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Abstract.  15 

Accurate seasonal streamflow forecasts are essential for effective decision-making in water management. In a decision-making 

context, it is important to understand the relationship between forecast skill— the accuracy of forecasts against observations – 

and forecast value, which is the forecast’s economic impact assessed by weighing potential mitigation costs against potential 

future losses. This study explores how errors in these probabilistic forecasts can reduce their economic “value”, especially 

during droughts when decision-making is most critical.  This value varies by region and is contextually dependent, which often 20 

limits retrospective insights to specific operational water management systems. Additionally, the value is shaped by the 

intrinsic qualities of the forecasts themselves. To assess this gap, this study examines how forecast skill transforms into value 

for true forecasts (using real-world models) in unmanaged snow-dominated basins that supply flows to downstream managed 

systems. We measure forecast skill using quantile loss and quantify forecast value through the Potential Economic Value 

framework. The framework is well-suited for categorical decisions and uses a cost-loss model, where the economic 25 

implications of both correct and incorrect decisions are considered for a set of hypothetical decision-makers. True forecasts 

are included, made with commonly used models within an Ensemble Streamflow Prediction (ESP) framework using a process-

based hydrologic modeling system, WRF-Hydro; a deep learning model, Long Short-term Memory Networks; as well as 

operational forecasts from the NRCS. To better interpret the relationship between skill and value, we compare true forecasts 

with synthetic forecasts that are created by imposing regular error structures on observed streamflow volumes. We assess the 30 

sensitivity of skill and value from both synthetic and true forecasts by modifying fundamental properties of the forecast - error 

in mean and change in variability. Our findings indicate that error in mean and change in variability consistently explain 

variations in forecast skill for true forecasts. However, these errors do not fully explain the variations in forecast value across 
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the basins, primarily due to irregular error structures, which impact categorical measures such as hit and false alarm rates, 

causing high forecast skill to not necessarily result in high forecast value. We identify two key insights: first, hit and false 35 

alarm rates effectively capture variability in forecast value rather than error in mean and change in variability; second, the 

relationship between forecast skill and value shifts monotonically with drought severity. These findings emphasize the need 

for a deeper understanding of how forecast performance metrics relate to both skill and value, highlighting the complexities in 

assessing the effectiveness of forecasting systems. 

1 Introduction 40 

Probabilistic seasonal streamflow forecasts are essential for informed decision-making in water resource management, 

including flood risk mitigation, agriculture, energy production, and in-stream ecosystem services. These forecasts enable 

stakeholders to plan for optimal water allocation, optimize reservoir operations, and prepare for extreme hydrological events 

like droughts or floods (Wood et al., 2015). However, in an increasingly complex economy with a growing and diverse user 

base, the relationship between forecast skill – the accuracy of the forecast and the forecast value – the forecast’s impact on 45 

decision-making and economic outcomes is far from straightforward (Crochemore et al., 2024). Forecast value is influenced 

by factors such as the cost of taking preventive action (e.g., investing in crop insurance), the potential losses from incorrect 

decisions (e.g., economic losses due to over or under-allocation of water resources), and the context of decision-making (e.g., 

hiring labor for an agricultural entity). This relationship is complex and varies by region, often restricting the retrospective 

insights gained to specific operational systems. As a result, there is limited understanding of the link between skill and value 50 

- especially concerning the quality of forecasting systems. The complexity of forecast value can be framed within simple 

economic models like the cost-loss ratio framework. In this model, decision-makers face a potential loss if an adverse event 

(e.g., a drought) occurs but can take preventive action at a cost to mitigate this loss. Understanding how forecast skill translates 

into forecast value is critical, as it highlights the importance of not only improving the accuracy of forecasts but also 

understanding how skill impacts decision-making outcomes. This study addresses the research question: How do errors in 55 

different forecasting systems affect forecast skill and decision-making value in unmanaged basins, and how can these insights 

guide improvements in forecast systems?   

1.1 Forecast skill of probabilistic seasonal streamflow forecasts has evolved 

Probabilistic seasonal streamflow forecasts estimate the likelihood of different streamflow signatures over a given period, 

using various approaches such as process-based models, data-driven models, historical data, or climate forecasts, or a 60 

combination of these approaches. Probabilistic seasonal streamflow forecasts have become a crucial tool in water resources 

management (Crochemore et al., 2016; Ficchì et al., 2016; Kaune et al., 2020; Turner et al., 2017; Watts et al., 2012), as they 

provide a range of possible outcomes rather than a single deterministic prediction (Demargne et al., 2014). This probabilistic 

approach helps decision-makers quantify forecast uncertainty, enabling more informed and flexible water management 
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strategies (Pagano et al., 2014). For example, the Natural Resources Conservation Services (hereafter “NRCS”) forecasts have 65 

been widely used for water management and agricultural planning (Fleming et al., 2021).  

Ensemble Streamflow Predictions (ESP) is a hydrological forecasting method that generates multiple streamflow simulations 

using historical meteorological data as inputs to a hydrologic model (Day, 1985). Over time, ESPs have significantly evolved 

in predicting water volumes through advances in hydrological modeling, the incorporation of outputs from dynamical 

meteorological and climate models, and the adoption of more sophisticated forecasting methods (Clark et al., 2016; Li et al., 70 

2017). Key developments include better representation of watershed processes in hydrologic models and the use of data 

assimilation techniques (Wood & Lettenmaier, 2006). Furthermore, the application of machine learning algorithms, such as 

the popular Long Short-term Memory (LSTM), has become instrumental in detecting complex patterns in data, leading to even 

greater refinement in forecast accuracy when combined with improved meteorological inputs (Modi et al., 2024; Mosavi et al., 

2018). Among the various methods, the National Water Model (NWM) stands out as a state-of-the-art process-based 75 

forecasting framework, which provides high-resolution operation streamflow forecasts across the CONUS by incorporating 

improved hydrological representation and real-time meteorological data to enhance the forecast skill (Cosgrove et al., 2024). 

However, the model has limitations in certain regions, such as parts of the Intermountain West, where forecast skill remains a 

challenge. This study will test some of these methods, evaluating their effectiveness and applicability across various scenarios 

to provide comprehensive insights into their skill and value.  80 

1.2 Seasonal streamflow forecasts provide economic benefit 

Seasonal streamflow forecasts provide crucial information about water availability, enabling stakeholders such as water 

managers, energy producers, and farmers to make informed decisions about water allocation, crop planning, and reservoir 

operations. These forecasts play a substantial role in regions prone to hydrological variability, where early forecasts allow for 

better preparedness and can help mitigate the risk of extreme events like droughts or floods. In this, the study focuses on 85 

streamflow volume during the April-July period (AMJJ), a predominant time window for water supply decisions across the 

snow-dominated basins in the western US (Livneh and Badger, 2020; Modi et al., 2021). Studies have shown that using 

streamflow forecasts can lead to tangible economic gains, though the percentage increase vary widely depending on the 

context. While some studies report modest gains of 1-2% (Maurer and Lettenmaier, 2004; Rheinheimer et al., 2016), others 

demonstrate much higher benefits. For example, Hamlet et al. (2002) showed a significant increase in hydropower revenue of 90 

40% or $153 million per year in the Columbia River basin. Moreover, Portele et al. (2021) showed that seasonal streamflow 

forecasts can yield up to 70% of the potential economic gains in semi-arid regions from taking early and optimal actions during 

droughts. Across the US, improved water supply forecasts have been associated with annual economic benefits ranging from 

$1 billion to $3 billion, particularly in sectors like agriculture, energy, and flood prevention (EASPE, 2002). Given that 

economic benefits from these vary by context, it remains uncertain whether these benefits are primarily driven by the intrinsic 95 

quality of the forecast itself or by specific operational factors (e.g., reservoir storage buffer). 
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1.3 Forecast value 

Traditionally, streamflow forecast skill has been assessed based on its accuracy and reliability in predicting water flow 

volumes. However, an additional layer of assessment can be introduced by incorporating economic evaluations. This contrast 

highlights not only the technical skill of forecasts but also their practical value in optimizing economic outcomes for decision-100 

making. Hydrologists continue to show strong interest in assessing the value of forecasts to support decision-making using 

Potential Economic Value (Abaza et al., 2013; Portele et al., 2021; Thiboult et al., 2017; Verkade et al., 2017). Potential 

Economic Value quantifies the economic benefit of using a particular forecast system compared to solely relying on 

climatology or no forecast. It is a standard metric for assessing the economic utility of forecasts, particularly in categorical 

decision-making scenarios, typically modeled through a cost-loss framework (Richardson, 2000; Wilks, 2001). In a cost-loss 105 

framework, decision-makers face a choice between taking preventive action at a cost (C) based on the forecast or bearing the 

potential loss (L) if an adverse event, such as a drought, occurs. A major assumption is that the cost (C) is smaller than the loss 

(L). PEV is a non-dimensionalized measure that facilitates comparison across different decision-making contexts, making it a 

practical tool for evaluating forecast effectiveness (Wilks, 2001). Its straightforward application, ease of comparison across 

different forecasting systems, and ability to estimate the upper bound of forecast value make it a useful tool in evaluating 110 

seasonal streamflow forecasts. It remains particularly valuable in contexts where binary decisions are prevalent, and the 

economic impact of forecasts is a key concern. We apply this simple framework—the cost-loss model—to examine how 

forecast skill translates into economic value as a function of inherent quality of the different forecasting systems. This will 

help assess the economic implications of both correct and incorrect decisions for a set of hypothetical decision-makers in 

unmanaged basins. 115 

1.4 Study Summary 

The relationship between forecast skill and value in seasonal streamflow forecasting is not only influenced by the operational 

characteristics of the water management system but also by the intrinsic qualities of the true forecasts themselves, particularly 

during extreme events like drought (Giuliani et al., 2020; Peñuela et al., 2020). Motivated by the nuanced and often inconsistent 

link between forecast skill and value, as well as a limited understanding of how this relationship behaves across different 120 

forecast systems, this study offers an assessment of how skill transforms into value, using PEV as a tool in unmanaged basins. 

To better interpret the relationship between skill and value, we compare true forecasts with synthetic forecasts that are 

generated by imposing regular error patterns on observed streamflow volumes. This approach helps to address the impact of 

irregular error structures present in true forecasts, which are often non-normally distributed and exhibit varying variances. We 

start by assessing the historical performance of true forecasts generated in this study by comparing them to observations. This 125 

involves comparing the calibrated WRF-Hydro and fully trained LSTM models to assess their effectiveness in simulating 

streamflow volumes. We then assess how the performance of both synthetic and true forecasts are affected by modifying 

forecast properties such as mean and variability. Lastly, we investigate the relationship between skill and value across different 
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drought severities, considering the interplay of error structures from both synthetic and true forecasts and the factors 

influencing the PEV framework.  130 

2 Methods 

We begin by defining drought, which serves as the basis for the categorical criterion used to calculate the forecast value (Sect. 

2.1.1). Section 2.1.2 outlines the process for assessing forecast skill using a quantile loss metric, while Section 2.1.3 describes 

the PEV framework for assessing forecast value. Section 2.2 describes the study domain and basin screening procedure. Section 

2.3 outlines the “synthetic” forecast approach that imposes errors on April-July (now “AMJJ”) streamflow volumes. Section 135 

2.4 outlines the generation of true forecasts that use a process-based model, WRF-Hydro (now “WRFH”); and a deep learning 

model, LSTM; and describes the operational NRCS forecasts. This section also describes the model inputs, architecture, 

training/calibration, and their implementation in an ESP framework. Section 2.5 provides an overview of key performance 

metrics. 

2.1 Drought event, forecast skill and value 140 

2.1.1 Defining a drought event using hydrological threshold categories 

The U.S. Drought Monitor (USDM) classifies drought into five categories based on threshold percentiles in key hydroclimate 

quantities, e.g., precipitation, soil moisture, streamflow, over a standard 1-3 month period, based on a historical period of 

record  – D0 (Abnormally dry), D1 (Moderate drought), D2 (Severe drought), D3 (Extreme drought), and D4 (Exceptional 

drought), with D0 being the least intense and D4 the most intense (Svoboda et al., 2002). Each category corresponds to specific 145 

percentile ranges of historical drought severity, with D0 indicating conditions in the 21st to 30th percentile of dryness, D1 in 

the 11th to 20th percentile, D2 in the 6th to 10th percentile, D3 in the 3rd to 5th percentile, and D4 representing the driest 2% of 

conditions based on the historical distribution of hydrologic variables. For clarity, the term “percentile of dryness” refers to 

the relative position of the observed value within this historical distribution. This study uses a categorical definition of 

hydrologic drought, occurring when the AMJJ streamflow volume falls below the 25th percentile (P25) of the historical record. 150 

To assess the skill-value relationship across different drought severities, we also consider two additional hydrological 

thresholds: one where AMJJ volume falls below the 35th percentile and another where it falls below the 15th percentile, 

indicating severe drought conditions. This approach deviates from the USDM methodology, which typically uses a range of 

hydroclimatic variables for its classification. We chose to focus specifically on AMJJ streamflow volumes to capture 

hydrologic drought conditions more directly and to maintain consistency with the study’s objectives. 155 
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2.1.2 Forecast Skill Metric: Normalized Mean Quantile Loss 

Quantile Loss, also called pinball loss, evaluates the performance of a probabilistic forecast by measuring the difference 

between predicted quantiles (percentiles) and observed values (Eq. 1). In other words, it rewards situations in which the 

observed value is within quantiles of the ensemble forecast members. It is adopted widely operationally and recently used in 

the Bureau of Reclamation’s water supply forecast challenge (Water Supply Forecast Rodeo: Forecast Stage, 2024). It provides 160 

an asymmetric error metric, i.e., it adjusts penalties based on whether the forecast overestimates or underestimates the observed 

values.  

𝑄𝑙𝑜𝑠𝑠! =
2
𝑛 ∗)* 𝑧 ∗ (𝑦"#$ − 𝑦/!)					𝑖𝑓	𝑦"#$ ≥ 𝑦/!

(1 − 𝑧) ∗ (𝑦"#$ − 𝑦/!)										𝑖𝑓	𝑦"#$ < 𝑦/!																

%

&'(

(1) 

Where 𝑦"#$ is the observed AMJJ streamflow volume, 𝑦/ is the predicted AMJJ streamflow volume, z is the quantile, and n is 

the number of observations. We use a scaled version of quantile loss, multiplied by a factor of 2, so that the loss at the 0.5 165 

quantile (median) aligns with the mean absolute error (MAE), ensuring consistency in error interpretation across quantiles 

(Water Supply Forecast Rodeo: Forecast Stage, 2024). To represent forecast skill in this study, we calculate normalized mean 

quantile loss (NMQloss), an average of quantile loss calculated for each quantile z Î {0.1,0.5,0.9} normalized by the mean of 

the observations (Eq. 2). These quantiles are based on the multiple ensemble members in the probabilistic forecasts. This 

approach allows us to assess error across different quantiles, comprehensively evaluating forecast skill. A lower mean quantile 170 

loss, closer to zero, indicates better forecast skill. 

𝑁𝑀𝑄𝑙𝑜𝑠𝑠 =
𝑄𝑙𝑜𝑠𝑠).( + 𝑄𝑙𝑜𝑠𝑠).+ + 𝑄𝑙𝑜𝑠𝑠).,

3 ∗ 𝑦"#$;;;;;
(2) 

2.1.3 Forecast Value Metric: Area under PEVmax curve 

The PEV metric is based on the cost-loss ratio (a=C/L), where C represents the cost of taking preventive action (e.g., buying 

crop insurance) and L is the potential loss incurred if no action is taken and an adverse event occurs. The ratio helps decision-175 

makers assess whether the benefit of preventing a loss outweighs the cost of taking preventive action. For instance, when a is 

low, the cost of action is small relative to the potential loss, making it more likely that preventive action will be taken. 

Conversely, a high a suggests that the cost of action outweighs the potential benefit, making action less justifiable. In practical 

terms, a reflects an aspect of the decision-maker’s risk tolerance and serves as a threshold for action.  

We use probabilistic forecasts of AMJJ volume as an input to PEV, which are based on ensemble predictions from multiple 180 

forecasting systems. These forecasts, discussed in detail in Sect. 2.3 and 2.4, provide a range of possible outcomes for the 

AMJJ volume, helping to capture uncertainty and variability. Figure 1 shows the PEV workflow where we first calculate the 

forecast probability of these forecasts for a future event, i.e., in our case, a P25 drought event when the AMJJ streamflow 
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volume falls below the 25th percentile of the historical record (Step 1). For demonstration purposes, this calculation is shown 

by assuming five ensemble members representing AMJJ volume, and the future event is assumed to have volumes less than 185 

2.5.  These forecast probabilities are transformed into categorical forecasts by applying a critical probability threshold (t). This 

threshold represents another aspect of the user’s risk tolerance, i.e., the minimum probability at which a future event is 

considered likely enough to warrant action for a user. It should be noted that both a and t represent different aspects of a user’s 

risk tolerance, quantifying their willingness to act under uncertainty. As shown in step 2 of Fig. 1, a more conservative 

threshold of 0.5 would trigger an action in 2007 (only one of the years shown), while a looser threshold of 0.7 would not trigger 190 

action in 2007. In contrast, both thresholds would trigger no action in 2006, despite some of the ensemble members predicting 

flows below 2.5 for both years. This categorical forecast is used to create a 2x2 contingency table (Step 3; Fig. 1), which 

calculates the hit rate (H – the proportion of correctly predicted events), false alarm rate (F – the proportion of non-events 

incorrectly classified as events), miss rate (M – the proportion of events incorrectly classified as non-events), and correct 

rejection rate (Q – the proportion of correctly predicted non-events) based on the years available retrospectively in the forecast 195 

system we are assessing. Finally, the PEV metric is calculated by comparing the relative difference in the total long-run net 

expenses (i.e., for taking preventive action over the set of retrospective years in the forecast system) made using an actual 

forecast (Eforecast – uses real-world data and models to generate forecasts – Eq. I), climatology (Eclimate – historical average of 

volumes in the record – Eq. II) and a perfect forecast (Eperfect – complete knowledge of future volumes – Eq. III) over a 

prescribed range of cost-to-loss ratios (0<a<1) using equation IV (Step 4; Fig. 1). 200 

𝐸-"./01$2 = 𝐹(1 − 𝑠)𝐶 − 𝐻𝑠(𝐿 − 𝐶) + 𝑠𝐿 (𝐼; 𝐹𝑖𝑔. 1) 

𝐸03&412/ = min	(𝐶, 𝑠𝐿) (𝐼𝐼; 𝐹𝑖𝑔. 1) 

𝐸5/.-/02 = 𝑠𝐶 (𝐼𝐼𝐼; 𝐹𝑖𝑔. 1) 

𝑃𝐸𝑉 =
𝐸03&412/ − 𝐸-"./01$2
𝐸03&412/ − 𝐸5/.-/02

(𝐼𝑉; 𝐹𝑖𝑔. 1) 

Where -¥<PEV<1 and each expense term is the summation of the contingency table elements, each weighted by the rate of 205 

occurrences. Equation V is used to calculate PEV based on Jolliffe and Stephenson (2003). 

𝑃𝐸𝑉 = 	
𝑚𝑖𝑛(⍺, 𝑠) − 𝐹(1 − 𝑠)⍺ + 𝐻𝑠(1 − ⍺) − 𝑠

𝑚𝑖𝑛(⍺, 𝑠) − 𝑠⍺
(𝑉; 𝐹𝑖𝑔. 1) 

 Where ⍺=C/L is the cost-loss ratio, s is the climatological frequency, i.e., the observed base rate of an event, and H and F are 

the hit and false alarm rates.  A PEV of 1 indicates that the forecast system is perfect, providing maximum economic value, 

whereas a PEV of <0 indicates that the forecast offers no advantage over climatology (Murphy, 1993).  210 

Steps 1, 2, 3, and 4 are repeated for multiple critical probability thresholds (t) over the prescribed range of 0<t<1 to generate 

a set of possible PEV values for each cost-to-loss ratio a (0<a<1). Unlike s, which represents a quantitative measure of the 
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long-term probability of an event based on historical data, a and t represent different aspects of the user’s risk tolerance. 

Multiple thresholds are adopted to account for varying risk tolerances among users and provide a more realistic evaluation of 

value. Using this set of PEV estimates, we construct a PEVmax curve by taking the maximum value from this set for each a, 215 

where the value of a is equal to the critical probability threshold (t). This approach assumes the user  will adjust on their own, 

based on their specific a value (Laugesen et al., 2023; Richardson, 2000). The equations in the calculation workflow are 

adapted from Richardson (2000) and Jolliffe and Stephenson (2003).     

 

Figure 1: Flowchart showing the workflow to quantify the PEV using the probabilistic forecasts. For the calculation of PEV, 220 
forecast probabilities (for a given event) are calculated from the forecasts (Step 1), a critical probability threshold (t) is applied 
(Step 2), a contingency table is created (Step 3), and lastly, PEV is calculated across the prescribed range of ⍺ (Step 4). The PEV 
relies on contingency table parameters (H and F), climatological frequency (s), and cost-loss ratio (⍺). The equations were adapted 
from Richardson (2000) and Jolliffe and Stephenson (2003). 
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Fig. 2 illustrates an economic value diagram that depicts a PEVmax curve. This diagram visually represents the cost-loss ratio 225 

(a), on the X-axis, whereas PEV is on the Y-axis. At low values of a where the cost of preventive action is small relative to 

the potential loss, forecast systems tend to show higher economic value, as decision-makers can take advantage of accurate 

predictions to reduce potential losses with minimal expenditure. However, as a increases and the cost of preventive action 

becomes comparable to or exceeds the potential loss, the economic value of the forecast may decrease. In such cases, acting 

on the forecast becomes less advantageous because the cost of the preventive measure outweighs the potential benefit. The 230 

optimal economic value occurs when the a is balanced in a way that maximizes the benefit of acting on the forecast while 

minimizing unnecessary costs. This usually happens when the a is equal to the observed probability of the event 

(climatological frequency – 𝑠; Jolliffe and Stephenson (2003)). A value diagram, as shown in Fig. 2, will help decision-makers 

visualize and select appropriate actions based on their specific a (X-axis) and the performance of the forecast system compared 

to using climatology as PEV (Y-axis). In Fig. 2 on X-axis, a=0 indicates the cost of mitigation (C) is zero i.e., always beneficial, 235 

whereas a=1 indicates the cost of mitigation (C) equals the potential loss (e.g., a farmer paying $10,000 as insurance money 

to prevent a loss of $10,000 due to a future event). PEV=1 means forecast-based decisions perform as well as those using 

perfect information, while PEV=0 indicates the forecast offers no advantage over the baseline. A value of PEV=0.7 at a given 

α suggests a 70% improvement in decision-making compared to using the climatology. Negative PEV values (grey boxes in 

Fig. 2) indicate decisions that were worse than using the climatology (Laugesen et al., 2023; Richardson, 2000; Wilks, 2001). 240 

To represent the forecast value in this study, we calculated the area under the PEVmax curve (now “APEVmax”) using the 

trapezoidal rule (Amlung et al., 2015). This method approximates the area by dividing the curve into trapezoids and integrating 

their areas. While negative PEVmax values are possible, they are excluded from the area calculation. Note that the PEV 

framework is applied iteratively across a range of critical probability thresholds (0<t<1) to identify PEVmax and to compute 

APEVmax by integrating over the corresponding curve. The resulting metric can be used as the “forecast value of a given 245 

forecast system” when the maximum economic benefits across all a (shown by the red shading in Fig. 2). A larger APEVmax 

curve indicates that the forecast system delivers higher economic value over a broad range of decision-making scenarios, 

regardless of a. This value ranges from 0, representing the theoretical minimum economic value, to 0.9, representing the 

highest overall economic value in this study, as negative PEVmax values are excluded from the area calculation. 
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Figure 2: Economic value diagram showing cost-loss ratio (a) on the X-axis and the potential economic value on the Y-axis. The 
red shading shows the area under PEVmax (APEVmax). It highlights the positive PEV values across a, indicating that the forecast is 
preferred over climatology, whereas the grey regions highlight negative PEV values, indicating that climatology should be 
preferred. The left vertical grey boxes indicate that the user is always beneficial when the preventive cost (C) is less than zero. In 255 
contrast, on the right, when the preventive cost (C) exceeds the potential loss (L), the user will always incur the loss L. 

2.2 Study domain and basin screening procedure 

Water availability in basins that are both unmanaged and snow-dominated are of interest here. These are often headwater 

catchments, with flows heavily driven by snowmelt timing and volume, making accurate forecasts essential for managing 

water resources and mitigating drought risks. Assessing forecast value in such basins is crucial since they often supply flows 260 

to downstream managed systems. We selected a diverse sample of drainage basins across the western US, representing a broad 

spectrum of hydroclimatic conditions. These basins were identified using geospatial attributes from three key sources: the 

USGS Geospatial Attributes of Gages for Evaluating Streamflow (GAGES-II) dataset, the Hydro-Climatic Data Network 

⍺ = s
Forecast offers 
greatest benefit

Forecast Value -
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i.e., better to 
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(HCDN; Slack and Landwehr, (1992)), and the Catchment Attributes and Meteorology for Large-sample Studies (CAMELS; 

Addor et al., 2017; Newman et al., 2014). The basin screening procedure employed here was based on a similar approach to 265 

the CAMELS methodology (Addor et al., 2017; Newman et al., 2014) but with a slightly broader inclusion of basins from the 

GAGES-II dataset. Both the CAMELS basins and additional basins included in our analysis are subsets of the GAGES-II 

dataset. As a result, most of the basins are unmanaged basins with drainage areas smaller than 2500 km2 with minimal 

anthropogenic influence and at least 30 years of streamflow observations to ensure records for model training/calibration and 

validation. 270 

Additional screening criteria were applied to the additional basins sourced from GAGES-II. These include limiting basins to 

those with one or fewer major dams (defined as storage > 5000 acre-feet), ensuring the ratio of reservoir storage to average 

streamflow (1971-2000) was below 10%, and selecting basins with a GAGES-II hydro-disturbance index of less than 10 

(Falcone et al., 2010). To further verify the accuracy of basin boundaries and drainage areas, we enforced additional criteria 

based on GAGES-II boundary attributes. This included a boundary confidence score (on a scale of 2-10, with 10 indicating 275 

high confidence) of at least 8, a percent area difference of no more than 10% compared to NWIS values, and a qualitative 

check ensuring the HUC10 boundaries were deemed at least “reasonable” or “good” (further described in Falcone et al., 2010; 

GAGES-II: geospatial attributes of gages for evaluating streamflow., 2021)). It should be noted that only 76 basins (out of 664 

basins used for model training as described in Sect. 2.3.3) had NRCS forecasts available for the purpose of comparison. A 

majority of these basins lie within the US Environmental Protection Agency’s snow level III ecoregions labeled in Fig. 3. 280 

These basins are colored by the ratio of April 1 Snow Water Equivalent (SWE) to water-year to-date cumulative precipitation, 

which refers to the accumulated precipitation from the beginning of the current water year, Oct 1, to April 1, derived from 

gridded snow and meteorological forcings (as described in Table A2).   

 



12 

 

 285 

Figure 3: A map of the study domain, comprising 76 USGS drainage basins across the western US colored by the ratio of April 1 
SWE to water year-to-date precipitation. The purple boundaries indicate the North American snow ecoregions Level III generated 
by the US Environmental Protection Agency (US EPA, 2015). These ecoregions include the Cascades, Idaho Batholiths, 
Intermountain West, Rockies, Sierra Nevada, and Wasatch and Uinta Mountains. 

2.3 Synthetic Forecasts 290 

Synthetic forecasts are used to more clearly understand the role of forecast errors on economic value (Rougé et al., 2023). We 

recognize that true forecasts have irregular error structures, which are difficult to interpret. To help interpret the relationship 

between forecast errors and PEV in true forecast systems, we introduce systematic modifications into both the mean (error in 

mean) and standard deviation (change in variability) of observed AMJJ volumes (Gneiting et al., 2007). It should be noted that 

the change in standard deviation here is assumed to be with respect to interannual variability seen in the observations based on 295 

the retrospective years available in the forecast system. We generate the forecasts for the years WY2006-2022, where “WY” 

represents the water year, Oct. 1 – Sep. 30 (Fig. 4). The choice to set the mean of synthetic forecasts equal to observations and 

the standard deviation to inter-annual variability ensures the synthetic forecasts reflect key characteristics of the observed 

system. Aligning the mean with observations maintains comparability, while using inter-annual variability captures the 
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system’s inherent uncertainty. This design is crucial for studying irregular error structures, as it realistically represents the 300 

scale and variability of true forecasts. By mirroring these properties, the synthetic experiments provide a controlled yet 

representative framework for analyzing how irregular error structures impact forecast value. 

The observations are modified by applying a percent change to the mean, followed by a percent change to their standard 

deviation (Fig. 4a). An ensemble of 39 forecast members (explained further in section 2.4) is then generated, normally 

distributed around the modified mean and standard deviation. The varying spread of ensemble members reflects different 305 

potential hydrologic futures, allowing us to assess the performance of the forecast systems not only in terms of a single 

prediction but across a wide range of possible outcomes. Additionally, if the errors result in negative values, we truncate the 

range of the forecast to be greater than or equal to zero to avoid negative forecasts. In Fig. 4b, two synthetic forecasts are 

presented: one with a 50% increase in both the mean and standard deviation, represented by the blue line and ribbon, and 

another with a 50% decrease, represented by the red line and ribbon. These lines illustrate the ensemble spread of possible 310 

synthetic forecast based on the modified statistics. For comparison, the black dotted line and ribbon show the ensemble spread 

derived from the original observations and their standard deviation (i.e., interannual variability), serving as a reference point 

for evaluating deviations in the forecasts. Additionally, the white circle and triangle denote the original mean and standard 

deviation of the observations, respectively, offering a baseline to assess how the synthetic adjustments impact the overall 

distribution.  315 
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Figure 4: Schematic of the model workflow used to generate synthetic forecasts. (a) Illustration of two synthetic forecasts with 
ensemble spread in AMJJ volumes: one with a 50% increase in both the mean and standard deviation, represented by the blue line 
and ribbon, and another with a 50% decrease, represented by the red line and ribbon (b). The black dotted line and ribbon show 
the ensemble spread derived from the original observations and their standard deviation (i.e., interannual variability), whereas the 320 
white circle and triangle show the original mean and standard deviation of the observations, respectively. These forecasts 
correspond to different error structures shown by an inset grid. 

2.4 True Forecasts 

A schematic of model workflows of three true forecast systems is provided in Fig. 5 – two designed for this study and one 

used operationally. The two designed true forecast systems use the Ensemble Streamflow Prediction (ESP) framework. The 325 

first is a process-based hydrologic model (WRF-Hydro – WRFH; Gochis et al., 2020), which simulates streamflow evolution 

based on physical processes like snowmelt, soil moisture, and runoff (Fig. 5a). The second is a deep-learning model (LSTM; 

Hochreiter and Schmidhuber, 1997), which leverages historical patterns from the data (Fig. 5b). In these systems, the primary 

input data consists of historical meteorology, geospatial basin attributes, snowpack information in the form of SWE (only for 

LSTM model), and streamflow observations—also used for training and validation (Table A2). It is important to note that 330 
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WRFH is run on an hourly timescale, and its outputs are aggregated into AMJJ volumes. Similarly, the LSTM follows the 

WRFH approach but runs on a daily timescale, with its outputs aggregated into AMJJ volumes. A detailed description of the 

ESP methodology is provided in Sect. 2.4.1, and the implementation of both models, including input data, model architecture, 

calibration/training, and forecast generation, is discussed in Sect. 2.4.2 and 2.4.3.  

In addition, we also use NRCS operational forecasts over the study watersheds to benchmark true forecasts. These forecasts 335 

were chosen since they are methodologically consistent across all study regions and easily accessible for a larger number of 

basins and years. The NRCS employs a Principal Component Regression model. This model is usually modified to retain the 

principal components (Garen, 1992; Lehner et al., 2017) and uses predictors like SWE, accumulated precipitation from 

SNOTEL, and antecedent streamflow from USGS to predict AMJJ volumes (Fig. 5c).  

All true forecasts have the same number of ensemble members, and five forecasted exceedance probabilities computed at 90, 340 

70, 50, 30, and 10% are extracted. To clarify, 90% means there is a 90% chance that the observed AMJJ volumes will exceed 

this forecast value and a 10% chance that it will be less than this forecast value. These probabilities are based on the multiple 

ensemble members in all true forecasts. In order to make all forecasts comparable, the same five probabilities of exceedance 

were obtained from both true and synthetic forecasts. True forecast systems often deviate from idealized assumptions, 

exhibiting non-normal error distributions and varying variances due to the influence of dynamic, unpredictable factors and 345 

system-specific behaviors. This phenomenon is demonstrated in Fig. A3, where an exposition of these irregular error 

structures is presented through time-series analyses of AMJJ volumes. These time series illustrate how interannual 

fluctuations in volumes reveal underlying heteroscedasticity, skewness, and other deviations from standard statistical norms. 
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Figure 5: Schematic of model workflows used to generate true forecasts, including the inputs, model type, and outputs. (a) shows 350 
the workflow for the process-based hydrologic model, WRF-Hydro, (b) for the deep learning model, LSTM, and (c) for the NRCS 
statistical forecasts.   

2.4.1 Ensemble Streamflow Predictions (ESPs) 

In general, ESP forecasts generated on April 1 (i.e., forecast date) hold significant operational importance. This is because 

April 1 historically serves as a surrogate for the timing of peak SWE conditions and provides near-maximum predictive 355 

information (Livneh & Badger, 2020; Pagano et al., 2004). In this study, April 1 as a forecast date is closely tied to forecast 

skill and serves as an optimal point for calculating forecast value. However, depending on the region and the context of 

decision-making, users may choose a different forecast date that better aligns with their needs and associated forecast skill. 

The ESP simulation begins at the start of the water year (October 1), utilizing true meteorological forcings to initialize the 

model’s initial conditions on April 1. Using these initial conditions on April 1 and meteorological forcings from historical 360 

years, an ensemble of streamflow traces is produced in the forecast period (April-July) as a function of the current 

hydroclimatic state and historical weather conditions (Day, 1985; Troin et al., 2021).   

The result is a daily probabilistic hydrologic forecast ranging from 30 days up to 180 days from the forecast date that uses the 

spread in historical data from the past ~20 to 30 years (shown in Fig. 6 – for illustration purposes, we only show 23 years here) 

as an analogue for the uncertainty in meteorological conditions after the forecast date. For example, a forecast generated on 365 
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April 1 (illustrated in Fig. 6) uses observed meteorology up to that date, with the model’s initial conditions preserved, and then 

generates streamflow traces based on meteorological forcings from historical years for the remainder of the forecast period. 

 

Figure 6: Illustration of an ESP forecast issued on April 1. The thick red line on the left depicts the model run before the forecast 
date using ‘true’ meteorological forcings starting from October 1. Using the model’s initial conditions on April 1 (shown in blue) 370 
and historical meteorological forcings from the past 23 years, ensemble streamflow forecasts are generated (shown with faint red 
lines). Data are from Johnson Creek, ID, USGS basin 13313000, for the forecast year 2011. The broken x-axis shown here is not 
uniform and represents the ESP conceptually (Modi et al., 2024). 

2.4.2 Implementation of WRF-hydro in an ESP framework 

WRFH model architecture 375 

WRFH is a distributed hydrologic model architecture designed to facilitate the coupling of hydrologic models with atmospheric 

models through improved representations of terrestrial hydrologic processes associated with spatial redistribution of surface, 

subsurface, and channel waters across the land surface (Gochis et al., 2020). At its modeling core, WRFH uses the Noah-MP 

land surface model, an improved version of the baseline Noah land surface model (Ek et al., 2003; Niu et al., 2011), that offers 

multi-parameterization through several vegetation, snow, radiation transfer, runoff and groundwater schemes. We use the 380 

National Water Model (NWM) scheme configuration developed and managed by NOAA to generate short-to-medium-range 

streamflow forecasts over the 2.7 million stream locations nationwide (Cosgrove et al., 2024). We only match the physics 

permutations used in the NWM configuration and not the routing configuration used in the operational NWM. We rely on a 

channel network that uses a default channel structure and is generated using Hydrosheds Digital Elevation Model data (Lehner 

et al., 2008). WRFH is set up on a 1 km horizontal grid spacing, simulating lateral water redistribution on the surface and 385 
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shallow sub-surface on a 100 m grid spacing. The model is run hourly, with model outputs aggregated daily for analysis 

purposes. A description of WRFH model parameters and calibration is provided in Appendix A1. 

WRFH model inputs 

Meteorological forcings used to run the WRF-Hydro (WRFH) include precipitation, average wind speed, 2 m average air 

temperature, incoming longwave and shortwave radiation, near-surface air pressure, and vapor pressure obtained from 390 

Analysis of Records for Calibration (AORC, Fall et al., (2023) as detailed in Table A2). The Noah-MP land surface model is 

parametrized using surface albedo, leaf area index and green fraction from the Moderate Resolution Imaging Spectrometer 

(Myneni et al., 2015), land-use/land-cover from the United States Department of Agriculture – National Agricultural Statistics 

Service (CropScape - NASS CDL Program, 2019), soil type from State Soil Geographic (STATSGO), maximum snow albedo 

and soil temperature from the WRF Preprocessing System data page managed by UCAR (WRF Preprocessing System (WPS) 395 

Geographical Static Data, 2019). Daily streamflow estimates from the USGS’s National Water Information System (USGS 

NWIS) are obtained for the USGS stream gages corresponding to the basin outlets that are used to calibrate the model and 

described below.   

WRFH forecast generation 

We generate WRFH ESP forecasts on April 1 for WY2006-2022 before (now WRFHDEF) and after calibration (now 400 

WRFHCAL). These forecasts leverage historical meteorological data from all available years WY1983-WY2022 except the 

forecast year by using them as inputs to WRFH. For ESP forecasts on April 1, the WRFH simulation begins at the start of the 

water year, i.e., October 1, using true meteorological forcings to obtain WRFH’s initial states (e.g., snowpack, soil moisture) 

on the forecast date. An ensemble of streamflow traces is produced in the forecast period using these memory states on the 

forecast date and historical meteorological forcings. The forecasted daily streamflow is further cumulated to AMJJ volume 405 

and used for analysis. 

2.4.3 Implementation of LSTM in an ESP framework 

LSTM model architecture 

This study adopts a model architecture similar to Kratzert et al. (2019), as followed by Modi et al. (2024) (now “M24”), which 

has been shown to simulate and forecast streamflow well for basins with minimal anthropogenic influence. This M24 setup 410 

only includes hyperparameters – externally set values that govern the training process - not model parameters or inputs. This 

list of hyperparameters is briefly outlined and explained in Table A3 (Appendix A2). Using the M24 setup, the LSTM includes 

a single hidden layer comprising 256 units, where units act as computational units through which data flows, and the hidden 

layer is responsible for learning the intricate structures in the data. Additionally, the hidden layer is configured with a dropout 

rate of 0.4, which involves randomly dropping neurons during training to mitigate overfitting. The input sequence length used 415 



19 

 

is 270 days, which specifies the number of preceding time steps fed into the LSTM to produce streamflow on a given day. A 

description of LSTM training is provided in Appendix A2. 

LSTM model inputs 

The training inputs for the LSTM model (as detailed in Table A2) include meteorological forcings from the AORC (Fall et al., 

2023), which are aggregated daily and spatially averaged across each basin using 1 km grid cells and identical to the WRFH 420 

inputs. These forcings consist of precipitation, average wind speed, 2 m average air temperature, incoming longwave and 

shortwave radiation, near-surface air pressure, and vapor pressure. In addition to these meteorological forcings, static 

predictors are included, consisting of basin attributes from the GAGES-II dataset, which remain constant over time and are 

selected to mirror those utilized in the CAMELS dataset, following the work of Arsenault et al. (2022) and Kratzert et al. 

(2019). We obtain daily snow information from the gridded snow dataset developed at the University of Arizona (Broxton et 425 

al., 2019; Zeng et al., 2018 – now UA), spatially averaged for each basin from 1/16-degree grids. Lastly, daily streamflow 

estimates from the USGS’s National Water Information System (USGS NWIS) are obtained for the USGS streamgages 

corresponding to the basin outlets.   

LSTM forecast generation 

We generate LSTM ESP forecasts on April 1 for WY2006-2022, excluding years used in training, using model parameters 430 

from fully-trained settings. These forecasts leverage historical meteorological data and snow information from all available 

years WY1983-WY2022 except the forecast year. For ESP forecasts on April 1, the LSTM simulation begins at the start of 

the water year, i.e., October 1, using true meteorological forcings and snowpack information to obtain LSTM’s memory states 

on the forecast date. During the forecast period, the historical meteorological data is used similarly to process-based models. 

However, special treatment is applied to snowpack information, integrating known snowpack information on the forecast date 435 

and assumptions about snow evolution after the forecast date as a way to boost the representation of hydrologic memory that 

is commensurate with the physical hydrological system. We adopt the “ESPRetroSWE” forecast experiment from Modi et al. 

(2024), which integrates the known SWE information on the forecast date (from the forecast year) with explicit accumulation 

and ablation rates after the forecast data from individual historical years. More information on the design and performance of 

“ESPRetroSWE” is provided by Modi et al. (2024). The forecasted daily streamflow is further cumulated to AMJJ seasonal volume 440 

and used for analysis. 

2.5 Performance metrics 

We employed four key performance metrics to compare the historical performance of our designed true forecast systems, 

drawing from those widely adopted to quantify streamflow accuracy. The Nash Sutcliffe Efficiency (NSE) was used to quantify 

streamflow prediction accuracy of the different models. The NSE ranges from negative infinity to 1, with 1 indicating perfect 445 
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agreement between the simulated and observed values, and values closer to 0 indicating poorer performance. The Normalized 

Root Mean Square Error (NRMSE, in %) was used to analyze the skill of simulated AMJJ streamflow volume against the 

corresponding observed streamflow volumes. The RMSE was normalized by the median of observed streamflow volumes, and 

values closer to 0 indicate better performance. The correlation assesses the agreement in patterns between the simulations and 

observations, with values ranging from -1 (perfect negative correlation) to 1 (perfect positive correlation). The ratio of standard 450 

deviation compares the spread between the simulations and observations to assess whether the simulations capture the correct 

level of variability in the observations. A ratio of standard deviation of 1 indicates the simulations have captured the correct 

level of variability. We use the Relative Median Absolute Deviation (RMAD) to compare the variability between synthetic 

and true forecasts. RMAD measures the median of the relative absolute errors between the true and synthetic forecasts. Since 

both the true and synthetic forecasts are ensemble forecasts, the errors are calculated by first determining the absolute 455 

difference between corresponding ensemble members. These absolute errors are then normalized by the true forecast values 

to compute relative errors. The median of these relative errors across the ensemble members is then used to quantify RMAD, 

with values closer to 0 indicating smaller deviations and better alignment between the true and synthetic forecasts. The metrics 

used to calibrate/train the true forecast systems are described in Appendices A1 and A2. 

3 Results 460 

We first compare the historical model performance from the WRFH and LSTM models with respect to the observations (Sect. 

3.1). In Section 3.2, we analyze how error in mean and change in variability impact the forecast skill and value for synthetic 

(i.e., imposed errors on observations) and true forecasts (i.e., estimated with respect to the observations). In section 3.3, we 

examine the relationship between forecast skill and value from different forecast systems, with different severities of drought 

and the impact of categorical variables, particularly on forecast value.  465 

3.1 Historical model performance of our designed true forecast systems 

We assess the performance of our designed true forecast systems using historical data to ensure their effectiveness in accurately 

simulating streamflow. We first compared the performance of the calibrated WRFH and fully trained LSTM models against 

observations for 76 basins during the testing period, WY2001-2010, using four key metrics: daily NSE, normalized root mean 

square error (NRMSE) of total AMJJ volume, daily correlation, and the ratio of the standard deviation (Fig. 7). LSTM model 470 

consistently outperformed the WRFH model across all metrics, with statistically significant improvements. For example, 

LSTM showed a median NSE and NRMSE of 0.80 and 20%, whereas WRFH showed 0.42 and 45%, respectively. The median 

correlation was greater than 0.7 for both models, with LSTM showing the highest correlation of 0.85, demonstrating a 

capability to capture temporal dynamics in daily streamflow prediction. LSTM also showed a reasonable ratio of standard 

deviation of 0.95, whereas WRFH showed 1.25. These results suggest that the LSTM model performs much better in simulating 475 

streamflow than the WRFH model. The WRFH and LSTM showed satisfactory utility in simulating daily and seasonal 
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streamflow and were chosen for further comparison to analyze the skill-value relationship for different model architectures. 

To underscore the importance of model calibration and training, we compare the performance of the models before and after 

calibration/training. In general, we observe improvements across all metrics for both models (additional details can be found 

in Appendix A3).    480 
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Figure 7: Historical model performance of true forecast systems. (a) daily NSE, (b) NRMSE of the total April-July streamflow 
volumes, (c) daily correlation, and (d) the ratio of the standard deviation against observations for calibrated WRFH and fully trained 
LSTM models. The shaded areas represent the distributions of model performance metrics over the 76 basins, while the vertical 
lines indicate the performance of individual basins during the testing period, WY2001-2010. 485 

3.2 Forecast skill and value are affected by error in mean and change in variability 

In section 3.2.1, we first analyze synthetic forecasts to gain insights into their skill and value with respect to the error in mean 

and change in variability. In section 3.2.2, we examine true forecasts, quantifying the error in mean and change in variability, 

and assess their skill and value (Sect. 3.2.2). Finally, we overlap skill and value from true forecasts with those from synthetic 

forecasts to diagnose and interpret how error in mean and change in variability impact forecast skill and value. We estimate 490 

skill and value only for the drought years (i.e., years below the 25th percentile based on observed AMJJ volumes between 

WY2006-2022). 

3.2.1 Synthetic forecasts 

Figures 8a and 8b illustrate the sensitivity of forecast skill and value to error in mean and change in variability across drought 

years. In Fig. 8a, a lower number indicates better forecast skill, meaning darker shades (close to purple) represent worse skill, 495 

whereas lighter shades (close to yellow) indicate good skill. The optimal forecast skill (close to zero) occurs particularly around 

errors in the mean between -20% and 20% and change in variability of -100% and -50%. It is important to note that a standard 

deviation of 0 indicates how closely the forecasted variability aligns with the historical interannual variability. As error in 

mean increase beyond these ranges, forecast skill worsens. However, an increase in standard deviation reflects the variability 

of the probabilistic forecast, which is a characteristic of the forecast rather than a direct performance metric. In Fig. 8b, a higher 500 

number indicates a greater value, meaning darker shades (close to purple) represent a low value, whereas lighter shades (close 

to yellow) indicate a greater value. The optimal forecast value (closer to 0.9) is observed with an error in mean between -20% 

and 20% and a change in variability between -100% and 0%. A key observation is that a greater forecast value extends further 

into positive errors in the mean compared to negative errors, resulting in a symmetric forecast skill around mean errors but an 

asymmetric forecast value. 505 

We present four synthetic forecasts (Fig. 8 c-f) to demonstrate how forecast skill and value are impacted by systematic error 

in mean and change in variability in case of a categorical decision. In each plot, the black line and ribbon represent a synthetic 

forecast, with the mean equal to the observation and the standard deviation representing the interannual variability of the 

observations. The red dots indicate drought events, defined as AMJJ volumes below P25. In Fig. 8c, with a -50% change in 

variability, we observe the highest skill (0.05) and value (0.62), as most events are correctly forecasted (H=0.73), though a 510 

few ensemble members cause false alarms (F=0.06). In Fig. 8d, with a +50% change in variability, all events are still hit 

(H=0.63), but the higher number of false alarms (F=0.20) reduces the forecast value from 0.62 to 0.42. Fig. 8e, featuring a 

negative error in mean, hits all events (H=0.87) but suffers from high false alarms (F=0.70), resulting in a value of 0.03, while 

Fig. 8f, with a positive error in mean, has almost no false alarms (F=0.01) but a lower hit rate (H=0.28) resulting in a value of 
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0.20. It should be noted that some ensemble members cause misses (M=0.13) and false alarm rates (F=0.01) in Figures 8e and 515 

8f, respectively. This comparison reveals why forecast skill remains symmetric around error in mean while forecast value is 

distinctly asymmetric. This asymmetry is largely due to the interplay of categorical measures, such as hit and false alarm rates, 

as well as our focus on events below the P25 drought threshold. These factors lead to different sensitivities of skill and value 

to error in mean and change in variability.  
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Figure 8: Sensitivity of quantile loss (forecast skill) and APEVmax (forecast value) to error in mean and change in variability for 
synthetic forecasts. The background heatmaps (a and b) represent synthetic forecasts, with lower values showing better forecast 
skill (closer to yellow) and higher values better forecast value (closer to yellow). We also illustrate four synthetic forecasts (shown 
in blue) corresponding to different error in mean and change in variability (c-f). The black line and ribbon represent a synthetic 
forecast, with the mean equal to the observation and the standard deviation representing the interannual variability of the 525 
observations. The red dots indicate drought events, defined as AMJJ volumes below P25, whereas the histograms represent the hit 
(H), False Alarm (F), and Miss (M) rates. Note that the color scale for forecast value is capped at 0.5, although the actual values 
reach up to 0.9. 

3.2.2 True forecasts 

Error in mean and change in variability 530 

Figure 9 illustrates the error in mean and change in variability for all true forecast systems across 76 basins. Across all models, 

there is a consistent trend of overprediction in mean during drought years (Fig. 9a), with a standard deviation in forecasts lower 

than interannual variability from historical records (Fig. 9b). The degree of overprediction is generally higher in the Wasatch 

and Unita Mountains and the Rockies, while it is smaller in the Sierra Nevada, Cascades, Idaho Batholiths, and the 

Intermountain West. This is likely because the limited precipitation and snow observations in high-elevation regions introduce 535 

uncertainty in interpolated precipitation values (Vuille et al., 2014), which are assimilated into the model inputs (i.e., AORC). 

An intercomparison of the error in mean across the models reveal significant differences. The median error in the mean is 55% 

for WRFH, 30% for the LSTM, and 14% for the NRCS model. LSTM shows lower mean errors than WRFHCAL, aligning with 

historical performance trends, while NRCS performs best, exhibiting the smallest errors in the mean as observed in Fig. 7. In 

contrast to overprediction of the mean, these models mostly show a standard deviation that is lower than interannual variability 540 

during WY2006-2022, as indicated by the decrease in standard deviation (Fig. 9b). These results are consistent with the trends 

observed in the synthetic forecasts (Fig. 8), where higher forecast skill and value were associated with decrease in standard 

deviation. This understanding of error in mean and change in variability underscores the importance of capturing both mean 

state and variability for improving forecast performance and value, particularly in complex mountainous regions like the 

Rockies, where observational limitations pose challenges. 545 
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Figure 9: (a) Error in mean and (b) change in variability (with respect to interannual variability during WY2006-2022) of three true 
forecast systems (NRCS, WRFH, and LSTM). Each point represents a basin, and the errors/changes are reported for drought years 
(below the P25) between WY 2006 and 2022. 76 basins are divided across six ranges, with the square bracket representing the number 
of basins within each range. 550 

Forecast skill 

Figure 10 illustrates the normalized mean quantile loss (NMQloss) of the three true forecast systems over the heatmaps 

developed for synthetic forecasts based on Fig. 8a. The background heatmaps represent the median skill from synthetic 

forecasts across basins, while the scatter points represent true forecast systems based on the estimated errors with respect to 

the observation during drought years. Each dot in Fig. 10 represents a basin with colors showing the median skill  during 555 

drought years. We overlap true forecasts over synthetic forecasts to systematically analyze and understand the role of irregular 

error structures in true forecast systems on the forecast skill. WRFH and LSTM show good correspondence when compared 

to the synthetic forecasts (i.e., colors match well between the points and heatmap), based on the estimated RMADs of 30% 

and 23%, respectively. Notably, NRCS shows the highest consistency and robustness, with a RMAD of 20%, closely aligning 

with the synthetic forecasts. The scatter points’ distribution across each heatmap highlights the sensitivities of the forecast skill 560 

to error in mean and change in variability for the different forecast systems. Overall, this approach highlights the importance 

of considering error in mean and change in variability when diagnosing true forecast skill. It offers valuable insights into the 

reliability and robustness of forecasts in real-world scenarios, emphasizing how different systems perform under varying 

conditions of uncertainty. 
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Figure 10: Comparison of skill between synthetic and true forecast systems to error in mean and change in variability. Normalized 
mean quantile loss (NMQloss) of three forecast systems (WRFH, LSTM, and NRCS) represented as scatter points (each point 
represents a basin), indicating the true skill during drought years between WY 2006 and 2022. The background heatmaps 
represent the sensitivity of skill to error in mean and change in variability for synthetic forecasts. RMAD for true forecast systems 
from the optimal scenario are 30%, 23%, and 20% for WRFH, LSTM, and NRCS, respectively. 570 

 

Forecast value 

Figure 11 is similar to that in Figure 10; however, it focuses on APEVmax rather than NMQloss. Despite the good 

correspondence observed in forecast skill (Fig. 10), all true forecast systems demonstrate poor correspondence in value when 

compared to synthetic forecasts. This can be seen by the significant difference in the colors of points and heatmaps. This results 575 

in estimated RMAD for WRFH, LSTM, and NRCS to 100%, 81%, and 91%, respectively, dramatically different from the 

deviations in skill. These large deviations show that error in mean and change in variability do not effectively explain the 

variations in the forecast value between true and synthetic forecasts. None of the true forecast systems were able to consistently 

capture forecast value, as seen from our comparison with synthetic forecasts. The distribution of scatter points across each 

heatmap further emphasizes that APEVmax, unlike NMQloss, is not a simple function of error in mean and change in variability 580 

or, in broad terms, forecast skill. 
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Figure 11: Comparison of value between synthetic and true forecast systems to the error in mean and change in variability. Area 
under PEVmax curve (APEVmax) of three forecast systems (WRFH, LSTM, and NRCS) represented as scatter points (each point 
represents a basin), indicating the true value during drought years between WY 2006 and 2022. The background heatmaps 585 
represent the sensitivity of APEVmax to error in mean and change in variability for synthetic forecasts. RMAD for true forecast 
systems from the optimal scenario are 100%, 81%, and 91% for WRFH, LSTM, and NRCS, respectively. 

3.3 Relationship between skill and value 

3.3.1 Comparison between synthetic and true forecasts 

We use the overlap between synthetic and true forecast systems from Figs. 10 and 11 to explore their skill-value relationship. 590 

Figure 12a compares the skill (NMQloss) and value (APEVmax) of the synthetic forecasts (i.e., grids in the heatmap) that 

overlapped with the true forecast systems (i.e., scatter points) based on error in mean and change in variability. Similarly, 

Figure 12b shows the skill and value of the true forecast systems. Both scatter plots show the relationship between NMQloss 

(forecast skill) and APEVmax (forecast value) for the three true forecast systems (WRFH, LSTM, and NRCS), with each point 

corresponding to a different basin. The dashed lines in the plots represent fitted exponential curves, highlighting the general 595 

trend that as skill increases (i.e., as NMQloss decreases), the value also improves (i.e., APEVmax increases). The optimal skill 

and value are obtained at coordinate (0,1), where skill declines along the X-axis and value increases along the Y-axis. For 

synthetic forecasts, this trend is more pronounced, with high correlation values (≦0.65) across all models, indicating a strong 

negative relationship between NMQloss and APEVmax across the entire range of NMQloss. In contrast, for the true forecasts, 

the relationship between NMQloss and APEVmax weakens (r≦0.38) and becomes more variable suggesting that good forecast 600 

skill does not always translate to good forecast value (Turner et al., 2017). These plots collectively demonstrate that while 

NMQloss and APEVmax are related, their relationship is complex, particularly in true forecast systems. This skill-value 

comparison between synthetic and true forecast systems indicates that factors beyond forecast skill, as defined in this study, 

influence the value of true forecast systems, which we analyze in the following sections to some extent.  
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Figure 12: Scatter plots depicting the relationship between skill (NMQloss) and value (APEVmax) for synthetic and true forecast 
systems. The points in (a) and (b) represent the synthetic forecast (the grid of the heatmap) that overlap with true forecast systems 
(scatter point) in Figures 4.10 and 4.11. Each point represents a basin, with the fitted exponential curves (dashed lines) indicating 
general trends and values in round brackets correlation. It should be noted that we use the overlap from Figures 10 and 11 to plot 
synthetic forecasts (corresponding to true forecasts) in Fig. 12a. 610 

3.3.2 Skill-Value relationship monotonically changes with the severity of drought 

Figure 13 illustrates the relationship between NMQloss and APEVmax for three drought scenarios related to different severities. 

This includes three scenarios: AMJJ volume less than the 35th percentile (P35), less than the 25th percentile (P25 used consistently 

in earlier analyses), and less than the 15th percentile (P15), represented by green, orange, and red colors, respectively. 

Importantly, these scenarios are not independent of one another, as events identified below P35 also encompass those below 615 

P15 and P25. The top density plot shows the distribution of NMQloss across all true forecast systems and basins, showing 

generally wide distributions with median values around 0.20. The right density plot represents APEVmax, which shows a 

consistent increase in median values from 0.12 to 0.20 as the drought severity decreases (i.e., from P15 to P35). This widening 

of distributions suggests that the estimated skill and value for drought scenarios that are not limited to extremely dry events 

(i.e., P35) tend to improve, i.e., higher accuracy and better economic benefit. Hence, the relationship changes monotonically 620 

with drought severity. Therefore, the decrease in forecast value is likely attributable to the increase in forecast error, as  

predictive models increasingly struggle in simulating progressively more extreme drought events (Chaney et al., 2015). 
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Figure 13: Relationship between NMQloss and APEVmax shown for three drought scenarios related to different severities. These 
drought severities are represented by AMJJ volume being less than 35th percentile (P35 - green), 25th percentile (P25 - orange), and 625 
15th percentile (P15 - red). The top density plot shows the distribution of NMQloss across all forecast systems and basins, whereas 
the right-side density plot displays the distribution of APEVmax. 
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3.3.3 Hit and False Alarm Rate and Forecast Value 

In decision-making, a high hit rate ensures timely actions for critical events like drought, while a low false alarm rate limits 

unnecessary responses and maintains trust in the forecast system. Balancing these metrics is crucial for forecast value, as it 630 

determines the forecast’s ability to support efficient and reliable decision-making. We analyze two critical components of 

APEVmax: the Hit Rate and False Alarm Rate (Fig. 14). This analysis focuses on two distinct basins, Dinwoody Creek, WY 

(Fig. 14a) and Lake Fork, CO (Fig. 14b), across various critical probability thresholds (t) – minimum probability at which a 

drought event is deemed likely enough to trigger an action. The left plots for each basin show the Hit Rate, while the right 

plots depict the False Alarm Rate. For this analysis, we compare the LSTM forecasts (shown in green) and the corresponding 635 

synthetic forecasts (shown in black) based on the overlap shown in Figs. 10 and 11. 

In the case of Dinwoody Creek, both synthetic and true forecasts demonstrate a similar pattern where, as the critical probability 

threshold (t) decreases, the Hit Rate generally increases, eventually reaching a maximum of 1 (Fig. 14a - left). The value of 1 

suggests that both forecasts effectively identify all drought events (below P25 between WY2006 and 2022) when the threshold 

becomes less strict. In terms of the False Alarm Rate, the synthetic forecast initially shows a lower rate compared to true 640 

forecast (LSTM), indicating fewer false alarms at higher thresholds (Fig. 14a - right). However, as the threshold decreases, the 

False Alarm Rates for both forecasts diverge significantly before converging at maximum rates of 0.5 and 0.75 for the synthetic 

and true forecasts, respectively. This divergence results in a notable difference in APEVmax values: 0.45 for the synthetic 

forecast and 0.08 for the true forecast.   

In the case of Lake Fork, a similar trend is observed for the Hit Rate. As the critical probability threshold decreases, both the 645 

synthetic and true forecasts consistently detect more drought events as the threshold becomes less strict (Fig. 14b - left). 

However, the behavior of the False Alarm Rate differs from that in Dinwoody Creek. Here, both forecasts exhibit a gradual 

increase in the False Alarm Rate as the threshold decreases, but they converge more closely at maximum rates of 0.25 and 

0.32 for the synthetic and true forecasts, respectively. This convergence results in similar APEVmax values for both forecasts, 

each approximately 0.42.   650 

Overall, these analyses highlight how the balance between Hit and False Alarm Rate impacts APEVmax in different basins. 

While Dinwoody Creek shows a clear discrepancy in economic value between synthetic and true forecasts due to their 

divergent False Alarm Rates, Lake Fork displays a more aligned relationship, with both forecasts yielding similar APEVmax. 

These differences exist because of irregular error structures that are better captured in categorical measures than skill. 
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Figure 14: Attribution of Hit Rate and False Alarm Rate across varying critical probability thresholds (t). Two basins are shown: 
Dinwoody Creek, WY (top panels) and Lake Fork, CO (bottom panels). The left panels show the Hit Rate as a function of the 
critical probability threshold (t - minimum probability at which a drought event is deemed likely enough to trigger an action) for 
the LSTM forecast (green) and its corresponding synthetic forecast (black). The right panels depict the False Alarm Rate. The 
values indicate the APEVmax corresponding to each forecast system. 660 

LSTM – 0.08 
Synthetic – 0.45
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Figure 15 illustrates the forecast value of three true forecast systems with respect to hit and false alarm rates. Unlike Figures 

10 and 11, which analyzed error in mean and change in variability, this figure focuses on understanding the variability in the 

value with respect to hit and false alarm rates. The background heatmaps represent the median value from synthetic forecasts 

across basins, while the scatter points represent the median value from each forecast system. This comparison was performed 665 

across 76 basins during drought years (below P25) between WY2006 and 2022. Unlike Fig. 11, WRFH and LSTM show better 

correspondence of value when compared to the synthetic forecasts, based on the estimated RMADs of 78% and 70%, 

respectively. The estimated deviations are still higher primarily resulting from differences in smaller magnitude of forecast 

value. Notably, NRCS shows the highest consistency and robustness, with a RMAD of 61%, closely aligning with the synthetic 

forecasts.  670 

 

Figure 15: APEVmax of three forecast systems (WRFH, LSTM, and NRCS) represented as scatter points (each point represents a 
basin), indicating the actual value during drought years between WY 2006 and 2022. The background heatmaps represent the 
sensitivity of APEVmax to hit and false alarm rates for synthetic forecasts. RMAD for true forecast systems from the optimal scenario 
are 78%, 70%, and 61% for WRFH, LSTM, and NRCS, respectively. 675 

Discussion 

We begin with a brief summary of our results, followed by a transition into their broader implications. This study was motivated 

by recent literature showing that the relationship between forecast skill and value in hydrology is multifaceted and context 

dependent (Giuliani et al., 2020; Hamlet et al., 2002; Maurer and Lettenmaier, 2004; Portele et al., 2021; Rheinheimer et al., 

2016). While forecast skill generally reflects the accuracy of forecasts relative to observations, forecast value represents the 680 

economic benefits derived from utilizing those forecasts in decision-making. In this context, we emphasize that while 

traditional accuracy metrics are fundamental for assessing forecasting systems, they have limited ability to capture the full 

utility of forecasts. By linking skill to value, we demonstrate how these metrics offer a more complementary perspective on 
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forecast utility. We use the relatively simple PEV metric, based on a cost-loss model, to assess how forecast skill in 76 

unmanaged snow-dominated basins translates into value, assuming a hypothetical group of decision-makers. Our analysis 685 

demonstrated that skill and value are not always aligned in a straightforward manner attributed to the inherent quality of 

forecasting systems in unmanaged basins. To better understand the relationship between skill and value in the unmanaged 

basins from true forecasts, we compare these true forecasts with synthetic forecasts – created by imposing systematic errors 

on observed streamflow volumes (Fig. 4). Conversely, the true forecast systems include a process-based hydrologic model 

(WRF-Hydro), a deep learning model (LSTM), and operational forecasts from the Natural Resources Conservation Service 690 

(NRCS). 

We begin by assessing the historical model performance of true forecasts against observations generated in this study, 

comparing the WRFH and LSTM models across 76 basins using key performance metrics. As expected, the LSTM model 

consistently outperformed the WRFH model, likely due to the advanced capabilities of deep learning to better capture input-

output dynamics (Fig. 7). We then analyzed the sensitivity of forecast skill and value to errors during drought years, specifically 695 

focusing on error in mean and change in variability. For synthetic forecasts, we anticipated that forecast skill would be 

symmetric around mean errors, while value would exhibit asymmetry due to the influence of categorical measures such as hit 

and false alarm rates (Fig. 8). The use of a normally distributed ensemble to develop synthetic forecasts is a simplification that 

allows us to model forecast uncertainty in a controlled manner. While real-world forecasts often exhibit more complex, 

irregular distributions and biases. For example, these may be overestimated in dry conditions and underestimated in wet 700 

conditions (Modi et al., 2021). A normal distribution was chosen to solely isolate the impact of mean and standard deviation. 

We recognize that this assumption does not fully capture the nuances of real-world forecast errors, such as skewness or non-

normality in extreme conditions, which would require detailed treatment outside the scope of this analysis. For the true forecast 

systems, we examined actual error in mean and variability against observations, observing a consistent pattern of 

overprediction in mean and variability lower than interannual variability from historical records (Fig. 9), as also reported in 705 

Modi et al. (2021). Additionally, we expected forecast skill for both synthetic and true forecasts to primarily follow patterns 

driven by error in mean and change in variability, and indeed, the correspondence of forecast skill for both synthetic and true 

forecasts showed small differences, indicating that forecast skill was largely a function of error in mean and variability (Fig. 

10). We acknowledge that estimating forecast skill and value for drought years necessitates a smaller sample size (here n~5), 

which is not ideal, affecting the statistical power of the analysis. This limitation arises due to the limited availability of 710 

operational forecasts and the need for sufficient ensemble members for ESP. Therefore, it would be important to assess whether 

a broader selection criterion or longer span of forecast availability would help ensure robust results. 

However, we found three aspects particularly surprising. First, the skill-value relationship was remarkably consistent for 

synthetic forecasts despite only controlling for mean and variability across the observations. This suggested that regular error 

structures allowed for a more predictable translation of skill into value (Fig. 12). Second, in contrast, the skill-value relationship 715 

was completely inconsistent for true forecasts, particularly in the context of droughts. This was unexpected, as we had 
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anticipated some level of variability, but the degree of inconsistency indicated that in real-world conditions, forecast value is 

influenced by additional complexities beyond forecast skill (Fig. 12). Third, even though some true forecast systems, such as 

NRCS and LSTM, demonstrated high skill, the weaker skill-value relationship for true forecasts meant that good forecast skill 

did not always translate into high forecast value (Figs. 11 and 12).” 720 

Lastly, we found that categorical measures, such as the hit and false alarm rates, better explained the discrepancies in forecast 

value between synthetic and true forecast systems than skill metric used in the study (Fig. 14). This was confirmed by showing 

the correspondence of forecast value between synthetic and true forecasts, which was largely driven by categorical measures 

like hit and false alarm rates (Fig. 15). Our findings highlight the risk of stakeholders relying solely on traditional performance 

metrics when selecting a forecasting system. While high forecast skill may indicate good performance, the economic value 725 

can vary significantly due to system complexities and interactions. This underscores the need for more sophisticated 

assessment approaches that consider forecast value, particularly in decision-making contexts, rather than focusing solely on 

skill metrics. Our study advocates for a multi-faceted assessment framework that integrates both skill and value while also 

recognizing the limitations of the PEV framework. 

However, PEV assumes risk-neutral decision-makers and is limited to binary decision contexts, which may oversimplify real-730 

world decision-making challenges (Laugesen et al., 2023). In water management, decisions often involve continuous or multi-

categorical variables, such as balancing water supply needs, hydropower generation, and flood control, which PEV does not 

fully capture (Laugesen et al., 2023; Portele et al., 2021). We also recognise that while the PEV framework assumes equal 

costs for hits and false alarms, real-life decision-making may be more sensitive to false alarms due to their potential to damage 

trust in forecasting systems and decision-making authorities. To better reflect decision-making contexts, it may be beneficial 735 

to explore weighted quantile loss metrics, where different quantiles receive different weights depending on their relative 

importance in decision-making. Such a weighting scheme would better align with situations where high or low values have 

disproportionate consequences, as is often the case in hydrologic forecasting. While more advanced and flexible metrics like 

the Relative Utility Value (RUV; Laugesen et al., 2023) offer improved decision-making capabilities by incorporating user-

specific utility functions, we opted for PEV due to its simplicity and broad operational applicability. RUV provides granular 740 

insights into forecast value across different decision thresholds but introduces additional complexities that are unique to each 

user, including their decision-making preferences, risk tolerance, and operational priorities. RUV uses the same inputs as PEV. 

However, RUV allows the economic model, damage function, and risk aversion to be explicitly specified (Laugesen et al., 

2023). One of the important benefits of RUV is that it uses the whole probabilistic forecast and does not need a conversion to 

a categorical forecast like PEV (Laugesen et al., 2023). PEV’s straightforward interpretation and widespread usage in 745 

hydrologic and meteorological applications made it more suitable for our evaluation without introducing unnecessary 

complexities. The results from this study raise an important question about whether the categorical nature of the events and 

the experimental nature of PEV are indeed driving the observed outcomes. This potential alignment may suggest that 

categorical error measures are performing better simply because they match the structure of our experimental design. To clarify 
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this, further consideration is needed to understand whether this relationship reflects a true advantage of categorical measures 750 

or is an artifact of the setup, i.e., a comparison with the synthetic forecasts generated by imposing regular error structures. By 

testing alternative error measures like RUV that are not categorical and adjusting the experimental design, we can better assess 

whether the effectiveness of the forecasts is truly a function of forecast skill or simply due to the structure of the experiment. 

Such additional analysis will help confirm or refute the notion that categorical measures work better only because they align 

more closely with how events and costs are defined in this model. Future work could explore ways to incorporate asymmetric 755 

cost structures or impacts of reputation to better reflect these considerations in operational settings. 

There are several limitations to the probabilistic forecasts used in this study. First, the datasets used for generating these 

forecasts typically have their own limitations, such as the absence of common standards for intercomparison, a lack of 

uncertainty estimates for assessing data reliability, and a lack of characterization of human intervention (Addor et al., 2020). 

In the case of LSTM-ESP forecasts, the use of only a single deep learning model (LSTM) is a limitation, which could be 760 

replaced by alternative neural networks (Cho et al., 2014; Vaswani et al., 2017) or physics-guided architectures (Feng et al., 

2022b, a; Hoedt et al., 2021) to improve forecast performance. Additional limitations, as discussed by Modi et al. (2024), 

include the need to test different hyperparameters, extend the training period, and explore the use of other snowpack treatments 

that may improve the model’s performance. For WRFH-ESP forecasts, biases in initial hydrologic conditions, which arise due 

to lack of knowledge and incomplete process representation (DeChant and Moradkhani, 2011), and parameter uncertainty 765 

potentially resulting from ill-constrained calibration (Arheimer et al., 2020; Hirpa et al., 2015; Wood et al., 2016) contribute 

to forecast biases. 

We also recognize that a comparison with operational ESP forecasts generated by the River Forecast Centers might be more 

appropriate for this study. However, due to the limited availability of operational ESP forecasts (starting in 2015) for our study 

basins, as well as inconsistent methodologies across regions, we chose to use the NRCS forecasts. Importantly, it should be 770 

noted that the differences in forecast volumes between NRCS and operational ESP forecasts are minor in the context of the 

overall forecast uncertainty (Lukas and Payton, 2020).  

Conclusions 

This study explored how the skill of seasonal streamflow forecasts translates into economic value for decision-making in 

unmanaged basins across the western US. We used synthetic forecasts to systematically analyze the skill and value of true 775 

forecasts produced by process-based (WRFH), deep-learning (LSTM) models, and operational forecasts from NRCS. The 

WRFH and LSTM models showed distinct responses to training and calibration in simulating streamflow. The LSTM model 

was more sensitive to training, with more stable structures, lower NRMSE, and better correlation. In contrast, the WRFH 

model showed minimal improvements post-calibration, with larger and more irregular error structures despite some 

improvement in variability.  780 
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Our results showed that forecast skill — indicating how accurately forecasts match observations — and forecast value — 

representing the economic benefits derived from those forecasts in decision-making — exhibit complex relationships for true 

forecasts due to their irregular error structures. Our comparisons between synthetic and true forecasts revealed that forecast 

skill across the basins was more sensitive to error in mean and change in variability than the forecast value. However, these 

errors do not adequately explain the variations in forecast value. This is primarily due to the irregular model error structures, 785 

which impact categorical measures such as hit and false alarm rates, causing high forecast skill to not necessarily result in high 

forecast value. This suggests that overall model performance – how well a model handles variability and uncertainty – can 

significantly influence the gap between forecast skill and value. This gap is further complicated by the complexities introduced 

by operational structures.  

The analysis also reveals a clear relationship between drought severity and skill-value relationship. Models consistently 790 

struggle to predict severe drought events, and forecast value worsens monotonically with drought severity. We conclude the 

study by demonstrating that categorical error measures, such as the hit and false alarm rates, largely explained the forecast 

value. Our findings emphasize that forecast value is influenced by factors beyond forecast accuracy, such as the error structures 

and user-specific decision-making. This suggests that simply relying on performance metrics can overlook important variations 

in economic value. To address this, a more sophisticated evaluation approach is needed—one that prioritizes forecast value 795 

under varying conditions rather than focusing exclusively on accuracy metrics. A comprehensive evaluation framework that 

integrates both skill and value is essential for more informed, impactful decision-making. 

 

 

 800 

 

 

 

 



37 

 

Appendix A 805 

A1 WRFH model parameters and calibration 

The WRFH has several tunable parameters associated with soil properties, the surface and subsurface routing schemes, 

baseflow and groundwater schemes, snow schemes and the channel configuration (Cuntz et al., 2016; Lahmers et al., 2021). 

We use a calibration approach associated with the NWM scheme configuration following Lahmers et al. (2021) and Cosgrove 

et al. (2024), that selects calibration parameters based on previous sensitivity studies (Cuntz et al., 2016; Mendoza et al., 2015), 810 

model developer surveys, and a WRF-Hydro parameter sensitivity study (further described in Lahmers et al. 2021). These 

parameters are distributed (distinct to each grid), and the calibration is performed on the basis of either scalar multipliers 

(multiplying a scalar value from the calibration range with the actual values as shown in Table 1) or simply replacing the actual 

values. The scalar multipliers ensure the original model parameters are spatially coherent and physically consistent with a 

priori catchment properties (e.g., Gupta et al., 2008, 2009) whereas the replacement ensures that parameters are constant 815 

throughout the entire domain. The model parameters tuned for this analysis are mentioned in Table 1, including the calibration 

range, initial values, adjustment type, parameter description, and units. 

Table A1: WRFH Calibration parameters, including their calibration range, initial values, adjustment type, parameter description, 
and units. 

Parameter Minimum Maximum Initial Type Description Units 

Soil Parameters 

BEXP 0.4 1.9 1 Multiplier Pore size distribution 
index 

Dimensionless 

SMCMAX 0.8 1.2 1 Multiplier Saturation soil moisture 
content (i.e., porosity) 

Volumetric 
fraction 

DKSAT 0.2 10 1 Multiplier Saturated hydraulic 
conductivity 

m s-1 

RSURFEXP 1 6 5 Replace Soil evaporation 
resistance exponent 

Dimensionless 

Runoff parameters 

REFKDT 

0.1 4 1 Replace 

Surface runoff 
parameter; REFKDT is 
a tuneable parameter 
that significantly 
impacts surface 
infiltration and hence 
the partitioning of total 
runoff into surface and 
subsurface runoff. 
Increasing REFKDT 
decreases surface runoff 

Unitless 

SLOPE 
0 1 0.3 Replace 

Linear scaling of 
“openness” of bottom 
drainage boundary 

0-1 
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RETDEPRTFAC 0.1 20000 1 Replace Multiplier on retention 
depth limit 

Unitless 

LKSATFAC 

10 10000 1000 Replace 

Multiplier on lateral 
hydraulic conductivity 
(controls anisotropy 
between vertical and 
lateral conductivity) 

Unitless 

Groundwater parameters 

ZMAX 10 250 50 Replace Maximum groundwater 
bucket depth 

mm 

EXPON 
1 8 3 Replace 

Exponent controlling 
rate of bucket drainage 
as a function of depth 

Dimensionless 

Vegetation parameters 

CWPVT 
0.5 2 1 Multiplier 

Canopy wind parameter 
for canopy wind profile 
formulation 

m-1 

VCMX25 0.6 1.4 1 Multiplier Maximum 
carboxylation at 25OC 

µmolm-2s-1 

MP 
0.6 1.4 1 Multiplier 

Slope of Ball-Berry 
conductance 
relationship 

Unitless 

Snow parameters 

MFSNO 

0.25 2 1 Multiplier 

Melt factor for snow 
depletion curve; larger 
value yields a smaller 
snow cover fraction for 
the same snow height 

Dimensionless 

 820 

A total of 14 model parameters were calibrated with an iterative Dynamically Dimensioned Search approach (Tolson and 

Shoemaker, 2007). This algorithm was developed for computationally expensive optimization problems such as distributed 

watershed model calibration, which automatically scales the search strategy in model parameter space based on the user-

specified maximum iterations (Tolson and Shoemaker, 2007). In the initial iterations, the algorithm searches globally, and as 

the procedure approaches the maximum number of iterations, the search transitions from a global to local search, making it 825 

computationally efficient and finds equally good solutions as compared to the dominant Shuffled Complex Evolution algorithm 

(Tolson and Shoemaker, 2007). In this study, the model is cycled over the calibration period 250 times to minimize an objective 

cost function based on the works of Cosgrove et al. (2024) and Lahmers et al. (2021). It is important to note that we restrict 

the iterations to 250 due to limited computing resources. However, in an ideal scenario, such as an operational context, this 

number could scale up to thousands of iterations, depending on the complexity of the physical processes in the region. A 5-830 

year calibration period for each basin was selected based on the maximum standard deviation of streamflow between WY1986-

2005. This ensures calibration periods are selected based on the first, basin’s hydrologic conditions that are responsible for its 
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water balance simulations, and the second, distinct climate years that allow for consideration of the broad effects of non-

stationarity (Myers et al., 2021). A 5-year calibration period is short but has been adopted in earlier model implementations 

attributable to the limitations of computational resources (Cosgrove et al., 2024; Lahmers et al., 2021). The objective cost 835 

function is a weighted Nash Sutcliffe Efficiency (NSEwt; Equation 3) consisting of equal parts NSE (Nash and Sutcliffe, 1970) 

and NSE calculated for the log of the discharge (NSElog) using daily streamflow observations (Cosgrove et al., 2024; Lahmers 

et al., 2021). 
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A2 LSTM model training 840 

The LSTM training process, as illustrated in Fig. A1, was adapted from Modi et al. (2024), who provide a more comprehensive 

exposition. It begins by initializing weights and biases using the Xavier uniform distribution (Glorot and Bengio, 2010). During 

each iteration, a random batch of 2000 samples is drawn from the training data to make predictions. The model is trained 

regionally, using training data from 664 basins across the CONUS from WY1983-2000. Each sample consists of a streamflow 

observation on a given day (the dependent variable) and the input sequence of the preceding 270 days, creating a “sequence-845 

to-value” prediction. Since streamflow on any given day is dependent on the preceding 270 days, batches are randomly selected 

across basins without requiring chronological order (Kratzert et al., 2018). Static basin attributes alongside meteorological 

forcings are included as inputs to inform model of basin characteristics. During each iteration, the predictors (X) pass through 

the model’s weights (w) and biases (b) to produce streamflow predictions (ysim), and the error (or loss) is computed relative to 

the observations (yobs). The model parameters are then updated through back-propagation. 850 

To account for varying hydroclimatic conditions across basins, the training loss function is a basin average Nash Sutcliffe 

Efficiency (NSE), which normalizes the mean squared error for each basin using streamflow variance (Kratzert et al., 2019). 

This prevents large, humid basins from dominating the loss function. Unlike process-based models where parameters are 

updated after each complete model run, LSTM parameters are updated after each epoch – where an epoch represents one full 

pass of the training data. For example, if there are 100,000 training samples and a batch size of 2000, one epoch would consist 855 

of 50 iterations (100,000/2000). In this study, 40 epochs were used for training with a single seed and the Adam optimizer, 

which offers better efficiency than Stochastic Gradient Descent (Ruder, 2016). Multiple seeds were not tested, as the 

performance impact was minimal (Kratzert et al., 2019).  
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Figure A1 - Schematic of LSTM model training for each iteration within an epoch. In each iteration, 2000 independent random 
samples are drawn from 18 years of daily data from 664 basins totaling 4.36 million basin-days. Each sample consists of 270 days, 
i.e., input sequence length, of preceding predictors (X) and one target observation (yobs). The loss is computed between observed 
discharge (yobs) and the network’s prediction (ysim). The model parameters, including weights (w1...wm) and biases (b1…bm), are 865 
updated after every iteration. Epoch refers to the complete passing of the entire training dataset through the model algorithm 
once. The weights and biases are model parameters, whereas the batch size, input sequence length, and number of epochs are the 
hyperparameters (Modi et al., 2024). 

Table A2 - Training predictors for LSTM models. It consists of meteorological forcings (source: AORC), static basin attributes 
(source: GAGES-II), and snow data (source: UA) with streamflow data (source: USGS) as the predictand. The asterisk indicates 870 
that the predictor was only included in one of the two trained LSTM models. 

CATEGORY NAME DESCRIPTION 

Static 

PPTAVG_BASIN Mean annual precipitation (mm) 

PET Mean annual potential evapotranspiration (mm) 

T_AVG_BASIN Average annual air temperature (oC) 

SNOW_PCT_PRECIP Snow percent of total precipitation estimate 

WDMAX_BASIN Watershed average of monthly max. number of days of measurable 
precipitation 

WDMIN_BASIN Watershed average of monthly min. number of days of measurable 
precipitation 
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PRECIP_SEAS_IND Precipitation seasonality index (Markham, 1970; Dingman, 2002).  Index of 
how much annual precipitation falls seasonally (high values) or spread out 
over the year (low values). 

RUNAVE7100 Mean annual total runoff (mm) 

RE Runoff efficiency = PPTAVG_BASIN/RUNAVE7100 

ELEV_MAX_BASIN Maximum watershed elevation (m) 

ELEV_MIN_BASIN Minimum watershed elevation (m) 

DRAIN_SQKM Watershed drainage area (km2) 

SLOPE_PCT Mean watershed slope (%) 

FORESTNLCD06 Watershed percent forest (%) 

PLANTNLCD06 Watershed percent planted/cultivated 

PNV_BAS_PCT Percentage of the watershed covered by the dominant potential natural 
vegetation 

ROCKDEPAVE Average value of total soil thickness examined (in) 

AWCAVE Average value for the range of available water capacity for the soil layer 

CLAYAVE Average value of clay content (%) 

SILTAVE Average value of silt content (%) 

SANDAVE Average value of sand content (%) 

PERMAVE Average permeability (in/hr) 

KFACT_UP Average K-factor for the uppermost soil horizon in each soil component. K-
factor is an erodibility factor which quantifies the susceptibility of soil 
particles to detachment and movement by water. 

Meteorological 

PRCP Average daily precipitation (mm/day) 

WIND Average wind speed (m/s) 

TAS 2 m daily average air temperature (oC) 

SRAD Incoming shortwave solar radiation (W/m2) 

LRAD Incoming longwave solar radiation (W/m2) 

PRES Near-Surface Air pressure (Pa) 

VP Near-Surface Vapor Pressure (Pa) 

*Snow SWE Average Snow Water Equivalent (mm) 

Streamflow SF Average daily streamflow (mm/day) 

Table A3: The LSTM hyperparameters used in this study (adapted from Kratzert et al. (2019) and Modi et al. (2024)). 

Parameter Description Selected Value 

Number of hidden layers The number of stacked LSTM layers in the model  1 

Number of units The number of memory cells in each LSTM layer 
that determine the capacity to learn from the data 

256 
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Input sequence length The length of preceding time steps fed into the 
LSTM 

270 

Batch size The number of training samples used in one 
iteration 

2000 

Dropout rate The fraction of the units to drop during training to 
prevent overfitting 

0.4 

Number of epochs The number of times the entire training dataset is 
passed through the model 

40 

Optimizer The algorithm used to minimize the loss function Adam 

Learning rate The step size used by the optimization algorithm to 
update the model weights 

0.001 

 

A3 Historical performance evaluation of our designed true forecast systems before and after calibration/training. 

As shown in Fig. A2, for WRFH, the improvements were minimal across most metrics before (WRFHDEF) and after calibration 875 

(WRFHCAL), except for the variability (ratio of standard deviation) that improved from 1.65 to 1.25. With LSTM, major 

improvements were seen with the median daily NSE, improving from 0.58 to 0.77. In general, the improvements across all 

metrics for both models underscore the importance of model calibration and training, as seen with LSTMFINAL and WRFHCAL 

(Fig. A2). 
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 880 

Figure A2: Historical model performance of true forecast systems. (a) Daily NSE, (b) NRMSE of the total April-July streamflow 
volumes, (c) daily correlation, and (d) Ratio of the standard deviation against observations for WRFH (default and calibrated) and 
LSTM (initial and final) models. Comparison shown for the 76 basins during the testing period, WY2001-2010. 

Models
WRFHDEF
WRFHCAL
LSTMINITIAL
LSTMFINAL

a b

c d
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A4 Exposition of irregular error structures in true forecasts 

 885 

Figure A3: April-July streamflow volume from two true forecast systems (WRFH and LSTM) in WY2006-2022 at Dinwoody Creek 
(USGS 06221400) and Lake Fork (USGS 09124500). 
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Code and data availability 

All data products used in the analysis are publicly available. A total of 664 GAGES-II basins are selected following screening 890 

criteria that ensure minimal upstream regulation and continuous data availability for at least 30 years. The meteorological 

forcings, basin attributes, snow and streamflow data are obtained from AORC (Fall et al., 2023), GAGES-II (U.S. Geological 

Survey, 2023), UA (Broxton et al., 2019a) and the US Geological Survey streamflow gages (United States Geological Survey, 

2024) respectively. NRCS forecast data and SNOTEL snowpack observations are downloaded from the National Water and 

Climate Center portal (United States et al., 2024). The Modi & Livneh (2024) data set provides the source code, training data, 895 

and model runs for the LSTM model used in this research. The code for the WRF-hydro model (V5.2) is available online 

(McCreight et al., 2021). 
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