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Abstract. Near-surface seismic reflection surveys can produce high-resolution geological structural images for engineering
and hydrological investigations. To help delineate shallow subsurface complex geological structures in a karst area and to
better understand limestone cave formation, a high-resolution 2D seismic reflection profile was acquired and processed in
the urban area of Shenzhen, China. The stacked images detail subsurface structures down to depths of 80-90 m, including a

concave shaped reflection_that curves upwards, two thrusts and one normal fault, as well as a hard rock basement reflection

at the southern end of the profile which could not be mapped by borehole investigations due to the limited drilling depth. Our

interpretations correlate well with borehole data and synthetic modeling_simulated by the 2D elastic wave equation.

Limestone caves are mainly found along faults and near rivers in this area. [The results provide new insight on the formation

mechanism and distribution of the karst caves. Movement along faults and erosion generated fractures and fissures in the

limestone provide channels for rainwater and groundwater to circulate. These waters, rich in carbonic acid, dissolve minerals

in the limestone, resulting in the formation of underground cavities. These results provide new insight in understanding the

formation mechanism and distribution of karst and karst caves
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1 Introduction

Karst landscapes, characterized by their unique geological formations shaped by dissolution of soluble rocks, such as
limestone and dolomite, are renowned for their beauty and ecological significance. However, beneath the surface hidden

dangers are present. Karst hazards pose challenges for various industries, particularly those dependent on stable ground

conditions, such as construction, agriculture, and infrastructure development (Chen, et al., 2019; Medici, et al., 2024). Losses

due to the fast-acting nature of karst encounters can be direct (e.g., human casualties and damage to property), indirect (e.g.,
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interruption to businesses, transport infrastructure and communication networks) or intangible, especially if they occur in
areas of high population density (Galve et al., 2012; Bobrowsky, 2013; Intrieri et al., 2015; Sevil et al., 2017; Pazzi et al.,
2018).

In southeast China, buried karst, with high fissure water content, high permeability and variable shapes, is widely distributed
(Cui et al., 2015). Shenzhen, a world-scale metropolis, located in the southern part of the Guangdong province (Fig. 1a), has
significant areas of Carboniferous rock distributed in the Longgang, Pingshan and Dapeng districts where karst features are a
hazard. During metro, railway and building construction, karst and karst caves at depths from 2 m to 50 m are found in
dolomite, dolomitic limestone, dolomitic marble, marble, crystalline limestone and breccia limestone (Li et al., 2011; He et
al., 2020). Its presence challenges the construction of tunnels and use of shield tunneling machines. For example, the
disturbance produced by a shield tunneling machine may induce the ceiling of a karst cave to collapse, with water present in
the cave damaging the machine and constructed tunnel. Furthermore, diaphragm wall collapse, water or mud ingression,
ground collapse and long-term instability are often encountered in karst regions (Cui et al., 2015). Currently, many direct and

indirect techniques to detect buried karst and karst caves have been proposed (Lolcama et al., 2002; Hoover, 2003;

Kaufmann and Romanov, 2009; Kaufmann, 2014; Samyn et al., 2014; Putiska et al., 2014; Kaufmann and Romanov, 2016;

Sevil et al., 2017; Pazzi et al., 2018; Hussain et al., 2020; Wang et al., 2020; Muzirafuti et al., 2020;, Stan-Kteczek et al.,

2022; Yordkayhun et al., 2022; Liu et al., 2023). Among the direct methods, drilling and electric cone penetration tests are
the most common and useful. On the other hand, indirect techniques can be employed to delineate subsurface karst size and
distribution and extrapolate borehole data to a wider area. Geophysical techniques based on a physical contrast between a
cave and the surrounding rocks provide an economical and non-invasive alternative, or complement, for mapping geological
structures, and are often used in attempts to detect the presence of karst caves and voids below the surface. Methods include
seismic reflection/refraction, multichannel analysis of surface waves (MASW), the H/V spectral ratio method, electrical

resistivity tomography (ERT), induced polarization (IP), self-potential (SP), ground penetrating radar (GPR) and micro-

gravity. In recent years, with a focus on improving resolution, efficiency, and cost-effectiveness (Juhlin et al., 2000;

Martinez et al., 2011; Brodic et al., 2015;,Yilmaz, 2021; Sun et al., 2022; Pertuz and Malehmir, 2023), the high-resolution |

seismic reflection method for shallow exploration and imaging of local subsurface heterogeneities has emerged as a powerful
technique to identify and map near surface geological structures with good precision and depth penetration.

Jn this study, we delineate the near surface geological structures in a karst area with high-density and -resolution seismic

reflection data to carry out the research specific objectives as follows; 1) Testing of the reflection seismic method over karst

terrain; i) Comparison of reflection seismic results with geotechnical drilling; 1iii) Integration of physical properties of

samples with reflection seismic modeling; and iv) Delineating shallow subsurface complex geological structures in a karst

area and understanding limestone cave formation better. Our seismic results are correlated with borehole data, and, synthetic

modeling simulated by the 2D elastic wave equation, The seismic reflection images provide new insight in understanding the

formation mechanism and distribution of karst and karst caves.
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2 Geological setting and physical properties

Geologically, Shenzhen is located in the South China Block southwest of the Zhenghe-Dapu fault (Fig. 1a). Multi-stage,

complex formation of folds and faults and intensive metamorphism took place in the pre-Caledonian, Caledonian, and

Hercynian to Indosinian orogenies (Cui et al., 2015) with the area having undergone a complex tectonic evolution from

assembly to break-up to re-assembly (Shu et al., 2014), The early activity ,along the Zhenghe-Dapu fault zone is ductile

shear, and the middle and late stages are thrusting, andwith a mid-development detachment. The conspicuous Lianhuashan

fault zone in Shenzhen is interpreted as the southern extension of the lithosphere-scale Zhenghe-Dapu fault zone, considered
as the boundary between the late Mesozoic Coastal terrane and the early Paleozoic Wuyi-Yunkai orogen (Li et al., 2020).
The sedimentary units affected by the Lianhuashan fault zone include Paleozoic and Early to Middle Jurassic rocks. Due to
significant magmatic activity, granite and igneous rocks that formed during the Yanshanian period are the dominant rock
type. The Yanshanian orogeny involved tectonic movement that mainly included block orogeny and the development of
deep faults and wide folds, along with significant intrusions of granitic magma, massive acidic volcanic eruptions, and

magmatism-related mineralization (Li et al., 2020),
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On a local scale (Fig. 1b), the Paleozoic sequence comprises Silurian-Carboniferous sandstone, shale, slate, limestone,
siltstone, gritstone and coal seams (Shenzhen Geology, 2009), that are distributed along the NE-striking and NW-dipping
Paotaishan-Hengtougang transpressional fault (PHF) and the Shijingling-Huangzhukeng transpressional fault (SHF). The

Lower Carboniferous comprises two units, the Shidengzi formation (Cysl) and the Ceshui formation (Cic'). C;s' is buried

under the Ceshui formation and not exposed in the area. There are shallow marine facies carbonate rocks, consisting, of gray

and dark gray crystalline limestone which mostly have been metamorphosed into off-white marble and dolomitic marble

with a thickness of more than 340 meters. Cic! contains, coastal facies carbonaceous clastic rocks, composed of argillaceous

shale, siltstone, fine sandstone, etc., with a thickness of more than 1200 meters. Holocene alluviums and flood plain deposits

affected by the PHF and SHF consist of gravel, silty sand, sandy clay, silty clay and other unconsolidated deposits. Medium-
grained granites are present northwest of the study area with U-Pb zircon crystallization ages of about 108 Ma (Shenzhen

Geology, 2009). The seismic survey line is located on, Holocene flood plain deposits unit, as shown by the red rectangular

area in Figure 1b.
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Figure 2: Borehole lithology and representative core photos. (a) Borehole section consists of 19 boreholes down to a maximum

ore box images from BH62 borehole, 0-6.9m, fill soil;

depth of 70 m, located about 20 m away from the seismic survey line. (b
6.9-27.3m, silty clay; 27.3-70.3m, weathered shale, some weathered into clay and some are still hard rocks.

Jhe geological section s based upon, 19 engineering geology boreholes that provide more detailed information on lithology

down to 70 m (Fig. 2). There are six main geological units from the top to the bottom of the section, including fill soil, sand,
silty clay, weathered sandstone and shale, and limestone. Limestone caves were found in boreholes BH52 and in BH56 to
BHS59 in the vicinity of the interface between weathered shale and limestone. The fill soil has a relatively constant thickness
of ¢. 10 m in all boreholes. The thickness of the sand layer increases from north to south, however, weathered shale shows
the opposite trend. Weathered sandstone is only present from BH46 to BHS51. Limestone is present from BH46 to BH59 and
absent from BH60 to BH64. Thickness variations of the different sedimentary deposits in the horizontal direction suggest

that multi-stage tectonic events occurred in this area. The top of the weathered shale has a concave upward shape between

BHS53 to BH57. Based on borehole sampling, the groundwater table is present at the top of the sand layer. Due to the
different compositions of the inner shale, differential weathering is suggested to have occurred at the southern end as

indicated in BH60, and shown inFigure 2b, a potential source for seismic reflections.

LCompressional and shear velocity data were acquired by velocity logging and density data obtained by volumetric cylinder

method in the labusing samples from vicinity, of study area. These measurements, provide information on the physical |

properties of the subsurface soils and rocks (Table 1), and can help identify where reflection impedance changes may be

located. Fill soil with_a density of 1550 kg/m?® has the lowest density and limestone with 2650 kg/m? has the highest value

the density of sand with gravel is a somewhat higher than silty clay and other weathered rocks. Compressional and shear |
velocities have similar variational trends, however, compressional velocity is 3-4 times faster than shear velocity. Limestone
compressional velocity is up to 3125 m/s; sand with gravel and silty clay have the lowest compressional velocity.

Unconsolidated soils including fill soil, sand with gravel and silty clay have the highest ratio of compressional to, shear

velocity, and the ratio of compressional and shear velocity of weather rocks is higher than limestone. A four-layer seismic

reflection model is suggested in this area based on the velocity and density data. The first layer consists of fill soil; the

second is made up of gravel and silty clay; the third is completely and strongly weathered rocks, including sandstone and

shale; the fourth is limestone.

Table 1: Compressional velocity (Vp), shear velocity (Vs) and density of soil and rock collected from the adjacent area, Vp and Vs
from logging velocity and density from geotechnical testing of borehole samples.

Lithology Density(kg/m?*) Vs (m/s) Vp (m/s) Vp/Vs “
JFill soil 1550 283 1157 4.09 %‘

sand with gravel 2040 212 891 420 ?

silty clay 1940 215 944 4.39 “ﬁ

sandstone, completely weathered 1870 428 1434 3.35 ‘.
i
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sandstone, strongly weathered 1890 587 1810 3.08
shale, strongly weathered 1960 482 1532 3.18
Jlimestone, moderately weathered 2650 1360 3092 2.27

o

3 Data acquisition and geometry

High-resolution seismic data were acquired in November 2022 in the Pingshan district of Shenzhen, southeast China (Fig. 1).
The survey line is located along Longping Road and lies between light rail transit line 1 and the Ciao river (Fig. 3a, c¢). The

surface topography from south to north varies smoothly with, an elevation difference of about 2 m. The geological section

from the 19 boreholes allows a comparison with the seismic results, however, they were drilled at an elevation c. 5 m higher
than the seismic survey line (Fig. 3c) and 20 m offset from it. A 5 kg sledgehammer with a 4 cm thick metal plate was used
as the seismic source along with 5 Hz SmartSolo 3C nodal units for recording. The seismic data were acquired using five
segments. Every segment consisted of 148 units with a fixed geometry of 1 m receiver spacing and 2 m source spacing with
74 units overlapping (Fig. 3b). The total length of the survey line is 417 m. A sampling rate of 1 ms was used and 1000 ms
of data were retrieved from the nodes for each source point. Table 2 shows the seismic acquisition parameters. Three raw
shot gathers recorded at different locations along the survey line show some of the characteristics of the seismic wavefield
(Fig. 4). Direct waves, surface waves, reflections and air waves are present in all gathers. Reflections dominate in the time

window of 50-150 ms, shallower reflections are masked by surface waves, air waves and direct waves at the near offsets.
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Figure 3: (a) Locations of receivers (cyan triangles), shots (red stars) and boreholes (green dots), (b) Geometry of the seismic
acquisition profile, receiver spacing 1 m, shot spacing 2 m, separated into five segments, each segment consisted of 148 fixed units
with 74 units overlapping, (c) Field work photo of the seismic survey line (cyan line) and geological section consisting of 19
boreholes (red line), the geological section is 5 m higher than the seismic survey line (the aerial image from Google Maps).
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Table 2: Acquisition parameters for the high-density and -resolution seismic data in the municipality of Shenzhen, southeast,China. ‘

Attribute Parameters
Recording system Smart Solo
Receiver IGU-16HR 3C, 5Hz
Source 5 kg sledgehammer
Receiver interval Im
Shot interval 2m
CMP interval I m
Sampling rate 1 ms
Recording length ls
Minimum offset Om
Maximum offset 147 m
Survey geometry Asymmetric split spread, roll-along
Number of receivers 417
Number of shots 209
A
— N
a) - Reoeiver‘ial;ocation b) Receivers Location C) - Reoeivel;saoi;ocation -
0 o
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Figure 4: Three typical shot gathers from different locations along the seismic survey line: (a) located in the south (shot No. 968),
center (shot No. 1214) and north (shot No. 1374). Reflections from the time window of 50-150 ms are notable, shallower reflections
are masked by surface waves, air waves and direct waves at the near offsets, F, S, R and A represent first breaks, surface waves,
reflections and air waves, respectivelyy
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4 Data processing

Data processing followed a standard workflow to improve the signal-to-noise ratio and resolution after stacking vertically
repeated shot records (twice at each shot location). Tomographic refraction statics were applied to account for traveltime
variations in the very near surface, while band-pass filtering, spectral equalization and linear noise suppression were applied

to remove different types of noise, including air waves, surface waves and coherent noise with low frequency. An iterative
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velocity analysis was performed to obtain the best velocity model and continuity of reflections. The continuity was improved

155| further through surface-consistent residual static corrections. After stacking, band-pass filtering and f-x domain B
) ) ) o ) ‘ TMBR[F ENME]: Post-migration were applied to move dipp (-
deconvolution were used to further reduce random noise and enhance the coherency of reflections. A finite difference time

migration routine was used to move dipping reflectors to their true subsurface positions and collapse diffractions after ‘ MHIBR[EERE (2]): (Fig. 9)

stacking. Finally, time to depth conversion with the smoothed NMO velocity field was performed to obtain an approximate ‘ WIS [0 [20): of

depth model and to help in interpreting geological structures, Processing steps and parameters are shown in Table 3, while

160| two important steps are discussed in detail below. ‘ PR R ESHE 21 AR

BB R UE S 20): AR R

Table 3: Processing workflow and parameters for the high-density and -resolution seismic data in the municipality of Shenzhen,

southeast, China. RERUESNE (20): A R
Step Processing workflow BB MR (201 R SR
A Data input, read SEGD format data from the tape and convert it to SEGY format ‘ L SNER S A T
2 Merged data
] EME[2]): JER B EIR
3 Trace edits, kill noisy traces ‘ BT A (20 AR5 s
4 Geometry, add shots and receivers coordinate and calculate CMP binning 1 m ‘ WEKRITEE 20 EREER
5 First breaks, automatic and manual picking i B B
_ BB MR (201 FFRH SR
b Tomography statics
7 Band-pass filter, 50-60-180-220 Hz RERE SN (20): R
S Spectral equalization, 50-80-200-220 Hz ‘ A ENEE R A T
9 Median filter, airwaves 340 m/s, surface waves 250 m/s, linear noise 600 m/s
L o . Zx i B o
J0 Surgical muting, surgical top mute above first breaks ‘ LA [21]: AR R
J1 Ist Velocity analysis, 0 ms-500 m/s, 2000ms-4000 m/s ‘ BB R ERE 21 R ER
A2 Residual statics »
BB RUE S [20): AR R
A3 2nd Velocity analysis, 0 ms-1000 m/s, 200ms-2000 m/s
J4 Automatic gain control, 150ms ‘ wEMAEEE 2] EREER
0
= NMO, 70% stretch R HRLE R 21 e
g6 Stack
: e . S —
17 Band-pass filter, 60-80-180-200 Hz | BLELHE AR (20 AR Bon
18 F-X deconvolution RS 20 TSR
A9 Migration
: . . . BB AIEERE 20 R
20 Time to depth conversion, velocity field from smoothed NMO velocity model
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4.1 Noise attenuation

BE AR A E S (21 ERE R

165 Raw shot gather recordings are dominated by low frequency and strong amplitude noise, such as surface waves and coherent
noise. A typical power spectrum shows that the data contain frequencies in the range 5-440 Hz (Fig. 5a). To suppress the low
frequencies and strong amplitude noise, a band-pass filter with corner frequencies of 50-80-180-220 Hz was applied to the

raw data after carrying out different frequency ranges tests (Fig. 5b). Direct waves, refractions, reflections, air waves and

e EAR LS [2]]: FRE R

surface waves are recognized with apparent velocities of approximately 1000 m/s, 1800 m/s, 2200 m/s, 340 m/s and 220 m/s,

170  separately. After band-pass filtering, a spectrum equalization process, was used to further reduce noise and enhance the

MR T E M [21: filter
weaker amplitude signals. Compared with Fig. Sb, two sets of reflections are notable in Fig. 5S¢ and marked with arrows.

BEE AR A ESHE (2] FREER

Finally, the air waves, surface waves and other linear noise were attenuated by median filters at velocities of 340 m/s, 250

m/s and 600 m/s, respectively. Reflections are now clearly observed in Fig. 5d.
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175 Figure 5: Noise attenuation processing steps for the No. 964 shot gather. (a) Raw shot gather and its power spectrum; (b) after a
band-pass filter (50-80-180-220 Hz), typical apparent velocities for direct waves, refractions, reflections, air waves and surface
waves are about 1000 m/s, 1800 m/s, 2200 m/s, 340 m/s and 220 m/s, respectively; (c) after spectrum equalization, (50-60-200-
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4.2 First break traveltime tomography

First break picking and traveltime tomography were performed to correct for the seismic wave traveltime delays in the very
near surface low velocity zone and build a P-wave velocity model. Based on the picked first breaks, a two-layer model was
chosen as the initial velocity model, with apparent velocities of about 700 m/s and 1650 m/s (Fig. 6a). The ray density plot
shows an even distribution in most regions except at about 100-240 m along the profile and at elevations of 20-28 m (Fig.
6b). Root-mean-square errors are approximately 2.4 ms after the fifth iteration (Fig. 6¢), indicating a stable result has been
attained. The inverted velocity model suggests a two-layer structure over the depth of investigation, the top one with low P-
wave velocity is consistent with the fill soil layer, the bottom one with a high P-wave velocity may be correlated to the sand-

silty clay layer (Fig. 6d).
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Figure 6: Traveltime tomography for first breaks. (a) First break traveltimes for all shots, a two-layer model with apparent
velocities of 681 m/s and 1667 m/s was taken as the initial velocity model; (b) Ray density model of 20-36 m above sea level; (c)
Root mean square (RMS) errors for different iterations; (d) Inverted P-wave model, the black dashed lines represent no rays in
the area and velocity is interpolated below it.
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5 Synthetic modeling

Synthetic modeling was carried out using the 2D elastic wave equation. A four-layer model (Fig. 7a) with fill soil (Layer 1),

sand and silty clay (Layer 2), weathered shale (Layer 3) and limestone (Layer 4) was used to simulate the subsurface

geological structures. The model parameters for the compressional velocity, shear velocity and density are based on the

values in Table 1 and first break velocities of the compressional and shear waves using the vertical and radial components.

The model length is the same as for the real data and the depth is to set to 300 m to mitigate reflections from the bottom of
the model. A Ricker wavelet with a central frequency of 70 Hz was used as a source. In order to be consistent with the field

data, the geometry and recording parameters were identical with Figure 3b and Table 2.

Figure 7b shows one synthetic shot gather, which has the same location as the real gather in Figure 5a-d. The R3 reflection is

generated from the top of the limestone and matches well the real data gather. Reverse time migration was applied using the

CREWES Matlab Toolbox after stack (Fig. 7c). The reflections from the top of sand and silty clay (R1), weathered shale (R2)
and limestone (R3) are clearly visible. The result also suggests the presence of a concave shaped structure consistent with the

borehole section (Fig. 2a) and real data (Fig. 8). At a distance 0-100 m along the profile and a time of ¢. 100 ms, a strong

amplitude reflection indicates the limestone which is not mapped by the borehole data due to the limited borehole depth.

This reflection is clear in the real data and provides added constraints on the geological structure of the area (Fig. 8).

A4

12

T [ RS

&

Depth (m)

Time (ms)

0 50 100

Horizontal Distance
150 200 250

vo.= 1000 m/s vs = 200 m/s dersity= 1
vp = 1600 m/s vs = 264 m/s density= 1

100

150

100 1€



210

215

— N
Receivers Location
400 b) 964 983 1003 1023 1043 1063 1083 1103

Horizontal Distance (m)
a) 0 50 100 150 200 250

300 350
= 1000 m/s vs = 200 m/s _degsity= 1.55 gf‘cm ayer 1

Time(ms)

oncave structure

0 50 100 150 200 250 300 350 400
Horizontal Distance (m)

Figure 7. Synthetic model and results. (a) the model of P-wave, S-wave and density based on borehole data and field raw data,
Layer 1, Layer 2, Layer 3 and Layer 4 represent fill soil, sand and silty clay, weathered shale and limestone, respectively, and can
be correlated with borehole data. (b) Synthetic shot gather at shot No. 964, the same location as Fig. 5a - d. (¢) Post-stack time

migration section.
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Figure 8: Seismic reflection migrated image overlaid with the time converted tomography result, an apparent discontinuity of
reflections and velocity at horizontal distance 220 m is observed. R1 and R2 represent reflections from the top and bottom of the
sand and silty clay layer, respectively; R3 originates from the top of the limestone. At horizontal distance 220 m and time 75 ms, a

concave shaped structure exists that correlates with the borehole section.
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6 Results and discussion

6.1 Reflection characteristics from the migrated seismic section

Reflection seismic processing steps focused on removing random and coherent noise and imaging high-frequency reflections
in order to resolve the near-surface geological structure. The seismic tomography image suggests that the uppermost
reflection horizon on the real data can be interpreted as the fill soil — sand and silty clay interface (Fig. 8). Furthermore, the
physical property sample analyses indicated that three seismic interfaces can be mapped in the area and we interpret our
seismic section accordingly. In addition to the top of the sand and silty clay unit (R1) two other sets of reflections are imaged
down to a depths of 80-90 m. These, labeled R2 and R3, represent reflections from the weathered shale and the bedrock
interface, consistent with the borehole data and synthetic modeling. Between R2 and R3, some reflections are produced by
clay from the weathered and unweathered shale, as shown in Fig. 2b. The R1 reflection is distorted at a distance of 220 m.
When compared to the near surface velocity model from first break tomography (Fig. 8), there is also a variation in velocity
at this location. This suggests that the thickness of fill soil varies due to paleotopography or fault slipping. However, it is not
possible at present to determine which factor is correct. We have interpreted three faults in the middle part of the seismic
section, F1, F2 and F3 (Fig. 9). Seismic reflections show apparent offset at the locations of these suggested faults and
together they form the upward concave structure seen in the seismic image, as well as in the seismic modeling. The locations

also correlate with where karst caves are found in the borehole section. If correctly interpreted as faults, this indicates a

connection between the karst caves and faulting in this area.
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Figure 9. Geological interpretation of the depth converted seismic reflection section. Four-layer model as indicated by the seismic
data with fill soil, sand and silty clay, weathered shale and then limestone. Two thrusts and one normal fault are shown and

labeled by F1, F3 and F2, respectively.
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6.2 Formation mechanism and distribution area of karst caves

Karst distributed in the eastern part of Longgang. Pingshan and Dapeng districts, Shenzhen, can be classified as covered

karst with a buried depth of 4-40 m and buried karst with a buried depth of greater than 40 m (He et al., 2020). Buried karst

is developed in dolomitic limestone in the research area. Karst caves unfilled and filled with silty clay were revealed from

the drilling cores of BH52, BH56, BH57, BH58 and BH59 (Fig. 10). The discovery rate of karst caves and the linear karst

rate of boreholes were 26.31% and 1.38%respectively. No sinkholes, and dolines, were developed at the surface. Karst caves

and sinkholes are usually localized along distinct lines situated along the lithological and tectonic discontinuities (Putiska et

al., 2014). A limestone micro-scale cavity readily developed along the fault planes and joints due to weathering and chemical

corrosion (Song et al., 2012). Groundwater flows along discontinuities such as bedding planes, joints, and faults. Preferential

structural deformation along faults or bedding can enhance dissolution during subsequent interaction with groundwater, so

physical rather than chemical properties of some carbonates can control karstification (Lolcama et al., 2002). Previous

studies suggest that at least four stages of regional scale tectonic and magmatic events have taken place in South China (Shu

et al., 2014), forming sets of transpressional fault structures, N to NW dipping (Fig. 1a). As shown in Fig. 9, two thrusts

labeled as F1 and F3 and one normal fault (F2) are suggested to be present, which ynay help in understanding the formation

and distribution of karst caves in this area. Slipping along these faults and erosion generated fractures and fissures in the

limestone probably provided channels for rainwater and groundwater to enter the subsurface from the Ciao river (Fig. 3c).
Carbonic acid in the water dissolved the limestone until it became saturated with carbonate minerals. As saturated
groundwater flowed away from the area, unsaturated underground water flowed in and dissolved further the limestone.
Finally, underground cavities were formed_(Fig. 11a). This may give a reasonable explanation why limestone caves

developed along the faults and near the rivers in the Pingshan district, Shenzhen_(Fig. 11b). however, this needs, to be proved

by further work,
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Figure 10. Core box images from BH57 (a) and BHS9 (b). Karst cave filled with silty clay was developed at depths of 42.8 - 48.8 m

in the borehole BH57 and unfilled at depths of 52 - 55.9 m in the borehole BH59.
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7 Conclusions

A 417 m long high-resolution seismic reflection profile was acquired to image shallow subsurface geological structure in a

karst area. Notably, four layers with fill soil, sand and silty clay, weathered shale and the bedrock are imaged in high

resolution on the stacked seismic section. Also, three small-scale faults are delineated which are closely related to karst caves.

To validate the seismic image, synthetic modeling using the elastic wave equation was conducted to compare with the real

data and help in the geological interpretation. Furthermore, a near surface velocity model from first break tomography,
coincident with a borehole section 20 m away from the seismic line, correlates well with the seismic reflection image and
confirms the reliability of it. Integrating the geology and geophysics results in the delineation of the fine subsurface
geological structure and provides a better understanding of the formation process and spatial distribution of karst caves in the
Pingshan district, Shenzhen. Multi-stage regional scale tectonic and magmatic events produced cracks, fractures and fissures
in the limestone that formed channels where rainwater and groundwater with carbonic acid could circulate and form caves
and voids. This interpretation provides valuable insight into the development of karst caves and the research contributes to

the mitigation of karst hazards.
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