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1 Foreword

We would like to thank the reviewers for reading carefully the manuscript and giving their comments. Below we reply to each of

the comments.

2 Answers to reviewer #1

2.1 The study aims to estimate 24-hourly PM2.5 maps at 100 m resolution in urban areas. However, as shown in Table5

A1, most of the input data have resolutions coarser than 100 m, except for OpenStreetMap roads and DEM data,

which are not directly related to PM2.5. How do the authors justify that the estimated PM2.5 resolution truly

reaches 100 m?

While the primary predictors of PM2.5 in our study are MERRA-2 variables (which have coarse resolution), the high-resolution

features provide important supplementary information about potential pollution sources, sinks and transport. Since our target10

variable—NOODLESALAD PM2.5 maps—is on a grid with cell size 100 m x 100 m, we train the model on the same grid,

considering that some input features are coarser and others finer. With this approach the model represents spatial patterns

at the target data scale when fusing information from multiple resolutions. Additionally, we emphasize that this study is a

proof of concept, and the same model framework can operate on different grids with different pixel size, such as 500 m. Even

considering 500 m resolution grid, this approach would still offer a significant improvement over the resolution of MERRA-215

PM2.5 estimates. For the sake of clarity, we updated the article referring to a "grid with cell size 100 m x 100 m" instead of "100

m resolution".
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2.2 The paper presents a deep learning-based estimation approach, but the description of the methodology remains

unclear. First, Lines 148–149 mention that "The output is a 3-dimensional array containing 24 hourly PM2.5

maps," but Lines 159–160 state that "the output layer is a 3D 1x1x1 convolution," which appears contradictory20

and should be clarified. Second, the construction of the loss function is confusing—it should ideally be constrained

by PM2.5 measurements from ground stations and NOODLESALAD PM2.5, but its current formulation appears

overly complex and difficult to understand.

When we refer to 3×3×3 or 1×1×1 convolutions in the context of 3D convolution, we describe the size of the convolutional

kernel along the depth, height, and width of the input volume. These kernels slide across 3D space, processing small local25

regions of the data at each step. To calculate the number of parameters involved, we need to consider also the number of input

channels and output channels for that convolutional layer. Let’s consider the last convolutional layer in the our model (Fig.

1). We have a 4D input tensor of shape 24 × 960 × 960 × 16, where: 24 is the number time steps, 960 × 960 is the spatial

dimension (height × width), 16 is the number of input channels. A 1×1×1 convolution in this case corresponds to kernels of

shape 1×1×1×16 (depth × height × width × input channels). If our goal is to reduce the number of channels from 16 to 1, then30

we need a 1×1×1×16 kernel for each output channel. Since we want 1 output channel, we use just one such kernel. This results

in an output tensor of shape 24 × 960 × 960 × 1 — the same temporal and spatial dimensions, but with the number of channels

reduced from 16 to 1. If instead we wanted, say, 24 output channels, we would use 24 separate 1×1×1×16 kernels, resulting in

an output shape of 24 × 960 × 960 × 24. A clarification about the model architecture has been added to the manuscript.

The loss function is structured this way to address the inherent imbalance in the number and type of PM2.5 measurements. At35

satellite overpass times, we typically have orders of magnitude more valid pixel-level estimates compared to the relatively sparse

ground station measurements. If we were to aggregate all errors directly, the satellite data would dominate the loss, potentially

causing the model to neglect the ground station data (which offer more accuracy, and the only temporal information available far

from the satellite overpass time). To balance for the different number of ground and satellite data, separate fidelity terms for

ground and satellite data are utilized in the loss, and their contributions to the training are balanced by normalizing the fidelity40

terms by the number of measurements available from each source. Further, since temporal imbalance could happen also when all

the ground stations data is available at certain hours, ground stations data are weighted (by the number of ground measurements

available at the specific hour) before the ground data loss value is calculated. This accounts for variations in data availability

throughout the day and ensures that all measurements are appropriately represented in the final loss.
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Figure 1. Visualization of the applied neural network architecture.

2.3 The study aims to estimate 24-hour, 100 m resolution PM2.5 data, but most of the results presented are seasonal or45

monthly averages. We would like to see 24-hour PM2.5 mapping results. Additionally, the comparison with

MERRA2 focuses mainly on accuracy. Could the authors also better illustrate PM2.5’s spatial distribution and

gradient variations, or even capture specific pollution emissions?

While the goal of our work is to provide hourly PM2.5 estimates at high spatial resolution, the main results focused on seasonal

and monthly averages to better assess overall model performance. To address the reviewer’s suggestion, we now include hourly50

PM2.5 outputs in the revised manuscript.

Figure 2 presents an example of model performance at hourly resolution at Station 1 between 04.12.2019 and 13.12.2019,

compared against MERRA-2 and OpenAQ observations. The comparison illustrates that our model captures the observed

variability more accurately than MERRA-2.

Figure 3 shows hourly PM2.5 concentration maps for the Paris region on 06.12.2019, with spatial patterns that agree well with55

OpenAQ station data. Figure 4 complements this by visualizing temporal gradients on the same day, highlighting a general

pollution decrease across the area.

While we do not aim to interpret these results from a meteorological or atmospheric chemistry perspective, we note that some

observed variations may be consistent with known events during this period (such as possible long-range sea salt transport,
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Figure 2. Comparison between hourly PM2.5 estimates from our model (blue), MERRA-2 (orange) and OpenAQ ground stations measurements

(black) at station 1. The period considered runs between 04.12.2019 and 13.12.2019.

organic matter peaks, temperature inversions, and rainfall events). These elements, as suggested by reanalysis data, could60

plausibly contribute to the patterns seen. However, our focus is on demonstrating the model’s ability to reproduce such patterns

at fine scale, rather than attributing them to specific processes.

2.4 The study applies explainable AI techniques to explore the importance of different features, showing that SHAP

values identify 2-meter air temperature as the most important feature. However, this analysis could be further

improved. First, the underlying reasons for why certain variables are important (or not) are not sufficiently65

explored. Second, a broader perspective could be considered—how much of the variability in PM2.5 can be

explained by meteorological variables overall?

Since our methodology is purely data-driven, a clear interpretation of how the input data affect the output is not straightforward,

considering that many input features could act as proxy for other variables. Fig. 5 shows the feature importances determined by

summing the normalized absolute SHAP values for predictions at station 1. In the manuscript we stated that T2M influences the70

temporal variability of PM2.5 through boundary layer dynamics and contains information about seasonal emission changes.

Considering that no global temporal information is present in the input features, T2M could act as proxy in this sense, and

removing it could affect significantly time series trends predictions. QLML (surface specific humidity) and windspeed are again

two variables that could be linked to aerosol deposition and transport. Specific aerosol variables such as BCCMASS (Black

Carbon Column Mass Density), could give the model an idea of how much important black carbon concentration is for the75

final PM2.5 estimate, but at the same time act as proxy for other species related to black carbon emission sources. Among the
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Figure 3. PM2.5 map on 06.12.2019. The dots reprent PM2.5 measurements from OpenAQ ground stations.
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Figure 4. Temporal PM2.5 gradients map on 06.12.2019. The dots reprent temporal gradients of the PM2.5 measurements from OpenAQ

ground stations.
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most important high resolution input features, ASTERDEM (ASTER Digital Elevation Model) and BlackMarble (NASA Black

Marble Night Lights) offer information about terrain topology and human activities location. While the former could provide

useful information about aerosol transport, the latter could act as a proxy for aerosol sources spatial distribution. They both

clearly contribute to the spatial distribution of PM2.5 model output maps. More generally, aggregating the feature importances in80

Fig. 5, one can estimate the importance of athmosperic variables (35%), aerosol variables (25%) and high resolution indicators

(40%). The discussion about SHAP explainability has been updated in the manuscript.

2.5 The description of NOODLESALAD PM2.5 and its role in this study is unclear. The authors should provide a more

detailed explanation rather than merely citing previous studies.

The description of NOODLESALAD PM2.5 has been updated, the updated subsection 2.1 is as follows:85

"NOODLESALAD PM2.5 (Porcheddu et al., 2024) retrievals are obtained applying a deep learning based post-process

correction approach to the MERRA-2 AOD-to-PM2.5 conversion ratio. The post-process corrected AOD-to-PM2.5 conversion

ratio is utilized to map high resolution POPCORN SENTINEL-3 SYNERGY AOD estimate (Lipponen et al., 2022) to high

resolution PM2.5 estimate. The post-process correction of MERRA-2 AOD-to-PM2.5 conversion ratio is carried out deploying

an ensemble of fully-connected feed-forward neural networks and a fusion of surface in-situ PM2.5 observations, MERRA-290

reanalysis model AOD and PM2.5 data, spectral AERONET AOD, satellite-observed spectral top-of-atmosphere reflectances,

meteorology data, and various high-resolution geographical indicators. The ensemble technique leads to a distribution of

predictions for a single PM2.5 estimate. The median of the ensemble is considered as the PM2.5 estimate and the width of the

distribution is regarded as an uncertainty related to the machine learning model training (model uncertainty). NOODLESALAD

PM2.5 offers high resolution on a grid with cell size 100 m x 100 m and is currently available for Sentinel-3A and 3B overpasses,95

covering Central Europe for the year 2019. The two Sentinel-3 satellites currently flying provide revisit times of less than two

days for OLCI and less than one day for the SLSTR instrument at equator. Swath width of the OLCI instrument is 1270 km.

SLSTR swath width is 1420 km for the nadir view and 750 km for the oblique view.

Evaluation metrics for PM2.5 at satellite overpass (R2=0.55, RMSE=6.2 µg/m3) and PM2.5 monthly averages (R2=0.72,

RMSE=3.7 µg/m3) show good agreement between NOODLESALAD PM2.5 and OpenAQ ground stations data (Porcheddu100

et al., 2024). Given the better spatial coverage compared to ground stations and the high spatial resolution at satellite overpass,

we utilize NOODLESALAD PM2.5 to inform the model about PM2.5 fine spatial distribution. In this work, we consider

NOODLESALAD PM2.5 retrievals in Paris, France, in 2019, and utilize them as part of the target data to train our model."
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Figure 5. Feature importance calculated as sum of the normalized absolute SHAP values for predictions at station 1.
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2.6 The results and analysis section could be further improved. First, it is recommended to structure the results into

separate subsections rather than mixing everything together. Second, the quality of Figures 3–6 should be105

improved—currently, the font size is too small, and the figure titles could be removed (since the descriptions are

already included in the captions). Lastly, additional results, such as 24-hour high-resolution PM2.5 maps, could

enhance the persuasiveness of the study.

Subsections have been added to improve the structure of the results section. The figures have been improved and updated in the

manuscript. Figures showing high temporal resolution have been added to the manuscript as discussed in our reply in Section110

2.3.

2.7 The references in the paper are somewhat outdated, with few studies from the recent three years included. It is

recommended to update and supplement them.

To complement the short discussion related to fine particulate matter health risks, we added a reference to a recent article

(Thangavel et al., 2022). A short discussion of machine learning methods exploiting spatio-temporal correlations has been added115

to the manuscript, referencing two recent papers (Koo et al., 2024; Muthukumar et al., 2022). One of these two papers has been

referenced also when discussing PM2.5 interpolation using ground monitoring stations, as a useful example of how the kriging

method is utilized in the literature for this task (Koo et al., 2024). A recent book has been added as complementary reference for

deep learning architectures and techniques (Bishop and Bishop, 2024).

2.8 Some minor issues: (1) Figure 1: Does the figure represent the road network? Please clarify. (2) Line 134: "3D120

PM2.5 maps" could be misinterpreted as three-dimensional spatial maps (including altitude). Is this the correct

terminology? (3) Figure 2: The representation is somewhat abstract. It would be better if the inputs and outputs

were explicitly illustrated. (4) Line 279: "consistent with prior findings" should be supported with references.

1) Figure 1 represents a map of the region of interest, where the position of the ground monitoring stations is represented

relatively to the road network. 2) To clarify, we updated the manuscript writing "time series of surface PM2.5 maps (3D PM2.5125

arrays, two spatial dimensions and one time dimension)". 3) The architecture visualization has been improved for clarity (Fig.

1 in this document). A new figure (Fig. 6 in this document) has been added to complement the architecture visualization and

highlight the data flow in our study. 4) Here "consistent with prior findings" is an auto-reference: the link between variations

of PM2.5 levels and variations of the boundary layer height has been discussed when referencing the maps showing PM2.5

distributions (Figure 5 and 6).130
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3 Answers to reviewer #2

3.1 The data accuracy of NOODLESALAD PM2.5 should be described in section 2.1. Moreover, what are essential

roles of this unique product in the proposed deep learning framework, needs to clarify

We used NOODLESALAD PM2.5 primarily because it was immediately available as a result of our earlier work and offers high

spatial resolution along with demonstrated accuracy. In that sense, this study can be seen as a follow-up to that earlier effort,135

where a satellite-derived PM2.5 product like NOODLESALAD serves as the input to the second-stage data fusion model.

The methodology we propose is not dependent on NOODLESALAD specifically: any comparable satellite-derived PM2.5

product could be used in its place, depending on availability and regional suitability. We do not claim NOODLESALAD is the

only or best option, but rather one example suitable for our study region.

Regarding the accuracy of NOODLESALAD PM2.5, we’ve updated Section 2.1 to include validation metrics that demonstrate140

its performance, as you suggested.

3.2 Since the authors only used 11 stations for reference, is this adequate to depict PM2.5 variability across space in the

study area?

It’s true that the number of ground stations (11 in total) is relatively small, and that’s actually one of the key reasons behind this

work. The goal was to explore how satellite and geospatial data can help fill in the gaps where monitoring stations are sparse or145

completely missing.

That said, we’re aware that more stations would provide a stronger basis for both training and validation. To make the most of

the available data, we used a leave-one-out cross-validation strategy, which allowed us to evaluate how well the model performs

across the different locations. The results suggest that the model is able to generalize reasonably well, combining multiple data

sources to estimate PM2.5 patterns that align with the ground observations.150

We agree that having a denser network of stations would open up possibilities for further analysis—for instance, studying

how sensitive the model is to the spatial distribution of the training data. This is something we’d like to look at in future work.

But overall, we believe this study shows that even with limited in-situ data, it’s possible to make meaningful improvements in air

quality estimation using a data fusion approach.

3.3 MERRA-2 PM2.5 estimates: since no nitrates are provided in MERRA-2 aerosol diagnostics, the corresponding155

PM2.5 estimates are prone to large uncertainty. The data accuracy of this PM2.5 product should be validated as

well.

We’re aware of the limitations in MERRA-2 PM2.5 estimates, including the absence of nitrate aerosol components, which can

lead to uncertainty. That said, our study does not rely on MERRA-2 as a definitive data source: we use it as one example of

low-resolution geophysical model output to demonstrate how our data fusion approach can improve upon such sources.160
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In principle, any similar model product could be used in place of MERRA-2: the core of the study is the methodology for

combining multiple data sources, not the evaluation of a specific model dataset. MERRA-2 was selected because it is widely

used in air quality research and has been previously validated in multiple studies (Buchard et al., 2017; Jin et al., 2022)

We believe the conclusions of the study are not tied to this particular dataset, and future applications of the method could

incorporate other chemical transport models depending on availability and regional relevance.165

3.4 The authors used a set of geographic variables with varying spatial resolution, how did the authors collocate them

in the deep learning framework, no such descriptions.

To ensure consistency across inputs, we first regridded all geographic variables with the original grid size larger than 100 meters

to a common 100-meter resolution grid using the Universal Transverse Mercator (UTM) projection. Linear interpolation method

was used for continuous variables and nearest neighbors for categorical ones. This preprocessing step ensured accurate spatial170

collocation of all features prior to input into the deep learning model.

To clarify this detail, we have added the following text into the manuscript: "All geographic variables with the original

resolution larger than 100 m were regridded to a common spatial grid with a resolution of 100 m using the Universal Transverse

Mercator (UTM) projection. Linear interpolation method was used for continuous features and nearest neighbor interpolation for

categorical variables. This preprocessing ensured that all features were spatially collocated prior to input into the deep learning175

model."

3.5 A flow chart depicting the deep learning architecture, particularly the data flow, is essential for understanding and

reproducibility.

A new figure (Fig. 6 in this document) highlighting the data flow and complementing the architecture visualization has been

added to the manuscript. The architecture visualization has also been improved for clarity (Fig. 1 in this document).180

3.6 Equations should be numbered.

We revised the manuscript and numbered the equations.

3.7 Methodology: the authors mentioned that both satellite- and ground-based PM2.5 data were used as the learning

target. Since these datasets have distinct data accuracy, would this undermine the learning capacity of the deep

learned model?185

This is a valid point: satellite-derived and ground-based PM2.5 estimates do indeed differ in their accuracy, and ideally, this

would be accounted for in the training process (e.g., through a weighted loss function based on uncertainty). Unfortunately,

explicit uncertainty estimates for the satellite-derived PM2.5 were not available, so we treated both data sources equally in the

training phase.
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Figure 6. Visualization of the data flow in our method. Low spatial resolution (MERRA-2) data and high spatial resolution geographical

indicators are projected on a common grid, joined and utilized as model input. The model output consists of hourly PM2.5 maps.

That said, we chose to include both because they offer complementary strengths: ground-based measurements provide accurate190

point-wise information, while satellite estimates improve spatial coverage, especially in areas with few or no ground stations.

While incorporating uncertainty information would likely improve model performance, our results suggest that the model

learning capability is not undermined: the model is still able to learn meaningful patterns from the combined data. The consistent

improvement over baseline estimates, especially in cross-validation, indicates that the learning process is robust—even without

explicitly modeling the uncertainty in the targets.195

We agree that this is an interesting direction for future work and could lead to better integration of heterogeneous data sources

in deep learning models.
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3.8 Line 207-209: this would result in imbalanced training sets at different hours, which could also influence the

learning accuracy, as the learned model is more likely to predict PM2.5 during the satellite overpasses.

We agree that the temporal imbalance introduced by satellite overpasses (where more data is available at specific times of200

day) could affect model learning, potentially biasing predictions toward those hours. This is a valid concern, especially when

combining satellite-derived data (rich in spatial detail but temporally sparse) with ground station measurements (temporally

dense but spatially limited).

To address this, we designed a loss function that explicitly balances the contributions of the different data sources. The aim is

to prevent the model from overfitting to satellite data patterns at the expense of learning broader temporal dynamics from the205

ground stations.

Further details on the loss function and how it handles this trade-off are provided in Section 2.2, as part of our reply to

Reviewer #1.

3.9 An intercomparison of spatial distribution of predicted PM2.5 estimates from MERRA-2 with satellite-derived

PM2.5 at 100-m from Sentinel observations should be provided to assess the reliability of the proposed model in210

resolving PM2.5 distributions in Paris.

To compare and highlight the benefit of using satellite data, we trained another model using only ground stations as target

data (so removing satellite PM2.5 from the training) and keeping the rest of the methodology (e.g. same model architecture we

considered for our model).

Figure 7 compares a NOODLESALAD PM2.5 map (at single satellite overpass) to our model output and the output obtained215

removing satellite PM2.5 from the training. Further, we considered all NOODLESALAD PM2.5 maps contained in the validation

set and calculated RMSE values per pixel, in order to estimate how well our model and the model trained without satellite data

can reproduce the NOODLESALAD PM2.5 spatial patterns (as illustrated in Fig. 8). Averaging the RMSE values per pixel,

we obtained 4.57 µg/m3 for our model, and 5.69 µg/m3 when training without satellite PM2.5. Both the model were trained

leaving out station 1.220

These results suggest that our model is able to capture the spatial information contained in NOODLESALAD PM2.5 data.

13



Figure 7. On the top: comparison between NOODLESALAD PM2.5 (left), our model (center) and another model trained without satellite

PM2.5, at one single satellite overpass. On the bottom: bias calculated comparing our model output to the NOODLESALAD PM2.5 map (left),

bias calculated comparing another model trained without satellite PM2.5 to the NOODLESALAD PM2.5 map (right). The NOODLESALAD

PM2.5 map is taken from the validation set.
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Figure 8. On the left: RMSE per pixel comparing our model to NOODLESALAD PM2.5 maps in the validation set. On the right: RMSE per

pixel comparing another model trained without satellite PM2.5 to NOODLESALAD PM2.5 maps in the validation set.
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