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Andrea Porcheddu, Ville Kolehmainen, Timo Lähivaara, Antti Lipponen

We would like to thank the reviewers for reading carefully the manuscript and giving their comments. Here below we report

the changes we have made to the manuscript. In the following pages the questions from the reviewers and the related answers

from the authors can be found. At the end of the document we report a version of the manuscript realized with latexdiff in order

to show explicitly the changes.

1 Changes made following reviewer #1 questions5

– we updated the article referring to a "grid with cell size 100 m x 100 m" instead of "100 m resolution".

– Figure 2 (model architecture) has been updated for clarity.

– Line 192-195: update to clarify model architecture (specifically about convolution layers).

– Figure 5 and 6 have been added to show hourly results. Text at line 294-297 has been added referring to these figures.

– Line 333-340: the discussion about SHAP explainability has been extended.10

– Line 74-77 and 92-96: text has been added to clarify the role of NOODLESALAD PM2.5 in the study.

– Subsections have been added to the results section

– Figures 4, 7, 8 and 9 have been improved.

– New references have been added at line 18, 25, 47, 48, 169, and 259.

2 Changes made following reviewer #2 questions15

– Line 92-96: details about the accuracy of NOODLESALAD PM2.5 have been added.

– Line 136-139: details about the data collocation on the grid have been added.

– Figure 3 has been added to complement figure 2, and illustrate the data flow in the study.

– Equations have been numbered.
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Machine learning data fusion for high spatio-temporal resolution
PM2.5 - Reply to referees
Andrea Porcheddu, Ville Kolehmainen, Timo Lähivaara, Antti Lipponen

1 Foreword

We would like to thank the reviewers for reading carefully the manuscript and giving their comments. Below we reply to each of

the comments.

2 Answers to reviewer #1

2.1 The study aims to estimate 24-hourly PM2.5 maps at 100 m resolution in urban areas. However, as shown in Table5

A1, most of the input data have resolutions coarser than 100 m, except for OpenStreetMap roads and DEM data,

which are not directly related to PM2.5. How do the authors justify that the estimated PM2.5 resolution truly

reaches 100 m?

While the primary predictors of PM2.5 in our study are MERRA-2 variables (which have coarse resolution), the high-resolution

features provide important supplementary information about potential pollution sources, sinks and transport. Since our target10

variable—NOODLESALAD PM2.5 maps—is on a grid with cell size 100 m x 100 m, we train the model on the same grid,

considering that some input features are coarser and others finer. With this approach the model represents spatial patterns

at the target data scale when fusing information from multiple resolutions. Additionally, we emphasize that this study is a

proof of concept, and the same model framework can operate on different grids with different pixel size, such as 500 m. Even

considering 500 m resolution grid, this approach would still offer a significant improvement over the resolution of MERRA-215

PM2.5 estimates. For the sake of clarity, we updated the article referring to a "grid with cell size 100 m x 100 m" instead of "100

m resolution".

1



2.2 The paper presents a deep learning-based estimation approach, but the description of the methodology remains

unclear. First, Lines 148–149 mention that "The output is a 3-dimensional array containing 24 hourly PM2.5

maps," but Lines 159–160 state that "the output layer is a 3D 1x1x1 convolution," which appears contradictory20

and should be clarified. Second, the construction of the loss function is confusing—it should ideally be constrained

by PM2.5 measurements from ground stations and NOODLESALAD PM2.5, but its current formulation appears

overly complex and difficult to understand.

When we refer to 3×3×3 or 1×1×1 convolutions in the context of 3D convolution, we describe the size of the convolutional

kernel along the depth, height, and width of the input volume. These kernels slide across 3D space, processing small local25

regions of the data at each step. To calculate the number of parameters involved, we need to consider also the number of input

channels and output channels for that convolutional layer. Let’s consider the last convolutional layer in the our model (Fig.

1). We have a 4D input tensor of shape 24 × 960 × 960 × 16, where: 24 is the number time steps, 960 × 960 is the spatial

dimension (height × width), 16 is the number of input channels. A 1×1×1 convolution in this case corresponds to kernels of

shape 1×1×1×16 (depth × height × width × input channels). If our goal is to reduce the number of channels from 16 to 1, then30

we need a 1×1×1×16 kernel for each output channel. Since we want 1 output channel, we use just one such kernel. This results

in an output tensor of shape 24 × 960 × 960 × 1 — the same temporal and spatial dimensions, but with the number of channels

reduced from 16 to 1. If instead we wanted, say, 24 output channels, we would use 24 separate 1×1×1×16 kernels, resulting in

an output shape of 24 × 960 × 960 × 24. A clarification about the model architecture has been added to the manuscript.

The loss function is structured this way to address the inherent imbalance in the number and type of PM2.5 measurements. At35

satellite overpass times, we typically have orders of magnitude more valid pixel-level estimates compared to the relatively sparse

ground station measurements. If we were to aggregate all errors directly, the satellite data would dominate the loss, potentially

causing the model to neglect the ground station data (which offer more accuracy, and the only temporal information available far

from the satellite overpass time). To balance for the different number of ground and satellite data, separate fidelity terms for

ground and satellite data are utilized in the loss, and their contributions to the training are balanced by normalizing the fidelity40

terms by the number of measurements available from each source. Further, since temporal imbalance could happen also when all

the ground stations data is available at certain hours, ground stations data are weighted (by the number of ground measurements

available at the specific hour) before the ground data loss value is calculated. This accounts for variations in data availability

throughout the day and ensures that all measurements are appropriately represented in the final loss.
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Figure 1. Visualization of the applied neural network architecture.

2.3 The study aims to estimate 24-hour, 100 m resolution PM2.5 data, but most of the results presented are seasonal or45

monthly averages. We would like to see 24-hour PM2.5 mapping results. Additionally, the comparison with

MERRA2 focuses mainly on accuracy. Could the authors also better illustrate PM2.5’s spatial distribution and

gradient variations, or even capture specific pollution emissions?

While the goal of our work is to provide hourly PM2.5 estimates at high spatial resolution, the main results focused on seasonal

and monthly averages to better assess overall model performance. To address the reviewer’s suggestion, we now include hourly50

PM2.5 outputs in the revised manuscript.

Figure 2 presents an example of model performance at hourly resolution at Station 1 between 04.12.2019 and 13.12.2019,

compared against MERRA-2 and OpenAQ observations. The comparison illustrates that our model captures the observed

variability more accurately than MERRA-2.

Figure 3 shows hourly PM2.5 concentration maps for the Paris region on 06.12.2019, with spatial patterns that agree well with55

OpenAQ station data. Figure 4 complements this by visualizing temporal gradients on the same day, highlighting a general

pollution decrease across the area.

While we do not aim to interpret these results from a meteorological or atmospheric chemistry perspective, we note that some

observed variations may be consistent with known events during this period (such as possible long-range sea salt transport,
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Figure 2. Comparison between hourly PM2.5 estimates from our model (blue), MERRA-2 (orange) and OpenAQ ground stations measurements

(black) at station 1. The period considered runs between 04.12.2019 and 13.12.2019.

organic matter peaks, temperature inversions, and rainfall events). These elements, as suggested by reanalysis data, could60

plausibly contribute to the patterns seen. However, our focus is on demonstrating the model’s ability to reproduce such patterns

at fine scale, rather than attributing them to specific processes.

2.4 The study applies explainable AI techniques to explore the importance of different features, showing that SHAP

values identify 2-meter air temperature as the most important feature. However, this analysis could be further

improved. First, the underlying reasons for why certain variables are important (or not) are not sufficiently65

explored. Second, a broader perspective could be considered—how much of the variability in PM2.5 can be

explained by meteorological variables overall?

Since our methodology is purely data-driven, a clear interpretation of how the input data affect the output is not straightforward,

considering that many input features could act as proxy for other variables. Fig. 5 shows the feature importances determined by

summing the normalized absolute SHAP values for predictions at station 1. In the manuscript we stated that T2M influences the70

temporal variability of PM2.5 through boundary layer dynamics and contains information about seasonal emission changes.

Considering that no global temporal information is present in the input features, T2M could act as proxy in this sense, and

removing it could affect significantly time series trends predictions. QLML (surface specific humidity) and windspeed are again

two variables that could be linked to aerosol deposition and transport. Specific aerosol variables such as BCCMASS (Black

Carbon Column Mass Density), could give the model an idea of how much important black carbon concentration is for the75

final PM2.5 estimate, but at the same time act as proxy for other species related to black carbon emission sources. Among the
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Figure 3. PM2.5 map on 06.12.2019. The dots reprent PM2.5 measurements from OpenAQ ground stations.
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Figure 4. Temporal PM2.5 gradients map on 06.12.2019. The dots reprent temporal gradients of the PM2.5 measurements from OpenAQ

ground stations.
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most important high resolution input features, ASTERDEM (ASTER Digital Elevation Model) and BlackMarble (NASA Black

Marble Night Lights) offer information about terrain topology and human activities location. While the former could provide

useful information about aerosol transport, the latter could act as a proxy for aerosol sources spatial distribution. They both

clearly contribute to the spatial distribution of PM2.5 model output maps. More generally, aggregating the feature importances in80

Fig. 5, one can estimate the importance of athmosperic variables (35%), aerosol variables (25%) and high resolution indicators

(40%). The discussion about SHAP explainability has been updated in the manuscript.

2.5 The description of NOODLESALAD PM2.5 and its role in this study is unclear. The authors should provide a more

detailed explanation rather than merely citing previous studies.

The description of NOODLESALAD PM2.5 has been updated, the updated subsection 2.1 is as follows:85

"NOODLESALAD PM2.5 (Porcheddu et al., 2024) retrievals are obtained applying a deep learning based post-process

correction approach to the MERRA-2 AOD-to-PM2.5 conversion ratio. The post-process corrected AOD-to-PM2.5 conversion

ratio is utilized to map high resolution POPCORN SENTINEL-3 SYNERGY AOD estimate (Lipponen et al., 2022) to high

resolution PM2.5 estimate. The post-process correction of MERRA-2 AOD-to-PM2.5 conversion ratio is carried out deploying

an ensemble of fully-connected feed-forward neural networks and a fusion of surface in-situ PM2.5 observations, MERRA-290

reanalysis model AOD and PM2.5 data, spectral AERONET AOD, satellite-observed spectral top-of-atmosphere reflectances,

meteorology data, and various high-resolution geographical indicators. The ensemble technique leads to a distribution of

predictions for a single PM2.5 estimate. The median of the ensemble is considered as the PM2.5 estimate and the width of the

distribution is regarded as an uncertainty related to the machine learning model training (model uncertainty). NOODLESALAD

PM2.5 offers high resolution on a grid with cell size 100 m x 100 m and is currently available for Sentinel-3A and 3B overpasses,95

covering Central Europe for the year 2019. The two Sentinel-3 satellites currently flying provide revisit times of less than two

days for OLCI and less than one day for the SLSTR instrument at equator. Swath width of the OLCI instrument is 1270 km.

SLSTR swath width is 1420 km for the nadir view and 750 km for the oblique view.

Evaluation metrics for PM2.5 at satellite overpass (R2=0.55, RMSE=6.2 µg/m3) and PM2.5 monthly averages (R2=0.72,

RMSE=3.7 µg/m3) show good agreement between NOODLESALAD PM2.5 and OpenAQ ground stations data (Porcheddu100

et al., 2024). Given the better spatial coverage compared to ground stations and the high spatial resolution at satellite overpass,

we utilize NOODLESALAD PM2.5 to inform the model about PM2.5 fine spatial distribution. In this work, we consider

NOODLESALAD PM2.5 retrievals in Paris, France, in 2019, and utilize them as part of the target data to train our model."
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Figure 5. Feature importance calculated as sum of the normalized absolute SHAP values for predictions at station 1.
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2.6 The results and analysis section could be further improved. First, it is recommended to structure the results into

separate subsections rather than mixing everything together. Second, the quality of Figures 3–6 should be105

improved—currently, the font size is too small, and the figure titles could be removed (since the descriptions are

already included in the captions). Lastly, additional results, such as 24-hour high-resolution PM2.5 maps, could

enhance the persuasiveness of the study.

Subsections have been added to improve the structure of the results section. The figures have been improved and updated in the

manuscript. Figures showing high temporal resolution have been added to the manuscript as discussed in our reply in Section110

2.3.

2.7 The references in the paper are somewhat outdated, with few studies from the recent three years included. It is

recommended to update and supplement them.

To complement the short discussion related to fine particulate matter health risks, we added a reference to a recent article

(Thangavel et al., 2022). A short discussion of machine learning methods exploiting spatio-temporal correlations has been added115

to the manuscript, referencing two recent papers (Koo et al., 2024; Muthukumar et al., 2022). One of these two papers has been

referenced also when discussing PM2.5 interpolation using ground monitoring stations, as a useful example of how the kriging

method is utilized in the literature for this task (Koo et al., 2024). A recent book has been added as complementary reference for

deep learning architectures and techniques (Bishop and Bishop, 2024).

2.8 Some minor issues: (1) Figure 1: Does the figure represent the road network? Please clarify. (2) Line 134: "3D120

PM2.5 maps" could be misinterpreted as three-dimensional spatial maps (including altitude). Is this the correct

terminology? (3) Figure 2: The representation is somewhat abstract. It would be better if the inputs and outputs

were explicitly illustrated. (4) Line 279: "consistent with prior findings" should be supported with references.

1) Figure 1 represents a map of the region of interest, where the position of the ground monitoring stations is represented

relatively to the road network. 2) To clarify, we updated the manuscript writing "time series of surface PM2.5 maps (3D PM2.5125

arrays, two spatial dimensions and one time dimension)". 3) The architecture visualization has been improved for clarity (Fig.

1 in this document). A new figure (Fig. 6 in this document) has been added to complement the architecture visualization and

highlight the data flow in our study. 4) Here "consistent with prior findings" is an auto-reference: the link between variations

of PM2.5 levels and variations of the boundary layer height has been discussed when referencing the maps showing PM2.5

distributions (Figure 5 and 6).130
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3 Answers to reviewer #2

3.1 The data accuracy of NOODLESALAD PM2.5 should be described in section 2.1. Moreover, what are essential

roles of this unique product in the proposed deep learning framework, needs to clarify

We used NOODLESALAD PM2.5 primarily because it was immediately available as a result of our earlier work and offers high

spatial resolution along with demonstrated accuracy. In that sense, this study can be seen as a follow-up to that earlier effort,135

where a satellite-derived PM2.5 product like NOODLESALAD serves as the input to the second-stage data fusion model.

The methodology we propose is not dependent on NOODLESALAD specifically: any comparable satellite-derived PM2.5

product could be used in its place, depending on availability and regional suitability. We do not claim NOODLESALAD is the

only or best option, but rather one example suitable for our study region.

Regarding the accuracy of NOODLESALAD PM2.5, we’ve updated Section 2.1 to include validation metrics that demonstrate140

its performance, as you suggested.

3.2 Since the authors only used 11 stations for reference, is this adequate to depict PM2.5 variability across space in the

study area?

It’s true that the number of ground stations (11 in total) is relatively small, and that’s actually one of the key reasons behind this

work. The goal was to explore how satellite and geospatial data can help fill in the gaps where monitoring stations are sparse or145

completely missing.

That said, we’re aware that more stations would provide a stronger basis for both training and validation. To make the most of

the available data, we used a leave-one-out cross-validation strategy, which allowed us to evaluate how well the model performs

across the different locations. The results suggest that the model is able to generalize reasonably well, combining multiple data

sources to estimate PM2.5 patterns that align with the ground observations.150

We agree that having a denser network of stations would open up possibilities for further analysis—for instance, studying

how sensitive the model is to the spatial distribution of the training data. This is something we’d like to look at in future work.

But overall, we believe this study shows that even with limited in-situ data, it’s possible to make meaningful improvements in air

quality estimation using a data fusion approach.

3.3 MERRA-2 PM2.5 estimates: since no nitrates are provided in MERRA-2 aerosol diagnostics, the corresponding155

PM2.5 estimates are prone to large uncertainty. The data accuracy of this PM2.5 product should be validated as

well.

We’re aware of the limitations in MERRA-2 PM2.5 estimates, including the absence of nitrate aerosol components, which can

lead to uncertainty. That said, our study does not rely on MERRA-2 as a definitive data source: we use it as one example of

low-resolution geophysical model output to demonstrate how our data fusion approach can improve upon such sources.160
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In principle, any similar model product could be used in place of MERRA-2: the core of the study is the methodology for

combining multiple data sources, not the evaluation of a specific model dataset. MERRA-2 was selected because it is widely

used in air quality research and has been previously validated in multiple studies (Buchard et al., 2017; Jin et al., 2022)

We believe the conclusions of the study are not tied to this particular dataset, and future applications of the method could

incorporate other chemical transport models depending on availability and regional relevance.165

3.4 The authors used a set of geographic variables with varying spatial resolution, how did the authors collocate them

in the deep learning framework, no such descriptions.

To ensure consistency across inputs, we first regridded all geographic variables with the original grid size larger than 100 meters

to a common 100-meter resolution grid using the Universal Transverse Mercator (UTM) projection. Linear interpolation method

was used for continuous variables and nearest neighbors for categorical ones. This preprocessing step ensured accurate spatial170

collocation of all features prior to input into the deep learning model.

To clarify this detail, we have added the following text into the manuscript: "All geographic variables with the original

resolution larger than 100 m were regridded to a common spatial grid with a resolution of 100 m using the Universal Transverse

Mercator (UTM) projection. Linear interpolation method was used for continuous features and nearest neighbor interpolation for

categorical variables. This preprocessing ensured that all features were spatially collocated prior to input into the deep learning175

model."

3.5 A flow chart depicting the deep learning architecture, particularly the data flow, is essential for understanding and

reproducibility.

A new figure (Fig. 6 in this document) highlighting the data flow and complementing the architecture visualization has been

added to the manuscript. The architecture visualization has also been improved for clarity (Fig. 1 in this document).180

3.6 Equations should be numbered.

We revised the manuscript and numbered the equations.

3.7 Methodology: the authors mentioned that both satellite- and ground-based PM2.5 data were used as the learning

target. Since these datasets have distinct data accuracy, would this undermine the learning capacity of the deep

learned model?185

This is a valid point: satellite-derived and ground-based PM2.5 estimates do indeed differ in their accuracy, and ideally, this

would be accounted for in the training process (e.g., through a weighted loss function based on uncertainty). Unfortunately,

explicit uncertainty estimates for the satellite-derived PM2.5 were not available, so we treated both data sources equally in the

training phase.
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Figure 6. Visualization of the data flow in our method. Low spatial resolution (MERRA-2) data and high spatial resolution geographical

indicators are projected on a common grid, joined and utilized as model input. The model output consists of hourly PM2.5 maps.

That said, we chose to include both because they offer complementary strengths: ground-based measurements provide accurate190

point-wise information, while satellite estimates improve spatial coverage, especially in areas with few or no ground stations.

While incorporating uncertainty information would likely improve model performance, our results suggest that the model

learning capability is not undermined: the model is still able to learn meaningful patterns from the combined data. The consistent

improvement over baseline estimates, especially in cross-validation, indicates that the learning process is robust—even without

explicitly modeling the uncertainty in the targets.195

We agree that this is an interesting direction for future work and could lead to better integration of heterogeneous data sources

in deep learning models.
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3.8 Line 207-209: this would result in imbalanced training sets at different hours, which could also influence the

learning accuracy, as the learned model is more likely to predict PM2.5 during the satellite overpasses.

We agree that the temporal imbalance introduced by satellite overpasses (where more data is available at specific times of200

day) could affect model learning, potentially biasing predictions toward those hours. This is a valid concern, especially when

combining satellite-derived data (rich in spatial detail but temporally sparse) with ground station measurements (temporally

dense but spatially limited).

To address this, we designed a loss function that explicitly balances the contributions of the different data sources. The aim is

to prevent the model from overfitting to satellite data patterns at the expense of learning broader temporal dynamics from the205

ground stations.

Further details on the loss function and how it handles this trade-off are provided in Section 2.2, as part of our reply to

Reviewer #1.

3.9 An intercomparison of spatial distribution of predicted PM2.5 estimates from MERRA-2 with satellite-derived

PM2.5 at 100-m from Sentinel observations should be provided to assess the reliability of the proposed model in210

resolving PM2.5 distributions in Paris.

To compare and highlight the benefit of using satellite data, we trained another model using only ground stations as target

data (so removing satellite PM2.5 from the training) and keeping the rest of the methodology (e.g. same model architecture we

considered for our model).

Figure 7 compares a NOODLESALAD PM2.5 map (at single satellite overpass) to our model output and the output obtained215

removing satellite PM2.5 from the training. Further, we considered all NOODLESALAD PM2.5 maps contained in the validation

set and calculated RMSE values per pixel, in order to estimate how well our model and the model trained without satellite data

can reproduce the NOODLESALAD PM2.5 spatial patterns (as illustrated in Fig. 8). Averaging the RMSE values per pixel,

we obtained 4.57 µg/m3 for our model, and 5.69 µg/m3 when training without satellite PM2.5. Both the model were trained

leaving out station 1.220

These results suggest that our model is able to capture the spatial information contained in NOODLESALAD PM2.5 data.
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Figure 7. On the top: comparison between NOODLESALAD PM2.5 (left), our model (center) and another model trained without satellite

PM2.5, at one single satellite overpass. On the bottom: bias calculated comparing our model output to the NOODLESALAD PM2.5 map (left),

bias calculated comparing another model trained without satellite PM2.5 to the NOODLESALAD PM2.5 map (right). The NOODLESALAD

PM2.5 map is taken from the validation set.
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Figure 8. On the left: RMSE per pixel comparing our model to NOODLESALAD PM2.5 maps in the validation set. On the right: RMSE per

pixel comparing another model trained without satellite PM2.5 to NOODLESALAD PM2.5 maps in the validation set.
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Abstract. Understanding PM2.5 variability at fine scale is crucial to assess urban pollution impact on the population and to

inform the policy-making process. PM2.5 in-situ measurements at ground level cannot offer gapless spatial coverage, while

current satellite retrievals generally cannot offer both high-spatial and high-temporal resolution, with night-time estimation

posing further challenges. This study tackles these difficulties, introducing an innovative deep learning data fusion method

to estimate hourly PM2.5 maps at
::::
using

::
a

:::
grid

:::::
with

:::
cell

::::
size

:
100 m resolution

:
x

:::
100

:::
m on urban areas. We combine low5

resolution geophysical model data, high resolution geographical indicators, PM2.5 in-situ ground stations measurements and

PM2.5 retrieved at satellite overpass. To simultaneously treat spatial and temporal correlations in our data, we deploy a 3D

U-Net based neural network model. To evaluate the model, we select the city of Paris, France, in the year 2019 as our study

region and time. Quantitative assessment of the model is carried out using the ground station data with a leave-one-out cross-

validation approach. Our method outperforms MERRA-2 PM2.5 estimates, predicting PM2.5 hourly (R2 = 0.51, RMSE = 6.5810

µg/m3), daily (R2 = 0.65, RMSE = 4.92 µg/m3), and monthly (R2 = 0.87, RMSE = 2.87 µg/m3). The proposed approach

and its possible future developments can be highly beneficial for PM2.5 exposure and regulation studies at fine suburban scale.

1 Introduction

One of the key indicators in air quality monitoring and regulation is PM2.5 which is the concentration of particulate matter (PM)

with an aerodynamic diameter less than 2.5 µm in cubic meter of air (µg/m3). PM2.5 has different chemical compositions and15

it’s emissions originate from different natural and anthropogenic sources such as fuel combustion, wildfires, and sea salt. From

the epidemiological point of view, high PM2.5 levels have been connected to many illnesses, such as stroke and cardiovascular

and respiratory diseases (Pope and Dockery, 2006; Cohen et al., 2017)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Pope and Dockery, 2006; Cohen et al., 2017; Thangavel et al., 2022)

. The pathogenicity of fine particulate matter pollution makes it one of the biggest environmental health risks as over 90% of

the world’s population lives in areas with annual mean PM2.5 levels exceeding the new WHO 2021 air quality guideline of 520

µg/m3 (Health Effects Institute, 2019).

PM2.5 and other pollutants can be measured with high accuracy by in-situ ground station networks. However, the existing

monitoring sites are sparsely located and mostly in developed countries, typically few stations in a large metropolitan area

producing accurate measurements representing the conditions in the proximity of the ground stations. Despite some spatial

1



interpolation techniques could be used (Deng, 2015)
:::::::::::::::::::::::::
(Deng, 2015; Koo et al., 2024) to estimate PM2.5 over larger urban areas25

from the point-like measurements obtained by these ground stations, they do not alone permit accurate spatially distributed

estimates for epidemiological studies and regulation at a suburban level scale. Aiming at a more appropriate spatial coverage

and resolution, PM2.5 can also be estimated by using airborne remote-sensing techniques, in particular satellite retrievals. In

satellite remote sensing, PM2.5 estimates are typically based on Aerosol Optical Depth (AOD), a quantity expressing electro-

magnetic radiation extinction through a column of air at a given wavelength. AOD is a columnar optical quantity while PM2.530

is a concentration of particles at ground level. For AOD to PM2.5 conversion, the estimation utilizes auxiliary measurement and

model data such as aerosol vertical distribution and metereological variables (Chu et al., 2016; Tang et al., 2024). Nowadays

many AOD satellite products exist with different spatial and temporal resolution. Different studies used low orbiting satellites

(e.g. MODIS product (Levy et al., 2013)) that have one or two overpasses per day or geostationary satellites (e.g. AHI product

(Bessho et al., 2016)) giving sub-hourly estimates. Instruments on low orbiting satellites have generally higher spatial reso-35

lution than geostationary ones. Although giving high spatial resolution PM2.5 estimates, low orbiting satellites products have

low temporal resolution (1-2 snapshots per day) and retrieving information on night-time aerosols is a challenging task for

the development of geostationary satellites products. Reanalysis models such as MERRA-2 (Randles et al., 2017) and CAMS

(Inness et al., 2019), and forecast models such as GEOS-CF (Keller et al., 2021) offer hourly PM2.5 available globally. How-

ever, the spatial resolution of these PM2.5 maps is low (tens of kilometers) for higher resolution studies such as distribution of40

pollution at suburban levels.

::
In

:::::
recent

::::::
years,

::::::::
numerous

::::::::
machine

:::::::
learning

::::::::::
approaches

::::
have

:::::
been

::::::::::
investigated

:::
and

::::::
shown

::
to
:::

be
::::::::
effective

:::
for

::
air

:::::::
quality

:::::::::
monitoring

:::
and

::::::
PM2.5 :::::::::

forecasting.
:::::::
Several

::::
deep

:::::::
learning

::::::
models

:::::::
leverage

::::
both

::::::
spatial

:::
and

:::::::
temporal

:::::::::::
dependencies

::
in
:::::::::::::
meteorological

:::
and

::::::
aerosol

::::
data

:::
to

:::::::
enhance

:::::::::
prediction

:::::::::::
performance.

::::
For

:::::::
instance,

::
a
:::::
study

:::::::::
conducted

::::::
across

:::
the

:::::::
Greater

:::
Los

::::::::
Angeles

::::
area

::::::::
employed

::::::
Graph

::::::::::::
Convolutional

::::::::
Networks

::::::::
(GCNs)

:::
and

::::::::::::
Convolutional

:::::
Long

::::::::::
Short-Term

::::::::
Memory

::::::::::::
(ConvLSTM)

::::::
models

:::
to45

:::::::
integrate

:::::::
satellite

::::::
remote

:::::::
sensing

::::
data

::::
with

::::::::::::
ground-based

::::::::::
monitoring,

:::::::
enabling

::::::::
accurate

::::::::
prediction

:::
of

:::::
PM2.5:::::::::::::

concentrations

:::::::::::::::::::::
(Muthukumar et al., 2022)

:
.
:::::::
Another

:::::
study

:::::::
focused

:::
on

:::
the

:::::
Seoul

::::::
region

::::::::
combined

:::
air

::::::
quality

::::
and

:::::::::::::
meteorological

::::
data

:::::
using

::::::
kriging

::::::::::
interpolation

::::
and

:
a
::::::
hybrid

:::::::::::::::
ConvLSTM-DNN

::::::
model

::
to

:::::::
generate

:::::
PM2.5::::::::::::

concentration
:::::
maps

::::::::::::::
(Koo et al., 2024)

:
.

To estimate PM2.5, we recently proposed a method (Porcheddu et al., 2024) leveraging the Sentinel-3 POPCORN AOD

product (Lipponen et al., 2022). The POPCORN AOD is a post-process corrected version of Sentinel-3 SYNERGY land AOD,50

characterized by a high spatial resolution of
::
on

::
a

:::
grid

:::::
with

:::
cell

::::
size 300 m

:
x
::::
300

::
m and derived using a feed-forward neural

network trained on AERONET-collocated data. This enhanced AOD product provides accurate spectral aerosol information for

five regions of interest (Central Europe, Eastern USA, Western USA, Southern Africa, and India) for the year 2019, making

it a valuable input for air quality estimation models. To post-process correct the MERRA-2 AOD-to-PM2.5 conversion ratio,

we deployed an ensemble of deep neural networks for a fusion of collocated ground station in-situ PM2.5 data, MERRA-255

reanalysis model AOD and PM2.5 data, spectral AERONET AOD, satellite-observed spectral top-of-atmosphere reflectances,

and meteorology data. We also used various high-resolution geographical indicators representing, e.g., population density and

land surface elevation. The deep learning model was used for estimation of PM2.5 with
::
on

:
a
::::
grid

::::
with

:::
cell

::::
size 100 m resolution
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:
x
::::
100

::
m from low orbiting satellite images, producing 1-2 daily per overpass snapshots of high-resolution PM2.5 data where

AOD data was available.60

In this study, we have two research questions. How could we obtain PM2.5 maps offering large (e.g. metropolitan level)

spatial coverage with both high spatial and temporal resolution? Considering satellite derived PM2.5 maps where AOD data

is missing, e.g. because of cloud covering, how can we estimate PM2.5 at those locations? To address these questions, we

propose a novel deep learning based data fusion method to produce hourly PM2.5 estimates with
::
on

::
a

:::
grid

::::
with

::::
cell

:::
size

:
100 m

resolution
:
x
::::
100

::
m. We use a 3D U-Net architecture (Özgün Çiçek et al., 2016) to produce 24-hour sequences of hourly PM2.565

maps. The model is trained to yield a small L2-misfit with the PM2.5 estimates obtained during satellite overpasses in our

previous study (Porcheddu et al., 2024), as well as with available ground station data. As inputs, we utilize 24-hour sequences

of geophysical model data (MERRA-2) providing low-resolution maps of meteorological and aerosol-related indicators (1-hour

temporal resolution), and high-resolution geographical indicator maps (1-month temporal resolution). This allows the model

to generate hourly PM2.5 outputs for the entire 24-hour period covered by the inputs. The model is trained on data for the year70

2019 in the city of Paris, France, and assessed against ground station data with a leave one out cross validation approach.

2 Data

This section describes the data used in the proposed deep learning based data fusion for high resolution PM2.5. The proposed

approach is tested using data from Paris, France, for the year 2019.
:::::::::::::::
NOODLESALAD

::::::
PM2.5 :::

and
:::::::
OpenAQ

::::::
PM2.5::::

data
:::
are

::::
used

::
as

:::::
target

::
to

::::
train

:::
and

::::
test

:::
our

::::::
model.

:::::::::
MERRA-2

::::
data

:::
and

:::::::::::::
high-resolution

:::::::::::
geographical

::::::::
indicators

:::
are

:::::::
utilized

::
as

::::
input

::::::::
features.75

:::
All

::
the

:::::
input

:::::::
features

:::
are

::::
listed

::
in
:
Table A1 in the appendixlists all the features utilized as model inputs

:
.
:
It
::
is
::::::::
important

::
to
::::::
notice

:::
that

:::::
other

::::::
similar

:::
data

:::::::
sources

:::::
could

::
be

:::::::
utilized

::::
with

:::
our

:::::::::::
methodology.

2.1 NOODLESALAD PM2.5

NOODLESALAD PM2.5 (Porcheddu et al., 2024) retrievals are obtained applying a deep learning based post-process correc-

tion approach to the MERRA-2 AOD-to-PM2.5 conversion ratio. The post-process corrected AOD-to-PM2.5 conversion ratio is80

utilized to map high resolution POPCORN SENTINEL-3 SYNERGY AOD estimate (Lipponen et al., 2022) to high resolution

PM2.5 estimate. The post-process correction of MERRA-2 AOD-to-PM2.5 conversion ratio is carried out deploying an ensem-

ble of fully-connected feed-forward neural networks and a fusion of surface in-situ PM2.5 observations, MERRA-2 reanalysis

model AOD and PM2.5 data, spectral AERONET AOD, satellite-observed spectral top-of-atmosphere reflectances, meteorol-

ogy data, and various high-resolution geographical indicators. The ensemble technique leads to a distribution of predictions for85

a single PM2.5 estimate. The median of the ensemble is considered as the PM2.5 estimate and the width of the distribution is

regarded as an uncertainty related to the machine learning model training (model uncertainty). NOODLESALAD PM2.5 offers

a spatial resolution of
:::
high

:::::::::
resolution

::
on

::
a
::::
grid

::::
with

:::
cell

::::
size 100 meters

::
m

::
x

:::
100

::
m

:
and is currently available for Sentinel-3A

and 3B overpasses, covering Central Europe for the year 2019. The two Sentinel-3 satellites currently flying provide revisit
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times of less than two days for OLCI and less than one day for the SLSTR instrument at equator. Swath width of the OLCI90

instrument is 1270 km. SLSTR swath width is 1420 km for the nadir view and 750 km for the oblique view.

:::::::::
Evaluation

::::::
metrics

:::
for

:::::
PM2.5::

at
::::::
satellite

::::::::
overpass

::::::::::
(R2 = 0.55,

::::::::::::::::::
RMSE = 6.2 µg/m3)

:::
and

:::::
PM2.5:::::::

monthly
::::::::
averages

::::::::::
(R2 = 0.72,

:::::::::::::::::
RMSE = 3.7 µg/m3)

:::::
show

::::
good

:::::::::
agreement

:::::::
between

:::::::::::::::
NOODLESALAD

::::::
PM2.5:::

and
::::::::
OpenAQ

::::::
ground

::::::
stations

::::
data

::::::::::::::::::::
(Porcheddu et al., 2024)

:
.
:::::
Given

:::
the

:::::
better

::::::
spatial

:::::::
coverage

:::::::::
compared

::
to

::::::
ground

:::::::
stations

:::
and

:::
the

::::
high

::::::
spatial

:::::::::
resolution

::
at

::::::
satellite

::::::::
overpass,

:::
we

::::::
utilize

:::::::::::::::
NOODLESALAD

::::::
PM2.5 ::

to
::::::
inform

:::
the

::::::
model

:::::
about

::::::
PM2.5::::

fine
::::::
spatial

::::::::::
distribution.

:
In this work, we consider NOODLE-95

SALAD PM2.5 retrievals in Paris, France, in 2019.
:::::
2019,

:::
and

:::::
utilize

:::::
them

::
as

::::
part

::
of

:::
the

:::::
target

::::
data

::
to

::::
train

:::
our

::::::
model.

:

2.2 OpenAQ

OpenAQ (https://openaq.org/) is an open-access database for ground stations air quality data. In this study, we utilize OpenAQ

as our source for surface in-situ PM2.5 observations. OpenAQ offers pointwise air quality measurement data from thousands of

stations. The temporal resolution of the data varies by station, with 1-hour and daily observations commonly available. Figure100

1 shows a map of OpenAQ stations that provide hourly data within our region of interest. We discard PM2.5 observations when

they are greater than the calculated upper fence Q3+6× (Q3−Q1) (where Q3 and Q1 are respectively the third and first

quartiles of the PM2.5 distribution), regarding them as outliers. This step was carried out to filter extreme outliers, which can

be caused by exceptional events or ground station malfunctions.

4
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Figure 1. Map of OpenAQ stations in the region of interest (Paris, France).

2.3 MERRA-2105

The Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), is NASA’s reanalysis model

(Randles et al., 2017). MERRA-2 provides model data for various variables in meteorology, aerosols and air quality. MERRA-

2 has a spatial resolution of 0.5◦ x 0.625◦, which is approximately 50 km2 in the Central Europe region. The time-varying

variables from MERRA-2 that we use have a temporal resolution of 1 hour, with both instantaneous and time-averaged values

available depending on the variable and data product. Appendix A contains a list of all MERRA-2 variables that are used as110

inputs in the proposed approach.

In addition to the variables contained in the MERRA-2 data, we calculate certain input variables from the MERRA-2 mete-

orological and aerosol data. These data are defined as:

– Relative humidity (RH) at the surface. Equation based on the Clausius-Clapeyron equation (see e.g. Michaelides

et al., 2019):115

RH= 0.263 ·PS ·QLML/exp((17.67 · (T2M− 273.15))/(T2M− 29.65))
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RH= 0.263 ·PS ·QLML/exp((17.67 · (T2M− 273.15))/(T2M− 29.65))
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(1)

– Wind direction (WD10M) at 10 m:

WD10M= arctan(−V10M/U10M)120

WD10M= arctan(−V10M/U10M)
::::::::::::::::::::::::::::::

(2)

– Wind speed (WS10M) at 10 m:

WS10M=
√
U10M2 +V10M2

125

WS10M=
√
U10M2 +V10M2

::::::::::::::::::::::::::
(3)

– PM2.5 at surface: (Buchard et al. (2016))

PM2.5 = (1.375 ·SO4SMASS+1.4 ·OCSMASS+BCSMASS+DUSMASS25+SSSMASS25) · 109

PM2.5 = (1.375 ·SO4SMASS+1.4 ·OCSMASS+BCSMASS+DUSMASS25+SSSMASS25) · 109
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(4)130

– AOD-to-PM2.5 ratio η:

η =
PM2.5

TOTEXTTAU

η =
PM2.5

TOTEXTTAU
::::::::::::::::

(5)

2.4 High-resolution geographical indicators135

:::
All

:::::::::
geographic

::::::::
variables

:::::
with

:::
the

:::::::
original

:::::::::
resolution

:::::
larger

::::
than

::::
100

:::
m

::::
were

:::::::::
regridded

::
to

::
a
::::::::
common

::::::
spatial

::::
grid

::::
with

::
a

::::::::
resolution

::
of

::::
100

::
m

:::::
using

:::
the

:::::::::
Universal

:::::::::
Transverse

::::::::
Mercator

:::::::
(UTM)

:::::::::
projection.

::::::
Linear

:::::::::::
interpolation

:::::::
method

:::
was

:::::
used

:::
for

:::::::::
continuous

:::::::
features

:::
and

:::::::
nearest

:::::::
neighbor

:::::::::::
interpolation

:::
for

:::::::::
categorical

:::::::::
variables.

::::
This

::::::::::::
preprocessing

:::::::
ensured

:::
that

:::
all

:::::::
features

::::
were

:::::::
spatially

:::::::::
collocated

::::
prior

::
to

:::::
input

::::
into

::
the

:::::
deep

:::::::
learning

::::::
model.
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2.4.1 OpenStreetMap roads140

OpenStreetMap is an open-source project that contains high spatial resolution map data. In our model, we utilize Open-

StreetMap roads as a data source for inputs. Specifically, we calculate the distance to the nearest street or highway and use this

measurement as one of our input variables. The distances are computed on a
:::
grid

:::::
with

:::
cell

::::
size 100 m resolution grid

:
x
::::
100

::
m. In OpenStreetMap, all paths, streets, and highways are categorized under ’highways’. However, we only consider certain

sub-classes that include roads and highways accessible to car traffic, as these are potential sources of PM2.5 pollution (infor-145

mation from (OpenStreetMap, 2023)). Appendix A lists all the OpenStreetMap road types used to determine the distance to

the nearest road.

2.4.2 NASA Black Marble Night Lights

NASA’s Black Marble is a night light product derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) day/night

band (DNB) radiances captured during night-time. The DNB is extremely sensitive to light, allowing it to detect even very150

low-intensity lights on Earth’s surface at night. Most of these night-time lights are attributed to human activities. Since the

distribution of night lights closely reflects human presence, we use NASA’s Black Marble Night Lights as a proxy for population

density, incorporating it as an input in our models. We utilize Night Light data with a spatial resolution of 500 m, based on the

annual data product VNP46A4 (Wang et al., 2020).

2.4.3 MODIS land cover type155

We utilize the MODIS MCD12Q1 land cover type data product (Sulla-Menashe and Friedl, 2018) to generate input variables

that represent the distances to the nearest International Geosphere Biosphere Programme (IGBP) land cover types (Loveland

and Belward, 1997; Belward et al., 1999). The MODIS MCD12Q1 data product has a spatial resolution of 500 m. A complete

list of the IGBP land cover types can be found in Appendix A.

2.4.4 Digital Elevation Model160

We utilize the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) digital elevation model (DEM) to

represent land surface elevation (Fujisada et al., 2011, 2012; NASA/METI/AIST/Japan Spacesystems, and US/Japan ASTER

Science Team, 2019). The ASTER DEM provides a spatial resolution of 1 arcsecond, which is approximately 30 m.

3 Methods

Our objective is to estimate 3D (
::::
time

:::::
series

::
of

::::::
surface

::::::
PM2.5 ::::

maps
::::
(3D

:::::
PM2.5::::::

arrays,
:
two spatial dimensions and time) PM2.5165

maps
:::
one

::::
time

::::::::::
dimension) in the region of interest by fusion of satellite and ground station measurement data, model data

and different indicators as inputs for the deep learning model. Since we are dealing with unstructured data in the form of

images, a well-suited choice for the machine learning model is a Convolutional Neural Network (CNN) (LeCun et al., 1989)

7



Figure 2. Visualization of the applied neural network architecture.

:::::::::::::::::::::::::::::::::::::
(LeCun et al., 1989; Bishop and Bishop, 2024). Furthermore, since both the input maps and the output maps represent the same

region of interest, a U-Net model is an appropriate choice (Ronneberger et al., 2015). As the data is in 3D, we choose a variant170

of U-Net called 3D U-Net (Özgün Çiçek et al., 2016). The main difference between conventional U-Net and 3D U-Net is that

the latter deploys 3D convolutions instead of 2D convolutions for processing 3D image data.

One must note that other network architectures could also be utilized. One possibility would be, e.g., to use a U-Net with

convolutional Long Short-Term Memory (LSTM) layers (Shi et al., 2015). Convolutional LSTM layers behave as LSTM

layers, with the key difference of performing their internal operations as convolutions, consequently being a possible choice175

for processing time series of 2D images. Nevertheless, we decided to use 3D U-Net as it was found computationally feasible

and less memory intensive for processing the large data sets.

The input data consist of 4 dimensional arrays. The first dimension represents time and has size 24 in order to contain

hourly information of a single day. The second dimension contains the different channels (i.e. the different input features) and

the remaining two dimensions are the spatial dimensions with image size of 960x960. The output is a 3 dimensional array180

containing 24 hourly PM2.5 maps in the region of interest as 960x960 images with pixel size 100 m x 100 m.

The model architecture has been implemented using the PyTorch framework (Paszke et al., 2019), a widely used library

known for its flexibility and efficiency in developing deep learning models. A detailed schematic of the model architecture is

provided in Fig. 2 to illustrate its structure and components.
:
,
:::::::
whereas

::::
Fig.

:
3
::::::::
visualizes

:::
the

::::::::::::
corresponding

::::
data

:::::
flow.
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Figure 3.
:::::::::
Visualization

::
of

:::
the

::::
data

:::
flow

::
in
:::
our

:::::::
method.

:::
Low

::::::
spatial

::::::::
resolution

:::::::::
(MERRA-2)

::::
data

:::
and

::::
high

:::::
spatial

::::::::
resolution

::::::::::
geographical

:::::::
indicators

:::
are

:::::::
projected

::
on

:
a
:::::::
common

::::
grid,

:::::
joined

:::
and

::::::
utilized

::
as

:::::
model

::::
input.

::::
The

::::
model

::::::
output

::::::
consists

::
of

:::::
hourly

:::::
PM2.5:::::

maps.

The model consists of a contracting path (the encoder) and an expansive path (the decoder). On each level of the contracting185

path, 3D convolutions combined with ReLU activations and max pooling layers help in finding relevant features from the input

maps, producing a new representation of the input with lower spatial and temporal resolution with a higher number of channels.

The expansive path deploys 3D nearest neighbour upsampling and 3D convolutions followed by ReLU activations in order to

recover a final output with the same spatial and temporal resolution of the input. Notice the skip connections linking each

contracting path level to the corresponding expansive path level: from an intuitive point of view, these are useful to exploit the190

fine details contained in the input when generating the output. Finally, the output layer is a 3D 1x1x1 convolution followed

by SoftPlus activations in order to constrain the output to be a positive definite array.
:::::
Please

::::::
notice

:::
that

:::::
when

:::
we

::::
talk

:::::
about

:::::
3x3x3

::::::::::
convolution

:::
and

::::::
1x1x1

::::::::::
convolution,

:::
we

:::
are

::::::::
referring

::
to

:::
the

:::
size

:::
of

:::
the

:::::::::
convolution

::::::::::
kernel/filter

:::::
along

:::
the

::::::
depth,

::::::
height,

:::
and

:::::
width

::
of

:::
the

:::::
input

:::::::
volume.

::::
The

::::::
number

:::
of

:::::::::
parameters

:::::::
involved

::
in
:::

the
::::::::::

convolution
:::::::::

operation
:::
can

::
be

::::::::
obtained

::::::::::
considering

::
the

:::::::
number

::
of

:::::
input

::::
and

:::::
output

::::::::
channels

::
at

:
a
:::::::

specific
::::::::::
convolution

:::::
layer

::::
(Fig.

:::
2).

:
When testing the network architecture, var-195
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ious kernel sizes, internal activation functions, and upsampling techniques were evaluated, but no significant differences in

performance were observed.

3.1 Loss Function

We use the Mean Square Error (MSE) as the loss function in the supervised regression problem of fitting the 3D U-Net model

to the training data. Ideally in clear sky conditions for a satellite overpass, we would have a full PM2.5 map. In ideal conditions200

for a single ground station, we would have a full time series without missing data. However, in reality satellite overpass data

can lack information at some pixels, e.g. cloud covering can hinder AOD retrievals, therefore hindering PM2.5 estimates, and

a ground station can malfunction, leading to missing data in the time-series of the station. Furthermore, on a single day we

usually have significantly more PM2.5 pixel values coming from the satellite overpasses than measured values from the ground

stations. The ground stations PM2.5 data are usually more accurate than satellite estimate data and they are our only data source205

available hourly. On the other hand, NOODLESALAD PM2.5 is our data source providing information far from the ground

stations at the time of satellite overpasses. Therefore, to take the missing data and highly different number of satellite versus

ground station data available into account, we consider masking and weighting the data in the MSE loss function.

Let the batch size be denoted by B (with B = 4 for this particular case) and define N = {1, . . . ,960× 960} as the set of

all pixel indices. For each sample b in the batch, define Hst,b ⊆ {1, . . . ,24} as the set of hours during which ground stations210

measurements are available, and Hop,b ⊆ {1, . . . ,24} as the corresponding set of hours for satellite overpasses. Let yb,h,i

represent the target measurement at sample b, hour h, and pixel index i, with ŷb,h,i denoting the corresponding predicted value

by the deep learning model. When a measurement is not available (due to lacking data from a ground monitoring station or

failed satellite retrieval due to cloud covering) yb,h,i is encoded as 0, since this value does not naturally occur in the dataset

(PM2.5 is not zero in a realistic setting). On the other hand, ŷb,h,i is always a positive real value by choice, since SoftPlus was215

chosen as activation function for our model output.

For each sample b and hour h, define:

Sst,b,h= {i ∈N | yb,h,i ̸= 0 and h ∈Hst,b},

S̃op,b,h= {i ∈N | yb,h,i ̸= 0 and h ∈Hop,b},
220

Sst,b,h
:::::

= {i ∈N | yb,h,i ̸= 0 and h ∈Hst,b},
:::::::::::::::::::::::::::::

(6)

S̃op,b,h
:::::

= {i ∈N | yb,h,i ̸= 0 and h ∈Hop,b},
::::::::::::::::::::::::::::::

(7)

representing pixel indices where ground station measurements (Sst,b,h) and satellite overpass measurements (S̃op,b,h) are avail-

able. The sets Sst,b,h and Sop,b,h are defined separately for the ground stations and satellite overpass data. From the satellite

overpass data, we create a subset Sop,b,h ⊂ S̃op,b,h of data with 25% of size of S̃op,b,h by uniform random sampling of the225

pixels to be used in the minimization. The random sampling is performed at each training step (for every update of the net-

work parameters) and can be seen as an optimization technique analogue to batch shuffling. This undersampling is beneficial

10



for training on overpass estimates, especially given the substantial pixel count (nearly 1 million when all pixels provide valid

measurements at overpass times).

The average losses for the ground stations and overpass contributions are defined by summing over the respective sets of230

valid hours:

Lst,b = Cst,b

∑
h∈Hst,b

1

|Sst,b,h|
∑

i∈Sst,b,h

(yb,h,i − ŷb,h,i)
2

Lst,b = Cst,b

∑
h∈Hst,b

1

|Sst,b,h|
∑

i∈Sst,b,h

(yb,h,i − ŷb,h,i)
2

:::::::::::::::::::::::::::::::::::::::::::

(8)

Lop,b = Cop,b

∑
h∈Hop,b

1

|Sop,b,h|
∑

i∈Sop,b,h

(yb,h,i − ŷb,h,i)
2

::::::::::::::::::::::::::::::::::::::::::::

(9)235

Lop,b = Cop,b

∑
h∈Hop,b

1

|Sop,b,h|
∑

i∈Sop,b,h

(yb,h,i − ŷb,h,i)
2

where Cst,b and Cop,b are factors depending on the sizes of the sets Hst,b and Hop,b (defined respectively as |Hst,b| and

|Hop,b|). If these sets are empty, Cst,b and Cop,b are equal to 0, otherwise they correspond to 1
|Hst,b| and 1

|Hop,b| respectively.

Analogously, |Sst,b,h| and |Sop,b,h| represent the sizes of the sets Sst,b,h and Sop,b,h.240

We then define the sample-specific loss Lb as:

Lb =


Lst,b+Lop,b

2 , if Lst,b ̸= 0 and Lop,b ̸= 0

Lst,b, if Lop,b = 0

Lop,b, if Lst,b = 0

Lb =


Lst,b+Lop,b

2 , if Lst,b ̸= 0 and Lop,b ̸= 0

Lst,b, if Lop,b = 0

Lop,b, if Lst,b = 0
::::::::::::::::::::::::::::::::::::::

(10)

Finally, the overall loss for the batch is defined as:245

L=
1

B

B∑
b=1

Lb

L=
1

B

B∑
b=1

Lb

:::::::::::

(11)

11



This formalization provides the necessary structure to include both ground station and satellite overpass target data within

each batch.250

3.2 Model training

For each data sample, one or two target maps correspond to the available satellite overpasses data (i.e. NOODLESALAD

PM2.5) while the others contain only ground stations data (therefore 11 pixels for each map when data is available from all the

stations). In order to test the results from the network training, we used leave-one-out cross-validation (CV) (i.e. we removed

one different station from each training and used the data left out of training for testing purposes). Therefore, we trained 11255

different networks (one for each ground station in the region of interest). Furthermore, the dataset has been split into training set

(approximately 80% of the data samples) used for the optimization of the network weights and validation set (approximately

20% of the data samples) used for early stopping of the optimization. The early stopping is a form of regularization useful

to avoid overfitting of the network (Goodfellow et al., 2016)
::::::::::::::::::::::::::::::::::::::::::
(Goodfellow et al., 2016; Bishop and Bishop, 2024). It consists in

keeping track of both the training error and validation error with the objective of stopping the training when the validation error260

starts to increase (i.e. when the network stops to learn useful patterns and noise in the training set starts to play a significant role).

While early stopping is not the only regularization technique applicable to train deep learning models, it offers a good trade-off

between model performance and training time. We consider a patience parameter equal to 30, meaning that the training stops

when no improvement on the validation loss is recorded over 30 epochs. Since using a small batch size introduces fluctuations

in the loss during training, this choice of the patience parameter is reasonable, as a lower patience value could prematurely stop265

training and lead to underfitting.

We utilized the Adam algorithm (with learning rate equal to 0.0001) and the custom loss function described in 3.1 to optimize

the network model parameters.

4 Results

4.1
::::::

Overall
:::::::::::
performance

::::
and

:::::::::
evaluation

:::::::
metrics270

We considered a leave-one-out CV approach, training 11 models, each time leaving one station out of the training as test

station. The results of predicted PM2.5 at the locations of the 11 AQ stations in Paris are shown in Fig. 4.

Different fidelity metrics (per each trained model) were calculated to compare MERRA-2 estimates (orange bars) and our

model predictions (blue bars) to OpenAQ measurements (ground truth). Correlation R2, Root Mean Square Error (RMSE) and

Mean Absolute Error (MAE) values are shown on the left, middle and right columns. These metrics are evaluated for hourly275

averages, daily averages and monthly averages (estimated using the hourly averages) on the top, middle and bottom row. The

fidelity metrics averages show that our model clearly outperforms MERRA-2. R2 CV averages for our model are 0.51 (hourly

averages), 0.65 (daily averages) and 0.87 (monthly averages). R2 CV averages for MERRA-2 are respectively 0.10, 0.18, and

0.42. RMSE CV averages for our model are 6.58 µg/m3 (hourly averages), 4.92 µg/m3 (daily averages) and 2.87 µg/m3
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Figure 4.
::
R2

::::
(left

::::::::
column),

:::::
RMSE

:::::::
(middle

:::::::
column)

:::
and

:::::
MAE

:::::
(right

:::::::
column)

::::::::
evaluation

::::::
metrics

::::::::
resulting

::::
from

:::
the

:::::::::::
leave-one-out

:::::::::::
cross-validation

:::
per

::::
each

::::
test

:::::
station.

::::
The

::::::
metrics

::::
have

::::
been

::::::::
calculated

:::
for

:::::
hourly

:::::::
averages

::::
(top

::::
row),

::::
daily

:::::::
averages

::::::
(middle

::::
row)

::::
and

::::::
monthly

:::::::
averages

::::::
(bottom

::::
row).

:::
Our

:::::
model

:::::::::
predictions

::::
(blue

::::
bars)

:::
and

::::::::
MERRA-2

::::::::
estimates

::::::
(orange

::::
bars)

::
are

::::::::
compared

::
to

::
the

::::::
ground

::::
truth

:::
data

::::::::
(OpenAQ).
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Figure 5.
:::::::::
Comparison

:::::::
between

::::::
hourly

:::::
PM2.5::::::::

estimates
::::
from

::::
our

:::::
model

::::::
(blue),

::::::::
MERRA-2

:::::::
(orange)

::::
and

:::::::
OpenAQ

::::::
ground

:::::::
stations

::::::::::
measurements

::::::
(black)

::
at

:::::
station

::
1.

:::
The

:::::
period

::::::::
considered

::::
runs

::::::
between

:::::::::
04.12.2019

:::
and

:::::::::
13.12.2019.

(monthly averages). The same metrics averages for MERRA-2 are respectively 9.05 µg/m3, 7.04 µg/m3 and 4.08 µg/m3.280

MAE CV averages for our model are 4.61 µg/m3 (hourly averages), 3.59 µg/m3 (daily averages) and 2.51 µg/m3 (monthly

averages). MAE CV averages for MERRA-2 are respectively 6.39 µg/m3, 5.14 µg/m3 and 3.30 µg/m3. We can notice from

Figure 4 that our model outperforms MERRA-2 on all hourly and daily value metrics, and in most monthly averaged with

the exceptions that MERRA-2 has better monthly MAE for stations 5 and 11, better RMSE for station 11. The R2 values still

show a clear improvement of our model. For what regards station 5, the better RMSE and worse MAE are due to the fact that285

RMSE highlights outliers (i.e. MERRA-2 commits less but bigger mistakes). Anyway, the important R2 values for both station

5 and station 11 show that our model correctly predicts the AQ trends better but is off mainly by a scaling factor. From Fig. 1,

one would expect some differences in the performances at different ground stations, since the more isolated is the station, the

less information from surrounding stations is present in the training data (we have ideally full PM2.5 maps only once per day).

Stations 1, 2, 10, and 11 are clearly positioned outside the city center of Paris. Looking at the metrics for these stations, only the290

location of station 11 seems to have somewhat different prediction accuracy by our model than the stations located in the city

center. Although we considered a relatively small dataset to train and test our model, these results suggest it is not overfitting

the training data.

Figure
:
5

:::::::
presents

::
an

::::::::
example

::
of

::::::
model

::::::::::
performance

::
at

::::::
hourly

:::::::::
resolution

::
at

::::::
Station

:
1
::::::::
between

:::::::::
04.12.2019

::::
and

::::::::::
13.12.2019,

::::::::
compared

::::::
against

::::::::::
MERRA-2

:::
and

::::::::
OpenAQ

::::::::::::
observations.

::::
The

::::::::::
comparison

::::::::
illustrates

::::
that

:::
our

::::::
model

::::::::
captures

:::
the

::::::::
observed295

::::::::
variability

:::::
more

::::::::
accurately

::::
than

::::::::::
MERRA-2.

:::::
Figure

::
6

:::::
shows

::::::
hourly

:::::
PM2.5:::::::::::

concentration
:::::
maps

:::
for

::
the

:::::
Paris

:::::
region

:::
on

::::::::::
06.12.2019,

::::
with

:::::
spatial

:::::::
patterns

::::
that

::::
agree

::::
well

::::
with

::::::::
OpenAQ

::::::
station

::::
data.

:
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4.2
:::::::

Seasonal
:::::
daily

::::::
trends

:::
and

::::::::
monthly

::::::::
averages

:::::
Figure

:
7 shows daily cycle averages on the different seasons (top and middle rows) and monthly averages (bottom row) of

2019 at the test station 1. Black lines represent the ground station measurements, while orange lines and blue lines represent300

respectively MERRA-2 estimates and our model predictions. Focusing on the daily cycle averages, qualitatively our model and

MERRA-2 seem comparable for the spring seasons (March, April, May). The difference is evident on the winter (December,

January, February), autumn (September, October, November) and summer (June, July, August) seasons. Especially on the

summer season, our model improves notably the accuracy and correlation over MERRA-2. The improvement can be seen

quantitatively looking at the metrics on the bottom-right of Fig. 7 (here the estimates for all the seasons have been taken into305

account in the calculation of the evaluation metrics). Notice how the metrics values for MERRA-2 and our model have been

encoded with the same colors of the legend. On the bottom-left of Fig. 7 we compare monthly averages estimates. Again,

the difference between MERRA-2 and our model is evident. While MERRA-2 could seem to give a good approximation to

the PM2.5 annual average at the station, it is not able to capture the time series trend. Our model improves notably from this

point of view, showing also improvements in accuracy. This is clear from the metrics for monthly averages, where the R2 is310

more than 3 times higher for our model, while the RMSE and MAE are about half of the respective errors in the MERRA-2

estimates.

Figure 8 shows PM2.5 seasonal averages maps by hour for the 2019 winter season (December, January, February) predicted

by our model on the city of Paris. The dots represent ground stations measurements. The general time series trend reflects the

PM2.5 variations seen in Fig. 7 on the top-left panel. The PM2.5 levels seem to decrease at day time, and raise again at night315

time. This behaviour can be expected and physically explained through boundary layer height variations. Spatial variations of

PM2.5 are reasonable and in agreement with what found predicting PM2.5 levels at satellite overpass (Porcheddu et al., 2024):

the city center and areas surrounding main highways are predicted as the most polluted areas. The maps shown in Fig. 8 are

obtained considering station 1 as test station.

The maps shown in Fig. 9 represent PM2.5 monthly averages for the year 2019 predicted by our model on the city of Paris.320

Dots represent ground stations measurementes. The general time series trend reflects the content of the bottom-left panel in

Fig.7 as expected: PM2.5 levels are higher in colder months, while lower in warmer months. Again, this temporal variation

of PM2.5 could be explained through boundary layer height variations and also residential heating plays an important role in

winter. Spatial variations of PM2.5 present the same structure already discussed before for Fig. 8. Again, the maps shown in

Fig. 9 are obtained considering station 1 as test station. The agreement with the test station and training stations is generally325

good.

4.3
:::::
SHAP

::::::::::::
explainability

We employed the SHAP DeepExplainer to compute SHAP values and assess feature importance for the model predictions

at station 1 (Lundberg and Lee, 2017). Due to computational constraints, the SHAP values were calculated using a smaller

background dataset, with analysis conducted on a subset of 90 randomly selected days. Feature importances were determined330
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by summing the normalized absolute SHAP values, and are shown in Fig.10. As expected, T2M (2-meter air temperature)

emerged as one of the most significant predictors, consistent with prior findings. For instance, T2M influences the temporal

variability of PM2.5 through boundary layer dynamics and contains information about seasonal emission changes.
:::::::
Specific

::::::
aerosol

::::::::
variables

::::
such

:::
as

::::::::::
BCCMASS

::::::
(Black

:::::::
Carbon

:::::::
Column

:::::
Mass

::::::::
Density),

:::::
could

::::
give

:::
the

::::::
model

:::
an

::::
idea

::
of

:::::
how

:::::
much

::::::::
important

:::::
black

::::::
carbon

:::::::::::
concentration

::
is

::
for

:::
the

::::
final

::::::
PM2.5::::::::

estimate,
:::
but

::
at

::
the

:::::
same

::::
time

:::
act

::
as

:::::
proxy

:::
for

:::::
other

::::::
species

::::::
related335

::
to

:::::
black

::::::
carbon

:::::::
emission

::::::::
sources.

::::::
Among

:::
the

:::::
most

::::::::
important

:::::
high

::::::::
resolution

:::::
input

:::::::
features,

::::::::::::
ASTERDEM

::::::::
(ASTER

::::::
Digital

::::::::
Elevation

::::::
Model)

::::
and

:::::::::::
BlackMarble

::::::
(NASA

:::::
Black

:::::::
Marble

:::::
Night

::::::
Lights)

:::::
offer

::::::::::
information

:::::
about

::::::
terrain

:::::::
topology

::::
and

::::::
human

:::::::
activities

::::::::
location.

:::::
While

:::
the

::::::
former

:::::
could

:::::::
provide

:::::
useful

::::::::::
information

:::::
about

:::::::
aerosol

::::::::
transport,

:::
the

:::::
latter

:::::
could

:::
act

::
as

:
a
::::::

proxy

::
for

:::::::
aerosol

::::::
sources

::::::
spatial

::::::::::
distribution.

:::::
More

:::::::::
generally,

::::::::::
aggregating

:::
the

::::::
feature

::::::::::
importances

:::
in

:::
Fig.

::::
10,

:::
one

:::
can

::::::::
estimate

:::
the

:::::::::
importance

::
of

::::::::::
athmosperic

::::::::
variables

::::::
(35%),

::::::
aerosol

::::::::
variables

::::::
(25%)

:::
and

::::
high

::::::::
resolution

:::::::::
indicators

::::::
(40%).340

5 Conclusions

We developed a novel deep learning data fusion method to estimate hourly PM2.5 at
::
on

::
a

:::
grid

:::::
with

:::
cell

::::
size

:
100 m spatial

resolution
:
x
::::
100

::
m, utilizing low-resolution geophysical model data, high-resolution geographical indicators, satellite PM2.5

retrievals and in-situ PM2.5 ground measurements. A 3D U-Net based architecture was deployed to take into account both

spatial and temporal correlations in the data at hand. The methodology was tested on data from Paris, France, for the year345

2019.

The model outperforms MERRA-2 PM2.5 estimates (our starting point, utilized as model input) on all the evaluation metrics

considered. Our estimates are generally consistent with the PM2.5 spatio-temporal variability assessed by ground stations

measurements. Our method seems promising in answering our research questions: reliable gapless PM2.5 maps at fine scale in

absence of AOD data, due to absence of satellite overpass or due to failed AOD retrieval, are
::::
seem possible.350

Further improvements could be obtained by various means. The method is flexible for what concern data sources, as different

data sources could be utilized as inputs, and targets in the training process. In particular, different satellite PM2.5 sources could

be considered in the training. So far, we considered only NOODLESALAD PM2.5. In future studies, we could take into account

other satellite data at different satellite overpass times and with different spatial resolution. Considering that geostationary

retrievals have high temporal resolution, we could also combine low orbiting instruments and geostationary instruments to355

integrate all the available information both on the spatial and temporal dimensions. Further, instead of relying solely on data,

we could introduce physical constraints in our loss function, pushing the model training to the space of physical solutions

assisted by differential equations. Physics Informed Neural Networks (PINNs) (Raissi et al., 2019) have shown promising

results in many areas of science and they can be a practical solution to achieve a deep learning based assimilation model at fine

scale. It is also important to address the issue of data imbalance. The PM2.5 distribution in the training data is inherently skewed360

toward lower values, posing a common challenge in training models. Additionally, satellite retrieval maps (NOODLESALAD

PM2.5) are more susceptible to cloud cover during winter, causing seasonal imbalance to the training data. Expanding the

dataset to include more locations and years could help mitigate these issues and improve model performance. In conclusion,
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Figure 6. R2 (left column), RMSE (middle column) and MAE (right column) evaluation metrics resulting from the leave-one-out

cross-validation per each test station
:::::
PM2.5::::

map
::
on

:::::::::
06.12.2019. The metrics have been calculated for hourly averages (top row), daily

averages (middle row) and monthly averages (bottom row). Our model predictions (blue bars) and MERRA-2 estimates (orange bars) are

compared to the ground truth data (
:::
dots

::::::
reprent

:::::
PM2.5:::::::::::

measurements
::::
from OpenAQ )

:::::
ground

::::::
stations.
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Figure 7. PM2.5 daily cycle averages for the different seasons and monthly averages (at station 1). The black lines represent OpenAQ mea-

surements, the orange lines represent MERRA-2 estimates and the blue lines are predicted by our model. The evaluation metrics comparing

respectively MERRA-2 and our model to the ground truth (OpenAQ) are shown on the bottom-right.

18



Figure 8. Predicted PM2.5 seasonal averages maps by hour for the 2019 winter season (December, January and February) on the city of

Paris. The dots represent ground stations measurements. These plots are obtained considering the model trained leaving out station 1.
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Figure 9. Predicted PM2.5 monthly averages maps for the year 2019 on the city of Paris. The dots represent ground stations measurements.

These plots are obtained considering the model trained leaving out station 1.
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Figure 10. Feature importance calculated as sum of the normalized absolute SHAP values for predictions at station 1.
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given the encouraging results and possible future developments, we believe our methodology could be relevant for PM2.5

related exposure and regulation studies at finer (suburban level) scale.365
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U10M V10M PS

T2M SO4SMASS OCSMASS

BCSMASS DUSMASS25 SSSMASS25

SO4CMASS OCCMASS BCCMASS

DUCMASS25 SSCMASS25 TOTEXTTAU

TOTANGSTR TOTSCATAU QLML

SURFACERH PM25 surface_to_column_ratio_PM25

ETA winddirection windspeed

ASTERDEM BlackMarble distancetoroad

distancetoroad_upwind_1 distancetoroad_upwind_2 distancetoroad_upwind_3

distancetoroad_upwind_4 distancetoroad_upwind_5 distancetoroad_upwind_6

distancetoroad_upwind_7 distancetoroad_upwind_8 distancetoroad_upwind_9

distancetoroad_upwind_10 distancetoroad_upwind_11 distancetoroad_upwind_12

distancetoroad_upwind_13 distancetoroad_upwind_14 distancetoroad_upwind_15

distancetoroad_upwind_16 distancetoroad_upwind_17 distancetoroad_upwind_18

distancetolandclass_1 distancetolandclass_2 distancetolandclass_3

distancetolandclass_4 distancetolandclass_5 distancetolandclass_6

distancetolandclass_7 distancetolandclass_8 distancetolandclass_9

distancetolandclass_10 distancetolandclass_11 distancetolandclass_12

distancetolandclass_13 distancetolandclass_14 distancetolandclass_15

distancetolandclass_16 distancetolandclass_17 landclass

Table A1. Table of input features for the model.

Code and data availability. The OpenAQ data is open data and available for download at https://openaq.org/. The OpenStreetMap data is

open data and available for download at https://www.openstreetmap.org/. All the NASA data (MERRA-2, MODIS, ASTER DEM) used in

this work is open data and can be found and downloaded using the NASA Earthdata Search website at https://www.earthdata.nasa.gov/. The

NASA Black Marble Night Lights data is available at https://blackmarble.gsfc.nasa.gov/. Data (including NOODLESALAD PM2.5) and

code will be available from the authors on a reasonable request.370

Appendix A: Table with input features and lists of variables used from datasets

A1 MERRA-2 variables

We use the following meteorology-related variables from the MERRA-2 M2T1NXSLV dataset:

– PS: surface pressure (Pa)
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– T2M: 2-meter air temperature (K)375

– U10M: 10-meter eastward wind (m / s)

– V10M: 10-meter northward wind (m / s)

We use the following meteorology-related variables from the MERRA-2 M2T1NXFLX dataset:

– QLML: surface specific humidity (1)

We use the following aerosol and air quality related variables from the MERRA-2 M2T1NXAER dataset:380

– BCCMASS: Black Carbon Column Mass Density (kg m−2)

– BCSMASS: Black Carbon Surface Mass Concentration (kg m−3)

– DUCMASS25: Dust Column Mass Density - PM 2.5 (kg m−2)

– DUSMASS25: Dust Surface Mass Concentration - PM 2.5 (kg m−3)

– OCCMASS: Organic Carbon Column Mass Density (kg m−2)385

– OCSMASS: Organic Carbon Surface Mass Concentration (kg m−3)

– SO4CMASS: SO4 Column Mass Density (kg m−2)

– SO4SMASS: SO4 Surface Mass Concentration (kg m−3)

– SSCMASS25: Sea Salt Column Mass Density - PM 2.5 (kg m−2)

– SSSMASS25: Sea Salt Surface Mass Concentration - PM 2.5 (kg m−3)390

– TOTANGSTR: Total Aerosol Angstrom parameter [470-870 nm] (1)

– TOTEXTTAU: Total Aerosol Extinction AOT [550 nm] (1)

– TOTSCATAU: Total Aerosol Scattering AOT [550 nm] (1)

A2 OpenStreetMap road types used to compute the distance to the closest road

We use the following road types to compute the distance to the closest road. The descriptions of the road types are obtained395

from OpenStreetMap (2023).

– motorway: A restricted access major divided highway, normally with 2 or more running lanes plus emergency hard

shoulder. Equivalent to the Freeway, Autobahn, etc.

– trunk: The most important roads in a country’s system that aren’t motorways.
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– primary: The next most important roads in a country’s system.400

– secondary: The next most important roads in a country’s system.

– tertiary: The next most important roads in a country’s system.

– motorway_link: The link roads (sliproads/ramps) leading to/from a motorway from/to a motorway or lower class high-

way. Normally with the same motorway restrictions.

– trunk_link: The link roads (sliproads/ramps) leading to/from a trunk road from/to a trunk road or lower class highway.405

– primary_link: The link roads (sliproads/ramps) leading to/from a primary road from/to a primary road or lower class

highway.

– secondary_link: The link roads (sliproads/ramps) leading to/from a secondary road from/to a secondary road or lower

class highway.

– tertiary_link: The link roads (sliproads/ramps) leading to/from a tertiary road from/to a tertiary road or lower class410

highway.

A3 IGBP land cover types

IGBP classification contains the following land cover types:

– 1: Evergreen needleleaf forests

– 2: Evergreen broadleaf forests415

– 3: Deciduous needleleaf forests

– 4: Deciduous broadleaf forests

– 5: Mixed forests

– 6: Closed shrublands

– 7: Open shrublands420

– 8: Woody savannas

– 9: Savannas

– 10: Grasslands

– 11: Permanent wetlands
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– 12: Croplands425

– 13: Urban and built-up

– 14: Cropland/natural

– 15: Snow and ice

– 16: Barren

– 17: Water bodies430
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