::
in

:::::
E400,

:::::::::
Antarctica

:::
still

::::::::::
experiences

:::::::
warming

:::::::
(Figure

:::
2a).

::::
This

::
is

:::::
likely

:::
due

::
to
:::
the

::::::::::
comparable

::::::
forcing

:::
of

::
the

:::::
SAM

:::::
index

::
is

:::::
small215

::::::::
compared

::
to

:::
the

:::::
direct

:::::::
radiative

:::::::
forcing

::::
from

::::::::
increased

:::::
CO2.

::::::
Whilst

::
the

:::::::
cooling

:::::
effect

::
of

::
a

::::::
positive

:::::
SAM

:::::
phase

::
is

::::::::
strongest

::
in

:::::::
summer,

:::::::::::
CO2-induced

::::::::
warming

:::::
occurs

::::::::::
throughout

:::
the

::::
year,

::::::
leading

::
to
::
a
:::
net

::::::::::
temperature

:::::::
increase

::::::
despite

:::
the

:::::
SAM

::::
shift.

:::::
Plus,

:::
sea

::
ice

:::::::
declines

::::
may

:::::::
enhance

::::::::
warming

::::
that

::::
SAM

:::::::
cooling

::::
may

:::
not

::
be

::::
able

::
to

:::::::
compete

:::::
with.

Figure 4.
:::::::

Timeseries
::

of
:::

the
:::::::
Southern

:::::::
Annular

::::
Mode

:::::
index

::::::
derived

::::
from

:
a
:::::::

Principal
:::::::::

Component
:::::::

Analysis
:::::
(PC1)

:::
for

:::
the

:
a)
:::::

E280,
::
b)
:::::

E400

:::
and

:
c)
:::::
Ei400

::::::::::
experiments.

:::
The

::::::::
timeseries

::::::
displays

:::
the

:::
last

:::::::
200-year

::
of

::
the

::::::::::::::
quasi-equilibrated

:::::::::
simulations.

:::
The

:::::
SAM

::::
index

::
is

:::::
filtered

::::
using

::
a

:::::::::::
Savitzky-Golay

::::
filter.

This phase indicates acontraction of westerly winds towards Antarctica, causing an eastward shift and a deepening of the

Amundsen sea low (Goddard et al., 2021), with stronger winds and stormier conditions in the Southern Ocean, the Antarctic220

Peninsula, the Bellingshausen Sea and the eastern Amundsen Sea (Fogt et al., 2011; Hosking et al., 2013; Raphael et al., 2016)

. Consequently, the influx of warm and moist maritime air into the west Antarctic increases precipitation while also contributing

to regional warming and sea ice loss. The deepening of the Amundsen Sea Low enhances the northward export of sea ice in

the Ross Sea. Simultaneously, the poleward contraction of westerlies drives increased upwelling of warm, deep ocean waters

10



in the Ross Gyre region. This upwelling accelerates sea ice melting from below, further amplifying surface warming due to225

sea ice loss, as seen in Figure 2. The loss of sea ice further lowers surface albedo, creating a positive feedback loop that

accelerates warming. The exposed ocean surface absorbs more solar radiation, further intensifying the sea ice-albedo feedback

and amplifying regional warming.
:::::::::
Combining

::::
CO2 ::::

with
:::
LP

::
ice

:::::
sheet

::::::
extent,

:::::
results

:::
in

:
a
::::::
greater

:::::::::
variability

::
of

:::
the

::::
SAM

:::::::
(Figure

:::
4c),

:::::
rather

::::
than

::
a
::::
shift

::
to

::
a

::::::::
particular

::::
state.

::::
The

::::::::::
distribution

::
of

::::::
events

:::::
within

::::
the

:::::::::
equilibrium

::::::
period

::
is

:::::::
broader,

::::::::
meaning

::::
both

::::
more

:::::::
extreme

:::::::
positive

:::
and

:::::::
negative

:::::
SAM

::::::
phases

:::
than

::::::
control

:::
or

:::::
E400.

::::
This

:::::::
indicates

:::::
rather

::::
than

:
a
::::
shift

::
to
::::
one

::::::::
particular

::::
state,

::
a230

::::
more

::::::
chaotic

::::
and

:::
less

:::::
stable

:::::
SAM

::::::
pattern

:::
has

::::::::
emerged.

:::::
EOF1

::::::
spatial

::::::
pattern

:::::
shows

:::::
large

::::::::
increases

::
in

:::::::
pressure

::::::::
variability

:::::
from

::::
60°S

::
to

:::
the

::::::::
Antarctic

::::::::
coastline,

:::::::
(Figure

::::
3b),

:::::::::
supporting

::::::::
enhanced

:::::::
pressure

::::::::::
fluctuations

:::
and

::
a
:::
less

::::::
stable

::::::::::
atmospheric

:::::::
pattern.

::::
This

::::::
change

::
to

:::
the

:::::
SAM

::::::
stability

::
is
::::::
driven

::
by

::
a
:::::::::
weakening

::
of

:::
the

:::::
SAM

::::::::
dominant

::::::
control

:
-
:::
the

:::::::
westerly

:::
jet

::::::
(Figure

::::
3d).

:

3.3 Southern Ocean
:::
Sea

:::::::
Surface

::::
and

::::
deep

:::::
water

:::::::::
formation

:
sensitivity to reduced AIS

:::::::
modified

:::::::::
boundary

:::::::::
conditions

Figure 5. Time series
:::::::
Anomaly of the temperature and salinity of the Southern Ocean at

::
Sea

::::::
Surface

::::::::::
Temperature

:::
(oC)

::
in
:
a) surface,

::::
E400

:::
and b) 1km, c) 2km and d) 3km depths.

:::::
Ei400

::
in

:::::
relation

::
to
::
PI

Reducing the extent of the AIS235

::::::::
Changing

:::
the

::::
AIS

:::
and

:::::
GrIS

::
to

:::
LP

::::::
extents

:
has significant implications for Southern Ocean processes , particularly sea ice

dynamics and deep-water formation. Although our model does not account for marine ice sheet instabilities, the loss of surface

reflectivity and resulting albedo feedbacks are sufficient to induce notable changes in the Southern Ocean’s stratification and

overturning circulation.

::::::::
processes

::::::::
occurring

::
in

:::
the

:::
sea

:::::::
surface

:::
and

:::::
deep

::::::
waters

::
of

:::
the

:::::
polar

::::::::
Southern

::::::::::
Hemisphere.

:
At the surface ,

:::::
(0-10

:::::::
meters),240

::
the

::::::
ocean

::::::::::
temperature

::::
does

:::
not

:::::::::
reproduce

:::
the

:::::
same

::::::::
warming

::
in

:::
the

::::::
hotspot

:::::::
regions

::
as

::::::::
observed

::
in

::::::
Figure

:::
2a.

::::::
Rather

::::
than

::
a

::::
more

::::::::::
pronounced

::::::::
warming

::
in

:::
the

:::::::
Weddel

:::
and

::::
Ross

:::::
Seas,

:::::::::
increasing

:::
the

::::::::::
atmospheric

:::::
CO2 :::::::::::

concentration
::
to

::::
400

:::::
ppmv

::::::
results
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Figure 6.
:::::::
Anomaly

::
of

:::
the

:::
Sea

::::::
Surface

::::::
Salinity

:::::
(PSU)

:
in
::
a)
:::::
E400

:::
and

::
b)

::::
Ei400

::
in

::::::
relation

::
to

::
PI

::
in

::
an

::::::
overall

:::::::
warming

:::::
along

:::
the

::::
path

::
of

:::
the

::::::::
Antarctic

:::::::::::
Circumpolar

::::::
Current

:::::::
(ACC),

:::::::::
particularly

::::::
within

:::::::
45-55oS

:::
and

:::::::
through

:::
the

:::::::::::::
Brazil-Malvinas

::::::::::
Confluence

::::::
(BMC)

::::::
(Figure

::::
5a).

:::::
Under

:::::::
elevated

::::
CO2::::

and
::
LP

:::
ice

:::::
sheet

::::::
extent,

:::
sea

::::::
surface

:::::::
warming

:::::::
(Figure

:::
5b)

:::::
agrees

:::::
more

::::::::::
consistently

::::
with

::
air

::::::
surface

::::::::::
temperature

:::::::
change.

::::
The

:::::
warm

::::::
hotspot

::::::
pattern

::::
seen

::
at

:::
the

::::
Ross

:::
and

:::::::
Weddell

::::
Seas

::::
and245

:::::
Adelie

:::::
coast

::
is

::::
now

::::::
evident,

:::::
with

:::
SST

:::::::::
increasing

:::
up

::
to

:::
5°C

::
in

:::
the

:::::::
Weddell

::::
Sea.

::
A

:::::::
warmer

:::::
circle

::::::
related

::
to the reduction in sea

ice is apparent. In the Ei400 experiment, the concentration of sea ice decreases by greater than 25% compared to PI (Figure 2

f), for some regions, exposing more of the ocean surface to direct solar heating. This warming contributes to apositive feedback

loop, where the loss of sea ice lowers albedo, accelerates surface warming , and further reduces the extent of the sea ice. The sea

surface temperature (SST ) in Ei400 increases by up to 1oC relative to the start of the experiments. The salinity and temperature250

time series in figure 9 exhibit interannual to decadal variability, which may be linked to the interdecadal Pacific oscillation that

dominates the variability of Southern Ocean SSTs on such a timescale (Yao et al., 2024)
::::
zonal

::::
heat

::::::::
transport

::::::::
promoted

:::
by

:::
the

::::
ACC

::::::
around

:::::::::
Antarctica

::::::
within

::
the

:::::::::
latitudinal

::::
belt

::
of

:::::::
45-55oS

::
is

:::
also

:::::::
evident.

Freshening of the Southern Ocean is another prominent feature of the reduced AIS experiment. The combination of enhanced

precipitation and sea ice melt dilutes surface salinity , creating a stratified upper ocean layer that inhibits vertical mixing and255

deep water formation (Figure 9
::
In

:::::
E400,

:::
the

::::::
waters

::::::::
encircling

:::::::::
Antarctica

:::::::
undergo

:::
an

::::::
overall

::::::::
decrease

::
in

:::
sea

::::::
surface

:::::::
salinity

::::::
(Figure

:
6a). This stratification has profound effects on deep convection processes, which are essential to ventilate the southern

ocean and maintain the strength of Antarctic Bottom Water (AABW) formation.
::::::
Surface

::::::::::
salinisation

::::::
occurs

::
in

:::
the

::::::::::
wind-driven

::::::
outcrop

::
of

:::
the

:::::::::::
Circumpolar

:::::
Deep

:::::
Water

::::::
(CDW)

:::::::::
associated

::::
with

:::
the

:::::::
Weddell

:::::
gyre

:::::::
(located

::::
north

:::
of

:::
the

:::::::
Weddell

::::
Sea)

:::
and

::
to

::
a

::::::
smaller

:::::
extent

:::
the

::::::
region

:::::::::
associated

::::
with

:::
the

::::
Ross

:::::
gyre.

::::::::::
Salinisation

::
of

:::
the

:::::
upper

:::::
ocean

::
is

:::
also

::::::::
observed

::::::
around

:::
the

:::::
ACC

::::
path260

::::
north

::
of
:::::

55oS.
::::::

Under
:::::
Ei400

::::::::::
conditions,

:
a
::::::::
decrease

::
in

::::::::::
salinisation

::
is

::::::
evident

::::::
across

:::
the

::::
pSH

::::::
(Figure

::::
6b),

::::
with

::::::
waters

:::::
close

::
to
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::
the

::::::::
landmass

::::::::::
undergoing

:::
the

::::::
greatest

:::::::
decline

::
in

::::::
salinity.

::::
The

::::
only

::::
areas

:::
of

:::::::::
salinisation

:::
are

:::
the

::::::::::
wind-driven

:::::::
outcrop

::
of

:::
the

:::::
CDW

::::::::
associated

::::
with

:::
the

:::::::
Weddell

::::
and

::::
Ross

::::::
Gyres,

:::
and

:::
the

:::::
ACC

::::
path,

::::::::
although

:::::::::
magnitudes

:::
are

::::
less

::::
than

:::::
under

:::::
E400.

:

Time series of the Antarctic Bottom Water formation index for experiments E400 and Ei400, calculated as the absolute value of the

minimum global streamfunction south of 60oS and below 500 m depth (adapted from Zhang et al. (2019)).

Figure 7.
:::::::
Southern

:::::
Ocean

::::
MOC

:::
for

:::
the

:
a)
:::::

E280,
::
b)

:::::
E400,

:::
and

::
c)

::::
Ei400

::::::::::
experiments

:::::::
averaged

:::
over

:::
the

:::
last

:::
200

::::
years

::
of

:::
the

::::::::
simulation

Descending through the water column, temperature and salinity changes exhibit distinct patterns across depths. At 1 km,

:::
The

::::::
CDW,

:::::::::
represented

:::
by

:::
the

::::::::
clockwise

:::::::::
circulation

:::::
south

::
of

:::::
55oS

::
in

:::::
Figure

::
7,
::
is
:::::::::::
successively

::::::::
weakened

:::::
under

::::
first

:::::::
elevated265

::::
CO2 :::

and
:::::

CO2::::::
forcing

:::::::::
combined

::::
with

::::::::
changed

:::
ice

:::::
sheet

::::::
extent.

::::
The

::::::::
Southern

::::::
Ocean

:::::::::
Meridional

:::::::::::
Overturning

::::::::::
Circulation

:::::::
(SMOC)

::::
also

:::::::::::
demonstrates

::
a
:::::::::
weakening

::
of

::::
the

:::::::
AABW,

::::
from

:::::::::
maximum

:::::::::
combined

:::::::
strength

::
in

:::
the

::::::::::
subtropical

:::::
ocean

::::::
basins

::
of

:
8
::::

Sv,
::
as

:::::::
opposed

:::
to

:::::
barely

::::::::
reaching

:
2 km and 3 km depths, the seawater temperature increase by up to 1.5o relative to

the beginning of the simulation (Figure 9. While surface layers show substantial freshening, deeper layers undergo initial

salinisation for the first 700 years of the simulation, followed by a transition to freshening. This transition reflects the dynamic270

interaction between surface buoyancy fluxes, vertical mixing, and the redistribution of heat and salt within the Southern Ocean.

Since neither the wind regime nor the Southern Ocean currents shifted significantly during our simulations, the thermohaline

changes observed are primarily driven by the sea-ice-albedo feedback and the atmospheric greenhouse gas forcing.
::
Sv

::
in

:::::
E400

:::
and

::
4

::
Sv

:::
in

::::::
Ei400.

::
To

::::::
further

::::::::::
investigate

::::::
AABW

:::::::::
formation

::::::
during

:::::::
runtime,

:::
we

::::::
derive

:::
the

::::
time

:::::
series

:::
of

:::
the

:::::::
AABW

:::::
index

::::::
(Figure

::::
??).

::::
This

:::::
index

:::
was

:::::::::
calculated

::
by

:::::::
deriving

:::
the

:::::::
absolute

:::::
value

::
of

:::
the

:::::::::
minimum

:::::
global

:::::::::::::
streamfunction

::
of

:::
the

:::::
entire

::::
pSH275

:::::::
domain,

::::::::
however

:::::
below

:::::
500m

:::::
depth

:::::::
(adapted

:::::
from

::::::::::::::::
Zhang et al. (2019)

:
to

:::::
avoid

:::::::::::
incorporating

:::::::
surface

:::::::::
overturning

::
in

:::
our

::::::
index.

The influence of the Antarctic continent on global ocean circulation is largely mediated through its intermediate and bottom

water masses. Antarctic Intermediate Water (AAIW) , and Antarctic Bottom Water (AABW). AABW, in particular, plays a

critical role as it ventilates all major ocean basins Orsi et al. (1999). Understanding the processes governing its formation and280

variability is therefore essential for assessing the broader impacts of climate change.
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Figure 8.
::::
Time

::::
series

::
of
:::
the

:::::::
Antarctic

::::::
Bottom

::::
Water

::::::::
formation

::::
index

:::
for

:::::::::
experiments

:::::
E280,

::::
E400

:::
and

:::::
Ei400,

::::::::
calculated

:
as
:::
the

::::::
absolute

:::::
value

:
of
:::

the
::::::::
minimum

:::::
global

:::::::::::
streamfunction

::
of

::
the

::::
pSH

::::::
domain

:::::::
(60-90oS)

:::
and

:::::
below

:::
500

::
m
:::::
depth

::::::
(adapted

::::
from

:::::::::::::::
Zhang et al. (2019)

:
).

A key consequence of these processes is the suppression of AABW formation. In both the
:::::
Figure

::
8
::::::
reveals

:::
that

:::
the

:::::::::
variability

::
of

::::::
AABW

::
is
::::::::

strongly
::::::::
decreased

::
in

::::
both

:
E400 and Ei400 experiments , AABW strength, reduced by

::
in

:::::::
relation

::
to

:::
the

:::::
E280

:::::::::
experiment

:::
and

:::::
there

:
is
:::
an

:::::
initial

::::::
AABW

:::::::::
weakening

::
of

:
approximately 1 Sv (106m2s−1) by year 700 of the simulationcompared

to PI control (2 Sv) (figure 8). This reduction signifies a weakening of deep-water formation caused by increased stratification285

and reduced brine rejection during sea ice formation.

Interestingly, the
:
. AABW trends diverge in the later stages of the simulation. In the E400experiment, AABW continues to

weaken, whereas in Ei400experiment, it begins to recover after year 700. This recovery suggests that the reduced AIS triggers

::
LP

:::
ice

:::::
sheets

::::::
trigger

:
a compensatory mechanism, likely involving the import of salinity into

:::::::::
salinisation

:::
of the Southern Ocean

:
at
::::::

deeper
::::::

levels, which enhances AABW strength on multi-centennial timescales, counteracting
:::
and

::::::::::
counteracts

:
the initial290

suppression.
:::::
Figure

:::
9g,

:::::::
confirms

::::
this

::::::::::
hypothesis,

::
as

:::
the

::::::::
Southern

::::::
Ocean

::::::::::
experiences

:::::::
increase

::
in

::::::
salinity

::::::
during

:::::::
runtime

::
at

::
3

:::
km

::
in

:::
the

:::::
Ei400

::::::::::
experiment.

The broader impact for Global Meridional Overturning Circulation (GMOC) is evident in figure 7. The AABW cell,

represented by the blue anticlockwise circulation at the bottom of the ocean, shrinks significantly in E400 but retains greater

strength and coverage in the
::::::::
Analysing

:::
the

::::::::::
temperature

::::
and

::::::
salinity

:::::::
through

:::
the

::::::
surface,

:::::::::::
intermediate,

::::
and

::::::
deeper

:::::
levels

::
of

:::
the295

::::
water

:::::::
column

::::
over

:::::
time,

::::
there

::
is
:::
an

:::::::
increase

::
of

:::::
ocean

::::::::::
temperature

:::
of

:::::
1.5°C

::::::::
occurring

::
at

::
1,

::
2

:::
and

::
3

:::
km

::::::
depths,

:::::::
relative

::
to

:::
the

::::::::
beginning

::
of

:::
the

:::::::::
simulation

:::::::
(Figures

:::
9b,

::
d,
::
f
:::
and

:::
h).

:::
The

::::::
degree

::
of

::::::::
warming

::
is

:::::
about

::::
2oC

:::::
higher

::
in

:
Ei400 experiment (figures

7band 7c). This pattern aligns with the findings of (Sidorenko et al., 2021), where surface buoyancy loss, ozone depletion,

and stronger westerlies over the Southern Ocean inhibit AABW formation and export. However, our simulations suggest that

the reduced AIS not only amplifies surface-driven feedbacks but also initiates deep-ocean processes that partially mitigate the300
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Figure 9. Southern Ocean MOC for
::::
Time

:::::
series

::
of
:

the a
:::::
salinity

::::
and

:::::::::
temperature

::
of
:::

the
:::

of
:::
the

::::
pSH

::::::
domain

:::::::
(60-90oS) E280

::
at

::
(a,b)

E400
:::::
surface, and

:
(c
::
,d) Ei400 experiments during averaged over the last 200 years of the simulation

:::
1km,

::::
(e,f)

:::
2km

:::
and

::::
(g,h)

::::
3km

::::::
depths.

suppression of deep-water formation
::::
than

::
in

:::::
E400.

:::
The

::::::
surface

::::::
layers

::::
show

:::::::::
substantial

::::::::::
freshening,

:::::
whilst

::::::
deeper

:::::
layers

:::::::
undergo

:::::
initial

:::::::::
salinisation

:::
for

:::
the

:::
first

::::
700

::::
years

:::
of

::
the

:::::::::
simulation

:::::::
(Figures

::
9

::
a,

:
c,
::
e

:::
and

:::
g),

:::::::
followed

::
by

::
a
::::::::
transition

::
to

:::::::::
freshening,

::::::
except

::
for

::
3
:::
km.

In particular, our simulations do not indicate significant changes in the wind regime over Antarctica or the Southern Ocean.

This absence suggests that the observed effects are mainly driven by changes in surface buoyancy due to the combined impact305

of CO2 forcing and ice sheet loss. In contrast to scenarios where strengthened winds amplify surfacebuoyancy loss, our model

reproduces a similar state through thermohaline feedbacks alone. Furthermore, removing such a large extent of the AIS induces

an amplified buoyancy gain response in the deep ocean, which counterbalances the strengthening of the upper overturning cell
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over multi-centennial timescales. This response highlights the role of salinity import in enhancing the strength of AABW under

the condition of reduced ice sheet extent.310

4
:::::::::
Discussion

::
In

:::::
E400

::::::::
Antarctic

:::::::
warming

::
is
:::::::

modest
:::::::
overall.

:::
Air

::::::::::
temperature

:::::::
changes

:::
are

:::::
most

::::::::::
pronounced

::
in

:::::
areas

::::
with

:::
sea

:::
ice

::::
loss

::::
and

:::::::
therefore

::::::
albedo

:::::::
declines,

::::
such

::
as

:::
the

:::::::
Weddell

::::
Sea.

::::
This

::::::
surface

::::::::
warming

::::::
flattens

:::
the

::::
local

::::::::::
temperature

:::::::
gradient

:::::::::::::::::
(Kidston et al., 2011)

:
,
:::::::
meaning

:
a
:::::::
weaker

::::
local

:::::::::::
baroclinicity

:::
and

:
a
::::::::
reduction

::
in
:::::
eddy

:::::::::
generation

:::
and

::::::::
therefore

:::::
lower

:::::::
pressure

:::::::::
varaibility

::::::
(Figure

::::
3a).

:::
The

::::
loss

::
of

::::
sea

:::
ice

:::::::::
contributes

:::
to

:
a
::::::::
smoother

:::::::
surface,

::::::
further

::::::::::
weakening

:::::::::::
baroclinicity

:::
and

::::::::::
suppressing

::::::
storm

:::::::::::
development315

::::::::::::::::
(Screen et al., 2011)

:
.
:::::::
Pressure

::::::::
increases

::::::
around

::::::::
50–60°S,

::::
and

:::
the

:::::::
westerly

::
jet

:::::::::::
strengthens,

:::::::
showing

:
a
:::::

shift
::
to

:
a
:::::
more

:::::::
positive

::::
SAM

::::::
phase.

::::
This

::::::
pattern

::
is
:::::::::

consistent
::::
with

::::::::::::
observational

:::
and

::::::::
modeling

:::::::
studies,

::::::
which

::::
show

::
a
:::::::
positive

:::::
SAM

::
in

::::::::
response

::
to

:::::::::
greenhouse

::::::
forcing

:::::::::::::::::::::::::::::::::
(Thompson et al., 2005; Marshall, 2003)

:
).
:

In general, ocean warming driven by a negative sea-ice albedo feedback increases
:::
The

:::::::
stronger

:::::::::
westerlies

:::::::
promote

:::::
more

::::::
intense

::::::
interior

::::::
mixing

:::::::::::::::::
(Tamsitt et al., 2017)

:
,
::::::::::
encouraging

:::::::::
upwelling

::
of

::::::
colder,

:::
yet

:::::
fresh,

:::::
deeper

:::::
water

:::::
from

::
the

:::::::
abyssal

::::::
Pacific320

:::::
(aided

:::
by

::::::::::
topographic

:::::::::
constraints

::::::::
imposed

:::
by

:::
the

:::::::::
Macquarie

::::
and

::::::::::::::
Pacific-Antarctic

:::::::
Ridges).

:::::
This

:::::::::
contributes

::
to
::::

the
::::::
Pacific

::::::
cooling

::::::
evident

:::
on

::::
both

:::::
Figure

::
2

:::
and

::
5.

:::
The

:::
sea

:::
ice

::::
loss

:::
here

::::::
drives

:
a
:::::::::
contraction

::
of

:::
the

::::::::
seasonal

:::
Sea

:::
Ice

::::
Zone

:::::
(SIZ)

:::
and

:::::::
reduces

:::::::
Antarctic

::::::::::
Divergence

::::::::::::::::::::
(Ramadhan et al., 2022),

:::::::::
ultimately

:::::::
meaning

::
a

::::::
decline

::
in

::::::::
upwelling

::
of

:::::
warm

::::::
CDW

:::::
further

:::::::
leading

::
to

:::
the

::::::
cooling

::::::
Pacific

:::::::
hotspot.

:::
This

:::::::::
behaviour

::
is

::::::::
consistent

::::
with

::::::
current

::::::::::
observations

:::::::::::::::::::::::::::::::::::::::::::::::::::
(Beadling et al., 2022; Roach et al., 2023; Schmidt et al., 2023)

:
.
::
By

:::::::::
increasing stratification at deep convection sites,

:::
and

:
inhibiting the vertical mixing required for deep-water formation. This325

self-reinforced mechanism amplifies ,
:
the positive phase of the SAM

:
is
::::::::
amplified, intensifying the effects of atmospheric cir-

culation that contribute to regional warming and increased precipitation around Antarctica at elevated CO2 levels. However,

these processes are insufficient to fully balance the salinisation that occurs in the deep ocean, which remains a key challenge

for the recovery of deep-water formation .
::::
CO2:::::

levels.
:

Although our simulations represent idealised scenarios, the results underscore the critical sensitivity
:
In

::::::
Ei400

::
an

:::::::
intense330

:::::::
southern

:::::
polar

:::::::
warming

:::::
leads

::
to

:::::::
complex

::::
and

::::::::
regionally

:::::::
varying

::::::::::
atmospheric

:::::::::
responses.

::::
The

:::::::
strongest

::::::::
warming

:::
(up

::
to
::::::
16°C)

:
is
:::::::
located

:::
over

::::
and

:::::
inland

::::
from

:::
the

:::::
Ross

:::
and

:::::::
Weddell

:::::
Seas,

:::
also

:::::::
showing

::::::
largest

::::::
albedo

:::::::
declines

:::
(up

::
to

:::::
50%)

:::
and

:::::::::
significant

:::
sea

::
ice

::::::
losses.

::::::
Ocean

:::::::::::
temperatures

::::
show

::::::::::
widespread

::::::::
warming;

:::
the

::::::::::
topographic

:::::::::
upwelling

:::::::
enforced

:::
by

::::::::
increased

::::::
Ekman

::::::::
pumping

:::::::
observed

::
in

:::::
E400

::
is

:::::::
reduced

:::
not

::::
only

::::
from

:::
the

:::::::::
decreased

::::::::
Antarctic

:::::::::
Divergence

:::
but

::::
also

:::::
from

::::::
reduced

:::::::
overall

::::::
vertical

:::::::
mixing.

::::::::::
Stratification

::
is
::::::::
enhanced

::::
due

::
to

::::::::::
substantially

:::::::
warmer

:::
and

::::::
fresher

:::::::
surface

:::::
waters

:::::::
(Figure

::::
6b).

:::
The

::::
mild

:::::::::
freshening

:::
of

:::::::
Weddell335

:::
and

::::
Ross

:::::
Gyres

::::::::
connects

::
to

:::
the

:::::::::
weakening

::
of

:::::
CDW,

::
as

::::
both

:::::
gyres

:::::::::
contribute

::
to

:::::::
poleward

::::
heat

::::::::
transport

:::
and

::::::::
therefore

::::::::
increased

:::
sea

::
ice

:::::
melt,

:
a
:::::::::
decreased

::::::::
upwelling

::::
and

:::::::
poleward

::::::::
transport

::
of

:::::::
warmer

::::::
waters.

:

:
It
::
is
::::
this

:::::::::
freshening

:::
and

::::::::
warming

::
of

:::
the

::::::
upper

:::::
ocean,

:::::::
coupled

:::::
with

:::
sea

:::
ice

::::
loss,

::::::
which

:::::::
weakens

:::
the

:::::::
AABW.

::::
The

:::::::
AABW

::::::::
formation

::
is

:
a
::::::
process

::::
that

:::::::
depends

::::::
largely

::
on

::::::
sea-ice

::::::::
dynamics

::::
and

:::
the

:::::::
interplay

:::::::
between

:::::::
salinity

:::
and

::::::::::
temperature

::
in

:::
the

:::::
water

:::::::
column.

::::::
Under

:::::
stable

::::::::::
conditions,

:::
the

:::::::::
freshwater

:::::
fluxes

:::::::
induced

:::
by

::::::
sea-ice

:::::::
melting

::::::
during

:::::::
summer

:::
are

::::::::
balanced

:::
by

:::
the

::::
cold340

::::::::::
temperatures

:
of the Southern Oceanto increased atmospheric warming. Current conditions do not yet reflect the full extent of
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AIS reduction or collapse, as projected in future climate experiments Roach et al. (2023); Armstrong McKay et al. (2022); Naughten et al. (2023); Steig et al. (2015)

. However, our results suggest that even under present trends, the ability of ,
::::::::

whereas
:::
the

::::::
salinity

:::::::
increase

:::::::
induced

:::
by

:::::
brine

:::::::
rejection

::::::
during

::::::
sea-ice

::::::::
formation

:::
in

:::::
winter

::::::::
densifies

:::
the

:::::
water

:::::::
column.

::::
Such

::::
cold

::::::
dense

:::::
water

::::
mass

::::
then

::::::
moves

:::::::
towards

:::
the

:::::
ocean

::::::
bottom

::::
layer

:::::::::::::::::
(Silvano et al., 2023)

:
.
:::::
Ocean

:::::::::::
stratification

:::
and

:::::::
reduced

::::
brine

::::::::
rejection

:::
that

:::::::
happens

::::::
during

:::
sea

::
ice

:::::::::
formation345

:::
and

::::::::
therefore

:::::
limits

::::::
AABW

:::::::::
formation

::::::::::::
(Talley, 1993).

::::::
These

:::::
results

:::::
align

::::
with

:::
the

:::::::
findings

::
of

::::::::::::::::::::
(Sidorenko et al., 2021),

::::::
where

::::::
surface

::::::::
buoyancy

::::
loss

:::
and

:::::::
stronger

:::::::::
westerlies

::::
over

:::
the

::::::::
Southern

::::::
Ocean

:::::
inhibit

:::::::
AABW

:::::::::
formation

:::
and

::::::
export.

::::::
These

:::::::
findings

::::::
suggest

:::
that

:
the Southern Ocean to ventilate the deep ocean is at significant risk. Furthermore, while we isolate the albedo effect

in this study to reduce uncertainties, the exclusion of other climate feedbacks may underestimate the potential catastrophic

outcomes of AIS collapse. These insights are vital for tuning climate models and reconciling data-model discrepancies
:::::::
reduced350

::
ice

::::::
sheets

:::
not

:::
only

:::::::
amplify

::::::::::::
surface-driven

::::::::
feedbacks

:::
but

::::
also

::::::
initiate

:::::::::
deep-ocean

::::::::
processes

::::
that

:::::::
partially

:::::::
mitigate

::
the

::::::::::
suppression

::
of

:::::::::
deep-water

::::::::
formation

::::
The

:::::
Ei400

:::::::
AABW

:::::::
recovery

::::::::
suggests

:::
that

:::
LP

:::
ice

:::::
sheets

::::::
trigger

:
a
::::::::::::
compensatory

::::::::::
mechanism

::::::::
involving

::
the

::::::::::
salinisation

::
of

:::
the

::::::::
Southern

:::::
Ocean

::
at
::::::
deeper

::::::
levels,

::
to

:::::::
enhance

:::::::
AABW

:::::::
strength

:::
and

:::::::::
counteract

:::
the

:::::
initial

::::::::::
suppression.

:

:::::::
Regions

:::::
exhibit

::::::::
different

::::::::
behaviors

::
of

::::
SLP

:::::::::
variability.

:::::
Inland

::::
from

:::
the

:::::::
Weddell

::::
Sea,

:::
we

::::::
observe

::
a
:::::::
decrease

::
in

::::
SLP

:::::::::
variability.

::::
This

:::::::
suggests

:
a
::::::::::

breakdown
::
of

:::
the

:::::
local

::::::::::
temperature

::::::::
gradient,

:::::::::
weakening

:::::::::::
baroclinicity

:::
and

::::::::
reducing

:::
the

:::::::
strength

::
of

::::::::
transient355

:::::
eddies

:::::::::
consistent

::::
with

:::::
E400

::::
and

::::::::::::::::::
Kidston et al. (2011).

::::::
Inland

:::::
from

:::
the

:::::
Ross

:::
sea

::::::::
however,

::::::::
pressure

:::::::::
variability

:::::::::
increases,

::::::::
indicating

:::::
other

:::::::
regional

::::::::
dynamics

::::
such

:::
as

::::::::
katabatic

:::::
winds.

::::::::
Notably,

:::
we

:::::::
observe

:::::::
adjacent

:::::
zones

::
of

:::::
both

::::
wind

::::::::::::
strengthening

:::
and

:::::::::
weakening,

::::::::
pointing

::
to

:::::::
disrupted

::::
and

:::::::
complex

::::
wind

:::::::
regimes

::::::
around

:::::::::
Antarctica,

::::::::::
particularly

::::
over

:::
the

::::::::
continent

:::::
itself.

:::::
These

::::::::::
non-zonally

:::::::::
symmetric

:::::::
changes

::
in

::::
both

:::::
winds

::::
and

:::::::
pressure

:::::::
patterns,

:::
are

:::::::::
consistent

::::
with

:::
the

::::
idea

::::
that

:::::::
regional

::::::::
feedbacks

::::
and

::::::::::::
non-linearities

::::::
emerge

::::
once

:::
the

:::
ice

:::::
sheet

:
is
:::::::
reduced.360

5 Late Pliocene ice sheets as analogues for future climate

The GIS and AIS are undergoing dramatic changes due to polar amplification (Armstrong McKay et al., 2022). If the current

pace of radiative forcing continues, the potential collapse of these ice sheet could trigger complex climate feedbacks. These

include increased meltwater input, surface cooling, changes in westerly wind patterns, and multi-centennial variability in

sea-ice production. Although some feedbacks may eventually promote the recovery of deep-water production when a certain365

threshold is reached (Johnson et al., 2024; Aylmer et al., 2022; Kang et al., 2023), the pathways to such recovery remain highly

uncertain
::::::
Further

::::::
north,

::
in

:::
the

::::::::::
circumpolar

::::::::
Southern

::::::
Ocean

:::::::
between

:::::::::
50°–60°S,

:::::
there

::
is

::
a

:::::::::
weakening

::
of

:::
the

::::::::
westerly

::::::
winds.

::::
This

:::::
aligns

::::
with

:::
the

:::::::::
reduction

::
in

:::
the

:::::::::::::
equator-to-pole

::::::::::
temperature

::::::::
gradient,

::::::
which

:::::::
weakens

:::
the

:::::
zonal

::::::::
pressure

:::::::
gradient

::::
that

:::::
drives

:::
the

:::::::
westerly

:::
jet.

:::
In

:::::
Ei400,

:::
the

:::::::
tropical

:::::::
regions

:::::
warm

::
by

:::::::
2.32°C,

:::
but

:::::::::
Antarctica

::::::
warms

:::
by

::::::
9.18°C,

:::::::::
drastically

::::::::
reducing

::
the

::::::::::
meridional

::::::::::
temperature

:::::::
contrast

:::::
from

::::::
42.1°C

::
in

:::
the

:::::::
control

::
to

:::::::
37.3°C.

::
A

:::::::::
weakening

:::
of

:::
the

:::::::
gradient

:::::
leads

::
to

::
a
:::::::
weaker,370

::::
more

::::::::::
meandering

::
jet

::::
and

:
a
::::
less

:::::
stable

:::::
SAM

::::::
pattern

:::::::::::::::::::::::::::::::::::::::::::::
(Thompson and Wallace, 2000; Gerber and Vallis, 2007)

:
.
::::
This

:::::::
explains

:::
the

:::::::
observed

:::::::::
weakening

:::
of

:::
the

::::
zonal

::::::
winds

:::
and

:::
the

:::::::
increase

::
in
:::::
SAM

::::::::::::
variability—a

::::::::
signature

::
of

:
a
::::

less
::::::::
coherent,

:::::
more

:::::::::
fluctuating

::::
SAM

:::::
state.

::::
This

:::::::::
weakening

:::
of

:::
the

::::::::
westerlies

::::
also

:::::::::::
substantially

:::::::
impacts

:::
the

::::::::
advection

::
of

:::::::
surface

::::::
warmer

::::::
waters

:::
by

:::
the

:::::
ACC,
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:::
and

:::::
leads

::
to

:
a
::::::::

decrease
::
in

:::::::::
formation

::
of

::::::
coastal

::::::::
polynyas

::::
that

:::::::::
contribute

::
to

:::
sea

:::
ice

:::::::::
formation

:::
and

::::::::::
salinisation

:::
of

:::
the

::::::
deeper

:::::
layers

::
of

:::
the

::::::::
Southern

:::::
Ocean

:::::::::::::::::::
(Kusahara et al., 2017).375

5
::::
Late

:::::::
Pliocene

:::
ice

::::::
sheets

::
as

:::::::::
analogues

:::
for

::::::
future

:::::::
climate

There is a notable gap in existing research on the isolated impact of the abrupt removal of large portions of AIS and GIS

::::
GrIS on climate and ocean circulation. The Late Pliocene epoch

:::
Age

:
serves as an important analogue of future climate sce-

narios due to its modern-like atmospheric CO2 :2:
concentrations, significantly reduced ice sheets , comparable ocean gateway

configurations, and ecosystem shifts. This paleogeographic framework offers a valuable opportunity to assess climate sensitiv-380

ity to regional albedo changes. In this study, we specifically isolate the albedo effect of ice sheet reduction to examine its role

in driving Antarctic climate dynamics and Southern Ocean circulation.
::
A

:::::::::::::::
PlioMIP-conform

:::::::
idealised

:::::::::
sensitivity

::::::::::
experiment

:::::
would

::::::::::
incorporate

:::
the

:::::::::
orography

:::::::
changes

:::
that

::::::
would

::::::::::
accompany

:::
the

::::::::
reduction

::
in

:::
ice

::::::
sheet.

:::::
Under

::::::
future

:::
ice

::::
sheet

:::::
loss,

:::
the

::::::
changes

:::
in

::::::::
orography

::::
that

::::
will

:::::
result

:::
are

:::::
likely

::
to
:::::

have
:::::::::
significant

:::::::
impacts

::
on

:::
the

:::::::::::
surrounding

::::::
climate

::::
and

:::::::
Southern

:::::::
Ocean.

::::
Here,

:::
we

::::::
choose

:::
to

:::
not

::::::
include

:::::::::::
orographical

::::::
change

::::::::
however.

:::
The

:::::::::
additional

:::::::::::
uncertainties

::::
from

::::
both

:::::::
deriving

:::
the

::::::::::
parameters385

::::::
needed

::
to

::::::
modify

:::::::::
orography

::
in

:::
the

::::::
model

:::::::::
(including

::::::::
adjusting

:::::
mean

:::::::::
orography

::
in

:::
the

::::::::::
atmospheric

::::::::::
component

:::
and

::::::::
sub-grid

::::
scale

::::::::::
parameters

::::
such

::
as

::::::::
standard

:::::::::
deviation,

:::::
slope,

::::
and

:::::
angle)

::::
and

:::::
from

:::::::
whether

:::::
future

:::::::::::
orographical

:::::::
changes

::::
will

:::::::
closely

::::
align

::::
with

:::::
those

::::::::::::
reconstructed

:::
for

:::
the

::::
Late

::::::::
Pliocene,

::::
may

::::::::
outweigh

:::
the

:::::::
benefits

:::
of

::
an

::::::::
idealised

:::::::::
sensitivity

::::::::::
experiment.

:
Our

simulations with
::::::
isolated

:
PRISM4D ice sheet conditions demonstrate that ice sheets play a critical role in modulating climate

feedbacks in response to warming.390

The configuration of the Pliocene ice sheet results in a substantial Antarctic warming of 9.5°C, an increase in SST by 4.9°C,

a loss of 16. 2% sea ice, and a rise in precipitation by 0.63 mm/day. As expected, the atmospheric and oceanic responses ob-

served in our sensitivity experiments do not fully reproduce the climate changes seen in more comprehensive modeling studies

that incorporate all boundary conditions of the Late Pliocene. Nor do they
::::
fully

:
match the reconstructed climate based on

proxy data (Burls et al., 2017; Haywood et al., 2013, 2016, 2024). However, current and future climates are not exact replicas395

of the Late Pliocene either. Thus, our conclusions focus on the idealised interactions of climate feedbacks in these controlled

experiments.
::::::::
Therefore,

:::::
point

::
to

::::
point

::::::::::
comparison

:::::
needs

::
to

::
be

:::::
done

::::
with

::::::
caution.

::::
Our

::::::
results

::
do

:::::
agree

::::
with

:::
the

::::::::
consensus

:::::
from

:::::::
Pliocene

::::::
Model

::::::::::::::
Intercomparison

::::::
Project

::::::::::
(PlioMIP2),

::::
that

:::
the

::::::::
influence

:::
of

:
a
:::::::
strongly

:::::::
reduced

::::
AIS

::::::::::
exacerbates

::::
the

:::::::
changes

::::::
induced

:::
by

:
a
::::::

higher
:::::
CO2 :::::::::::

concentration
:::::
alone.

:::::::::
However,

:::::::::::::::::::::
Weiffenbach et al. (2024)

:::::::
reported

:
a
::::::::
Southern

::::::
Ocean

::::
SST

::::::::
warming

::
of

:::::
2.8°C

::::::::
according

:::
to

::::::::
PlioMIP2

:::::::::
ensemble,

:::::
driven

:::
by

:::::::
reduced

:::
sea

:::
ice

:::::
cover

::::::
linked

::
to

::::
AIS

::::::
retreat.

::::
This

:::::
value

::
is

:::
less

::::
than

::::
our400

::::::
average

:::
of

::::::
4.89°C

::::
and

:::::
agrees

::::::
better

::::
with

::::
SST

:::::::
change

::::
from

::::
AIS

:::::
melt

:::
and

::::::::
elevation

:::::::
change

::
in

:::
the

::::
Last

::::::::::
Interglacial

::::::
(LIG)

::
of

:::
2°C

::::::::::::::::::::
Hutchinson et al. (2024)

:
.
::::
The

::::::::::
mechanisms

:::
we

::::::::
establish,

::::::::
however,

:::
are

:::::::::
paralleled

::
in

::::
both

:::::
paleo

:::
and

:::::::
current

:::::
work.

::::
Our

::::::
findings

:::
of

:
a
:::::::::

weakened
:::::::
SMOC,

::::::
driven

:::
by

::::::
surface

:::::
layer

:::::::::
freshening,

::::
and

:::::
initial

::::::::::::
salinification

::
at

:::::
depth,

::::::
agrees

:::::
with

:::::::
findings

::
by

::::::::::::::::
Yeung et al. (2024)

:
,
::
of

::
a
:::::::::
weakened

::::
deep

::::::::::
convection

:::
and

::::::::::
subsurface

::::::::
warming

::::::
during

:::
the

:::::
LIG.

::
A

::::::::
reduction

:::
in

:::::::
AABW

:
is
::::

also
::::::::::
established

:::
by

:::::::::::::::
Gorte et al. (2023).

:::::::
Whilst

:::
this

::::::::::
experiment

::::::
models

:::::::::
freshwater

:::::::::
discharge,

:::
the

::::::::::
mechanism

::
of
:::::::::

enhanced405

::::::::::
stratification

:::
due

::
to
:::::::::
freshening

::::::::::
suppressing

:::::
deep

:::::::::
convection

:::::
aligns

::::
with

:::
our

:::::::
findings

:::::
here.
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Our decision not to include the orographical change associated with reduced ice sheets is based on two considerations: (1)

There is no clear indication that future orographical changes will closely align with those reconstructed for the Late Pliocene,

even though strong evidence suggests ice sheet extent may be similar; (2) Modifying orography in models is a complex task

that involves adjusting not only to mean orography in the atmospheric component but also sub-grid scale parameters, such as410

standard deviation, slopes, and angles. Deriving these parameters introduces additional uncertaintiesthat could outweigh the

benefits of including orographic changes in an idealised sensitivity experiment.

6
::::::::::
Conclusions

::::
This

::::
study

::::::::::
underscores

:::
the

::::::
critical

:::::::::
sensitivity

::
of

:::
the

::::::::
Southern

:::::
Ocean

::
to
::::::::
increased

:::::::::::
atmospheric

::::::::
warming.

::::::
Current

:::::::::
conditions

:::
do

:::
not

::
yet

::::::
reflect

:::
the

:::
full

:::::
extent

::
of

::::
AIS

::::::::
reduction

::
or

:::::::
collapse,

::
as

::::::::
projected

::
in

:::::
future

::::::
climate

::::::::::
experiments

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Roach et al., 2023; Armstrong McKay et al., 2022; Naughten et al., 2023; Steig et al., 2015)415

:
.
::::::::
However,

:::
our

::::::
results

::::::
suggest

::::
that

::::
even

:::::
under

::::::
present

::::::
trends,

:::
the

::::::
ability

::
of

:::
the

::::::::
Southern

::::::
Ocean

::
to

:::::::
ventilate

:::
the

:::::
deep

:::::
ocean

::
is

:
at
:::::::::
significant

::::
risk.

:::::::::::
Furthermore,

:::::
while

:::
we

::::::
isolate

:::
the

::::::
albedo

:::::
effect

::
in

::::
this

::::
study

:::
to

:::::
reduce

::::::::::::
uncertainties,

:::
the

::::::::
exclusion

::
of

:::::
other

::::::
climate

::::::::
feedbacks

::::
may

::::::::::::
underestimate

:::
the

:::::::
potential

:::::::::::
catastrophic

::::::::
outcomes

::
of

::::
AIS

:::::::
collapse.

:

::::
This

:::::
raises

:::::::
potential

::::::::
research

::::::::
questions

:::
for

:::::
future

:::::::::::
investigation.

:::
We

:::::::
believe

:::
that

:::
an

::::::::
extended

::
set

:::
of

::::::::
sensitivity

:::::::::::
experiments

:::::
would

:::::::
provide

:::::::
valuable

:::::::
insights

:::
into

:::::
future

:::::::
climate

::::::
change

:::
and

:::::
even

:::::
reduce

::::::
model

::::::
biases.

::::::::::
Experiments

::::::
would

:::::::
include:420

1.
:::::::::
Freshwater

::::::
hosing

::::::::
equivalent

::
to
:::
the

:::
ice

:::::
sheet

::::::
volume

::::
that

::
is

::::::
reduced

:::
in

::
LP

:::::::
relative

::
to

:::
PI;

2.
:::::::::
Application

:::
of

:::::::::::
reconstructed

:::
LP

:::::::::::::
paleogeography

::::::::::
(topography

::::
and

::::::::::
bathymetry);

:

3.
::::::::
Increased

:::::::::
greenhouse

:::
gas

:::::::
forcing;

:

4.
::::::::
Interactive

:::
ice

::::::
sheets.

:

Thus, we conclude that the reduction of AIS primarily influences the circulation of the Antarctic and Southern basins. By425

isolating the albedo effect, our study provides a foundational understanding of how ice sheet loss, independent of freshwater

input and orographic changes, can significantly alter Southern Hemisphere climate dynamics. These insights are critical for

refining future climate models and identifying early signals of ice sheet retreat, offering a clearer picture of the potential

pathways and risks associated with polar ice sheet instability.
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