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Abstract. Probabilistic models are used extensively in geoscience to describe random processes as they allow prediction un-

certainties to be quantified in a principled way. These probabilistic predictions are valued in a variety of contexts ranging

from geological and geotechnical investigations to understanding subsurface hydrostratigraphic properties and mineral distri-

bution. However, there are no established protocols for evaluating the uncertainty and predictive performance of univariate

probabilistic models, and few examples for researchers and practitioners to lean on. This paper aims to bridge this gap by5

developing a systematic approach that targets three objectives. First, geostatistics are used to check if the probabilistic pre-

dictions are reasonable given validation measurements. Second, image-based views of the statistics help facilitate large-scale

simultaneous comparisons for multiple models across space and time, spanning multiple regions and inference periods. Third,

variogram ratios are used to objectively measure the spatial fidelity of models. In this study, the model candidates include or-

dinary kriging and Gaussian Process, with and without sequential or correlated random field simulation. FLAGSHIP statistics10

are proposed to examine the fidelity, likelihood, accuracy, goodness, synchronicity, histogram, interval tightness and precision

of the model predictive distributions. These statistics are standardised, interpretable and amenable to significance testing. The

proposed methods are demonstrated using extensive data from a real copper mine in a grade estimation task, and accompa-

nied by an open-source implementation. The experiments are designed to emphasise data diversity and convey insights, such

as the increased difficulty of future-bench prediction (extrapolation) relative to in-situ regression (interpolation). This work15

presents a holistic approach that enables modellers to evaluate the merits of competing models and employ models with greater

confidence by assessing the robustness and validity of probabilistic predictions under challenging conditions.

1 Introduction

Probabilistic models are useful for describing a wide range of stochastic processes and natural phenomena in the geosciences.

For instance, Monte Carlo techniques have been used in the field of landslide hazard assessment to account for estimation20

uncertainties and spatial variability of geological, geotechnical, geomorphological and seismological parameters by treating

the target quantities as statistical distributions (Refice and Capolongo, 2002). In the field of subsurface and hydrostratigraphic

modelling, borehole and geophysical data are often combined to improve lithological and structural understanding in a study

area (Tacher et al., 2006). One difficulty is maintaining consistency between different pieces of information while taking

into account various spatial and geological factors when assigning uncertainties to such interpretation. Facing this challenge,25
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probabilistic models have been used to quantify and communicate such uncertainties in a more principled way. In Madsen et al.

(2022), a realisation of the subsurface is created from a 3D geological model to estimate the uncertainty. It requires geostatistical

simulation of each hydrostratigraphic layer using boundary points specified by geologists. Another area of research focuses on

dynamic stochastic models and bayesian inference in very high dimensional space. For instance, Bacci et al. (2023) considered

different approaches for sampling distribution, while others applied bayesian fusion to multiple data sources to minimise30

uncertainty (Seillé et al., 2023). Although these ideas are innovative and compelling, they lie outside the scope and general

concerns of the present study, which focuses instead on model evaluation. Nonetheless, this brief survey shows there is intense

interest in using probabilistic models to describe stochastic processes in the geoscientific research community. Accompanying

such rapid development is the need to clarify the performance of models to determine how reasonable they are within the

context of their stated aims. For a discourse on the topic of errors and uncertainties in the geosciences, readers are referred to35

(Pérez-Díaz et al., 2020). The rest of this introduction will provide a background to approaches that are more closely aligned

with this work.

In engineering geology, geostatistical approaches based on kriging (Oliver et al., 2015) are often seen as the methods of

choice for spatial interpolation in applications such as soil sampling where the available measurements are sparse. In machine

learning, Gaussian Processes (GP) has been advanced as an alternative kernel-based approach for performing regression over40

a regionalised variable using Bayesian inference techniques. Unlike the kriging families of models, which require sequential

simulations to provide credible uncertainty estimates and overcome excessive smoothing, the GP solution inherently provides

covariance and mean estimates in the form of a posterior distribution that maximises the marginal likelihood (Williams and

Rasmussen, 2006). Empirically, GP probabilistic models have been found to be at least as effective as, if not superior to ordi-

nary kriging (Christianson et al., 2023). However, there has not been large-scale systematic comparison published in literature45

to establish their efficacy to the best of our knowledge. As motivation, this work seeks to close this gap. The main contribu-

tion of this paper is a multipronged method for evaluating the uncertainty and predictive performance of probabilistic models,

specifically ones devised for grade estimation in a porphyry copper deposit. Although this application features challenges that

are unique to mining—such as high sampling cost and pit-level causality—at its core, assessing the quality of extrapolation is

of general interest in a multitude of problems. In open-pit mining, there is a strong emphasis on predicting the geochemical50

properties of an orebody beyond the active mining area where assay data have already been gathered from existing blastholes.

Thus, the ability to predict the grade distribution in the bench-below—which has not yet been excavated—or adjacent areas

within the current bench is highly valued. This, however, does not trivialise the importance of in-situ regression (grade mod-

elling within the current bench) as it facilitates precision mining and tracking of material movement. Improved knowledge of

the region can improve grade-control and reduce incidents like ore dilution where low-grade waste is excavated and transferred55

inadvertently to high-grade stockpiles (Leung et al., 2023b). A practical application of probabilistic modelling is depicted

in Fig. 1. There is certainly an incentive to refine models of the local geology incrementally by exploiting production data

(Leung et al., 2022), extend and predict with a quantifiable degree of confidence the grade distribution in future benches, as

this is necessary for robust mine planning. These probabilistic predictions can affect scheduling decisions and optimisation of

mining operations downstream (Seiler et al., 2022; Samavati et al., 2020). In this context, the spatial domain is intrinsically60
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Figure 1. A motivating example. For open-pit mining at iron ore deposits, (a) sparse assay measurements are taken from blastholes to facilitate

ore grade probabilistic modelling. (b) and (c) show the estimated mean Fe concentration and standard deviation in a local region soon to be

excavated. The value of having a probabilistic model is that it provides a reliable and objective description of ore/waste distribution in spite of

sampling errors and epistemic uncertainty. This allows operators to assess risks, such as ore dilution in (d), if a volume of low-grade material

is dug up at a [red] location and transported to a high-grade destination. (e) A high-fidelity probabilistic model makes informed decision

making possible. Its applications include high precision large-scale tracking of material movement, as well as (f) grade-block partitioning

and reconfiguration during mine planning and the ability to reroute material to different destinations on demand (Leung et al., 2023b).

three-dimensional, whereas it is common for surficial geochemistry modelling (Chlingaryan et al., 2024) in environmental

monitoring to be two-dimensional. The objective of this paper is to assemble a suite of relevant global and local accuracy and

uncertainty-based measures and recommend a systematic geostatistical approach for evaluating the performance of univariate

probabilistic models.

For deterministic model evaluation, readers might be accustomed to using measures such as the root mean squared error65

(RMSE). A major deficiency with RMSE is that it treats errors as independent and ignores spatial correlation. When un-

certainty is modelled explicitly, model evaluation takes on a different meaning; performance is viewed through a different

lens. Associated with each prediction is an implied probability that the true value lies within some interval according to the

distribution. This perspective bestows meaning and captures the essence of the uncertainty-based measures. In terms of organ-

isation, Sec. 2 provides concrete definitions of the model candidates considered in this work. This encompasses simple and70

ordinary kriging (with and without sequential Gaussian simulations) and different forms of Gaussian Process regression (with

and without sequential or correlated random field simulations). Section 3 introduces the proposed measures. These measures

include classical histogram distances, a spatial fidelity measure derived from variograms, and a reframing of established uncer-
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tainty measures based on the notion of ‘synchronicity’. Section 4 describes the experiments, dataset and its geological setting.

Section 5 presents results and extensive analysis covering a dozen inference periods and approximately ten domains. The exper-75

iments are designed to mimic the staged progression of mining operations in an open-pit mine and highlight the opportunity to

propagate local geological knowledge, principally acquired from assay data collected from production drilled holes, to project

into a future bench.1 The decision to examine multiple geological domains is to reflect the diverse geochemical characteristics

through their grade distributions. Section 6 summarises the main findings from this study and recommends a standard procedure

(known as FLAGSHIP) for evaluating uncertainty and predictive performance given a number of probabilistic models.80

2 Geostatistical modelling

A fundamental viewpoint of probabilistic models is that the target attribute at each point x ∈ Rd is described by a probability

distribution rather than a single value. Ascribing to the theory of random functions, the observed value is considered as a random

realisation of a stochastic process, where the pattern of variation with respect to x can only be described in a statistical sense—

typically by the mean and correlation structure in the signal. In this work, the attribute represents the concentration/grade85

of copper in an ore deposit and the points x correspond to locations in 3D space. The following sections provide a concise

overview of Gaussian Processes and kriging based on the description and notations used in (Shekaramiz et al., 2019).

2.1 Gaussian Processes

The general problem involves predicting a target attribute (or output) y∗ ∈ R at some test locations x∗ ∈ Rd given a training

set D = {(xi,yi)}i=1:n where yi is known. The asterisk indicates the variable belongs to the test set, where y∗ = f(x∗)90

for some unknown random function f . Concatenating the input observations together, the training data may be written in

matrix-vector notation as D = {X,y} with X = [x1, . . . ,xn] ∈ Rd×n and y ∈ Rn. In Gaussian Process (GP) regression, a

Gaussian prior is placed over the function f . Using the observations in D, Bayesian inference infers p(f |D) and converts

this into a posterior via p(y∗ |X∗,{X,y}) =
∫
p(y∗ |f,X∗)p(f |D)df . The GP consists of a collection of random variables,

f(x)∼ GP(m(x),κ(x,x′)), which are individually and jointly Gaussian distributed. Hence, a GP is completely specified by a95

mean functionm(x) = E[f(x)] and covariance function κ(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))T ]. GP regression defines

a joint distribution, p(f |X) =N (f |µ,K), over a set of n data points, where Kij = κ(xi,xj) and µ = [m(x1), . . . ,m(xn)]T .

Here, κ represents a positive semi-definite kernel (covariance function) that models spatial correlation in the data. It conforms

to the general expectation that f(xi) and f(xj) will be more similar if xi and xj are close together.

1As a term of reference, the scope of a future bench includes any undeveloped region in the vicinity of a densely-drilled and sampled region in an open-pit

mine, whether it is physically adjacent to or below the current bench.
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For noisy observations, the training data is assumed to satisfy yi = f(xi) + ϵ, where ϵ∼N (0,σ2
y).

2 The joint density gov-100

erning the observed and test data is given by

 y

f∗


∼N


0,


Ky K∗

KT
∗ K∗∗




 (1)

and the posterior predictive density is given by

p(f∗ |X∗,X,f) =N (f∗ |µ∗,Σ∗) (2)

The equations that describe the prediction outcomes, viz., the posterior mean, µ∗, and covariance, Σ∗, are given by105

µ∗ = µ(X∗) +KT
∗K−1

y (f −µ(X)) (3)

Σ∗ = K∗∗−KT
∗K−1

y K∗ (4)

Ky = cov(y |X) = K+σ2
yI (5)

The training data covariance matrix K ∈ Rn×n is independent of test locations, whereas K∗ ∈ Rm×n,K∗[i, j] = κ(xi,x∗j)

and K∗∗ ∈ Rm×m,K∗∗[i, j] = κ(x∗i,x∗j) both depend on the test/query locations.110

Returning to the covariance function κ, common choices include the exponential and squared exponential kernels. For this

work, a Matérn 3/2 kernel (Melkumyan and Ramos, 2011), κMatérn 3/2(θ), is used drawing on past experience in orebody grade

modelling. GP training describes the process of fitting the kernel hyperparameters, θ = [a2, lx, ly, lz,σ
2
v ], to the training data.

This involves maximising the log marginal likelihood (LML) with respect to θ:

logp(y |X,θ) =−1
2
yT
[
K+σ2

yI
]−1

y− 1
2

log
∣∣K+σ2

yI
∣∣− N

2
log2π (6)115

where | · | denotes the determinant. The marginal likelihood in Eq. 6 contains three terms that represent (from left to right) the

data fit, complexity penalty (to include the Occam’s razor principle) and normalisation constant. The first two terms in Eq. 6

depend on the values of the hyperparameters. As the marginal likelihood is a non-convex function of the hyperparameters, only

local maxima can be obtained—usually via gradient descent from multiple starting points (Melkumyan and Ramos, 2009).

2.2 Kriging120

The central proposition in kriging is to estimate the value of a continuous attribute Z at any unsampled location x∗ using only

the available observations D = {(xi,z(xi))}i=1:n in the studied area. The objective is to obtain Z∗(x∗), an unbiased linear

estimator of the random variable Z(x∗), via

Z∗(x∗)−µ(Z(x∗)) =
ñ∑

i=1

λi(xi)[z(xi)−µ(Z(xi))] (7)

2This observation model naturally excludes multimodal data. This situation is thankfully circumvented by grouping the training data into self-similar

clusters or by geological domains, as is done customarily within the field.
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where λi(xi) denotes the kriging weights assigned to z(xi), the observed values at location xi from the training data, and125

µ(Z(x)) denotes the expected value of the random variable Z(x). The number of terms involved in the summation, ñ, can vary

from location to location. In general, only the n(x∗) terms closest to x∗ are retained. Kriging seeks to minimise the estimation

error σ2
E(x∗) = Var(Z∗(x∗)−Z(x∗)) subject to E[Z∗(x∗)−Z(x∗)] = 0. The random variable may be resolved in terms of

a residual component, R(x), and a trend component, µ(Z(x)), and written as Z(x) =R(x)+µ(Z(x)) based on (7). Kriging

models this residual component as a zero-mean stationary Gaussian Process such that R(x)∼ GP(0,Cov(R(x),R(x +h)).130

In this work, two types of kriging known as Simple Kriging (SK) and Ordinary Kriging (OK) are considered. In simple

kriging, the mean µ(Z(x)) is assumed to be known and constant such that µ(Z(x)) =m ∀x throughout the modelled region.

Ordinary kriging permits variation in the mean which is unknown by limiting the domain of stationarity to local neighbour-

hoods, N(x). As such, µ(Z(x)) =m(x) where m(x′) = const ∀x′ ∈N(x). In SK, the prediction error variance in (8) is

minimised by the kriging weights in (9) under the stationary mean assumption.135

σ2
E(x∗) =

n(x∗)∑

i=1

n(x∗)∑

j=1

λi(x∗)λj(x∗)CR(xi−xj) +CR(0)− 2
n(x∗)∑

i=1

λi(x∗)CR(xi−x∗) (8)

where CR(h) = E[R(x∗)R(x∗+h)]

λSK(x∗) = argminλσ
2
E(x∗) = K−1

SK kSK (9)

where KSK =




C(x1−x1) . . . C(x1−xn(x∗))
...

...
...

C(xn(x∗)−x1) . . . C(xn(x∗)−xn(x∗))


140

kSK = [C(x1−x∗), . . . ,C(xn(x∗)−x∗)]T

λSK = [λ1(x∗), . . . ,λn(x∗)(x∗)]
T s.t.

∑

i

λi(x∗) = 1

In the ordinary kriging case, one solves for the augmented system in (10)

 K −1n(x∗)

1Tn(x∗)
0




λOK

ζ


=


kOK

1


 (10)

where Kij=C(xi−xj),kOK,i=C(xi−x∗),λOK,i=λi(x∗) and ζ is a Lagrange multiplier.145

This will result in a slightly higher σ2
OK than σ2

SK due to greater uncertainty associated with estimating m(x′). The minimum

prediction variance are given respectively by (11) and (12).

σ2
SK(x∗) = min σ2

E(x∗) = C(0)−λTSKkSK (11)

σ2
OK(x∗) = C(0)−

n(x∗)∑

i=1

λTOKkOK + ζ (12)
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These procedures are commonly referred as solving the kriging equations. Notably, the kriging weights λSK and variance σ2
SK150

(similarly for λOK and σ2
OK) depend only on the locations and covariance function, C, not the observed values zi in D. The

training data,D, is fitted to experimental variograms (Oliver et al., 2015) to deduce the effective range of spatial dependence in

the random process. This in turn informs how quickly the signal correlation attenuates under a variogram model. In this paper,

a Matérn covariance function is used to compute C(x,x′) ∆= C(x−x′).

2.3 Sequential Gaussian simulation155

It is well known that kriging regression causes oversmoothing (Olea and Pawlowsky, 1996) and this phenomenon can be

described as a deficit of variance, Var[Z(x∗)]−Var[Z∗(x∗)] = σ2
K(x∗)> 0. This effect increases as the estimated location x∗

gets further away from the known data x ∈D (Journel et al., 2000). Stated differently, although kriging correctly estimates the

data variance between known points—and this ability carries over to replicating the variability between a test point x∗ /∈D and

known point x ∈D— it does not reproduce the spatial variability between a pair of test points (x∗i,x∗j)i̸=j /∈D. Sequential160

Gaussian simulation (SGS) remedies this situation by imparting structure (conditional dependence between known and test

points) incrementally and augmenting the set of known points with newly estimated test points. The full procedure is described

in (Bai and Tahmasebi, 2022; Asghari et al., 2009). This involves the following steps: 1) apply normal score transformation g to

the sampled data zi ∈D s.t. yi = g(zi); 2) fit the Gaussian-distributed data to a variogram model; 3) for each simulation s (from

1 to NS), use a permutation function πs to generate a random path that traverses all test points {x∗,j}j that require estimation165

(McLennan, 2002); 4) for each test point x∗,πs(j) along the designated path, search within a local neighbourhood of x∗,πs(j)

and find the ñ closest points among all sampled data and previously simulated points; 5) using the ñ points, compute the kriging

mean and variance estimates, µ̂∗,πs(j) and σ̂2
∗,πs(j), for point x∗,πs(j); 6) randomly sample a value ỹ(s)

∗,πs(j) from the normal

distribution N (µ̂∗,πs(j), σ̂∗,πs(j)); 7) append (x∗,πs(j), ỹ∗,πs(j)) to the set of previously simulated points; 8) continue until all

test points have been visited in simulation s; 9) back transform the simulated values to the original space s.t. z̃(s)
∗,j = g−1(ỹ(s)

∗,j);170

10) when all NS simulations are completed, estimate the mean and variance for each x∗,j using {z̃(s)
∗,j}s=1:NS

.

SGS works according to the chain rule, which states that the full joint distribution can be written as a product of a marginal

and univariate conditional distributions as shown in (13)

f(z∗,1:m |X∗,D) = f(z∗1;x∗1,D) ·
m∏

i=2

f(z∗i |x∗,1:i,z∗,1:i−1,D) (13)

where observed dataD={xi,zi}i=1:n, unknown points x∗1:i=(x∗,1,x∗,2, . . . ,x∗,i) and the simulated/updated values z∗,1:k=175

(z∗,1,z∗,2, . . . ,z∗,k). This implies a random realisation f(z∗,1:m |X∗,D) can be obtained, if a realisation of the univariate

conditional distribution can be obtained for all subsets of conditional model parameters in any traversal order (Hansen, 2021).

For simplicity, the permutation πs is omitted from the subscripted indices to avoid clutter.

2.4 Spatially correlated random fields

A random field refers to a family of random variables, Z∗ = [Z(x∗1),Z(x∗2), . . . ,Z(x∗m)], indexed by x∗i ∈ Rd. The objec-180

tive of computing a GP spatially correlated random field (CRF) is to generate a random realisation of the stationary process
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Table 1. Model candidates for probabilistic copper grade estimation

Abbreviation Description Cross-reference

1 SK Simple Kriging §2.2 (9) (11)

2 SK-SGS Simple Kriging + Sequential Gaussian Simulation §2.2, §2.3

3 OK Ordinary Kriging §2.2 (10) (12)

4 OK-SGS Ordinary Kriging + Sequential Gaussian Simulation §2.2, §2.3

5 GP(L) Gaussian Process Regression (local neighbourhood mean) §2.1 (3) (4)

6 GP-SGS Gaussian Process + Sequential Gaussian Simulation §2.1, §2.3

7 GP(G) Gaussian Process Regression (with stationary/global mean) §2.1 (3) (4)

8 GP-CRF Gaussian Process Spatially Correlated Random Field §2.1, §2.4

such that Z∗ ∼N (µ,Σ) follows a joint Gaussian distribution with mean vector µ and covariance Σ as defined by a GP. Since

the matrix Σ is symmetric and non-negative definite, it may be factorised via Cholesky decomposition to obtain an invertible

lower triangular matrix, L, such that LLT = Σ. Subsequently, a random realisation z̃(s) ∈ Rm is readily obtained from (14)

z̃
(s)
∗ = Lw + µ, w[i]∼N (0,1) (14)185

where w ∈ Rm represents an uncorrelated random vector drawn from the standard Normal distribution (Yang et al., 2022). As

in sequential simulation, the mean function and standard deviation will be computed based on NS random realisations.

2.5 Model candidates

Altogether, eight model candidates (see Table 1) will be considered and compared during performance analysis. The kriging

candidates (SK, SK-SGS, OK, OK-SGS) are self-explanatory. In GP(L), the mean estimates are conditioned on a local neigh-190

bourhood N(x∗) whereas for GP(G), a global (constant) mean is assumed. Another difference is that kriging models employ

an isotropic kernel—specifically a Matérn covariance function with two parameters r and ν for the range and shape—whereas

GP models employ a fixed Matérn 3/2 kernel (ν = 3/2) with heterogeneous length scales (lx, ly, lz) plus two extra parameters

(a2,σv) for amplitude and noise. In general, the ñ nearest neighbours, {xk |xk ∈N(x∗)}, are found using a search ellipsoid

in a rotated space that aligns with feature orientation in the modelled domain. A final remark is that while normal score trans-195

formation (nst) is always applied in SGS and CRF simulation, for the candidates SK, OK, GP(L) and GP(G), modelling is

performed on both raw data, and normal score transformed data. The latter will be annotated with ‘nst’ for clarity and requires

extra care. Suppose the nst transformed values are denoted y = g(z). Having obtained Var[g(Z)]≡ σ̂2
Y , the variance in Z, σ̂2

Z ,

must be computed using Taylor series approximation as shown in (15). In contrast, the mean is given by µ̂Z = g−1(E[Y ]).

Var[g(Z)] = g′(µ)[g′(µ)−µg′′(µ)]Var[Z] + higher order terms =⇒ σ̂2
Z ≈

Var[g(Z)]
g′(µ)2

(15)200
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3 Geostatistical measures

This section describes the performance measures used for model evaluation. The first category are histogram distance measures

that reflect global accuracy in the mean grade estimates. The second category are variogram-based measures which capture

spatial correlation; these are meant to reflect spatial fidelity (local variability) in the model predicted mean. The third category

are uncertainty-based measures which assess the goodness of probabilistic models using both the mean and standard deviation205

estimates, µ̂(x∗) and σ̂(x∗), and the groundtruth (actual grade) µ0(x∗).

3.1 Histogram-based measures

The general goal is to measure discrepancies between the mean prediction and groundtruth histograms. For simplicity, let p

and q be the probability mass functions (pmf) for the model predicted mean and groundtruth vectors, µ̂ = [µ̂(x∗i)]i=1:m and

µ0 = [µ0(x∗i)]i=1:m, respectively. As an overview, the four chosen measures are motivated by hypothesis testing, information210

theory, set theory and the Monge-Kantorovich optimal transportation / distribution morphing problem (Chizat et al., 2018).

3.1.1 Probabilistic symmetric Chi-square measure

The probabilistic symmetric χ2 histogram distance (Deza and Deza, 2009) is a symmetric variant of the regular χ2 distance. It

represents twice the triangular discrimination defined by Topsøe (2000)

hpsChi = 2
∑

x

|p(x)− q(x)|2
p(x) + q(x)

(16)215

3.1.2 Jensen-Shannon divergence

The Jensen-Shannon divergence, hJS in (17), represents a symmetric and smoothed form of the KL divergence (Nielsen, 2019).

hJS =
1
2

[∑

x

p(x) log
(

2p(x)
p(x) + q(x)

)
+
∑

x

q(x) log
(

2q(x)
p(x) + q(x)

)]
(17)

=
1
2
[KL(p ||m) +KL(q ||m)], where KL(p || q) =

∑

x

p(x) log(p(x)/q(x)) and m = (p + q)/2

The second line expresses hJS in terms of the Kullback-Leibler divergence which is also known as relative entropy. Using220

base-2 logarithm, this measure satisfies the bounds 0≤ hJS ≤ 1, attaining zero when p = q.

3.1.3 Ruzicka distance

The Ruzicka distance, hRuz, is defined by Ruzicka similarity SRuz. Given two probability mass functions, p and q,

hRuz = 1−SRuz = 1−
∑
xmin{p(x), q(x)}∑
xmax{p(x), q(x)} (18)

SRuz may be interpreted as the intersection between p and q over the union of p and q and abbreviated as IoU (Cha, 2008). It225

generalises the Jaccard similarity index from {0,1}m to Rm. The Ruzicka distance is bounded by 0≤ hRuz ≤ 1.
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3.1.4 Wasserstein distance

The Wasserstein distance,W1, also called the Earth-mover’s distance, EM distance or Kantorovich optimal transport distance, is

a similarity metric that may be interpreted as the minimum energy cost of moving and transforming a pile of dirt in the shape of

one probability distribution into the other (Rubner et al., 1998). The cost is quantified by the distance and amount of probability230

mass being moved. It might be preferred over JS divergence, as the Kantorovich-Mallows-Monge-Wasserstein metric represents

the Lipschitz distance between probability measures and has to be K-Lipschitz continuous. When the measures are uniform

over a set of discrete elements, the problem is also known as minimum weight bipartite matching. Formally, the k-Wasserstein

distance between probability distributions P and Q is defined as an infinum over joint probabilities

hEM(P,Q)≡Wk(P,Q) = infγ∈∏(P,Q)E(x,y)∼γ [d(x,y)] (19)235

where
∏

(P,Q) is the set of all joint distributions whose marginals are P and Q. In general, it requires solving a linear

assignment problem. However, in one-dimension, it may be computed simply using order statistics. In particular,

Wk(P,Q) =

(
1
m

m∑

i

|p̃(i)− q̃(i)|k
)1/k

(20)

where p̃(i) and q̃(i) refer to the ith element in the sorted sequence of µ̂ = [µ̂(x∗j)]j=1:M and µ0 = [µ0(x∗j)]j=1:M . Therefore,

it does not require quantisation or conversion of µ̂ and µ0 into histograms or pmf.240

3.2 Variogram-based measures

A variogram ratio statistic is proposed as a basis for measuring the loss of spatial fidelity in a model. This partly stems from the

widespread use of semi-variograms in geostatistics. The variogram curve γ(d), see Oliver et al. (2015), measures the inverse

correlation between points as a function of their separating distance, d. A key feature of this curve is the sill which refers to

the maximum height of γ(d) at large distances as samples become uncorrelated. Hence, when two variograms are compared,245

and the sill associated with a model is lower than the sill for a reference, it is indicative of smoothing or a reduction in spatial

variability. Formally, this may be represented by the ratio between two variogram curves as shown in (21)

rmodel(d) =
γmodel(d)
γreference(d)

(21)

Percentile statistics such as the median or lower/upper quantiles can be computed from rmodel(d) to indicate the average loss in

spatial fidelity (equivalently, attenuation in signal power). This allows a visual diagnostic tool to be converted into a quantitative250

measure. In practice, the sill may also be raised, particularly when the result from one sequential simulation is examined. Thus,

a ratio that increases far beyond 1 is also undesirable as it signifies noise amplification. For this reason, the following convex

function (symmetrical about R= 1) is proposed as a proxy measure for spatial fidelity.

Spatial Fidelity F (R) =
√

1− |min{R,2}− 1|, where R= median rmodel(d) (22)

This needs to be interpreted with care in respect of a suitable reference, such as verification data (actual groundtruth values at255

the predicted locations) or the training data from which the kriging variogram or GP kernel hyperparameters are learned.
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Figure 2. Illustration of coverage probability in (a,c) and likelihood the model is correct in (b,d)

3.3 Uncertainty-based measures

All models (listed in Table 1) will provide an estimate (µ̂j , σ̂j) at inference location x∗j and be compared with the groundtruth

µ0,j . Under the Gaussian assumption, the second-order statistics {(µ̂j(x∗j), σ̂j(x∗j))}j=1:m are sufficient for characterising

the conditional distribution p(f∗ |X∗,X,f). Since it is clear that we are dealing with predicted points, henceforth the x∗260

notation will be dropped. To assess how reasonable these estimates are given verification data {µ0,j}j=1:m, it is useful to

convert (µ0,j , µ̂j , σ̂j) into Z scores via zj = (µ0,j−µ̂j)/σ̂j . In Fig. 2, the black dots represent true values. Panels (a-b) illustrates

the case where the model mean underestimates the true value (µ̂ < µ0) while panels (c-d) illustrates the case where the true

value is overestimated (µ̂ > µ0). The shaded area in (a) represents the coverage probability, p. Its complement, 1−p, describes

the likelihood that the model is correct once validation measurement is revealed. This corresponds to the area under the tail265

sections in (b). To distinguish overestimation from underestimation, we define a signed scoring function s called synchronicity.

Synchronicity S ≡ s(µ̂, σ̂ |µ0) =





2× [1−Φ(z)] if µ0 ≥ µ̂ [underestimating]

−2Φ(z) otherwise [overestimating]
(23)

= 2× [I(µ̂≤ µ0) · (1−Φ(z))− (1− I(µ̂≤ µ0)) ·Φ(z)] (24)

where z = (µ0−µ̂)/σ̂ and Φ(z) = 1√
2π

∫ z
−∞ e−t

2/2dt denotes the CDF of the standard normal distribution. This may be written

more compactly using an indicator function in (24). The likelihood is simply the magnitude of s, as shown in (25).270

Likelihood L≡ l(µ̂, σ̂ |µ0) = |s(µ̂, σ̂ |µ0)| (25)

3.3.1 Goodness of model predicted uncertainty

One criterion for assessing local uncertainty prediction accuracy is based on the Deutsch (1997) goodness statistic. By con-

struction, there is a probability p (identical to the coverage probability described in Sec. 3.3) that the true value of the random

variable falls within a symmetric p-probability interval (PI) bounded by the pL = (1− p)/2 and pU = (1 + p)/2 quantiles,275

QL ≡Q(1−p)/2 and QU ≡Q(1+p)/2, of the estimated conditional distribution function (Fouedjio and Klump, 2019). As a

special case, when p= 0.5, QL and QU correspond to the lower and upper quartiles, Q0.25 and Q0.75, respectively. Given

validation measurements {µ0,j}j=1:m at inference locations {x∗j}j=1:m, one is interested in κ̄(p), the fraction of true values
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that are bounded by the PI interval with probability p. Concretely, the expression for κ̄(p) in (26) computes the empirical mean

over all test locations as a function of p.280

κ̄(p) =
1
m

m∑

j=1

κj(p), (26)

κj(p) =





1 if Q̂(1−p)/2(j)< Yj < Q̂(1+p)/2(j)

0 otherwise
(27)

In practice, when the random process (fluctuations about the posterior mean function) is modelled as Gaussian, symmetrical

intervals are obtained following Z score transformation, so effectively Q̂(1−p)/2(j) =−Q̂(1+p)/2(j). The mean proportion K

is given by the integral K =
∫ 1

0
κ̄(p)dp.285

3.3.2 Accuracy of the estimated distribution

The average of [κ̄(p)≥ p] over p is known as distribution accuracy, Aξ, as shown in (28).

Accuracy Aξ =

1∫

0

Iξ(p)dp, Iξ(p)≡ I(κ̄(p), ξ) =





1 if κ̄(p)≥ (1− ξ)p

0 otherwise
for a slack variable ξ ∈ [0,0.1] (28)

3.3.3 Precision of the estimated distribution

Precision measures the narrowness of the model estimated distribution. It is only defined for accurate probability distributions.290

A p-probability interval that recalls more than p% of true values is accurate but not precise. Optimal precision means the p-PI

contains the true values exactly p% of time. On this basis, the precision of the estimated distribution is defined by Deutsch

(1997) as

Precision P = 1− 2

1∫

0

I0(p) [κ̄(p)− p]dp (29)

The precision is only meaningful when there is accuracy. In other words, when the estimated proportions κ̄(p) are consistently295

above the expected proportions p. This can be checked from the accuracy plot of κ̄(p) vs p in the bottom half of Fig. 3.

3.3.4 Prediction uncertainty goodness statistic

The closeness between the estimated and theoretical proportions is quantified by G in (30)

Goodness G= 1−
1∫

0

[3I0(p)− 2] [κ̄(p)− p]dp (30)

The G statistic indicates the closeness of points to the bisector of the κ-accuracy plot. Unlike the accuracy and precision, this300

also considers instances where κ̄(p)< p. G= 1 when κ̄(p) = p∀p ∈ [0,1]. G= 0 when none of the true values are contained
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in any PIs. The choice of weights indicates that κ̄(p)< p is more consequential. The penalty for κ̄(p)< p (when observed

proportions are below expectation) is twice that for κ̄(p)> p.

3.3.5 Width of prediction uncertainty

For models with similar goodness statistics, one would prefer a model where the p-probability interval is as narrow as possible.305

A model (or conditional cumulative distribution function) that consistently provides narrow and accurate PIs should be pre-

ferred over another that provides wide and accurate PIs. Different notions of spread such as entropy, variance or inter-quartile

range can be used. Goovaerts (2001) proposed using the interval width in (31) to measure the average tightness of the p-PIs

subject to containment of the true value

W̄ (p) =
1

mκ̄(p)

m∑

j=1

κj(p)
[
Q̂(1+p)/2(j)− Q̂(1−p)/2(j)

]
(31)310

3.3.6 Prediction uncertainty tightness statistic

The average width of W̄ (p) over p can be defined in an analogous manner to A. However, it is more difficult to interpret since

it is highly dependent on the data. To make the tightness scale more meaningful, the average uncertainty interval is normalised

by the process standard deviation σY observed in the validation measurements or groundtruth as shown in (32).

Interval tightness I =
1
σY

1∫

0

W̄ (p)dp (32)315

In general, both G and I need to be taken in account when assessing probabilistic models, because uncertainty cannot be

artificially reduced at the expense of accuracy (Deutsch, 1997).

3.3.7 Connections

The calculation of κj(p) can be reframed in terms of s(µ̂j , σ̂j |µ0,j) or l(µ̂j , σ̂j |µ0,j). Instead of searching for Q(1−p)/2 and

Q(1+p)/2 for various p, there exists a critical value p∗ at which z0,j = (µ0,j−µ̂j)/σ̂j lies just on the edge of [qL(j,p∗), qU (j,p∗)].320

This is precisely the purpose of l(µ̂j , σ̂j |µ0,j) which converts each input (µ̂j , σ̂j ;µ0,j) into a Z score z0,j and maps either

qL(j,p∗) or qU (j,p∗) to 1−p∗. Since the interval grows with p, κj(p) = 1 for all p≥ p∗, where p∗ = 1− l(µ̂j , σ̂j |µ0,j). In the

next subsection, we will reinforce the general concepts with an example and demonstrate the efficacy of the uncertainty-based

statistics using synthetic data where the groundtruth is known.

3.4 Illustration325

From left to right, the panels in Fig. 3 illustrate three scenarios. The columns labelled (a), (b) and (c) correspond to an opti-

mistic, the preferred, and conservative settings, respectively. If we restrict our attention to (a), the probabilistic predictions and

uncertainty interpretations (κ accuracy plots) occupy the top and bottom halves, respectively. For the predictions, the green

curve represents the groundtruth. Each prediction at location x∗ consists of the mean and uncertainty which are represented by
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a dot and vertical bar that signifies±σ̂. This length is somewhat arbitrary; its purpose is to emphasize that we have a predictive330

distribution. The current choice, [µ̂−σ̂, µ̂+σ̂], corresponds to [Q(1−p)/2,Q(1+p)/2] where p≈ 0.68. In blue and black, we have

two noisy models. They differ in terms of how much their mean predictions gravitate toward the actual mean, µ0(x∗). Model

1 is simulated using a uniform distribution, so its estimated means are more spread out. Model 2 is simulated from a normal

distribution, so its mean predictions, µ̂(x∗) tend to be concentrated around µ̂0(x∗) but its tail values extend further out. Both

models in (a) are considered over-confident, as only a small fraction of the p probability intervals contain the actual mean. This335

can be seen in the κ accuracy plots which show the observed truth containment ratios, described by κ̄(p) in (26), consistently

below the expected proportions (p) for most values of p. The ideal situation is depicted in (b) where κ̄(p) is close to p and the

models (especially model 2) live up to expectations. The models in (c) are considered pessimistic because κ̄(p) far exceeds p,

as can be seen from the κ accuracy plots.

(a) over-confident (optimistic) (b) preferred models (just right) (c) conservative (pessimistic)
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Figure 3. Evaluating the uncertainty and predictive performance of two synthesized models. Top: probabilistic predictions. Bottom: κ

accuracy plots. From left to right, (a), (b) and (c) show what can be expected from the optimistic, preferred and conservative models.

Inspection of Table 2 confirms that these observations are reflected in the statistics. The likelihood (L) and proportion340

(K) are lowest in the over-confident scenario (a) where the p-probability intervals captured fewer true values than what were

expected. As this situation is remedied in the preferred scenario (b), the precision (P ) and goodness (G) statistics have markedly

improved. For instance, G increased from 0.734 to 0.973 for model 2. The interval tightness measure (I) is highest/worst in

the pessimistic scenario (c) while the precision and goodness statistics have also suffered. For instance, P plummeted to 0.576
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Table 2. Uncertainty-based statistics for the example in Figure 3

Model Setting µ̂ distribution† µ̂ bias σ̂ amplitude† Likelihood(L) Proportion(K) Precision(P ) Goodness(G) Tightness(I)

a.1 optimistic uniform 0 0.15 0.430 0.468 – 0.840 0.336

b.1 preferred uniform 0 0.225 0.576 0.607↑ 0.848✓ 0.923↑ 0.447

c.1 pessimistic uniform 0 0.35 0.711 0.736↑ 0.576↓ 0.788↓ 0.550

a.2 optimistic normal -0.2 0.15 0.369 0.405 – 0.734 0.331

b.2 preferred normal -0.2 0.225 0.494 0.532↑ 0.986✓ 0.973↑ 0.460

c.2 pessimistic normal -0.1 0.35 0.656 0.684↑ 0.686↓ 0.843↓ 0.580

† µ̂ distribution controls the central tendency and spread of the predicted mean, σ̂ amplitude scales the prediction interval to emulate different model behaviours.

and 0.686 for models 1 and 2, respectively. These findings are consistent with our expectations. They reveal the strengths and345

weaknesses of models and show promise for large scale model evaluation using real-world data.

4 Experiments

This section describes the geological setting, data attributes, design and implementation of the experiments.

4.1 Geological setting

The data used in our experiments were obtained from the Bingham Canyon (Kennecott) open-pit copper mine located in Utah.350

It is classified as a porphyry skarn-hosted copper deposit which describes a copper orebody formed from hydrothermal fluids

that originate from a magma chamber. Predating or associated with those fluids are multiple intrusions and vertical dikes of

diorite to quartz monzonite composition with porphyritic textures. This basically refers to the appearance of large crystals set

in a finegrained or glassy groundmass on the surface of igneous rocks which gives rise to its name. Metasomatism further

explains how the rocks undergo compositional and mineralogical transformations associated with chemical reactions triggered355

by the reaction of fluids which invade the protolith (Lesher and Spera, 2015). Detailed description of its geomorphology and

mineralogical properties can be found in (Porter et al., 2012; Redmond and Einaudi, 2010). A major orebody characteristic is

that successive envelopes of hydrothermal alteration typically enclose a core of disseminated ore minerals in a complex system

of hairline fractures and veins known as stockwork (see Redmond and Einaudi, 2010, Figs. 2, 3, 9 and 10). This mineralisation

produces pit maps with >1%, >0.7%, >0.35% and >0.15% copper gradation extending from the inner to the outer zones.360

4.2 Data attributes

The input used for modelling consists of the location x and grade y of blasthole assay measurements taken roughly 20± 5m

apart. The sampling, assaying techniques and geological interpretations are elaborated in (Hayes and McInerney, 2022). This

data is grouped spatiotemporally, resulting in 11 geological domains and 12 inference periods. Each geological domain is
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represented by a four digit code LGPR which represent the limb zone, grade zone, porphyry zone and rock type, respectively.365

These are determined by geologists based on stratigraphy, lithology and other relevant information that control mineralisation

and ore/waste boundaries; see (Porter et al., 2012, p.136–137) and (Redmond and Einaudi, 2010, p.49–60). The spatial structure

of these domains can be seen in Fig. 4. An important property is that geochemical diversity is localised and reflected through

the grade distribution in these domains. This can be seen in Fig. 5. From a modelling perspective, variations in the grade

distribution (in terms of skewness, dispersion and shape) across different domains are useful as they mitigate selection bias and370

allow the robustness of models to be properly tested.
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Figure 4. The orebody is partitioned into different geological domains to facilitate copper grade modelling. The panels show correlated spatial

structure and subtle changes at different RL elevations. Top image shows blocks associated with active mining operations, i.e. benches that

may benefit from in-situ regression. Bottom image shows blocks associated with future-bench prediction which require extrapolation. It

should be noted that the actual spatial coordinates have been shifted so that the minimum coordinates of the study area are close to the origin

in the Cartesian coordinates system. This applies also to the RL elevation (ft) to anonymise the data due to commercial sensitivity.

4.3 Experimental design

The experiments were designed to emulate the staged observations and progression of mining operations in a real mine. For

future-bench prediction, each inference period (mA) signals the intent that the probabilistic models will use data gathered

prior to the month of mA to predict into new locations relevant to mine planning for the next three months (for instance, the375

months of April, May and June if mA=4). These new locations represent regions below or adjacent to the current bench, thus

blasthole measurements will not be available since these benches have not yet been drilled or developed. A less technically

challenging problem is in-situ regression which requires interpolating the grade within current benches or operating areas

where excavation activities might be planned; the distinction is that this does not require extrapolation into new territories. The

number of blasthole samples available for training (n) and inference locations that require grade prediction (m) are both highly380

variable; some statistics are shown in Table 3.
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Figure 5. Copper grade distribution across different domains for inference period mA=6. In each box-plot, the outer (faint) and inner (dark)

whiskers represent the 2.15/97.85 and 8.87/91.13 percentiles, whereas the horizontal bar and box edges represent the median and lower/upper

quartiles, respectively. From an economic perspective, porphyry orebodies can be mined profitably from Cu concentrations as low as 0.15–

0.3%. The left, middle and right plots pertain to blasthole training data, blocks that require in-situ regression, and future-bench prediction,

respectively. As expected, in-situ distributions more closely resemble the training data than future-bench distributions.

Table 3. Sample size statistics for in-situ interpolation and future-bench extrapolation

Number of blastholes samples for training† Number of locations requiring prediction†,‡

In-situ Future-bench In-situ Future-bench

Lower quartile 133 481 96 26

Median 694 1112 680 138

Upper quartile 2338 2293 1968 401

Total count ⋆ 148302 160459 125004 29689

† All figures refer to quantiles per domain, per inference period unless otherwise stated
‡ Includes only instances where validation measurements are available. ⋆ Sum over all domains and inference periods

4.4 Implementation

The eup3m.git repository provides a Python implementation of all the algorithms described in this paper.

The run_experiments.py script executes one single experiment at a time given an inference period / month (mA) and ge-

ological domain (gD) as input, using the standard configuration parameters specified in rtcma_utils.py. A bash script385

is used to run a complete set of experiments asynchronously on a machine with 30 CPUs, iterating over mA and gD to

produce the full results. Each individual experiment has a model construction phase and performance analysis phase (re-

fer to the eight model candidates in Table 1 and statistical measures described in Sec. 3). The measures implemented in

rtcma_evaluation_metrics.py utilise the stats, spatial and special libraries in scipy. The GP approaches im-

plemented in gstatsim3d_gaussian_process.py utilise the scipy.linalg and scikit-learn packages. The kriging390

approaches implemented in gstatsim3d_kriging.py utilise the scikit-gstat package and extends existing function-

alities in GStatSim to support 3D data and an irregularly spaced inference grid. For sequential simulation, the selection of
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random paths is domain and inference-period dependent, however, the sequence remains the same for the SK-SGS, OK-SGS

and GP-SGS models in each simulation run, s. To achieve consistent and reproducible results, a SHA256 hash is computed for

each (mA, gD) pair to initialise the state of a random generator, then NS values are drawn to obtain NS = 128 random seeds395

which will subsequently determine the order πs in which the {x∗,j}j=1:m points are visited as described in Sec. 2.3.

5 Results

The ensuing analysis is organised in two parts to target two related objectives. The first is to familiarise with the proposed

statistics and assess how they respond to real data. To reinforce concepts and develop real insight, we will devote our attention

to in-depth analysis of two domains in one inference period, examining histogram distances, variogram-ratios visually and400

uncertainty-based measures quantitatively. The second objective is to systematically evaluate the uncertainty and predictive

performance of the chosen probabilistic models and interpret the results across all domains and inference periods.

5.1 Analysis 1: Specific domains within a single inference period

The analysis throughout Sec. 5.1 pertains to future-bench prediction. Two geological domains (2310 and 3521) with vastly

different geochemical characteristics were selected for analysis from one inference period (mA = 4). The copper concentration405

reported in the blasthole training data and groundtruth (for estimated locations in future benches) are depicted in the left and

right columns in Fig. 6, respectively. The reason for including these is to show explicitly the known data {xi,yi}i=1:n used

for fitting variograms, learning kriging weights or GP kernel hyperparameters (on the left) and actual grades for predicted

points {x∗j}j=1:m (on the right) where verification measurements are available. Focusing on domain 2310 first, Fig. 7 shows

the mean grade predicted by all eight models. A couple of observations stem from these results. First, techniques that rely on410

(or assume) a stationary mean, such as SK and GP(G), tend to produce predictions that are too smooth compared with the

groundtruth in Fig. 6. Second, simulations—whether it is SGS or CRF—can improve the spatial fidelity of the predictions. As

expected, this quality restorative property recedes as the number of simulation rounds (s) increases, albeit at different rates for

OK-SGS and GP-SGS; this is illustrated in Fig. 8. These behaviours are amplified in domain 3521 which exhibit high grade

mineralisation in the northwestern tip. The same observations on oversmoothing and the benefits of simulation can be seen415

more clearly in Figs. 9 and 10. In particular, SK and GP(G) both significantly underestimate the Cu peaks.

Since the model candidates produce probabilistic predictions, it would be apt to include results for variance predictions in

Figs. 11–14. As the kriging variance in (11)–(12) does not depend on the observed values, its legitimacy is often questioned.

In the mining geology context, the kriging variance largely reflects the epistemic uncertainty—for example, due to a lack

of training data or spatial sampling—rather than the aleatoric uncertainty which is concerned with inherent grade variability420

within the deposit. In Figs. 11 and 13, it can be seen the kriging standard deviations lack any meaningful spatial variation that

the GPs convey. Nevertheless, the kriging variance is comparable to the average GP variance in these examples when normal

score transformation is applied. This, to some extent, corroborates with the findings in (Heuvelink and Pebesma, 2002) which
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Figure 6. Visualisation of copper grade for blasthole training data (left) and groundtruth at predicted locations (right) for two domains 2310

(top) and 3521 (bottom) in inference period mA = 4.
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Figure 7. Mean copper grade predicted by models for domain gD = 2310 and inference period mA = 4.
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Figure 8. Mean copper grade estimated from s simulations (s= 2,4,8,16) for gD = 2310 and mA = 4.
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Figure 9. Mean copper grade predicted by models for domain gD = 3521 and inference period mA = 4.
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Figure 10. Mean copper grade estimated from s simulations (s= 2,4,8,16) for gD = 3521 and mA = 4.

suggest the kriging variance estimates might be reasonable under Gaussian conditions. In Fig. 13, simulations can be seen to

reveal heterogeneity in the uncertainty and potentially improve on stand-alone GP or kriging variance estimates.425
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Figure 11. Copper grade standard deviation predicted by models for domain gD = 2310 and inference period mA = 4.

20

https://doi.org/10.5194/egusphere-2024-4051
Preprint. Discussion started: 4 February 2025
c© Author(s) 2025. CC BY 4.0 License.



200

400

600

800

Y

OK_SGS stdev from 2 runs OK_SGS stdev from 4 runs OK_SGS stdev from 8 runs OK_SGS stdev from 16 runs

0.0000
0.0273
0.0547
0.0820
0.1093
0.1367
0.1640
0.1913
0.2187
0.2460
0.2733

sigm
a(Cu)

200

400

600

800

Y

GP_SGS stdev from 2 runs GP_SGS stdev from 4 runs GP_SGS stdev from 8 runs GP_SGS stdev from 16 runs

0.0000
0.0273
0.0547
0.0820
0.1093
0.1367
0.1640
0.1913
0.2187
0.2460
0.2733

sigm
a(Cu)

Figure 12. Copper grade standard deviation estimated from s simulations (s= 2,4,8,16) for gD = 2310 and mA = 4.
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Figure 13. Copper grade standard deviation predicted by models for domain gD = 3521 and inference period mA = 4.

0

200

400

600

800

Y

OK_SGS stdev from 2 runs OK_SGS stdev from 4 runs OK_SGS stdev from 8 runs OK_SGS stdev from 16 runs

0.0000
0.0638
0.1276
0.1913
0.2551
0.3189
0.3827
0.4465
0.5102
0.5740
0.6378

sigm
a(Cu)

0

200

400

600

800

Y

GP_SGS stdev from 2 runs GP_SGS stdev from 4 runs GP_SGS stdev from 8 runs GP_SGS stdev from 16 runs

0.0000
0.0638
0.1276
0.1913
0.2551
0.3189
0.3827
0.4465
0.5102
0.5740
0.6378

sigm
a(Cu)

Figure 14. Copper grade standard deviation estimated from s simulations (s= 2,4,8,16) for gD = 3521 and mA = 4.

5.1.1 Histograms

To assess global accuracy, histograms are rendered in Figs. 15 and 16. In these bar graphs, the groundtruth and mean model

predictions are represented by black hollow and blue filled columns, respectively. Visually, GP-SGS and OK-SGS can be seen

to provide a closer approximation to the groundtruth probability mass function (pmf) whereas the range is more compressed in

the case of SK and GP(G), resulting in inadequate coverage of the tail(s).430
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The probabilistic symmetric χ2, Jensen-Shannon, Ruzicka and Wasserstein histogram distances (described in Sec. 3.1.1–

3.1.4) are computed and presented in Table 4. Although the trend varies somewhat depending on the domain, a common

observation is a general improvement in the histogram rank (equivalently, reduction in histogram distances) when SGS or CRF

is coupled with GP. Overall, the computed histogram distances are consistent with our graph-based interpretations.

In Fig. 17, the cross-plots show that hpsChi and hJS are linearly correlated (ρ > 0.99), while hRuz is strongly correlated with435

both hpsChi and hJS ρ ∈ [0.84,0.97]). Since the Jensen-Shannon divergence can be interpreted as information difference between

two distributions and it is bounded, we suggest it should be included in general assessment alongside the Wasserstein histogram

measure, hEM, as the latter is not dependent on quantisation and less sensitive to sample size.
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Figure 15. Copper grade histograms for gD = 2310 and mA = 4. Black hollow: groundtruth. Blue: model predictions
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Figure 16. Copper grade histograms for gD = 3521 and mA = 4. Black hollow: groundtruth. Blue: model predictions
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Table 4. Histogram distances for mean model predictions relative to groundtruth

Domain 2310 Domain 3521

Model hpsChi hJS hRuz hEM rank* hpsChi hJS hRuz hEM rank*

SK_nst 0.5594 0.1225 0.4422 0.0414 27 0.3723 0.0791 0.3480 0.0502 30

OK_nst 0.2071 0.0422 0.2792 0.0199 15 0.3368 0.0702 0.3656 0.0345 29

GP(L)_nst 0.1273 0.0266 0.2261 0.0137 8 0.3335 0.0695 0.3690 0.0335 27

GP(G)_nst 0.3303 0.0693 0.3578 0.0331 24 0.3900 0.0829 0.3480 0.0522 31

SK-SGS (from 32) 0.8774 0.1845 0.5629 0.0535 30 0.2198 0.0458 0.3210 0.0408 24

OK-SGS (from 32) 0.3119 0.0650 0.3356 0.0302 22 0.1929 0.0380 0.2949 0.0354 17

GP-SGS (from 32) 0.0948 0.0192 0.1851 0.0182 6 0.1902 0.0376 0.2835 0.0357 16

GP-CRF (from 32) 0.2763 0.0580 0.3194 0.0311 21 0.1876 0.0391 0.2854 0.0344 14

* Ranks are not consecutive as distances computed for {SGS/CRF (from s)}s=2,4,8,16,64 have been omitted for clarity.
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Figure 17. Histogram distances cross-plots for gD = 2310 and gD = 3521 in mA = 4

5.1.2 Variograms

Variograms are presented separately for models in the SK, OK, GP(L) and GP(G) family along with their SGS/CRF coun-440

terparts in Fig. 18. To be clear, the north-west, north-east, south-west and south-east quadrants in each half represent the

SK/SK-SGS, OK/OK-SGS, GP(G)/GP-CRF and GP(L)/GP-SGS families, respectively. Within a given domain, the variogram

plots can be compared directly between families since the scales are the same. Two reference curves—black-solid for the

groundtruth {x∗j ,y∗j}j=1:m and black-dashed for blasthole training data {xi,yi}i=1:n—are included to indicate the range of

spatial variability the models should strive to achieve. Additionally, a grey curve representing a black-box long-range prediction445

model and a lilac curve representing GP(L) are included in each plot to provide a benchmark.
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Figure 18. Copper grade variograms for gD = 2310 (left) and gD = 3521 (right). The quadrants group together models in the following families:

(north-west) SK/SK-SGS, (north-east) OK/OK-SGS, (south-west) GP(G)/GP-CRF, (south-east) GP(L)/GP-SGS.

Focusing on domain 2310 first, the north-west quadrant shows that simple kriging is not competitive with GP(L), in fact,

SK-SGS generally performs far worse than the long-range model which itself is inferior to all other models. In the south-west

quadrant, the pink curve representing GP(G) outperforms the long-range model. Henceforth, we use the notation γℵ to denote

the variogram for a model/reference ℵ. With sequential Gaussian simulation, the average variogram for a single realisation450

(orange ▲) matches γblastholes and from two realisations, γGP-CRF from 2 (orange ◀) matches γgroundtruth for the most part. As the

number of simulations (s) increases, γGP-CRF from s becomes smoother and approaches γGP(G). The patterns for ordinary kriging

are very similar, except γOK-SGS from s < γGP-CRF from s for smaller lags.

5.1.3 Insights from the variograms

In the north-east quadrant of Fig. 18(a), one observes the blue curves representing γOK-SGS from s are generally above γlong-range455

but, more importantly, underneath the lilac curve representing γGP(L). This indicates GP(L) has the highest spatial fidelity

among the base candidates. In the south-east quadrant, it can be seen that sequential simulations can further propel γGP-SGS

above γGP (L). This finding is highly significant. It shows that while GP(L) can handle mean regression for a non-stationary

process through the use of local neighbourhoods, the local variance estimates based on these neighbourhoods do not adequately

capture the covariance (full inter-sample dependencies) of the underlying process. The loss, in terms of longer-range spatial460

correlation, can be replenished through sequential Gaussian simulation (see Sec. 2.3 and chain rule in (13)) which effectively

propagates conditional information through random paths.
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Table 5. Variogram ratios (R) and spatial fidelity (F ) statistics for gD = 2310 and gD = 3521 in mA = 4.

Domain 2310 Domain 3521

R F R F

SK_nst 0.2775 0.5267 0.2328 0.4824

OK_nst 0.5945 0.7710 0.3311 0.5754

GP(L)_nst 0.7568 0.8699 0.3451 0.5874

GP(G)_nst 0.4525 0.6726 0.2217 0.4708

SK-SGS (from 4) 0.3415 0.5843 0.5171 0.7190

OK-SGS (from 4) 0.5894 0.7677 0.6882 0.8295

GP-SGS (from 4) 1.0774 0.9605 0.8046 0.8969

GP-CRF (from 4) 0.6391 0.7994 0.6105 0.7813

SK-SGS (from 32) 0.1736 0.3998 0.3275 0.5722

OK-SGS (from 32) 0.4565 0.6756 0.4705 0.6859

GP-SGS (from 32) 0.8481 0.9209 0.5964 0.7722

GP-CRF (from 32) 0.4929 0.7020 0.3941 0.6277

The lessons are similar for domain 3521 in Fig. 18(b), except GP(L) on its own is close to but not necessarily better than

the long-range model. We believe this is due to γblastholes < γgroundtruth, viz., the training data is smoother than the groundtruth.

This perhaps makes the goal of matching the spatial variability in the groundtruth unattainable and the task of future-bench465

prediction more difficult. The key observation is that SGS is needed to elevate the performance of OK and GP into the target

band encompassed by γblastholes and γgroundtruth. A related observation is that GP-SGS pushes the curves higher than OK-SGS.

5.1.4 Practicality

It takes considerable effort to visually compare variograms even for eight models in a single domain. This becomes cumbersome

and error-prone when there are over a hundred (gD, mA) combinations to assess, as is the case in our later experiments. The470

variogram ratio (R) and spatial fidelity (F ) statistics formulated in Sec. 3.2 provide a practical measure of model quality, taking

into account local spatial correlation in the regression results. These statistics are reported in Table 6. The key finding is that

the spatial fidelity of the base models can be boosted with limited rounds of sequential simulation. As a case in point, consider

domain 3521 in Table 6. With four rounds of SGS, the F value has increased from 0.575 to 0.829, and 0.587 to 0.896, for

OK and GP(L), respectively. Although spatial fidelity drops off with further rounds of simulations (as illustrated graphically in475

Table 6), the benefit is sustained for GP-SGS and GP-CRF even after 32 iterations—F remain at 0.772 and 0.627, respectively,

which are substantially higher than 0.575 and 0.587.
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5.1.5 Prediction accuracy and uncertainty intervals

This section examines the accuracy and interval of the predictive distributions both qualitatively and quantitatively. In domains

2310 and 3521, we observed that all model curves have similar shapes in the accuracy and interval plots, κ̄(p) and W̄ (p)/σY .480

Therefore, it suffices to illustrate the general behaviour through one model family, viz. ordinary kriging and OK-SGS. Results

depicted in Fig. 19 are typical of all models within the respective domains. The main finding that can be distilled from these

plots is that the models are very accurate in domain 2310, as evident from its high precision (closeness between the observed

and expected proportions, κ̄(p) and p). Based on the interpretations of Sec. 3.4, the fact that κ̄(p)> p for much of p (note: p

denotes the expected groundtruth capture probability) which is reflected by lower precision (P ) and goodness (G) suggests the485

models are conservative in domain 3521.

————————– Domain 2310 ————————– ————————– Domain 3521 ————————–
κ̄(p) for OK nst W̄ (p)/σY for OK nst κ̄(p) for OK nst W̄ (p)/σY for OK nst

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n,
 

(p
)

A=0.086
P=1.000
G=0.903

OK_nst
expected proportions
( , 0)

0.0 0.2 0.4 0.6 0.8 1.0
p

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n,
 

(p
)

A=0.961
P=0.994
G=0.992

OK_SGS_from_32
expected proportions
( , 0)

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

No
rm

al
ise

d 
wi

dt
h 

of
 p

-P
I

I=0.499

OK_nst
norminv(1-(1-p)/2)
W(p)/ Y

0.0 0.2 0.4 0.6 0.8 1.0
p

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

No
rm

al
ise

d 
wi

dt
h 

of
 p

-P
I

I=0.562

OK_SGS_from_32
norminv(1-(1-p)/2)
W(p)/ Y

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n,
 

(p
)

A=1.000
P=0.781
G=0.887

OK_nst

0.0 0.2 0.4 0.6 0.8 1.0
p

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n,
 

(p
)

A=1.000
P=0.702
G=0.851

OK_SGS_from_32
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

No
rm

al
ise

d 
wi

dt
h 

of
 p

-P
I

I=0.298

OK_nst
norminv(1-(1-p)/2)
W(p)/ Y

0.0 0.2 0.4 0.6 0.8 1.0
p

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

No
rm

al
ise

d 
wi

dt
h 

of
 p

-P
I

I=0.515

OK_SGS_from_32
norminv(1-(1-p)/2)
W(p)/ Y

κ̄(p) for OK-SGS W̄ (p)/σY for OK-SGS κ̄(p) for OK-SGS W̄ (p)/σY for OK-SGS0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n,
 

(p
)

A=0.086
P=1.000
G=0.903

OK_nst
expected proportions
( , 0)

0.0 0.2 0.4 0.6 0.8 1.0
p

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n,
 

(p
)

A=0.961
P=0.994
G=0.992

OK_SGS_from_32
expected proportions
( , 0)

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

No
rm

al
ise

d 
wi

dt
h 

of
 p

-P
I

I=0.499

OK_nst
norminv(1-(1-p)/2)
W(p)/ Y

0.0 0.2 0.4 0.6 0.8 1.0
p

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

No
rm

al
ise

d 
wi

dt
h 

of
 p

-P
I

I=0.562

OK_SGS_from_32
norminv(1-(1-p)/2)
W(p)/ Y

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n,
 

(p
)

A=1.000
P=0.781
G=0.887

OK_nst

0.0 0.2 0.4 0.6 0.8 1.0
p

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n,
 

(p
)

A=1.000
P=0.702
G=0.851

OK_SGS_from_32 0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

No
rm

al
ise

d 
wi

dt
h 

of
 p

-P
I

I=0.298

OK_nst
norminv(1-(1-p)/2)
W(p)/ Y

0.0 0.2 0.4 0.6 0.8 1.0
p

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

No
rm

al
ise

d 
wi

dt
h 

of
 p

-P
I

I=0.515

OK_SGS_from_32
norminv(1-(1-p)/2)
W(p)/ Y

1

Figure 19. Copper grade predictive distribution accuracy and uncertainty ++interval plots. Selected results for gD = 2310 and gD = 3521 in

mA = 4.

A detailed reading of the statistics shown in Table 6 show that the results are mixed and no dominant model can be established

between these two domains. Regarding the individual indicators, the following comments can be made. The accuracy, Aξ, is

quite sensitive even when a slack variable ξ = .05 is employed—confer with (28). It can change rapidly from 0 to 1, see

domain 2310 OK_nst vs GP(G)_nst, due to the hard constraint it imposes on the observed-vs-expected proportion comparison.490

As the number of simulation runs increases, the precision and goodness statistics (P and G) both get slightly worse due to

stochasticity, this pattern runs contrary to the likelihood trend (L). Philosophically, the notion of p-probability intervals, which

is built on the notion of groundtruth capture and what a model promises and actually delivers, might not be a great criterion to

judge models on. On current evidence, these p-PI statistics seem to be quite limited in their capacity at differentiating models.

However, we reserve final judgement on their utility as the scope of our analysis is quite limited at this point. This issue will495

be revisited in part two of our analysis (Sec. 5.2).
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Table 6. Uncertainty-based statistics for gD = 2310 and gD = 3521 in mA = 4. Specifically, L, A, P , G and I denote the likelihood, accuracy,

precision, goodness and interval tightness of the probabilistic predictions.

Domain 2310 Domain 3521

L A.05 P G I L A.05 P G I

SK_nst 0.4817 0.6172 1.0000 0.9631 0.5182 0.6231 1.0000 0.7480 0.8686 0.2918

OK_nst 0.4517 0.0859 0.9999 0.9030 0.4992 0.6075 1.0000 0.7808 0.8866 0.2984

GP(L)_nst 0.4963 0.9062 0.9953 0.9857 0.5752 0.6353 1.0000 0.7272 0.8618 0.3071

GP(G)_nst 0.5184 1.0000 0.9628 0.9812 0.5548 0.6294 1.0000 0.7361 0.8634 0.2965

SK-SGS (from 32) 0.4967 0.9297 0.9987 0.9913 0.5652 0.6506 1.0000 0.6978 0.8484 0.4246

OK-SGS (from 32) 0.5010 0.9609 0.9936 0.9925 0.5617 0.6485 1.0000 0.7022 0.8509 0.5152

GP-SGS (from 32) 0.5071 0.7383 0.9753 0.9771 0.6531 0.6411 1.0000 0.7172 0.8585 0.5311

GP-CRF (from 32) 0.5265 0.9961 0.9462 0.9723 0.6208 0.6255 0.9727 0.7477 0.8730 0.4779

SK-SGS (from 128) 0.5116 0.9805 0.9754 0.9863 0.5659 0.6728 1.0000 0.6535 0.8266 0.4273

OK-SGS (from 128) 0.5142 0.9688 0.9707 0.9844 0.5661 0.6698 1.0000 0.6598 0.8298 0.5187

GP-SGS (from 128) 0.5232 0.9609 0.9530 0.9759 0.6475 0.6650 0.9961 0.6693 0.8346 0.5370

GP-CRF (from 128) 0.5434 1.0000 0.9127 0.9563 0.6085 0.6592 0.9961 0.6810 0.8404 0.4491

Looking at the base models in Table 6, what is clear is that GP models produce higher likelihood scores (L) than kriging

models in both domains. For example, the likelihood scores for GP(L) and GP(G) [L= 0.496,0.518] are higher than those for

SK and OK [L= 0.481,0.451] in domain 2310; and the same can be said for domain 3521. The likelihood scores also show

SGS/CRF improve prediction performance and this effect increases with more simulation runs. Significantly, this improvement500

is geared toward bringing the predictions closer to the groundtruth (µ0), rather than mere containment of the groundtruth within

a prediction interval (Fouedjio and Klump, 2019). This distance-based interpretation follows from (24)–(25) where likelihood

L is defined in terms of synchronicity s(µ̂, σ̂ |µ0) which is driven by Z scores, z = (µ0− µ̂)/σ̂.

5.1.6 Synchronicity as a visualisation tool

It is worth highlighting the potential of the synchronicity measure, S ∆= s(µ̂, σ̂ |µ0), for model evaluation from a spatial per-505

spective. By construction, S > 0 (resp. S < 0) when the predicted mean underestimates (resp. overestimates) the true grade.

These instances are rendered in red (resp. blue) in Figs. 20 and 21. Larger deviations from the groundtruth are indicated by

a darker shade. Following this convention, these figures can serve effectively as local distortion maps. Specifically, the blue

cluster in the northwest corner in Fig. 20 show areas where the OK model had under-performed by way of overestimating the

Cu grade. The relative strength of the GP(G) model is highlighted by lighter patches at the corresponding location. Moving510

over to the label marked ‘A’ in the east, GP(L) can be seen to provide a better estimation than GP(G) whereby the intensity

of the red patches (underestimation) is reduced. There is perhaps no where more obvious than in Fig. 21, where the prob-

lem of underestimation at the northwestern tip is conspicuous in all base models and the magnitude of the prediction error is

significantly reduced through SGS/CRF simulation.
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Figure 20. Synchronicity of grade predictions w.r.t. the groundtruth for gD = 2310 and mA = 4.
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Figure 21. Synchronicity of grade predictions w.r.t. the groundtruth for gD = 3521 and mA = 4.

5.2 Analysis 2: Performance of probabilistic models across all domains and inference periods515

Consolidating on the preliminary analysis, this section now looks at the broader picture across all inference periods and do-

mains. This is prompted by a desire to minimise selection bias and determine the stability of models under varying conditions.

A key motivation is to obtain statistically significant results so that findings arising from random chance can be effectively

ruled out. Readers can expect to see qualitative and quantitative analysis on future-bench prediction performance, including a

statistical comparison with in-situ regression in Sec. 5.3. The chief strategy advocated in this paper is to view various statistics520

from an image perspective, whereby models and conditions (inference period and domain) are represented by the vertical and

horizontal axes, respectively. This takes inspiration from microplates (Piletska et al., 2012), a standard screening tool used in

clinical diagnostic testing such as enzyme-linked immunosorbent assay (ELISA), whereby antigen-antibody interactions are

detected within a 2D array. This has been used in biochemistry to study enzyme diversity in soils (Marx et al., 2001). A similar

setup that exploits this attention mechanism is equally well suited to large-scale simultaneous comparisons in geostatistics.525
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Table 7. Histogram distance summary statistics for future-bench prediction over domains and inference periods.

Model family Abbrev hJS mean hEM mean

Simple kriging SK / SK-SGS 0.4607 0.1678

Ordinary kriging OK / OK-SGS 0.3524 0.1126

Gaussian process (global mean) GP(G) / GP-CRF 0.2937 0.0753

Gaussian process (local mean) GP(L) / GP-SGS 0.2802 0.0691

5.2.1 Histogram distances

As an example, the Jensen-Shannon and Wasserstein histogram distances, hJS and hEM, are visualised as images in the left

and right halves of Fig. 22, respectively. In these arrays, the rows represent models which are grouped along family lines into

four categories: SK, OK, GP(G) and GP(L). The columns represent geological domains (see outer x labels). Furthermore,

successive inference periods (mA) are interleaved within each domain (see inner x labels). Looking at hJS, these results may530

be interpreted in two ways. At a macro-level, the GP(G) and GP(L) families, represented by the third and fourth blocks down

the y axis, appear much darker than the rest. These indicate lower distortion in the predicted grade histograms relative to the

groundtruth. The relevant group statistics are summarised in Table 7. At a granular level, differences between row 0 (SK) and

row 1 (SK_nst) illustrate the importance of normal score transformation in simple kriging. Focusing on higher level trends,

more pervasive distortion can be seen in the SK and OK families, as evident from the bright pixels in the first and second block.535

Figure 22. View of (left) Jensen-Shannon, (right) EM histogram distances for future-bench prediction across domains and inference periods.

5.2.2 Influential factors

An investigation of the bright pixel columns in Fig. 22(left)—instances where SK and OK apparently underperformed—reveals

two contributing factors. The first is that histogram distance measures (not just hJS, but also hpsChi and hRuz) are sensitive to

discretisation and number of inference points (nI) used in a given groundtruth comparison; this is not a modelling artefact. The

second is a divergence between the training data and groundtruth distributions. By way of an example, the first phenomenon540

is evident from the white patches that appear in the 2210 columns in Fig. 22(left) and this coincides with nI ≤ 16 from mA = 7

to mA = 11 in Table 8. This indicates a drop in the efficacy of hJS as the sample size decreases. For domain 2310, the number

of inference points is similarly small for mA = 13 and 14; we see a similar drop-off as hJS becomes unreliable. On the contrary,

hEM (see corresponding columns in Fig. 22(right)) is quite insensitive to sample size.

For domain 3016, the number of inference points is once again very small (mostly nI ≤ 10 in Table 8). However, hJS and545

hEM are both large; this indicates the degradation in performance is genuine. Looking at the distribution of the training data in

Fig. S.6 (see supplementary material), we hypothesize that this is due to the spread (almost uniform distribution) observed in

this domain. Prediction is more difficult when the entropy of the measured data is high. This may indicate volatility in the grade

distribution (an intrinsic property in certain parts of the deposit) or incorrect domaining (epistemic uncertainty attributable to

data sparseness and boundary uncertainty).550

Domain 3026 is afflicted by the same issues (discretisation and few inference points) as domain 2210. The bad behaviour

observed in mA = 14 and 15 correlate directly with sample size in Table 8. The most striking results for hJS occur in domains

3110, 3121 and 3321. For domain 3110, a slight performance drop-off is observed in mA = 11 and beyond. Examination of the

training data distribution and groundtruth grade distribution in Fig. S.6 reveals fundamental differences between the two. The

higher grade values present in the groundtruth were beyond anything seen in the training data, thus they are quite unexpected555

and hard to predict. For domain 3121, the significant elevation in hJS from mA = 12 to mA = 14 is due to the propensity of

30

Figure 22. View of (left) Jensen-Shannon, (right) EM histogram distances for future-bench prediction across domains and inference periods.

5.2.2 Influential factors

An investigation of the bright pixel columns in Fig. 22(left)—instances where SK and OK apparently underperformed—reveals

two contributing factors. The first is that histogram distance measures (not just hJS, but also hpsChi and hRuz) are sensitive to
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Table 8. Sample size statistics for certain domains (gD) and inference periods (mA) involved in future-bench prediction.

gD mA nT nI gD mA nT nI gD mA nT nI gD mA nT nI gD mA nT nI

2210 4 76 66 10 123 5 6 86 10 15 2120 10 9 208 28

5 66 30 11 123 4 7 86 2 3321 4 14 49 10 224 36

6 114 37 2310 13 2653 19 8 86 2 5 61 101 11 227 12

7 109 16 14 2654 19 3026 12 2050 111 6 59 104 12 242 16

8 130 15 3016 4 67 28 13 2088 75 7 143 108 13 238 4

9 121 9 5 81 8 14 2113 35 8 195 68 14 242 4

nT and nI denote number of training and inference points

discretisation and number of inference points (nI) used in a given groundtruth comparison; this is not a modelling artefact. The

second is a divergence between the training data and groundtruth distributions. By way of an example, the first phenomenon540

is evident from the white patches that appear in the 2210 columns in Fig. 22(left) and this coincides with nI ≤ 16 from mA = 7

to mA = 11 in Table 8. This indicates a drop in the efficacy of hJS as the sample size decreases. For domain 2310, the number

of inference points is similarly small for mA = 13 and 14; we see a similar drop-off as hJS becomes unreliable. On the contrary,

hEM (see corresponding columns in Fig. 22(right)) is quite insensitive to sample size.

For domain 3016, the number of inference points is once again very small (mostly nI ≤ 10 in Table 8). However, hJS and545

hEM are both large; this indicates the degradation in performance is genuine. Looking at the distribution of the training data in

Fig. S.6 (see supplementary material), we hypothesize that this is due to the spread (almost uniform distribution) observed in

this domain. Prediction is more difficult when the entropy of the measured data is high. This may indicate volatility in the grade

distribution (an intrinsic property in certain parts of the deposit) or incorrect domaining (epistemic uncertainty attributable to

data sparseness and boundary uncertainty).550

Domain 3026 is afflicted by the same issues (discretisation and few inference points) as domain 2210. The bad behaviour

observed in mA = 14 and 15 correlate directly with sample size in Table 8. The most striking results for hJS occur in domains

3110, 3121 and 3321. For domain 3110, a slight performance drop-off is observed in mA = 11 and beyond. Examination of the

training data distribution and groundtruth grade distribution in Fig. S.6 reveals fundamental differences between the two. The

higher grade values present in the groundtruth were beyond anything seen in the training data, thus they are quite unexpected555

and hard to predict. For domain 3121, the significant elevation in hJS from mA = 12 to mA = 14 is due to the propensity of

samples lying outside the grade range observed in the training data. From Fig. S.6, it can be confirmed the training data and

groundtruth distributions hardly intersect; hence their JSD similarity is only 23.9%.

For domains 3210, 3221, 3310 and 3521, there is general consensus between hJS and hEM. The GP models all performed

well with respect to both measures. For domain 3321, the moderately elevated hJS from mA = 4 to mA = 6 is due to the small560

number of training samples available (see Table 8) and slight mismatch between the training data and groundtruth distributions.

The much elevated hJS from mA = 9 and beyond is due to the small number of inference points and sensitivity to histogram dis-

cretisation. For domain 3521, a persistent cluster of poor performance is observed for kriging models from mA = 7 to mA = 11.
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These instances were found to occur when there is a highly positive-skewed, long-tail groundtruth distribution coinciding with

a more narrow training data distribution with a more left-leaning mode; this is illustrated in Fig. S.6. This issue also affects565

domain 3221 to some extent. These technically more challenging situations for kriging-based models can be seen clearly and

unambiguously as light colour patches in the Wasserstein image in Fig. 22(right). This makes it an imperative to include hEM

in global accuracy assessment if the confounding effects due to sample size or discretisation are to be suppressed.

5.2.3 Spatial fidelity

The same techniques are used to examine variogram ratios and spatial fidelity across all periods and domains. What is different570

about Fig. 23 is the appearance of dotted cells • . These represent instances where a variogram cannot be reliably computed

(when the number of inference points nI < 30) and are used to avoid confusion with bright pixels (more extreme ratios) which

are undesirable. In Fig. 23(left), variogram ratios in the range [0,1) and [1,2] are rendered in red and purple, respectively, with

the colour intensity transitioning from light to dark as the ratios get closer to 1 which is the ideal.

The results in Fig. 23(left) reinforces the findings described in Sec. 5.1.2 in two important respects. First, SGS/CRF simula-575

tion increases the variogram ratios across all domains and inference periods, irrespective of the model family: SK, OK, GP(G)

or GP(L). The effect is strongest when s= 2 and decreases with further simulations (s). However, the benefits are sustained

the longest in GP(L); notably, GP-SGS(s= 32) has higher spatial fidelity than the GP(L)_nst base model. Second, the GP(L)

family achieves the highest spatial fidelity among all model candidates, especially when combined with SGS. This can be seen

from Fig. 23(right) where the pixels in the lowest block (corresponding to the GP(L) family) are on average the darkest (F580

being the closest to 1).3 This conclusion is supported by the summary statistics in Table 9, where the standard error (SE) further

demonstrates the SK, OK modelling results are more variable.

Table 9. Variogram ratio (R) and spatial fidelity (F ) summary statistics for future-bench prediction over domains and inference periods.

Model family Abbrev R mean (SE) F mean (SE)

Simple kriging SK / SK-SGS 0.2983 (0.0112) 0.4272 (0.0125)

Ordinary kriging OK / OK-SGS 0.4787 (0.0102) 0.6234 (0.0110)

Gaussian process (global mean) GP(G) / GP-CRF 0.6114 (0.0070) 0.7675 (0.0055)

Gaussian process (local mean) GP(L) / GP-SGS 0.7132 (0.0081) 0.8231 (0.0069)

being the closest to 1).3 This conclusion is supported by the summary statistics in Table 9, where the standard error (SE) further

demonstrates the SK, OK modelling results are more variable.

Figure 23. View of (left) variogram ratios R and (right) spatial fidelity F for future-bench prediction across domains and inference periods.

5.2.4 Accuracy and precision

Turning attention now to uncertainty-based measures, this section examines the accuracy and precision of the predictive distri-

butions across all periods and domains. To keep this brief, we restrict our comments to peculiar cases and general trends.585

Accuracy is depicted in Fig. 24(left). It turns out that Deutsch’s notion of accuracy conveys something important about

SGS/CRF. Recall that accuracy relates to groundtruth capture by p-probability intervals (see Sec. 3.3.2). It considers what

a model promises and actually delivers with respect to the proportion of samples it expects to cover. The prominent white

horizontal strips in Fig. 24(left) show that the SGS/CRF models fail to live up to this expectation when s=2 and s=4. Within

the context of this study, at least s=8 simulations is required to obtain an accurate probabilistic model for future-bench grade590

prediction in a porphyry copper deposit. Next, moving on to lesser issues, the vertical strips in domain 2210 (from mA = 8 to

mA = 11) and domain 3121 (from mA = 12 to mA = 14) coincide with few inference points according to Table 8. In the case of

3121, the relevant periods each had only two samples. For the precision image in Fig. 24(right), the lightly coloured columns

3Apart from s = 2 where sequential simulation injects more random fluctuations into the signal before it settles.

32

Figure 23. View of (left) variogram ratios R and (right) spatial fidelity F for future-bench prediction across domains and inference periods.

3Apart from s = 2 where sequential simulation injects more random fluctuations into the signal before it settles.
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Table 9. Variogram ratio (R) and spatial fidelity (F ) summary statistics for future-bench prediction over domains and inference periods.

Model family Abbrev R mean (SE) F mean (SE)

Simple kriging SK / SK-SGS 0.2983 (0.0112) 0.4272 (0.0125)

Ordinary kriging OK / OK-SGS 0.4787 (0.0102) 0.6234 (0.0110)

Gaussian process (global mean) GP(G) / GP-CRF 0.6114 (0.0070) 0.7675 (0.0055)

Gaussian process (local mean) GP(L) / GP-SGS 0.7132 (0.0081) 0.8231 (0.0069)

5.2.4 Accuracy and precision

Turning attention now to uncertainty-based measures, this section examines the accuracy and precision of the predictive distri-

butions across all periods and domains. To keep this brief, we restrict our comments to peculiar cases and general trends.585

Accuracy is depicted in Fig. 24(left). It turns out that Deutsch’s notion of accuracy conveys something important about

SGS/CRF. Recall that accuracy relates to groundtruth capture by p-probability intervals (see Sec. 3.3.2). It considers what

a model promises and actually delivers with respect to the proportion of samples it expects to cover. The prominent white

horizontal strips in Fig. 24(left) show that the SGS/CRF models fail to live up to this expectation when s=2 and s=4. Within

the context of this study, at least s=8 simulations is required to obtain an accurate probabilistic model for future-bench grade590

prediction in a porphyry copper deposit. Next, moving on to lesser issues, the vertical strips in domain 2210 (from mA = 8 to

mA = 11) and domain 3121 (from mA = 12 to mA = 14) coincide with few inference points according to Table 8. In the case of

3121, the relevant periods each had only two samples. For the precision image in Fig. 24(right), the lightly coloured columns

in domain 3110, mA∈ {7,8}, are similarly explained by virtue of having only one test sample. The summary statistics in Ta-

ble 10 show the GP(L) and GP(G) families achieve the highest overall accuracy across all domains and inference periods while595

precision is similar across all families (between 0.851 and 0.868).

Table 10. Accuracy (A) and precision (P ) summary statistics for future-bench prediction over domains and inference periods.

Model family Abbrev A mean (SE) P mean (SE)

Simple kriging SK / SK-SGS 0.5245 (0.0159) 0.8680 (0.0058)

Ordinary kriging OK / OK-SGS 0.7173 (0.0133) 0.8672 (0.0050)

Gaussian process (global mean) GP(G) / GP-CRF 0.8084 (0.0119) 0.8637 (0.0041)

Gaussian process (local mean) GP(L) / GP-SGS 0.8127 (0.0117) 0.8510 (0.0048)

* Group averages exclude SGS/CRF s=2 and s=4, viz., epochs long before convergence.

in domain 3110, mA∈ {7,8}, are similarly explained by virtue of having only one test sample. The summary statistics in Ta-

ble 10 show the GP(L) and GP(G) families achieve the highest overall accuracy across all domains and inference periods while595

precision is similar across all families (between 0.851 and 0.868).

Figure 24. View of (left) accuracy A and (right) precision P for future-bench prediction across domains and inference periods.

5.2.5 Likelihood and goodness

The likelihood (L) and goodness (G) of the predictive distributions across all periods and domains are shown in Fig. 25. An

immediate observation is that L and G are generally correlated. Looking at Fig. 25(right), aside from the statistics being more

variable for the kriging base models (see first two rows in the SK and OK block), the image is quite unremarkable. Looking at600

the group statistics in Table 11, the likelihood statistic suggests GP(L) is best and GPs are to be preferred (with LGP(L) = 0.543

and LGP(G) = 0.536) over ordinary kriging (with LOK = 0.513 and LSK = 0.452). The message from the goodness statistic is

similar but subtly different, it places GP(L) and GP(G) as equal (with GGP(L) = 0.799 and GGP(L) = 0.797) and ordinary kriging

as a close alternative (with GOK = 0.786).
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Figure 24. View of (left) accuracy A and (right) precision P for future-bench prediction across domains and inference periods.
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Table 10. Accuracy (A) and precision (P ) summary statistics for future-bench prediction over domains and inference periods.

Model family Abbrev A mean (SE) P mean (SE)

Simple kriging SK / SK-SGS 0.5245 (0.0159) 0.8680 (0.0058)

Ordinary kriging OK / OK-SGS 0.7173 (0.0133) 0.8672 (0.0050)

Gaussian process (global mean) GP(G) / GP-CRF 0.8084 (0.0119) 0.8637 (0.0041)

Gaussian process (local mean) GP(L) / GP-SGS 0.8127 (0.0117) 0.8510 (0.0048)

* Group averages exclude SGS/CRF s=2 and s=4, viz., epochs long before convergence.

5.2.5 Likelihood and goodness

The likelihood (L) and goodness (G) of the predictive distributions across all periods and domains are shown in Fig. 25. An

immediate observation is that L and G are generally correlated. Looking at Fig. 25(right), aside from the statistics being more

variable for the kriging base models (see first two rows in the SK and OK block), the image is quite unremarkable. Looking at600

the group statistics in Table 11, the likelihood statistic suggests GP(L) is best and GPs are to be preferred (with LGP(L) = 0.543

and LGP(G) = 0.536) over ordinary kriging (with LOK = 0.513 and LSK = 0.452). The message from the goodness statistic is

similar but subtly different, it places GP(L) and GP(G) as equal (withGGP(L) = 0.799 andGGP(L) = 0.797) and ordinary kriging

as a close alternative (with GOK = 0.786).

Figure 25. View of (left) likelihood L and (right) goodness G for future-bench prediction across domains and inference periods.

Table 11. Likelihood (L) and goodness (G) summary statistics for future-bench prediction over domains and inference periods.

Model family Abbrev L median [qL, qU ] G mean (SE)

Simple kriging SK / SK-SGS 0.4527 [0.2346, 0.6219] 0.7149 (0.0076)

Ordinary kriging OK / OK-SGS 0.5137 [0.2795, 0.6764] 0.7868 (0.0065)

Gaussian process (global mean) GP(G) / GP-CRF 0.5366 [0.2855, 0.6990] 0.7974 (0.0062)

Gaussian process (local mean) GP(L) / GP-SGS 0.5432 [0.2996, 0.7053] 0.7997 (0.0059)

5.2.6 Interval tightness605

The interval tightness (I) of the predictive distributions across all periods and domains are shown in Fig. 26. From the extensive

white-out regions, where the width of the prediction interval is large, one can reasonably infer that simple kriging produces

the least confident (most uncertain) predictions. This can be confirmed from the group statistics in Table 12 which also show

GP(G) produces the narrowest predictions.

5.2.7 Statistical significance610

The dependent t-test is applied to the histogram, fidelity, accuracy, precision, interval tightness, goodness and likelihood scores

(H , F , A, P , T , G and L) to establish the significance of the results. In general, the null hypothesis asserts that the mean score

for model family ψ (where ψ ∈ {SK, OK, GP(G)}) is greater than or equal to the mean for the GP(L) family. Thus, the null and

alternative hypotheses may be written as H0(X,ψ) : μψX ≥ μGP(L)
X and Ha(X,ψ) : μψX < μGP(L)

X . When applied to scores that

ought to be maximised, viz., X ∈ {F,A,P,G,L}, a true Ha indicates the GP(L) family has superior performance. For scores615

that ought to be minimised, the inequality signs are reversed such that H0(Y,ψ) : μψY < μGP(L)
Y and Ha(Y,ψ) : μψY ≥ μGP(L)

Y for

Y ∈ {H,I}. The p-values are reported in Table 13 along with the 95% confidence intervals for the difference (viz.,Xψ−XGP(L)

or Y ψ −Y GP(L)) under the alternative hypothesis that the two are unequal.

34

Figure 25. View of (left) likelihood L and (right) goodness G for future-bench prediction across domains and inference periods.

5.2.6 Interval tightness605

The interval tightness (I) of the predictive distributions across all periods and domains are shown in Fig. 26. From the extensive

white-out regions, where the width of the prediction interval is large, one can reasonably infer that simple kriging produces
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Table 11. Likelihood (L) and goodness (G) summary statistics for future-bench prediction over domains and inference periods.

Model family Abbrev L median [qL, qU ] G mean (SE)

Simple kriging SK / SK-SGS 0.4527 [0.2346, 0.6219] 0.7149 (0.0076)

Ordinary kriging OK / OK-SGS 0.5137 [0.2795, 0.6764] 0.7868 (0.0065)

Gaussian process (global mean) GP(G) / GP-CRF 0.5366 [0.2855, 0.6990] 0.7974 (0.0062)

Gaussian process (local mean) GP(L) / GP-SGS 0.5432 [0.2996, 0.7053] 0.7997 (0.0059)

Table 12. Interval tightness (I) summary statistics for future-bench prediction over domains and inference periods.

Model family Abbrev I mean (SE)

Simple kriging SK / SK-SGS 0.6898 (0.0096)

Ordinary kriging OK / OK-SGS 0.6408 (0.0087)

Gaussian process (global mean) GP(G) / GP-CRF 0.5787 (0.0072)

Gaussian process (local mean) GP(L) / GP-SGS 0.6180 (0.0073)

the least confident (most uncertain) predictions. This can be confirmed from the group statistics in Table 12 which also show

GP(G) produces the narrowest predictions.
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Figure 26. View of interval tightness I for future-bench prediction across domains and inference periods.

5.2.7 Statistical significance610

The dependent t-test is applied to the histogram, fidelity, accuracy, precision, interval tightness, goodness and likelihood scores

(H , F , A, P , T , G and L) to establish the significance of the results. In general, the null hypothesis asserts that the mean score

for model family ψ (where ψ ∈ {SK, OK, GP(G)}) is greater than or equal to the mean for the GP(L) family. Thus, the null and

alternative hypotheses may be written as H0(X,ψ) : µψX ≥ µGP(L)
X and Ha(X,ψ) : µψX < µGP(L)

X . When applied to scores that
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Table 13. Significance testing of statistical scores for future-bench prediction over all domains and inference periods.

Histogram H=hEM Spatial Fidelity F Accuracy A Precision P

Family ψ p CI p CI p CI p CI

SK/SGS < .001 [0.1670,0.1940] < .001 [−0.4221,−0.3696] < .001 [−0.3212,−0.2551] > 0.99 [0.0221,0.0396]

OK/SGS < .001 [0.0627,0.0816] < .001 [−0.2241,−0.1753] < .001 [−0.1142,−0.0764] > 0.99 [0.0128,0.0247]

GP(G)/CRF < .001 [0.0058,0.0211] < .001 [−0.0683,−0.0429] 0.1685 [−0.0132,0.0045] > 0.95 [0.0084,0.0161]

Reference µ SE µ SE µ SE µ SE

GP(L)/SGS 0.0691 (0.0026) 0.8231 (0.0069) 0.8127 (0.0117) 0.8510 (0.0048)

Interval I Goodness G Likelihood L

Family ψ p CI p CI p† CI†

SK/SGS < .001 [0.0624,0.0905] < .001 [−0.0950,−0.0746] < .001 [−0.0805,−0.0503]

OK/SGS < .001 [0.0127,0.0336] < .001 [−0.0188,−0.0070] 0.0019 [−0.0343,−0.0066]

GP(G)/CRF > 0.99 [−0.0470,−0.0337] 0.1961 [−0.0075,0.0029] 0.0671 [−0.0239,0.0032]

Reference µ SE µ SE median [qL, qU ]

GP(L)/SGS 0.6180 (0.0073) 0.7997 (0.0059) 0.5432 [0.2996,0.7053]

† The more conservative Welch’s t-test is used assuming unequal population variance.

ought to be maximised, viz., X ∈ {F,A,P,G,L}, a true Ha indicates the GP(L) family has superior performance. For scores615

that ought to be minimised, the inequality signs are reversed such that H0(Y,ψ) : µψY < µGP(L)
Y and Ha(Y,ψ) : µψY ≥ µGP(L)

Y for

Y ∈ {H,I}. The p-values are reported in Table 13 along with the 95% confidence intervals for the difference (viz.,Xψ−XGP(L)

or Y ψ −Y GP(L)) under the alternative hypothesis that the two are unequal.

5.2.8 Interpretations

A direct translation of the results in Table 13 is as follows. At a statistical significance (p-value) of 0.05, the alternative620

hypothesis, Ha(hEM,ψ) is accepted for all models ψ ∈ {SK, OK, GP(G)}. This means, in terms of global distortion in the

predictive mean, the performance of GP(L) is superior to SK, OK and GP(G). In regard to spatial fidelity, the alternative

hypothesis, Ha(F,ψ) is also accepted for all models. Not only is the spatial fidelity of GP(L) higher than SK, OK and GP(G),

the confidence intervals indicate that GP(L) is superior by a large margin. To estimate their respective differences, dividing the

CI midpoints [-0.3958, -0.1995, -0.0556] by mean(F ) = 0.8231 for GP(L), one arrives at an average loss in spatial fidelity of625

48%, 24% and 6.7% if the SK, OK and GP(G) models are used with SGS/CRF simulation in place of GP(L)/SGS.

In regard to accuracy,Ha(A,ψ) is accepted for SK and OK but rejected for GP(G). This means, the accuracy of the predictive

distributions generated by GP(L) is superior to SK and OK, but not significantly different to GP(G) given a p-value of 0.1685,

with zero contained in the CI [-0.0132, 0.0045]. The alternative hypothesis Ha(P,ψ), on the other hand, is rejected for all

models. This implies the precision of the GP(L) predictive distributions is not superior to SK, OK and GP(G). However, GP(L)630

is inferior only by a small margin with a combined CI of [0.008,0.039]. Because the precision score is conditioned on having an
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accurate distribution where only instances of κ̄(p)> p are counted [here, p represents proportions as defined in Sec. 3.3.3], the

goodness statistic G is generally considered a more prudent measure. Since Ha(G,ψ) is accepted for SK and OK but rejected

for GP(G) at a p-value of 0.196, GP(L) adheres more closely to p-probability interval groundtruth containment expectations

than either SK or OK; and the differences between GP(L) and GP(G) are insignificant. This finding is corroborated by the635

likelihood score, as Ha(L,ψ) is also accepted for SK and OK but rejected for GP(G) at a p-value of 0.067. Finally, the GP(L)

prediction intervals are narrower for all models except GP(G) since Ha(I,ψ) is accepted for both SK and OK.

Collectively, these significance tests indicate that GP(L)/GP-SGS—Gaussian Process Regression using local neighbourhood

mean with Sequential Gaussian Simulation—is superior to both simple kriging (SK/SK-SGS) and ordinary kriging (OK/OK-

SGS) approaches. The confidence intervals for Xψ−XGP(L) quantify the margin of superiority, and the evidence from Table 13640

is extremely strong against SK/SK-SGS on all scores; very strong against OK/OK-SGS with respect to histogram (H), fidelity

(F ) and accuracy (A), and moderate with respect to goodness (G) and likelihood (L). The t-tests also confirm the performance

of GP(G)/GP-CRF—Gaussian Process Regression using stationary global mean with Cholesky Random Field simulation—is

close to GP(L)/GP-SGS with respect to H , A, G and L. In fact, GP(G)/GP-CRF prediction intervals tend to be narrower. The

main reason for preferring GP(L)/GP-SGS is that it achieves higher spatial fidelity based on the F score which is informed by645

variogram considerations as discussed in Sec. 3.2 and Sec. 5.1.2.

5.3 Comparison with in-situ regression

Experiment results for in-situ regression (i.e., performing interpolation instead of extrapolation) were separately compiled. The

same procedures were followed, thus the same analysis and graphics seen in Sec. 5.1.1–5.2.7 were produced and included in the

supplementary material [note: figures and tables therein carry the S prefix]. Image-based views of the statistics across domains650

and inference periods are shown in Fig. S.7–S.11. At a high level, similar patterns emerge albeit with greater clarity. The main

features can be seen in Table 14 which compares the summary statistics for in-situ regression with future-bench prediction. This

table shows the average scores for in-situ regression and expresses differences as percentage changes relative to the average

scores for future-bench prediction. [For brevity, standard errors are omitted, these details can be found in Tables S.2–S.6]

An insight from the F scores is that the spatial fidelity gaps are smaller between OK/SGS, GP(G)/CRF and GP(L)/SGS for655

in-situ regression, however, GP(L)/SGS really excels and the gaps widen under future-bench prediction. For the remaining

discussion, it is instructive to focus on the last row for GP(L)/SGS in Table 14. The reduction in the histogram and interval

scores (∆H ≈−45% and ∆I ≈−28%) show improvement in mean grade distribution resemblance and contraction in the

prediction interval; the latter in particular points to a more confident model. These, together with associated improvements in

the fidelity, accuracy, goodness and likelihood scores (∆F ≈+5.2%, ∆A≈+19.6%, ∆G≈+6.1%, ∆L≈+9.6%) indicate660

how much easier in-situ regression is compared with future-bench prediction. The level of difficulty associated with a prediction

task is too often omitted from model analysis; this is something to be mindful of.

Significance testing was also carried out on the in-situ regression results. A comparison of Table 13 (the future-bench results)

with Table S.7 (the in-situ results) confirms the relative merits of GP(L)/SGS over OK/SGS and SK/SGS remain unchanged.

Minor differences exist with respect to the alternative hypotheses Ha(A,GP(G)/CRF) and Ha(L,GP(G)/CRF) which were665
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Table 14. Performance comparison with in-situ regression. Statistical scores for in-situ regression are shown. Parenthesis shows percentage

change ∆future→in-situ as a general improvement relative to future-bench prediction. Note: The increase in difficulty going from in-situ regres-

sion to future-bench prediction is given by ∆in-situ→future =−∆future→in-situ/(1+ ∆future→in-situ). Figures are aggregated over all domains and

inference periods.

Family ψ Histogram H=hEM Spatial Fidelity F Accuracy A Precision P Interval I Goodness G Likelihood L

SK/SGS 0.1186 (-29.3%) 0.5149 (+20.5%) 0.6142 (+17.1%) 0.8840† (+1.84%) 0.6964 – 0.7876 (+10.1%) 0.4731 (+4.50%)

OK/SGS 0.0790 (-29.8%) 0.7175 (+15.0%) 0.9051 (+26.1%) 0.8310 (-4.17%) 0.5924 (-7.55%) 0.8407 (+6.85%) 0.5708 (+11.1%)

GP(G)/CRF 0.0409 (-45.6%) 0.8482 (+10.5%) 0.9666 (+19.5%) 0.8303 (-3.86%) 0.4402 (-23.9%) 0.8546 (+7.17%) 0.5853 (+9.07%)

GP(L)/SGS 0.0382 (-44.7%) 0.8656 (+5.16%) 0.9723 (+19.6%) 0.8109 (-4.71%) 0.4445 (-28.0%) 0.8487 (+6.12%) 0.5954 (+9.60%)

† Conditional on having an accurate model. Computed using only 61% of the samples in the case of SK.

accepted with p-values of 0.0012 and 0.0137. This suggests GP(L)/SGS has a slightly better accuracy and likelihood scores

than GP(G)/CRF at a significance level of 0.05 when the confidence intervals in Table S.7 are taken into account.

5.3.1 Effects of simulation

The issue of how sequential or CRF simulation affects the predictive performance of probabilistic models has received lit-

tle attention in geoscientific literature. This section seeks to provide some answers by asking whether SGS/CRF simulation670

actually improves the base models and in what way. Table 15 shows the sample-weighted performance statistics for future-

bench prediction across all domains and inference periods. First, the accuracy of predictive distributions is examined to infer

the convergence behaviour of SGS and CRF. The abrupt improvement from A<0.17(s=4) to A>0.85(s=8) shows that

approximately eight simulation runs is required to produce valid predictions. This can be verified by inspecting the absolute

synchronicity columns which show the lower and upper quartiles, |S|.25 and |S|.75, start exceeding 0.25 and 0.75 respectively675

when s≥ 8. The goodness measure (G) achieves its maximum when s=8 whereas the likelihood (L) keeps increasing and

attains a value superior to the base model after s=32 iterations. This suggests a reasonable number of simulations to choose is

between s=8 and s=64. For both GP-CRF and GP-SGS, the accuracy, precision and goodness statistics are comparable to the

GP(G) and GP(L) base models after s= 32 simulation runs. Hence, GP(L) and GP(G) both generate competent probabilistic

predictions. The main reason for preferencing GP-SGS or GP-CRF is that their mean predictions achieve higher spatial fidelity680

than their corresponding base model, as evident from the F column.

6 Discussion

Two take-home messages stem from this work. First, systematic evaluation is crucial for understanding the uncertainty and

predictive performance of probabilistic models. Too often, practitioners focus only on global accuracy, neglecting aspects such

as uncertainty and local correlation (or vice-versa). This can lead to an incomplete and sometimes flawed understanding of685

the strengths and deficiencies of models. To address this imbalance, this work advocates a comprehensive approach known
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Table 15. Sample-weighted performance statistics for future-bench prediction

Histogram Spatial Fidelity Abs. Synchronicity Likelihood Accuracy Precision Goodness Interval

Model hJS F |S|.25 |S|.75 L Aξ=.05 P G I

GP(G)_nst 0.1260 0.4856 0.3930 0.8229 0.5892 0.9585 0.8111 0.8954 0.4675

GP(G)_CRF_from_2 0.0557 0.8617 0.0009 0.5166 0.2795 0.0047 0.9999 0.5578 0.5170

GP(G)_CRF_from_4 0.0658 0.7424 0.1343 0.7035 0.4317 0.1440 0.9983 0.8605 0.5508

GP(G)_CRF_from_8 0.0796 0.6740 0.2748 0.7643 0.5138 0.8532 0.9481 0.9498 0.5693

GP(G)_CRF_from_16 0.0904 0.6303 0.3495 0.7948 0.5608 0.9606 0.8708 0.9280 0.5658

GP(G)_CRF_from_32 0.0990 0.6063 0.3931 0.8111 0.5866 0.9768 0.8211 0.9053 0.5687

GP(G)_CRF_from_64 0.1052 0.5851 0.4170 0.8208 0.6020 0.9800 0.7909 0.8908 0.5631

GP(G)_CRF_from_128 0.1094 0.5745 0.4297 0.8257 0.6103 0.9803 0.7748 0.8831 0.5615

GP(L)_nst 0.0896 0.6368 0.3935 0.8273 0.5933 0.9618 0.8032 0.8918 0.4748

GP(L)_SGS_from_2 0.0576 0.8247 0.0012 0.5177 0.2811 0.0036 0.9999 0.5611 0.5814

GP(L)_SGS_from_4 0.0579 0.8499 0.1504 0.7001 0.4369 0.1680 0.9980 0.8705 0.6202

GP(L)_SGS_from_8 0.0606 0.8354 0.2909 0.7622 0.5208 0.8662 0.9382 0.9490 0.6323

GP(L)_SGS_from_16 0.0687 0.8105 0.3651 0.7915 0.5665 0.9533 0.8596 0.9226 0.6372

GP(L)_SGS_from_32 0.0732 0.7924 0.4065 0.8066 0.5914 0.9653 0.8116 0.9006 0.6404

GP(L)_SGS_from_64 0.0793 0.7791 0.4304 0.8137 0.6067 0.9741 0.7820 0.8866 0.6426

GP(L)_SGS_from_128 0.0815 0.7718 0.4454 0.8197 0.6153 0.9781 0.7651 0.8786 0.6417

This represents a cropped version of Table S.8 in the supplementary material.

as FLAGSHIP—an acronym for fidelity, likelihood, accuracy, goodness, synchronicity, histogram, interval and precision—

which assesses the pmf, variogram and uncertainty properties relating to the models. A key benefit with FLAGSHIP is that its

statistical scores are standardised and interpretable. For instance, the Jensen-Shannon and Rudzica histogram distances are both

bounded between 0 and 1 and have information- and set-theoretic interpretations. This makes it possible to compute averages690

for these quantities, and others such as the fidelity (F ) and likelihood (L) scores, meaningfully across geological domains,

inference periods and in a variety of settings. More importantly, it facilitates comparison across commodities and mine sites.

The interpretation of the FLAGSHIP statistics is universal and independent of geochemistry. In contrast, conventional measures

such as MSE can vary considerably depending on the location and target attribute; it does not have a clear meaning standing

on its own. As a case in point, the concentration of copper and molybdenum are measured in units of wt% and ppm which are695

incompatible, so their MSE cannot be pooled together.4 However, using the L score, sensible comparisons can be made. This

is also the reason for incorporating σY normalisation in our definition of interval tightness in (32).

The second point is that FLAGSHIP enables significance testing via large-scale model evaluation, and allows modelling

performance to be contextualised. For a well-balanced study, a sufficiently large dataset with varied characteristics (such as

distribution diversity) should be used where possible to minimise selection bias and present challenges to the models. A well700

recognised problem in the mining industry is that model evaluation takes tremendous time and effort. One novel aspect of

4When the statistical scores for two sets of observations are not on equal footing, it is possible for one to dominant and masquerade changes (improvement

or deterioration) in the other.
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this work is the conversion of the variogram from a visual diagnostic tool into a quantitative measure of spatial fidelity. When

hypothesis testing is applied to the FLAGSHIP measures, users can establish if there are statistical differences between the

models and quantify these differences using confidence intervals as seen in Sec. 5.2.7–5.2.8. Model performance is often re-

ported without much thoughts on how demanding the problem or data is. This is especially true for future-bench prediction,705

where there are no protocols or standardised measures for articulating how challenging the geology or modelling task is. This

opacity is a source of frustration, as it is difficult to assess whether a promising approach would be efficacious in a different

situation without some benchmark. In Sec. 5.3, we have shown that it is possible to quantify the decline in model performance,

or infer the increase in difficulty, moving from in-situ regression (interpolation) to future-bench prediction (extrapolation). Col-

lectively, these could form the basis of one or more objective measures to help communicate geological modelling difficulties,710

and by extension, draw attention to challenging areas with a view of deploying additional drilling, sensing or adaptive sam-

pling to reduce uncertainty and optimise mining operations in an intelligent, automated and cost effective way (Leung et al.,

2023a). In particular, the synchronicity score can generate local distortion maps for probabilistic predictions as demonstrated

in Sec. 5.1.6.

6.1 Recommendations715

A number of guidelines have been devised based on the findings of this study. These recommendations, collectively referred as

EUP3M, are collated in Table 16. EUP3M outlines what the authors would consider as current best practice in evaluating the

uncertainty and predictive performance of probabilistic models.
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Table 16. EUP3M recommendations for evaluating the uncertainty and predictive performance of probabilistic models

Material Select a sufficiently large dataset with target attribute diversity to minimise selection bias and challenge the

models.

§4.2

Design Experiments should reflect observational and modelling constraints in practice. For instance, the data avail-

able in each inference period defines the scope of our regression/prediction tasks in a manner that it emulates

staged data acquisition and progression of mining activities in a real mine.

§4.3

Measures Compute the FLAGSHIP statistics to investigate the global accuracy, local correlation and uncertainty-

based properties of the models relative to the groundtruth. [FLAGSHIP encompasses the spatial fidelity,

likelihood, predictive distribution accuracy, goodness, synchronicity, histogram distance, interval tightness

and precision scores as defined in (16)–(32)]

§3.1–3.3.6

Analysis Perform one or more of the following according to needs

(a) Compute summary statistics to assess group performance: e.g., aggregate values by model family,

average over domains or time periods (see Tables 7–12)

§5.2.1–5.2.6

(b) Observe general trends and variation in individual models: Perform large-scale simultaneous com-

parison across models and conditions using image-based views of the relevant statistics to identify

instances where models may have underperformed (see Fig. 22,23)

§5.2

(c) Establish statistical significance and confidence interval: e.g., perform hypothesis testing using t-

tests and interpret the results using p-values;

§5.2.7–5.2.8

(d) Contextualise model performance: e.g., compare in-situ regression with future-bench prediction

to articulate the difficulty of extrapolation relative to interpolation. Pairwise comparison can also

reveal the benefits of modelling with additional data.

§5.3

7 Conclusions

Although this paper began with a description of geostatistical models, its core contribution and objectives remain firmly on720

developing measures and novel ways for assessing and comparing the predictive performance of probabilistic models with

observational data. Section 2 reviewed the theories that underpin Gaussian Process and Kriging regression and outlined the

procedures for Sequential Gaussian and Cholesky Random Field Simulations (SGS and CRF). Section 3 examined three cate-

gories of geostatistics which comprises: a) histogram measures that reflect the global accuracy in the mean estimates, such as

the probabilistic symmetric χ2, Jensen-Shannon, Ruzicka and Wasserstein distances; b) variogram measures that target spa-725

tial correlation and local variability in the model predicted mean; c) uncertainty-based measures that assess the performance

of probabilistic models using both the mean and standard deviation estimates, µ̂(x∗) and σ̂(x∗), and groundtruth or actual

grade, µ0(x∗). An example was presented using synthetic data to develop the basic intuition, before the measures were applied

to real models and data obtained from a porphyry copper deposit. Section 4 described the geological setting, data attributes,

general considerations and implementation of the experiments. It explained the importance of having diversity in the data, and730

distinction between future-bench prediction and in-situ regression. Section 5 provided in-depth analysis, focusing initially on
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the efficacy of the histogram, variogram and uncertainty measures in two domains within one inference period. Its scope was

subsequently expanded to encompass the entire dataset—this includes up to 11 domains and 12 inference periods—to eliminate

selection bias and ensure the results would be fair, representative, and statistically significant.

The proposed measures and analytic approach provided insights and clarity. One observation in relation to histogram dis-735

tance, H , is that the JS divergence, Ruzicka and p.s.χ2 distances are sensitive to discretisation. They may give the false

impression that a model is underperforming when few inference points are involved. This confounding effect can be sup-

pressed by using the Wasserstein distance, since it does not involve quantisation and can be computed directly from order

statistics. Another benefit of viewing the H statistics as an image is that it focuses attention on difficult cases. Targeted inves-

tigation subsequently revealed that instances of poor predictive performance (see light blue pixels in Fig. 22) can generally be740

explained by a significant mismatch between the training data and groundtruth grade distribution, or insufficient training data

for certain domains/periods in this study. In terms of insights, inspection of the variogram curves and automatic determination

of variogram ratios had uncovered a general trend, viz., GP-SGS produces results with higher spatial fidelity, F , than the GP(L)

base model. This finding indicates that while GP(L) can model a random process with non-stationary mean using samples in

the local neighbourhood of the inference points, it does not adequately capture mid-range or long-range spatial correlation; so745

it benefits from sequential simulation which propagates mid-to-long range conditional dependence according to the chain rule

in (13).

The lessons pertaining to the uncertainty measures are that Deutsch’s accuracy, A, is useful for indicating SGS/CRF conver-

gence whilst P , G and I convey the conditional precision, goodness and tightness of the model predictive distributions. The

synchronicity measure, S, was described in connection with the concept of p-probability intervals which is used to judge the750

performance of probabilistic models. The goodness criterion is whether the groundtruth containment intervals live up to expec-

tation, that is, how close the observed proportions, κ̄(p), are to the expected proportions, p. The proposed likelihood measure,

L, while related to G, is more discerning as it is a decreasing function of the Z score, (µ̂−µ0)/σ̂. An important reason for

computing the synchronicity, S, from which the likelihood is derived, is that it can be rendered as a distortion map to identify

areas where overestimation or underestimation had occurred. Collectively, the FLAGSHIP statistics provide a standardised755

approach that is amenable to large-scale simultaneous comparisons between many models. Unlike other measures such as the

RMSE, these statistics can be aggregated/averaged meaningfully across spatial and temporal domains, or even compared be-

tween different target variables (such as copper and molybdenum). For significance testing, t-tests were applied to establish the

superiority of the GP-SGS and GP-CRF models relative to simple and ordinary kriging and their SGS counterparts based on

the FLAGSHIP statistics. Finally, the performance gap of future-bench prediction (extrapolation) relative to in-situ regression760

(interpolation) was quantified to contextualise the increased difficulty of the inference task. In summary, this work described

a systematic approach for evaluating the uncertainty and predictive performance of univariate probabilistic models using the

FLAGSHIP statistics. This culminated in a set of recommendations (see Table 16) for assessing, comparing and validating

probabilistic models to serve a range of needs including standardisation.
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Code and data availability. An open-source implementation of the algorithms described in this article is available from765

https://github.com/acfr/eup3m (Leung and Lowe, 2024) and archived in https://doi.org/10.5281/zenodo.14533140.

The eup3m.git repository provides anonymised test data, Python code for model construction and statistical analysis, a bash script to repli-

cate the experiments and a Jupyter notebook to reproduce key figures. These are further described in Sec. 4.4 and in the README.md file.
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