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Abstract. Lidar-derived snow depth and canopy height maps were used to analyze snow depth spatial variability at a boreal 10 

forest site in Alaska. High resolution (0.5 m) airborne lidar data were acquired during NASA’s SnowEx Alaska field campaigns 

during peak snow-on accumulation (March 2022) and snow-off (May 2022). The impact of canopy height on snow distribution 

was studied at the Caribou Poker Creeks Research Watershed, located north-east of Fairbanks, Alaska, U.S. Ground-based 

snow depth measurements were collected concurrently with the March snow-on lidar survey and were compared to collocated 

lidar-derived snow depths. The comparison between ground-based and lidar-derived snow depths produced a bias of 2.0 cm 15 

and a root mean square error (RMSE) of 12.0 cm. The lidar snow depth map showed a mean snow depth of 𝐻𝑆̅̅ ̅̅  = 98 cm and 

SD = 15 cm for the study site. The influence of vegetation on end-of-winter snow depth distribution was analyzed using three 

canopy height classes: 1) forest, 2) shrub and short stature trees (SSS), and 3) treeless. Results showed a statistically significant 

difference in median snow depths across canopy height classes, with the largest significant difference between forest and 

treeless (12–14 cm) and between forest and SSS (8–14 cm). This difference in snow depths is equivalent to an SWE range of 20 

0.02–0.03 m. This study provides insights into the spatial variability of snow depths in Alaska’s boreal forests by using ground-

based measurements to evaluate the accuracy of lidar to estimate snow depths in a boreal forest ecosystem. The results of this 

research can be used to assist water and resource managers in determining best practices for estimating snow depth and its 

spatial variability in the boreal forest of Alaska. 

1 Introduction 25 

Snow plays a significant role in hydrologic, atmospheric, and ecological processes globally. Snow cover impacts the thermal 

regime of the soil, water and energy balances, land use decisions, winter recreation, and the timing and volume of spring runoff 

(Barnett et al., 2005; Boelman et al., 2019; Chapin et al., 2000, 2005). In the boreal forest seasonal snowpack and its melting 

dominate annual hydrological and climatic patterns (Barnett et al., 2004; Kane and Yang, 2004; Kozii et al., 2017). The 

snowpack accumulates from the fall through the following spring with few melt or runoff events. The spring snowmelt is often 30 
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the major hydrological event each year, and usually correlates to the peak discharge of the season (Kane and Yang, 2004; 

Kozii et al., 2017; Tennant et al., 2017). 

In boreal forest regions, the spatial and temporal variability of snow depth (HS) can be significant due to static controls such 

as land cover, topography, soil, and permafrost (Cho et al., 2021; Pastick et al., 2015; Woo, 2012) and to dynamic processes 

including canopy-snow interactions (Hojatimalekshah et al., 2021; Kozii et al., 2017; Uhlmann et al., 2018), wind distribution 35 

(Homan and Kane, 2015; Liston and Sturm, 1998), long and short wave radiation (Lundquist et al., 2013), and solid and liquid 

precipitation trends (Bolton et al., 2004; Brown and Goodison, 1996; Kane and Yang, 2004; Lader et al., 2020). Boreal forest 

snow is classified as cold with thin to moderate (0.3–1.3 m) snow depths and low-density layers (Sturm and Liston, 2021). 

The low density is due to the extensive depth hoar (occupying 2/3 to virtually all the snow cover), and little to no melt events 

during the winter season. New and recent snow layers at the surface of the snow retain their basic snow crystal structures for 40 

days due to the cold air temperatures, relatively low amounts of precipitation and the absence of wind (Sturm and Liston, 

2021).  

The boreal forest is one of the world’s largest forest biomes making up approximately 30 % of the world’s forested regions 

(Askne et al., 2017). In the Northern Hemisphere, 20% of the seasonal snow cover occurs within forested regions (Güntner et 

al., 2007). Forests canopies modify snow accumulation, ablation rates and overall snow storage by intercepting snowfall 45 

(Dickerson-Lange et al., 2021; Lundquist et al., 2013; Storck et al., 2002; Uhlmann et al., 2018). Intercepted snow can account 

for as much as 40–60% of annual snowfall in boreal forests (Kozii et al., 2017; Pomeroy et al., 2002). All these processes are 

strongly controlled by the structure of the forest canopy at small spatial scales that interact to create variable snow distribution 

patterns (Broxton et al., 2015, 2019; Dickerson-Lange et al., 2021; Mazzotti et al., 2019). In boreal regions land cover is a 

mixture of spruce, deciduous, and mixed forests, shrublands, and low-lying herbaceous wetlands. Snow depth can be 50 

noticeably different across land cover types under the same climatic conditions. Accurately accounting for forest effects on 

snow storage and distribution will become even more important as forests change due to warming climate conditions, forest 

disturbances, wildfires, insect infestation, and permafrost degradation (Panda et al., 2010; Smith et al., 2021). In turn, these 

changing forests impact hydrological regimes, water availability, timing and magnitude of snowmelt runoff, and water 

resources for land and civilian uses (Dickerson-Lange et al., 2021; Hopkinson et al., 2004; Mazzotti et al., 2019; Webb et al., 55 

2020). 

Monitoring forest changes and subsequent snow storage and distribution effects is vitally important to water and resource 

managers. Remote sensing techniques are advancing our understanding of links between forest snow distribution and canopy 

structure by providing high resolution spatial data of snow on the ground and the detailed structure of forest canopies at 

landscape scales and across previously unavailable extends (Harpold et al., 2014; Jacobs et al., 2021; Li et al., 2021). One 60 

remote sensing technique, airborne-based light detection and ranging (lidar), has been used for almost two decades to describe 

snow depths in forests (Hopkinson et al., 2004), and lidar techniques are evolving to better characterize forest properties (land 

cover, canopy density, height, gaps, etc.) relevant to snow distribution (Li et al., 2021; Mazzotti et al., 2019; Moeser et al., 

2016; Tennant et al., 2017; Yang et al., 2018; Zheng et al., 2016). Studies show that, compared to traditional manual 
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measurements, lidar data that provide spatially continuous, high resolution, snow depth maps have greatly advanced the ability 65 

to characterize spatiotemporal variability in snow depth at larger watershed scales (Deems et al., 2013; Hopkinson et al., 2004, 

2012; Jacobs et al., 2021; Nolan et al., 2015; Painter et al., 2016; Trujillo et al., 2007) while maintaining a statistically 

significant relationship between lidar-derived snow depths and manual field measurements (Douglas and Zhang, 2021; 

Harpold et al., 2014; Hopkinson et al., 2004, 2012; Jacobs et al., 2021; Mazzotti et al., 2019; Reutebuch et al., 2003). However, 

when comparing lidar accuracy between forest and non-forested areas, existing validation studies yield contrasting conclusions 70 

(Harpold et al., 2014). Despite considerable literature on airborne lidar snow depth retrievals in forested environments, little 

research has been published on its ability to measure snow depth in boreal forests, and results are varied identifying what 

vegetation characteristics are driving snow depth variability in boreal forest ecosystems. 

The purpose of this paper is to contribute to limited boreal forest snow remote sensing research by analyzing ground-based 

snow depth measurements and airborne lidar data to improve snow depth estimation at an Alaska boreal forest site. Two new 75 

airborne lidar-derived data products obtained during the NASA SnowEx Alaska campaigns are used for the analysis. A lidar-

derived snow depth map is compared to ground-based measurements to evaluate the accuracy of lidar to estimate snow depths 

in an Alaska boreal forest. A lidar-derived canopy height map is used to evaluate a vegetation metric that quantifies the spatial 

variability of snow depths in boreal forests. The results can then be used to educate and assist water and resource managers in 

the effectiveness of airborne lidar to accurately estimate snow depth and snow water equivalent (SWE) in boreal forests of 80 

Alaska. The utility of the lidar-derived vegetation metric can further enhance understanding of vegetation and snow 

interactions while improving snow modeling applications. 

2 Study Site and Data 

2.1 Study Site 

The study was conducted in the Caribou Poker Creeks Research Watershed (CPCRW) located approximately 48 km northwest 85 

of Fairbanks, Alaska (Fig.1). CPCRW is a relatively pristine, 104 km2 basin reserved for meteorologic, hydrologic, and 

ecologic research. The site was established in 1987 as part of the National Science Foundation's Long Term Ecological 

Research (LTER) Program, and it is one of only two designated forest research facilities in the true boreal forest zone of the 

United States (USDA Forest Service Pacific Northwest Research Station, 2023). The watershed spans an elevation of 200–

830 m and reports a mean annual air temperature of -3.3 °C and a mean annual precipitation of 625 mm (USDA Natural 90 

Resources Conservation Service, 2023), 40 % of which can be snowfall (Liston and Hiemstra, 2011; USDA Forest Service 

Pacific Northwest Research Station, 2023). Approximately 30 % of its area is underlain by continuous and discontinuous 

permafrost (Fig. 1) (Bonanza Creek LTER, 2023; Haugen et al., 1982).  

Two streams are found within CPCRW, Caribou Creek and Poker Creek. The Caribou Creek watershed is divided into four 

subbasins (C1, C2, C3, and C4), and the Poker Creek watershed is divided into six subbasins (P1, P2, P3, P4, P5, and P6) (Fig. 95 

1) (Haugen et al., 1982). The drainage pattern of the two streams is dendritic, and stream channels in the subdrainages are 
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generally steep-walled and narrow, while the main channels are wider, often with alternating pools and riffles (Bredthauer and 

Hoch, 1979). The two streams converge at the south-central portion of the watershed and then flow into the Chatanika River. 

The Chatanika joins the Tolovana River, which flows into the Tanana River and on to the Yukon River. The vegetative cover 

within the watershed consists of deciduous, evergreen and mixed forests, shrublands, and wetlands. South-facing slopes are 100 

dominated by well-drained deciduous and mixed forests of aspen (Populus tremuloides), poplar (Populus balsamifera), birch 

(Betula neoalaskana), and white spruce (Picea glauca). The understory consists of patchy alder (Alnus viridis) and willow 

(Salix spp.). North-facing slopes are dominated by evergreen forests with black spruce (Picea mariana) as the dominant 

species.  Understories contain dwarf shrubs (e.g., Betula nana, Salix spp., Ledum groenlandicum), feather moss, and lichen 

(Bonanza Creek LTER, 2023). 105 

 

 

Figure 1: Map of the Alaska boreal forest ecozone (a) and the location of the Caribou Poker Creeks Research Watershed (c). 

Subbasins of the CPCRW, permafrost areas, the location of ground-based snow depth measurements taken on 11 March 2022, and 

the coverage of the lidar flight flown on 11 March 2022, are shown in map (b). Base map source: ESRI. 110 
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2.2 Data 

2.2.1 Ground-Based Snow Depths 

Ground-based snow depths were obtained from snow measurements conducted in the CPCRW on 11 March 2022 (May et al., 

2024), during the planning phase for the NASA SnowEx Alaska campaigns. SnowEx was a multi-year program initiated and 

funded by the NASA Terrestrial Hydrology Program. SnowEx Alaska aims to ask: “How well we can characterize the spatial 115 

variability of snow depth and density needed for accurate SWE estimates in the boreal forest by measuring snow depth, density, 

and vegetation characteristics” supported by field work and various remote sensing technologies (Vuyovich et al., 2024)? In 

2022 and 2023, the NASA SnowEx campaigns were focused on tundra and boreal forest regions of Alaska.  

A total of 2,114 ground-based snow depth measurements were collected in a spiral pattern, approximately 1 m apart, with a 

GPS-enabled snow depth measurement device called a magnaprobe (Sturm and Holmgren, 2018). The magnaprobe consists 120 

of a 1.3 m long ∼1 cm diameter rod with a moveable basket that uses a GPS and a magneto restrictive material inside the rod 

to record snow depth and location in seconds (Sturm and Holmgren, 2018). GPS horizontal location accuracy is ± 2.5 m in 

open areas but may decrease to 10–15 m in dense forest (Douglas and Zhang, 2021; Sturm and Holmgren, 2018). Snow depth 

measurements were taken at four sample locations within the CPCRW (Fig. 1); measurements were used as validation points 

to determine the accuracy of the lidar-derived snow depth map.  125 

Two additional snow depth measurements were obtained from snow course sites operated by the USDA Natural Resources 

Conservation Service (NRCS) within CPCRW (Fig. 1).  Snow depth records date back to December 1969 at both sites with 

the 30 year (1991–2020) median snow depths available for the start of each month. At the start of March, the 30-year median 

snow depth for the Caribou Creek snow course was 58 cm, and for the Caribou Snow Pillow snow course was 56 cm (USDA 

Natural Resources Conservation Service, 2023). Snow depths recorded on 1 March 2022, from the Caribou Creek and Caribou 130 

Snow Pillow snow course sites were compared to the SnowEx Alaska ground-based and lidar-derived snow depth values 

collected on 11 March 2022. 

2.2.2 Airborne Lidar 

Airborne lidar, an active remote sensing system, records the time required for emitted light to travel to the ground and back to 

an airplane-mounted sensor. The sensor includes a GPS that identifies the X,Y,Z location of the light energy, and an internal 135 

measurement unit that provides the orientation of the plane in the sky. The resultant data can be used to create a high-resolution 

digital terrain model (DTM) that approximates a bare earth surface. Differencing a snow-free from a snow-on surface elevation 

data set allows for a straightforward mapping of snow depth. In addition to providing spatial data on snow distribution, airborne 

lidar can produce spatial data of canopy heights by subtracting a bare-earth digital terrain model from a digital surface model 

(DSM). A DSM models the canopy and the top of the vegetation by accounting for all the first, or only, lidar pulses returned 140 

to the sensor. 
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Two airborne lidar surveys were flown over CPCRW (Larsen, 2024). The first was flown prior to the onset of snow melt on 

11 March 2022. The second was flown on 29 May 2022, during snow-free conditions. The lidar flight area of coverage is 

represented by the red box in Fig. 1 and constitutes the study site. All references to CPCRW and all statistical analysis 

performed in this study are in reference to the larger area within the lidar box, not the boundary of the watershed (Fig. 1). The 145 

11 March 2022, lidar survey occurred concurrent with ground-based snow depth measurements taken on the same day. 

Differencing the May snow-free DSM from the May snow-free DTM produced a lidar-derived canopy height map. 

The lidar and stereophotogrammetry instruments are combined on rigid mount and deployed simultaneously in a Cessna T206 

aircraft. The lidar scanner uses a 1064 nm wavelength laser and has adjustable pulse repetition frequency up to 2000 kHz. The 

scanner has a rotating mirror that sweeps the beam across 75 degrees (+/- 37.5 degrees off nadir), resulting in shot lines 150 

perpendicular to the flight path (MacGregor et al., 2021). Flight lines are planned with > 50% sidelap to target 20 points per 

square meter for each survey coverage. The vertical and horizontal accuracy of the lidar snow depth and canopy height maps 

is ± 5.0 cm.  

3 Methods 

3.1 Lidar Data Review 155 

The lidar data products were reviewed for quality control and visually inspected for abnormalities. Lidar snow depth and 

canopy height pixel values that represented unlikely snow depths or canopy heights for the CPCRW, or that displayed abnormal 

distribution patterns, were removed from the analysis. Negative pixel values, which are usually the result of error points in one 

of the lidar data sets, were assigned a “no data” code during quality control.  

The lidar snow depth map contained pixel values ranging from -300 cm to 499 cm, an implausible range in snow depths for 160 

CPCRW. We analyzed ground-based SnowEx snow depths, the NRCS snow course measurements, and a histogram of the 

lidar snow depths to determine a plausible snow depth range for CPCRW. A color scale map of the lidar snow depths was 

generated to observe if identifiable patterns existed that indicate where unlikely snow depth values appeared. The lidar snow 

depth map was then corrected to include only pixels occurring within the plausible snow depth range, and all remaining pixels 

were classified as “no data.” 165 

The lidar canopy height map contained pixel values ranging from -3 m to 40 m. All positive canopy height values were included 

in the analysis and classified according to the vegetation found within CPCRW. Canopy height classes were determined after 

referencing the vegetation classification used in the U.S. Geological Survey National Land Cover Database (NLCD) 2016 

Land Cover - Alaska (ver. 2.0, July 2020) (Dewitz, 2019) and the Fuel Model Guide to Alaska Vegetation (Alaska Fuel Model 

Guide Task Group, 2018).  170 
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3.2 Lidar Data Reduction 

The lidar snow depth and canopy height rasters contain approximately 86 million positive pixels each. After the snow depth 

and canopy height maps were reviewed and corrected, a size reduction of both rasters was necessary for practical processing 

times during the statistical analysis.  

The first data reduction technique used for the statistical analysis was to determine the distance at which snow depths were no 175 

longer spatially autocorrelated. To determine spatial autocorrelation, 15 smaller sections of the lidar snow depth map were 

portioned, and a semivariogram was developed for each section. The range value of each semivariogram was estimated using 

the Ordinary Kriging (OK) interpolation method. Ordinary Kriging is a frequently used interpolation method for estimating 

snow depth because it is easy to implement, considers the variables of variation and distance between points, and assumes a 

constant mean (Ashtiani, 2024; Carroll and Cressie, 1996; Erxleben et al., 2002; Huang et al., 2015; Lloyd and Atkinson, 2001; 180 

Ohmer et al., 2017; Tabari et al., 2010). The semivariogram ranges were then averaged over the fifteen sections, and the lidar 

snow depth map was resampled, applying the semivariogram range to effectively eliminate spatial autocorrelation from 

contiguous pixels.  The resulting snow depth map displays the independent snow depths required for the statistical analysis. 

The lidar canopy height map was resampled to the same resolution as the new snow depth map with corresponding pixel sizes. 

To further reduce the lidar snow depth map to a size that allowed for practical processing times, three spatial subsets were 185 

created. Each spatial subset exhibited land cover and canopy height percentages comparable to those of the entire study site. 

The resampled lidar snow depth and canopy height maps were then clipped with each spatial subset. The clipping allowed the 

lidar snow depth map to be reduced from 86 million pixels to approximately 2 million pixels for each spatial subset. The lidar-

derived snow depths from each spatial subset were used in the statistical analyses and the lidar canopy height data was utilized 

for classification purposes. 190 

To compare the lidar snow depths with collocated ground-based measurements, ground-based snow depth coordinates were 

obtained from the magnaprobe’s GPS. Using the ground-based coordinates, a corresponding lidar snow depth was obtained 

for each ground-based measurement. Lidar data review, reduction, analysis, and comparison with ground-based measurements 

was performed using ArcGIS Pro software. 

3.3 Statistical Analysis 195 

The statistical analysis was performed with the reduced lidar snow depth data. The Kruskal–Wallis statistical test was 

conducted to determine if a statistically significant difference in average snow depth existed between canopy height classes. 

The standard One-Way Analysis of Variance (ANOVA) test was not used because normality of the residuals was not satisfied, 

as determined by the shape of the normal Q-Q plots for each subset. The Kruskal–Wallis test is the non-parametric equivalent 

of the ANOVA, does not assume normality in the data, and it is much less sensitive to outliers than the ANOVA (Kruskal and 200 

Wallis, 1952). 
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Assumptions for the Kruskal–Wallis test are: continuous response variable, independence, and that distributions have similar 

shapes (Kruskal and Wallis, 1952). The assumption of independence was met by thinning the data according to the 

semivariogram range. The assumption of similarly shaped distributions was verified through basic histogram examination. 

The null hypothesis states that all the median snow depths among canopy height classes are equal. 205 

The Kruskal–Wallis test uses the ranks of the data to calculate the test statistic, H, given by Eq. (1): 

𝐻 = [
12

𝑛(𝑛+1)
 ∑

𝑇𝑗
2

𝑛𝑗

𝑐
𝑗=1 ] − 3(𝑛 + 1) ,          (1) 

where n is the total sample size (number of snow depths), c is the number of groups (canopy height classes) we are 

comparing, Tj is the sum of ranks for group j, and nj is the sample size of group j (number of snow depths within the canopy 

height class). H is then compared to a critical cutoff point determined by the chi-square distribution with (c-1) degrees of 210 

freedom. The chi-square is the sum of the squared deviations and is applied for accurate approximation of the distribution of 

H under the null hypothesis. If significant deviations are present, then the chi-square is large, and the p-value is small enough 

to be considered evidence of significant deviations from chance (Diez and Barr, 2012).  If the H statistic is significant (H is 

larger than the cutoff) then the null hypothesis is rejected. If the H statistic is not significant (H is smaller than the cutoff) then 

the null hypothesis is retained. The Kruskal–Wallis test was applied to obtain the chi-square and p-values. A p-value less than 215 

0.05 indicates a statistically significant difference between the median snow depths for all groups.  

To further characterize significance, the empirical Wilcoxon Rank Sum test was next applied to determine which canopy height 

pairs have significantly different median snow depths from each other and to compute the pairwise difference in median snow 

depths between each pair. The three canopy height pairs used in the Wilcoxon Rank Sum test are: forest and SSS, forest and 

treeless, and SSS and treeless. The result will be used to determine what effect canopy height has on snow depth variability in 220 

the study site. The Wilcoxon Rank Sum test is a non-parametric alternative to the two sample t-test. It has two assumptions: 

independence and equal variance (Mann and Whitney, 1947). Independence was met by thinning the data while equal variance 

was verified using histograms. The Wilcoxon test is based upon ranking the n1+ n2 observations of the combined sample. Each 

observation has a rank: the smallest has rank 1, the 2nd smallest rank 2, and so on (Mann and Whitney, 1947). The null 

hypothesis of the Wilcoxon Rank Sum test states that the median snow depths of the two samples are the same. 225 

The test statistic for the Wilcoxon Rank Sum test is denoted by U and defined as the smaller of 𝑈1 and 𝑈2 below in Eq. (2) 

and Eq. (3): 

𝑈1 = 𝑛1𝑛2 +
𝑛1(𝑛1+1)

2
− 𝑅1         (2) 

𝑈2 = 𝑛1𝑛2 +
𝑛2(𝑛2+1)

2
− 𝑅2         (3) 

where R1 = sum of the ranks for group 1 and R2 = sum of the ranks for group 2 (Mann and Whitney, 1947). The test was run 230 

to calculate the p-value, indicating a statistically significant difference in median snow depths between the two sampled classes. 

The differences of medians were computed for each vegetation class pair. The Kruskal–Wallis and Wilcoxon Rank Sum tests 
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was run using the R-4.1.2 statistical programming environment (R Core Team, 2022) to obtain corresponding chi-square and 

p-values for each spatial subset. 

4 Results 235 

4.1 Canopy Height Classes 

Three canopy height classes were selected to study the effect of vegetation on snow depth variability: 1) forest, 2) shrub and 

short stature trees (SSS), and 3) treeless. Vegetation pixels with a lidar canopy height greater than 5.0 m were classified as 

“forest”; forest pixels constituted 25.9 % of the study area (Fig. 2). Vegetation pixels with a lidar canopy height ranging 

between 0.2 m and 5.0 m were classified as “SSS,” and pixels with a lidar canopy height of less than 0.2 m were classified as 240 

“treeless.” SSS pixels constituted 27.1 %, and treeless pixels constituted 47.0 % of the study site (Fig. 2). The percentage of 

canopy height pixels for each of the watershed subbasins can be found in Table 1. Subbasins P3 and P5, within the Poker 

Creek watershed, contain the highest percentage of forest pixels. The southernmost subbasin for each watershed, P6 and C3, 

contain the highest SSS pixels, and subbasins P6 and C2 contain the highest treeless pixels. The three canopy height classes 

were used to classify ground-based and lidar-derived snow depths in the statistical analysis. Photographs of the study site 245 

showing vegetative examples of each canopy height classification without snow cover can be found in Fig. 3. 

 

Table 1: Canopy height percentages for each of the watershed subbasins located within the CPCRW. 

Subbasin Forest Pixels SSS Pixels Treeless Pixels 

P1 31.5 % 31.9 % 36.6 % 

P2 34.4 % 27.2 % 38.4 % 

P3 47.2 % 23.5 % 29.3 % 

P4 26.8 % 25.6 % 47.6 % 

P5 52.0 % 20.5 % 27.5 % 

P6 14.2 % 35.7 % 50.1 % 

C1 28.2 % 31.7 % 40.1 % 

C2 32.4 % 13.8 % 53.8 % 

C3 23.2 % 35.5 % 41.3 % 

C4 37.5 % 21.8 % 40.7 % 
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Figure 2: Canopy height map with color scale applied to show canopy height class distribution and subbasins (dashed white lines) 250 
within CPCRW (solid white line). 

 

 

Figure 3: Photographs of the vegetative land cover taken in CPCRW on 2 June 2022, showing forest and understory examples of 

each canopy height class. 255 
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4.2 Comparison of Ground-Based and Lidar-Derived Snow Depths  

Ground-based snow depth measurements covered approximately 1.0 % of the total area of the watershed. The mean for all 

ground-based snow depths in the study site (𝐻𝑆̅̅ ̅̅ =88 cm) was similar to the mean snow depth calculated for ground-based 

measurements classified by canopy height (forest (𝐻𝑆̅̅ ̅̅ =85 cm), SSS (𝐻𝑆̅̅ ̅̅ =87 cm) and treeless (𝐻𝑆̅̅ ̅̅ =88 cm)) (Table 2). The 

range for all ground-based snow depths was 23–121 cm (Table 2).  260 

During March 2022 the snow depth at the USDA Caribou Snow Pillow snow course was 94 cm. This represents a 61 % 

increase from the 30-year median snow depth of 58 cm. At the USDA Caribou Creek snow course, the March 2022 snow depth 

was 89 cm, a 59 % increase from its 30-year median of 56 cm (USDA Natural Resources Conservation Service, 2023). These 

statistics demonstrate 2022 as an above-normal snowpack year.  

 265 

Table 2: The mean manual snow depth ( 𝑯𝑺̅̅ ̅̅ ), range, standard deviation (SD) and number of ground-based measurements (n) 

recorded for the CPCRW and each canopy height class. 

Class n 𝑯𝑺̅̅ ̅̅  (cm) Min HS (cm) Max HS (cm) SD (cm) 

All CPCRW 2,114 88  23 121 9.4 

Forest 177 85  42 99 8.7 

SSS 236 87  29 100 10.6 

Treeless 1464 88  23 121 9.3 

 

 

The lidar data review resulted in a plausible snow depth range of 0–180 cm, which represents 99.98 % of the snow-covered 270 

area sampled by lidar. The remaining 0.02 % are pixels that were located surrounding gaps (no data pixels) in the lidar, adjacent 

to structures, along trails, or scattered in patterns that do not reflect natural snowpack conditions. These pixels were omitted 

from the analysis.  

Ground-based and lidar-derived snow depths were compared to quantify lidar accuracy and analyze snow depth variability 

within the study site. The average lidar-derived snow depth and standard deviation at in situ (ground-based) locations, the 275 

study site, and each canopy height class can be found in Table 3. For the study site, the mean lidar snow depth was calculated 

to be 98 cm (Table 3). The mean lidar snow depth at in situ locations was 90 cm. As suggested by this research, the sample 

variance of snow depths from airborne lidar minimally exceeds the sample variance from ground-based snow depths at the 

study site. The mean lidar-derived snow depths at collocated in situ locations was 2 cm more than the magnaprobe 

measurements from March 2022, and the mean lidar snow depth for the entire study site was 10 cm more than the magnaprobe 280 

measurements. Calculated standard deviations indicate that ground-based snow depth measurements vary by 9 cm, whereas 

lidar-derived snow depths for the study site vary by 15 cm. At the subbasin level, the mean lidar snow depths for all subbasins 

varied by 11 cm, with standard deviations ranging from 12–17 cm (Fig. 4). When comparing mean snow depths with the two 
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snow course snow depths (89 cm and 94 cm), ground-based mean snow depths were all lower, while mean lidar snow depths 

were all between, or above, the snow course snow depths. The mean lidar snow depths for canopy height classes increased by 285 

5 cm for forest, 15 cm for SSS, and 14 cm for treeless when compared to the corresponding mean snow depth at in situ locations 

based on canopy height. A whisker and box plot representing the mean lidar snow depth and standard deviation for the 

subbasins is found in Fig. 4. 

 

Table 3: The mean lidar-derived snow depth ( 𝑯𝑺̅̅ ̅̅ ),  standard deviation (SD), and number of lidar pixels (n) for the study site and 290 
canopy height classes.  

 

 

To quantify lidar accuracy, lidar-derived snow depths and concurrent ground-based snow depths were compared statistically. 

A scatterplot for all ground-based and lidar-derived snow depths, and a corresponding 1:1 line, is displayed in Fig. 5. Error 295 

statistics from the lidar validation analysis produced a bias of 2.0 cm, an RMSE of 12.0 cm, and an R2 value of 0.012 (Fig. 5). 

Error statistics and scatterplots for ground-based and lidar-derived snow depths based on canopy height resulted in a bias of 2 

cm, and an RMSE of 12 cm for SSS and treeless, and a bias of 0 cm and an RMSE of 12 cm for forest (Fig. 5). All three canopy 

height classes had low R2 values (Fig. 5). 

 300 

Class n Lidar 𝑯𝑺̅̅ ̅̅   (cm) Lidar SD (cm) 

At In situ Locations 2,114 90  8.8 

All CPCRW 86 million 98  15.3 

Forest 22 million 90  13.3 

SSS 23 million 102  14.6 

Treeless 40 million 102  14.9 
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Figure 4: Whisker and box plot representing lidar snow depths within each subbasin in the CPCRW. The white bar represents the 

mean lidar snow depth, the grey boxes represent the ± standard deviation, and the whiskers represent the minimum and maximum 

lidar snow depth within each subbasin. 

 305 
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Figure 5: Scatterplots comparing ground-based snow depths with collocated lidar snow depths with a corresponding 1:1 line for all 

ground-based measurements within CPCRW (a), and for ground-based measurements classified as forest (b), SSS (c), and treeless 310 
(d) canopy height classes. Error statistics for each classification are displayed. 

 

4.3 Statistical Analysis of Lidar-Derived Snow Depths based on Canopy Height 

To statistically compare lidar-derived snow depths between canopy height classes, it was necessary to create a snow depth 

map with independent observations that had eliminated spatial autocorrelation. The semivariogram analysis showed the 315 

average semivariogram range for the lidar-derived snow depth map to be 1.0 meter. The lidar snow depth map was resampled 

to a 1.5 m spatial resolution to eliminate spatial autocorrelation. The lidar canopy height map was resampled to a 1.5 m spatial 

resolution to correspond to the lidar snow depth map pixel size.  

The lidar-derived snow depths and canopy heights from the three spatial subsets were used as variables to run the statistical 

Kruskal–Wallis test. Results of the Kruskal–Wallis test (Table 4) show that the p-values comparing lidar-derived snow depths 320 

with canopy height are below the required value for significance (p-value < 0.05). A small p-value and a large chi-square 

statistic allowed for a rejection of the null hypothesis, which states that the median lidar-derived snow depths between the 

canopy height classes are equal. A rejection of the null hypothesis supports the finding that there is a statistically significant 

difference in snow depths between canopy height classes for all three spatial subsets. 

 325 

Table 4: Results of the Kruskal–Wallis test comparing median lidar snow depths based on canopy height class for each subset. 

 Chi-squared P-value 

Subset 1 329,932 < 2.2 e - 16 

Subset 2 263,750 < 2.2 e - 16 
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Subset 3 51,595 < 2.2 e - 16 

 

 

After a statistically significant difference in lidar-derived snow depths for the three spatial subsets was determined, the 

Wilcoxon Rank Sum test was used to calculate the p-value of the median snow depth between specific canopy height pairs. 330 

The results of the Wilcoxon Rank Sum test show a statistically significant difference (p-value < 0.05) in the snow depth 

medians between each canopy height pair (SSS and forest, treeless and forest, and treeless and SSS) for all three subsets (Table 

5). 

 

Table 5: Results of Wilcoxon Rank Sum test comparing the median lidar snow depth between canopy height pairs for each spatial 335 
subset. 

Subset 1 and Subset 3  Subset 2 

 Forest SSS   Forest SSS 

SSS < 2e-16 —  SSS < 2e-16 — 

Treeless < 2e-16 < 2e-16  Treeless < 2e-16 <6.2e-5 

 

4.4 Influence of Canopy Height on Snow Depth Estimation 

To analyze the influence of canopy height on snow depth distribution within the study site, the snow depth difference between 

specific canopy height pairs was calculated. This result was accomplished by observing the pairwise difference in median 340 

snow depths calculated by the Wilcoxon Rank Sum test. The pairwise difference value was used to estimate the lidar snow 

depth variability between each canopy height pair. The difference in mean lidar-derived snow depths between each canopy 

height pair for the three spatial subsets is shown in Table 6. Two canopy height class pairs, SSS and forest, and treeless and 

forest, had mean snow depth differences that were greater than the ±5 cm lidar vertical accuracy range for all three spatial 

subsets. When comparing the mean snow depth differences between these two class pairs, SSS averaged 9–14 cm more snow 345 

than forest (Table 6), and treeless averaged 12–14 cm more snow than forest (Table 6) for all three spatial subsets. This 

difference in snow depths is equivalent to an SWE range of 0.02–0.03 m. Canopy height SSS averaged slightly less snow than 

treeless, but the mean snow depth differences for the three spatial subsets fell within the ±5 cm lidar vertical accuracy range.  

 

Table 6: Difference in mean lidar-derived snow depth between canopy height class pairs. The mean snow depth of the second class 350 
listed is subtracted from the mean snow depth of the first class listed. 

Canopy Height Pair Subset 1 difference (cm) Subset 2 difference (cm) Subset 3 difference (cm) 

SSS - Forest 9.0 14.0 9.0 
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5 Discussion 

5.1 Sources of error and uncertainty in lidar derived snow depths 

Ground-based snow depth measurements provide an independent data set for the assessment of errors and uncertainties in data 355 

collected remotely. Ten studies that used ground-based measurements to validate airborne lidar (Table 7) in forested areas 

found RMSE’s ranging from 3 cm to 37 cm. Koutantou et al., (2022) found that their boreal forest site had the highest RMSE 

(19–22 cm) compared to their deciduous forest and field sites. This study’s calculated RMSE for comparing lidar-derived snow 

depths with ground-based measurements (RMSE=12.5 cm) falls within a range that is generally acceptable for most research 

(Harpold et al., 2014). A prominent non-processing source of error in airborne lidar data is vegetation-induced errors (Deems 360 

et al., 2013). Vegetation-induced errors can be minimized by increasing the pulse rates and decreasing the scan angles 

(Campbell et al., 2018; Deems et al., 2013). The lidar scanner used in this study had a pulse repetition frequency up to 2000 

kHz and an angle scan of 75 degrees. The higher pulse rate increases the probability of sufficient laser shots penetrating the 

canopy, reaching the ground, and returning to the sensor. Deems et al. (2013) found that the ground return point density 

decreases inversely with canopy and subcanopy density and is influenced by canopy and understory structure. We suggest that 365 

error between our lidar-derived and ground-based snow depth measurements are primarily due to vegetation, specifically the 

dense understory, rather than errors associated with lidar processing techniques.  

The dense understory canopy height classes of SSS and treeless, that make up approximately 74 % of CPCRW (Fig. 3), 

interfere with lidar laser pulses to penetrate to, and accurately map the ground surface. Reutebuch et al. (2003) found that when 

using airborne lidar to measure ground elevations in a forested area, the accuracy of the ground points was reduced by 370 

approximately 10 cm because the dense canopy and understory vegetation reduced the strength of the return signal back to the 

sensor, making it harder to precisely pinpoint the ground surface. Prior studies noted similar lidar errors occurring in vegetative 

landscapes where shrubs were prominent (Contreras et al. 2017; Gould et al., 2013; Spaete et al., 2011). We believe that the 

view of the lidar sensors used in this study were occluded by the dense understory vegetation, weakening the lidar signal and 

preventing it from accurately mapping the ground surface. During snow-on acquisition dense ground vegetation could further 375 

introduce error into the snow-on DEM by compacting beneath the snowpack, or elevating snow on top of dense vegetation. 

Errors in both snow-free and snow-on DEMs caused by the dense understory can lead to a less accurate snow depth map, 

which in turn affects the correlation between ground-based and lidar-derived snow depth measurements. 

The coefficient of determination between ground-based and lidar-derived snow depths (R2=0.012) is considerably lower for 

this study, compared to the studies listed in Table 7. Possible explanations for a low R2 value are that ground-based snow depth 380 

measurements were clustered together and represented only a small portion of CPCRW (approximately 1 % of the study area). 

Treeless - Forest 12.0 14.0 13.0 

Treeless - SSS 3.0 0.1 4.0 
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The magnaprobe GPS units have a horizontal positioning error of 2.5 m in open areas and 10–15 m in dense forest which could 

impact the correlation of ground-based snow depths with collocated lidar-derived snow depths. Lastly, snow depth variability 

is dependent on the spatial scale. During the March 2022 Snow Ex field campaign, evidence of snow depth variability over a 

single meter of distance was repeatedly seen in the field while taking ground-based measurements. Tussocks, understory brush, 385 

downfall, and the snowpack itself all impacted snow depths within a meter. Ground-based snow depth variability observed in 

the field, on a small spatial scale, supports the calculated semivariogram range of 1.0 m for spatial autocorrelation. However, 

when comparing snow depth variability over a larger spatial scale, the entire study area, all ground-based, lidar, and canopy 

height mean snow depths fell within one standard deviation of each other and had low standard deviation ranges (9–15 cm). 

Results from an analysis performed using ground-based and airborne lidar data from the March 2023 SnowEx Alaska campaign 390 

for this study site found similar statistical results (R2=0.048 and SD is 11–14 cm). Demonstrating a consistent low variation in 

snow depths over the two snowpack years at this study site, despite mean snow depths being statistically significantly different 

from each other.  

 

Table 7: Studies that compared lidar-derived snow depths with manual snow depth measurements are listed in the table. Information 395 
on location, landcover type, manual and lidar snow depth means, and error statistics are provided for each study. 

Study Location Landcover HS Mean (cm) RMSE (cm) R2  

Broxton et al., 

2015 

Colorado and New 

Mexico 

Forest/Canopy cover CO: mean 63 (manual) 

mean 74.8 (modelled) 

NM: mean 88 (manual) 

mean 93 (modelled) 

 0.01–0.33 

Broxton et al., 

2019 

Central Arizona Forest Mean 44 – 49 (manual) 9.1–18.7 0.85–0.91 

Currier et al., 2019 Grand Mesa, CO Forest Manual mean 6 cm 

greater than lidar mean 

8  

Dharmadasa et al., 

2022 

Southern Quebec Forest/Boreal Forest Mean 32–140 (manual) 7.9–22  

Harpold et al., 

2014 

California, Colorado, 

New Mexico 

Forest/Alpine Mean 0–274 (manual) 

Mean 7–222 (lidar) 

7–31 0.97 

Hopkinson et at., 

2004 

Southern Ontario, 

Canada 

Forest Mean 42 (manual)  0.52 

Hopkinson et al., 

2012 

Southern Alberta, 

Canada 

Forest/Canopy cover Mean 54 (manual) 

Mean 60 (lidar) 

 0.74 
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5.2 Implications for Water and Resource Management 

Water and resource managers use snow data, including snow depth and SWE, to assess the availability of water resources in 400 

regions dependent on snowmelt (Dickerson-Lange et al., 2021; Siirila-Woodburn et al., 2021). Our study site had a mean lidar 

snow depth of 98 cm, which is equivalent to approximately 0.21 m of SWE. When comparing median snow depths our analysis 

showed a statistically significant difference in median snow depths between all canopy height classes, with differences in snow 

depths, based on canopy height, equivalent to a SWE range of 0.02–0.03 m. This information can be utilized by water and 

resource managers to make informed decisions about water supply, flood control, evaluating the impact of climate change on 405 

precipitation and snow accumulation/melt patterns, land use decisions, and wildlife and conservation efforts (Dickerson-Lange 

et al., 2021; Hopkinson et al., 2004; Mazzotti et al., 2019; Reinking et al., 2022; Webb et al., 2020).  

Snow data obtained through various platforms, including ground-based, aircraft, satellite, or estimated through modelling tools, 

can be incorporated together to produce more accurate and sophisticated spatiotemporal snow distributions estimations than 

are possible with any single measurement technique performed alone (Boelman et al., 2019; Stuefer et al., 2013). This study 410 

used ground-based measurements to validate an airborne lidar snow depth map in a boreal forest ecotype. As evidenced in 

Table 7, only one additional study that compared ground-based measurements to airborne lidar occurred within a boreal forest 

site. The comparison of ground-based measurements to airborne lidar by Dharmadasa et al., (2022), produced an RMSE of 

19–22 cm at their boreal forest site. This study produced an RMSE of 12.5 cm when validating airborne lidar with ground-

based snow depth measurements. Validated lidar snow depth maps have advanced our ability to characterize the spatiotemporal 415 

variability in snow depths at a watershed scale, and when coupled with an airborne lidar canopy height map, can be applied to 

snow and hydrological modeling applications to improve hydrological forecasts and SWE estimates at even larger regional or 

global scales (Deems et al., 2013; Hopkinson et al., 2004, 2012; Jacobs et al., 2021; Nolan et al., 2015; Painter et al., 2016; 

Trujillo et al., 2007). To further improve validated lidar snow depth maps, future snow research occurring in boreal forests 

should include snowpack profile measurements that could be used to identify and quantify vegetation-induced errors in ground-420 

Jacobs et al., 2021 New Hampshire Mixed hardwood 

forest 

Mean 15.2 (manual) 

Mean 7.8 (lidar) 

10.5  

Koutantou et al., 

2022 

Swiss Alps  Forest    5–21 0.6–0.8 

Tinkham et al., 

2014 

Southwest Idaho Forest/Shrub Mean 114 (manual) 

Lidar mean 5–7 cm 

greater than manual  

14–38  

This study Fairbanks, Alaska Boreal Forest Mean 88 (manual) 

Mean 98 (lidar) 

12.5 0.012 
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based measurement techniques and airborne lidar data products associated with the complicated and dense boreal forest 

understory.  

Accurately accounting for vegetation effects on snow storage and distribution is important as forests are changing due to 

warming climate conditions, forest disturbances, wildfires, insect infestation, and permafrost degradation (Panda et al., 2010; 

Smith et al., 2021). These changes are occurring in boreal forests, but research is limited as to how Alaska boreal forest 425 

vegetation impacts snow distribution. A literature review found one study occurring in an Alaska boreal forest, by Douglas et 

al., (2021), that looked at vegetation impacts on snow storage using lidar and machine learning. They found that in their Alaska 

boreal forest sites mixed forest ecotypes had the shallowest snowpack, while tussock tundra (equivalent to our treeless) and 

moss spruce forest (equivalent to our SSS) were associated with the deepest snowpack. The results of our vegetation analysis 

show that canopy height has a statistically significant effect on the spatiotemporal variability of snow depths at our study site. 430 

The canopy height pairs of SSS and forest and treeless and forest, had snow depth differences that fell outside the lidar error 

range for all three spatial subsets, exhibited greater variability based on standard deviations, and differed in SWE by 0.01 m. 

The canopy height pair of treeless and SSS yielded results that fell within the lidar error range for all three spatial subsets, 

making it difficult to clearly attribute snow depth variability between the two classes to vegetation or lidar accuracy. This 

result implies that there is little variability in snow depths between treeless and SSS canopy height classifications. We suggest 435 

that two canopy height classes of less than 5 m and greater than 5 m would be sufficient to accurately quantify the spatial 

variability of snow depths and SWE in boreal forests. 

6 Conclusion 

Despite considerable literature on airborne lidar snow depth retrievals in forested environments, little research has been 

published on its ability to measure snow depth in boreal forests. We demonstrate the utility of a high-resolution airborne lidar 440 

snow depth map to characterize the spatial variability of snow depths within a boreal forest study site where snow remote 

sensing research is limited. The validation efforts showed lidar-derived snow depths had an RMSE of 12.0 cm, and a bias of 

2.0 cm, when compared to data from 2,114 ground-based field measurements. While these results show a statistically 

significant relationship between lidar-derived snow depths and manual field measurements, errors and uncertainties caused by 

dense understory vegetation need to be considered with detailed snowpack profile measurements. We further demonstrate that 445 

an airborne lidar canopy height map can be used to analyze the impact of vegetation on snow depth variability in a complex 

boreal forest ecosystem, and that two canopy height classes may be sufficient to characterize the snow depth spatial variability 

therein.  

Lastly, we show that snow depth variability within the study site, between subbasins, and between each canopy height class, 

is low. This is evidenced by all mean snow depths (ground-based, lidar, canopy height class, subbasins, and overall) falling 450 

within one standard deviation of each other. This study demonstrates that airborne lidar-derived data products can effectively 
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estimate and quantify the variability of snow depths in an Alaska boreal forest but should be validated and assessed for 

vegetative errors using ground-based measurements. 
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