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Abstract 16 

Particulate matter (PM) poses both health and climate risks. Understanding pollution sources is 17 

therefore crucial for effective mitigation. Positive Matrix Factorization (PMF) of Aerosol 18 

Chemical Speciation Monitor (ACSM) data is a powerful tool to quantify organic aerosol (OA) 19 

sources. A year-long study of ACSM data from London's Marylebone Road monitoring station 20 

during the COVID-19 pandemic provides insights into the impact of lockdown and the Eat Out To 21 

Help Out (EOTHO) scheme, which offered support to the hospitality industry during the pandemic, 22 

on PM composition and OA sources. Five OA sources were identified including hydrocarbon-like 23 

OA (HOA, traffic-related, 11% to OA), cooking OA (COA, 20%), biomass burning OA (BBOA, 24 

12%), more-oxidized oxygenated OA (MO-OOA, 38%), and less-oxidized oxygenated OA (LO-25 

OOA, 21%). Lockdown significantly reduced HOA (-52%), COA (-67%), and BBOA (-4142%) 26 

compared to their pre-COVID levels, while EOTHO increased doubled COA (+38100%) 27 

significantly compared to the post-lockdown period. However, MO-OOA and LO-OOA were less 28 

affected, as these primarily originated from long-range transport. This research has highlighted the 29 

importance of commercial cooking as a significant source of OA (20%) and PM1 (9%) in urban 30 

areas. The co-emission of BBOA with COA observed in Central London demonstrates a similar 31 

diurnal cycle and response to the EOTHO policy, indicating that cooking activities might be 32 

currently underestimated and contribute to urban BBOA. Therefore, more effort is required to 33 

quantify this source and develop targeted abatement policies to mitigate emissions as currently 34 

limited regulation is in force. 35 

  36 
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1 Introduction 37 

Atmospheric particulate matter (PM) are tiny particles suspended in the air, which can not only 38 

impact the climate directly and indirectly (IPCC, 2021; Seinfeld et al., 2006), but also cause 39 

adverse health effects to human (Kelly and Fussell, 2012; World Health Organization, 2021). PM 40 

consist of various constituents, including inorganic species (metals, minerals, black carbon, nitrate, 41 

sulphate, etc.) and organic species (complex mixture of thousands of compounds). European 42 

Environment Agency has reported that 99% of urban population in Europe are still exposed to 43 

polluted air with annual PM2.5 (PM with aerodynamic diameter smaller than 2.5 µm) 44 

concentrations exceeding the WHO air quality guideline, 5 µg/m3 (Europe’s air quality status 2024, 45 

2024; World Health Organization, 2021). As the most health-relevant air pollutant, PM2.5 has 46 

shown strong associations with cardiovascular and respiratory related mortalities and hospital 47 

admissions (Dominici et al., 2006; Joo et al., 2024; Pye et al., 2021; Wei et al., 2022, 2024). Several 48 

studies have demonstrated that different constituents/sources contribute to health effects 49 

differently with varying toxicities (Daellenbach et al., 2020; Kelly and Fussell, 2012; Liu et al., 50 

2023; Vasilakopoulou et al., 2023). Therefore, targeting the specific composition/sources of PM 51 

that are most health-relevant could be the most cost-effective way to mitigate its adverse health 52 

effects.  53 

Source apportionment is a common but powerful approach to identifying and quantifying the 54 

emission sources and atmospheric constituents of PM based on measurements. As the sources of 55 

inorganic species (black carbon, ammonium, nitrate, chloride, sulphate, etc.) are relatively well-56 

studied, most of the studies are focused on deconvoluting the sources of organic aerosol (OA), 57 

which contains thousands of compounds. Positive matrix factorization (PMF) is one of the receptor 58 

models that is widely utilized in the field to conduct source apportionment analysisClick or tap 59 
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here to enter text.. Typically, an Aerodyne aerosol mass spectrometer (AMS, Aerodyne Ltd., USA, 60 

) is used to measure the time series of both inorganic and organic species of non-refractory PM, in 61 

which, organic mass spectra are used for PMF analysis. However, operating an AMS is labour-62 

intense and expensive. In contrast, the aerosol chemical speciation monitor (ACSM, Aerodyne, 63 

Ltd.,  has been designed for long-term monitoring purposes with less maintenance and lower 64 

capital cost, which has gained popularity across Europe  and the U.S. 65 

(https://ascent.research.gatech.edu/).  demonstrated a robust protocol to conduct advanced PMF 66 

analysis on long-term ACSM datasets, which delivers high-quality and consistent source 67 

apportionment results. This study follows this standardized protocol to resolve the OA sources in 68 

London by implementing advanced PMF techniques. 69 

Coronavirus disease 19 (COVID-19) started to spread rapidly worldwide since the first case was 70 

identified in Wuhan, China late in 2019. Many countries implemented measures to contain COVID 71 

cases, which significantly restricted social and economic activities. In the UK, starting from the 72 

end of Mar 26th, 2020, people were ordered to stay at home and all non-essential businesses were 73 

closed, including pubs, cafes and restaurants. Non-essential shops were allowed to open on Jun 74 

15th, and the first national lockdown came to an end Jun 23rd, 2020. However, pubs, restaurants, 75 

and cafes were only allowed to open from July 4th, 2020. Subsequently, the Eat Out to Help Out 76 

(EOTHO) Scheme was designed to help the hospitality industry; offering a 50% meal discount up 77 

to a maximum of £10 and operated Monday to Wednesday during from Aug 3rd to Aug 31st, 2020; 78 

https://www.gov.uk/guidance/get-a-discount-with-the-eat-out-to-help-out-scheme.  79 

The UK recorded a 2.5% drop in Gross Domestic Product (GDP) in the first quarter of 2020, partly 80 

as people reduced their own activity prior to the legally enforced lockdown measures introduced 81 

on Mar 26th. This accelerated to a 19.8% fall in GDP in April to June 2020 and household spending 82 

https://www.gov.uk/guidance/get-a-discount-with-the-eat-out-to-help-out-scheme
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fell by over 20% over this period, the largest quarterly contraction on record, which was driven by 83 

falls in spending on restaurants, hotels, transport, and recreation (ONS, 2022).  84 

Some studies have investigated the lockdown impacts on chemical composition and sources of 85 

PM, which mainly focused on cities in China (Hu et al., 2022; Tian et al., 2021; Xu et al., 2020), 86 

a kerbside site in Toronto, Canada (Jeong et al., 2022), and an urban background site in Paris, 87 

France (Petit et al., 2021). These studies all resolved primary sources including traffic related 88 

emissions, biomass burning emissions from residential heating, cooking emissions (except Paris), 89 

and secondary sources from PMF analysis on organic aerosol (OA). Traffic and cooking emissions 90 

appeared to decrease during the lockdown in all sites, while biomass burning predominately from 91 

residential heating sources in Chinese cities increased as result of remote work and rather early 92 

lockdown measures (Jan-Feb 2020) compared to France. Secondary organic aerosol (SOA) 93 

showed a more complex phenomenon given its abundance in organic components and dynamic 94 

spatiotemporal conditions. Overall, the lockdowns resulted in decreased SOA in both northwest 95 

cities in China (Tian et al., 2021; Xu et al., 2020) and Paris (Petit et al., 2021) due to lower primary 96 

emissions, and therefore fewer SOA formation products. However, Beijing experienced a large 97 

increase in SOA concentrations due to increased fossil fuel and biomass emissions, long-range 98 

transport influences as well as favourable meteorological conditions (high RH, low wind speed 99 

and low boundary layer height) for SOA formation during the lockdown period (Hu et al., 2022). 100 

Therefore, the lockdown effects on the SOA were dependent on the abundance of primary 101 

emissions, long-range transported air masses, and meteorological conditions. To date, there are 102 

few studies that investigate how COVID-related policies could have impacted PM chemical 103 

composition and sources. Petit et al. (2021) and Gamelas et al., (2023) are only two studies in 104 

Europe. The unique COVID-related policies in the UK provided a rare opportunity to investigate 105 
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the impacts these policies had on chemical composition and OA sources. To address these issues, 106 

we used highly time resolved measurements from an air quality supersite located in the Central 107 

London from 2019 to 2020, and advanced source apportionment approaches to quantify the 108 

influence of the first lockdown and EOTHO scheme on the PM composition and OA sources. This 109 

provides unique insight into PM sources and composition in a global mega city. 110 

2 Methodology 111 

2.1 Air quality monitoring supersite in central London 112 

The London Marylebone Road supersite (MY, 51.52 N, -0.15 E) is a kerbside monitoring site, one 113 

meter away from a busy 6-lane road in central London. It is a well-established air quality supersite 114 

that has consistently generated high-quality air pollution data since 1997 including mass 115 

concentration of bulk PM1, PM2.5, and PM10, as well as PM composition including black carbon, 116 

heavy metals, nitrate (NO3), sulphate (SO4), ammonium (NH4), OA, Chloride (Cl), etc. More 117 

details of this site can be found at https://uk-air.defra.gov.uk/networks/site-info?site_id=MY1. 118 

2.2 Instrumentations 119 

Quadrupole ACSM (Q-ACSM, Aerodyne, Ltd., Ng et al. (2011)) with a standard vaporizer 120 

provides 30-min mass loadings of chemical species within non-refractory submicron aerosol (NR-121 

PM1), including NH4, NO3, SO4, Cl, and OA. Sampled particles are focused into a narrow beam 122 

using the aerodynamic lens and impacted on a filament surface at 600 °C, where the NR-PM1 is 123 

vaporised and ionised instantly by an electron impact source (70eV). These ions are detected by 124 

the RGA quadrupole mass spectroscopy to provide a mass spectrum of NR-PM1 up to a mass-to-125 

charge ratio (m/z) of 148 Th. The mass concentration of different chemical species are calculated 126 
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using the fragmentation table developed by Allan et al. (2004), updated for Cl following 127 

suggestions provided by Tobler et al. (2020), and a (Canagaratna et al., 2007; Matthew et al., 2008) 128 

composition-dependent collection efficiency (CDCE) correction suggested by Middlebrook et al. 129 

(2012) by following the ACTRIS standard operation procedure (https://www.actris-ecac.eu/pmc-130 

non-refractory-organics-and-inorganics). With co-located black carbon (BC) measurement using 131 

a PM2.5 cyclone with AE33 (Aerosol Magee Scientific, Ltd.) and PM1 measurements using FIDAS 132 

(Palas, GmbH), we conducted the mass closure for fine particles measurements. The sum of NR-133 

PM1 and BC (in PM2.5) reproduces PM1 concentrations well, with a slope of 1.13 and an R2 of 0.73 134 

(Fig. S1). 135 

2.3 Sampling periods and COVID-related policies  136 

PM1 chemical composition from Aug 1st, 2019 to Oct 22nd, 2020, was analysed as this covered the 137 

first lockdown period (Mar 26th–23 Jun 23rd, 2020) and the EOTHO Scheme (Mon-Wed during 138 

from Aug 3rd to Aug 31st, 2020, Table 1Table 1). In order to isolate the seasonal effects on the PM 139 

chemical composition and OA sources from the COVID-related policies, we further split the data 140 

based on seasons (Table 1Table 1). In addition, deweathering analysis has been conducted using 141 

“worldmet” R package (Carslaw, 2025) to remove the meteorological effects (i.e., relative 142 

humidity, wind speed, wind direction, and air temperature) on all PM/OA species as shown in the 143 

SI (Fig. S8 and Fig. S9). Meteorological effects were considerable, especially for Pre-lockdown 144 

Spring period, while it does not change the conclusion of the effects from lockdown and EOTHO 145 

policies. Therefore, the main results presented in this study are based on the original measurements. 146 

  147 

https://www.actris-ecac.eu/pmc-non-refractory-organics-and-inorganics
https://www.actris-ecac.eu/pmc-non-refractory-organics-and-inorganics
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Table 1 Dates of the COVID-related policies in London 148 

COVID Policies Date 

Pre-Lockdown 

Summer Aug 1st–Aug 31st, 2019 

Fall Sep 1st–Nov 30th, 2019 

Winter Dec 1st, 2019–Feb 28th, 2019 

Spring Mar 1st–Mar 25th, 2020 

Lockdown 

Spring Mar 26th–May 31st, 2020 

Summer Jun 1st–Jun 23rd, 2020 

Post-Lockdown 

Pre-EOTHO Jun 24th–Aug 2nd, 2020 

EOTHO Aug 3rd–Aug 31st, 2020 

Post-EOTHO Sep 1st–Oct 22nd, 2020 

2.4 Source apportionment  149 

Source apportionment is a common but powerful approach to identifying and quantifying the 150 

emission sources and atmospheric constituents of PM based on measurements. As the sources of 151 

inorganic species (black carbon, ammonium, nitrate, chloride, sulphate, etc.) are relatively well-152 

studied, most of the studies are focused on deconvoluting the sources of OA, which contains 153 

thousands of compounds. Positive matrix factorization (PMF) is one of the receptor models that is 154 

widely utilized in the field to conduct source apportionment analysis (Jimenez et al., 2009; Zhang 155 

et al., 2007). Typically, an Aerodyne aerosol mass spectrometer (AMS, Aerodyne Ltd., USA, 156 

Jayne et al., 2000) is used to measure the time series of both inorganic and organic species of non-157 

refractory PM, in which, organic mass spectra are used for PMF analysis. However, operating an 158 

AMS is labour-intense and expensive. In contrast, the aerosol chemical speciation monitor (ACSM, 159 

Aerodyne, Ltd., Fröhlich et al., 2013; Ng et al., 2011) has been designed for long-term monitoring 160 
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purposes with less maintenance and lower capital cost, which has gained popularity across Europe 161 

(Chebaicheb et al., 2024; Chen et al., 2022; Laj et al., 2024) and the U.S. 162 

(https://ascent.research.gatech.edu/, Hass-Mitchell et al., 2024; Joo et al., 2024). Chen et al. (2022) 163 

demonstrated a robust protocol to conduct advanced PMF analysis on long-term ACSM datasets, 164 

which delivers high-quality and consistent source apportionment results. This study follows this 165 

standardized protocol to resolve the OA sources in London by implementing advanced PMF 166 

techniques. 167 

Advanced source apportionment approaches have been used in this study, including rolling 168 

Positive positive matrix factorization (PMF), ME-2 with random a-value approach, bootstrap and 169 

criteria-based selections (Canonaco et al., 2021; Chen et al., 2022).  has been widely deployed in 170 

source apportionment of PM components including OA from ACSM/AMS datasets collected 171 

worldwide . The PMF algorithm on environmental monitoring data was initially introduced by  as 172 

follows: 173 

𝑥𝑖𝑗 = ∑ 𝑔𝑖𝑘 × 𝑓𝑘𝑗

𝑝

𝑘=1

+ 𝑒𝑖𝑗 (1) 

where 𝑥𝑖𝑗 is the measurement matrix (here, the time series of organic mass spectra from the ACSM 174 

at ith time and jth m/z), 𝑔𝑖𝑘 is the mass concentration at ith time in kth factor,  𝑓𝑘𝑗  is the relative 175 

intensity of jth m/z for kth factor, and 𝑒𝑖𝑗 stands for the residuals for jth m/z at ith time, p is the number 176 

of factors. The PMF model iteratively minimises the Q value using the least-squares algorithm as: 177 

𝑄 = ∑ ∑(
𝑒𝑖𝑗

𝜎𝑖𝑗
)2

𝑚

𝑗=1

𝑛

𝑖=1

 (2) 
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where n is the number of data points, m is the total number of m/z, and σij is the measurement 178 

uncertainty estimated before the PMF analysis at ith time for jth m/z.  179 

However, PMF suffers from rotational ambiguity , which provides non-unique solutions (i.e., 180 

similar Q value with different time series and factor profiles). These solutions typically will not be 181 

equally environmentally reasonable, even with similar Q values. The multilinear engine ME-2 () 182 

is a robust approach to reduce the rotational ambiguity and can direct PMF towards 183 

environmentally reasonable solutions (both factor profiles and time series).  184 

Here, PMF was implemented using the Source Finder v9.5.1.3 (Datalystica Ltd., Switzerland, 185 

Canonaco et al. 2013) with the ME-2 solver. The latter imposes a priori information on the factor 186 

solutions and/or time series. The a-value (ranging from 0 to 1) represents the upper limit of the 187 

relative deviation for a factor profile (𝑓𝑗) or time series (𝑔𝑖) from the chosen a priori input profile 188 

(𝐹𝑗 ) or time series (𝐺𝑖) during the iterative least-square minimization (Equation 2), as shown  in 189 

Equations 3a and 3b : 190 

𝑓𝑗 = 𝐹𝑗 ± 𝑎 ∙ 𝐹𝑗  (3a) 

𝑔𝑖 = 𝐺𝑖 ± 𝑎 ∙ 𝐺𝑖  (3b) 

PMF analysis is usually performed using the whole dataset, assuming that the OA source profiles 191 

are static over the entire period, which can lead to high errors when it comes to long-term datasets 192 

with non-negligible temporal variabilities of OA chemical fingerprints.  showed a considerable 193 

seasonal variability of oxygenated organic aerosol (OOA) factor profiles, especially between 194 

winter and summer in a dataset in Switzerland.  first introduced the concept of rolling PMF by 195 

shortening the analysis period to a smaller time window (e.g., 14 days) and then rolling over the 196 
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whole dataset with a certain step (i.e., 1 day). This technique was further refined and implemented 197 

into SoFi by , which allows the PMF model to adapt the temporal variabilities of the source profiles 198 

(e.g., biogenic versus biomass burning influences on OOA factors), which usually provides well-199 

separated OA factors.  200 

Bootstrapping  analysis will randomly select part of the PMF input matrix and duplicates itself to 201 

recreate a matrix with the same dimension as the original PMF input matrix. The statistical and 202 

rotational uncertainties of the PMF results will then be evaluated by bootstrap and the random a-203 

value approach with at least 50 repeats per rolling window . The standardized protocol of rolling 204 

PMF as presented in Chen et al. (2022) was used to ensure high-quality and comparable sources 205 

of OA were retrieved in London.  206 

Specifically, PMF was first done on four different seasons as suggested in  Chen et al. (2022) to 207 

determine the optimum number of factors. A total of 5 OA factors were identified: hydrocarbon-208 

like OA (HOA), cooking-like OA (COA), biomass burning OA (BBOA), more-oxidized OOA 209 

(MO-OOA) and less-oxidized OOA (LO-OOA). Adding an additional factor resulted in split of 210 

COA factor, decreasing it to four factors caused mixing between the MO-OOA and COA factors. 211 

Therefore, 5 factor-solution was determined across the whole year. In addition, site-specific factor 212 

profiles were derived for HOA, COA, and BBOA through a seasonal bootstrap PMF analysis for 213 

winter (Dec, Jan, and Feb) and used as constraints as suggested in Chen et al. (2022) and Via et al. 214 

(2022). However, the MY site is surrounded by many restaurants with prevalent cooking emissions. 215 

Thus, the chemical fingerprint for both HOA and COA might not be fully separated. Therefore, 216 

we constrained the trend of NOx time series, BBOA and COA profiles from a previous winter 217 

bootstrap solution collected in London North Kensington (2015-2018, Chen et al., 2022) to retrieve 218 

environmentally reasonable results with five factors in winter data, so-called base case solution. 219 
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Then, a bootstrap resampling analysis with 100 iterations and five factors was conducted by 220 

constraining the factor profiles of HOA, COA, and BBOA from the base case with random a-value 221 

from 0.1-0.5 with step of 0.1. It results in stable factor profiles of these three primary sources as 222 

shown in FigureFig. S2, which shows good agreements with published reference profiles (Chen et 223 

al., 2022; Crippa et al., 2013).  224 

Rolling PMF was conducted with a time window of 14 days and a step of 1 day By by constraining 225 

primary factor profiles of HOA, COA, BBOA in FigureFig. S2 (averaged bootstrap results) and 226 

two additional unconstrained factors with bootstrap resampling and the random a-value option 227 

(0.1-0.5, step of 0.1, 50 iterations/window)., rolling PMF is conducted with a time window of 14 228 

days and a step of 1 day. A criteria list including selections based on both time series and factor 229 

profiles as shown in Table S1 was applied as per Chen et al. (2022). With the help of t-test in 230 

temporal-based criteria (1-3), we can minimize subjective judgements in determining the 231 

environmentally reasonable results. Eventually, 3,166 runs (14.1%) of the PMF runs were selected 232 

across different rolling windows across the whole year to average as the final results (utilized a-233 

values were averaged to two decimal places) with 4.9 % unmodelled data points, which is 234 

comparable with other rolling PMF analyses (Chen et al., 2022). 235 

3 Results and Discussions 236 

3.1 Chemical composition of submicron PM for different periods around the 237 

COVID-19 Lockdown 238 

The average PM1 mass concentration at MY site was 11 µg/m3 for the study period with 44% OA, 239 

21% NO3, 15% SO4, 16% BC, 5% NH4, and 0.6% Cl. The distribution of the chemical composition 240 

Formatted: Font: Italic
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on PM1 varied depending on the season and variation was associated with the lockdown and 241 

EOTHO policies (Figure 1Figure 1). PM1 increased by 3495% in lockdown spring (Mar 26th–May 242 

31st, 2020) compared to pre-lockdown spring (Mar 1st–Mar 25th, 2020), ). Specifically, Org, SO4, 243 

as well as NO3 NO3, and NH4, and Cl all increased by 87%, 211%, 73%, 237%, and 132%, 244 

respectively. Except for BC, which decreased by 52%. This is due tothe later most likely originated 245 

fromthe polluted airmass originating from mainland Europe and the enhanced agricultural 246 

emissions in spring from the UK and wider continental Europe (Aksoyoglu et al., 2020). It was 247 

further confirmed, through back trajectory analysis, that elevated PM1 events (Mar 25th–Mar 28th, 248 

Apr 8th–Apr 10th, and Apr 15th–Apr 17th), where the result of airmasses passing over northern 249 

continental Europe (Figureig. S3S6). In addition, the Org, SO4, NO3, NH4, and Cl were only 250 

increased by 21%, 107%, 50%, and 28% respectively after the deweathering analysis (Fig. S8), 251 

suggesting significant meteorological influences during this period. NO3 concentration reduced in 252 

summer 2019 and 2020 as expected compared to spring or fall seasons due to the volatility of 253 

NH4NO3 and lower agricultural emissions, while SO4 concentrations increased in summer due to 254 

enhanced photochemistry (Bressi et al., 2021; Chen et al., 2022). During the lockdown in spring 255 

SO4 concentrations remained high, which was associated with long-range transport (Fig. S7).  256 
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 257 

Figure 1 Chemical compositions of PM1 at MY from Aug 2019 to Oct 2020 (daily resolution) and averaged for the different 258 
periods as shown in Table 1Table 1. 259 

BC concentrations during the spring lockdown (Mar 26th–May 31st 2020) reduced from 1.59 78 to 260 

0.87 86 µg/m3 (-4552%) compared to the pre-lockdown level in spring (Mar 1st–Mar 25th), due to 261 

the significant reduction in traffic during the first lockdown (Transport for London, 2020). Similar 262 

decreasing of BC has been observed elsewhere during COVID lockdown as described in 263 

introduction (Gamelas et al., 2023; Jeong et al., 2022; Petit et al., 2021; Tian et al., 2021; Xu et al., 264 

2020). . It is worth noting that the BC concentration had already reduced by 133% in pre-lockdown 265 

spring (Mar 1st–Mar 25th) compared to the pre-lockdown winter. This is likely due to vehicle 266 

mileage reducing as the UK government implemented travel restrictions and advised people to 267 

work from home on Mar 16th, 2020 (Transport for London, 2020). BC increased to 1.24 13 µg/m3 268 
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(+5744%) after the lockdown and before the EOTHO (Jun 24th–Aug 2nd,2020, pre-EOTHO in 269 

Figure 1Figure 1) as people returned to work and travel. However, BC concentrations remained 270 

3134% lower than the pre-lockdown summer (Aug 1st–Aug 31st, 2019) concentration of 1.8 72 271 

µg/m3 (Fig. S9), which suggests that the traffic emissions reduced considerably as the fewer 272 

economic activities even after the ease of the first lockdown (e.g., suggestions of hybrid working 273 

mode, restricted international travel, reduced tourism, limited access to entertainments). BC also 274 

increased to 1.4 35 µg/m3 (+1019%) during the EOTHO scheme (Aug 3rd–Aug 31st, 2020). This 275 

was not only because of increased traffic emission during this period, but may also result from 276 

cooking activities (e,g, barbecuing or wood-fired cooking styles) in central Central London (Defra, 277 

2023). Since the EOTHO was only in place from Mon to Wed, BC concentrations (likely due to 278 

increased traffic and cooking emissions) increased on Mon-Tue Wed compared to post-lockdown 279 

but before EOTHO (Jun 24th–Aug 2nd, 2020) (Figureig. S4S10). 280 

3.2 OA sources in Central London 281 

As mentioned above, the rolling PMF analysis resolved 5 factor solutions, including HOA, COA, 282 

BBOA, MO-OOA, and LO-OOA as shown in Figure 3Figure 2 and Figure 4Figure 3. The left 283 

panel of Figure 3Figure 2 shows the yearly averaged factor profiles of resolved PMF factors and 284 

total OOA calculated as the sum of LO-OOA and MO-OOA. All factors show good agreements 285 

with previous studies in terms of key m/z tracers. In addition, as shown in Figure 2, the contribution 286 

to total OA concentrations from HOA, BBOA, and LO-OOA was consistent at different OA 287 

concentrations. However, the contribution of COA increased as total OA concentrations increased. 288 

This suggests that cooking emissions in Central London are responsible for elevated OA 289 

concentrations, which was also the case in Athens as shown in Chen et al. (2022).  290 
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 291 

Figure 2 Contributions to total OA from the different identified OA sources at different OA concentrations. Total OA 292 
concentrations were split in 10 equally distributed bins. 293 

 294 

3.2.23.2.1 Time series of OA factorsGeneral characteristics of OA factors  295 

The right panel of Figure 3Figure 2 shows both time series (30-min time resolutiondaily averaged) 296 

and Figure 4 shows diurnal cycles for each OA factor. The mean concentrations of HOA, COA, 297 

BBOA, MO-OOA, LO-OOA, and OOA (MO-OOA+LO-OOA) were 0.50 ± 0.1 µg/m3, 0.93 ± 298 

0.14 µg/m3, 0.55 ± 0.11 µg/m3, 1.81 ± 0.41 µg/m3, 1.00 ± 0.44 µg/m3, and 2.80 ± 0.70 µg/m3, 299 

respectively, and contributed to OA (PM1) with the fractions of 11% (5% to PM1), 20% (9% to 300 

PM1), 12% (5% to PM1), 38% (17% to PM1), 21% (9% to PM1), and 59% (26% to PM1), 301 



17 

respectively. The concentration of all OA factors shows strong time variations over the year as 302 

shown on the left panel of the Figure 4Figure 2. OA factors also showed strong considerable 303 

seasonality besides the effects from COVID-related policies (Figure 4Figure 3 and Fig. S3). POA 304 

concentrations were generally lower in the warmer seasons than in winter as lower temperature 305 

favours particle formation via condensation and dilution and dispersion are reduced due to the 306 

lower boundary layer. It’s worth mentioning that the reduced POA concentrations in warm season 307 

was not caused by reduced residential heating and energy consummation since Central London 308 

mainly uses natural gas and renewable energy instead of solid fuel combustions. The OOA factor 309 

concentrations concentrations remain relatively consistent across seasons, while its contributions 310 

were larger during the warmer seasons (Fig. S4). This is because due toboth enhanced 311 

photochemistry high temperature and strong irradiation will enhance the photochemistry and 312 

evaporation of POA sources at higher temperature, stronger solar radiation and the increased 313 

biogenic VOC volatile organic compound (VOC) emissions lead to high OOA production despite 314 

the evaporation of semi-volatile OOA (Fig. S4). The temporal variations seasonality observed here 315 

in central London agreed was consistent with the other urban sites across Europe (Chen et al., 316 

2022). Therefore, this study focuses on the impacts of COVID-related polices on OA sources. 317 
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 318 

Figure 32 Yearly averaged profiles (left) and diurnal cycles (right) of resolved factors from the rolling PMF analysis at the MY 319 
site. Time is expressed in local time. 320 

3.2.3 Diurnal Cycles for OA factors 321 

The right side of Figure 3Figure 2 shows the diurnal cycles before, during, and after the lockdown. 322 

POA factors showed distinct diurnal variations, in which HOA showed morning and evening rush 323 

hour peaks, COA showed distinct lunchtime and evening peaks, and BBOA showed a similar 324 

pattern as COA before and after the lockdown. This indicates that the part of what is measured as 325 

BBOA in central London is most likely co-emitted from cooking activity, most likely from 326 

barbecuing style or wood-oven pizza restaurants in the area. A survey about use of domestic fuels 327 

in the hospitality sector was conducted by Department for Environment Food and Rural Affairs 328 

(Defra), UK suggested that restaurants use solid fuel to cook to provide unique flavours (Defra, 329 

2023). Mohr et al. (2009) showed that meat-cooking can slightly elevate m/z 60, which is an 330 
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important ion in the BBOA factor profile. OOA factors showed much less diurnal variation 331 

compared to POA factors in all periods, this is in agreement with the other 22 European sites 332 

reported in Chen et al. (2022). The MO-OOA showed a smaller diurnal variation compared to LO-333 

OOA. 334 

 335 

Figure 43 Average mass concentrations for OA sources at MY during different periods from Aug 2019 to Oct 2020 336 

The diurnal variation of COA and BBOA during lockdown lost the distinctive lunch peak as shown 337 

in the pre-lockdown; and the evening peak reduced its intensity (Figure 2). HOA retained distinct 338 

morning and evening rush hour peaks but at lower mass concentrations during lockdown (Figure 339 

2). After the first lockdown, the distinct lunch and evening peaks in diurnal patterns of COA and 340 

BBOA reappeared as the open-up of nearby restaurants. The morning and evening rush hour peaks 341 

for HOA enhanced considerably as the ease of the travel restrictions after the first lockdown. 342 
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However, POA concentrations did not reach pre-COVID levels. This is likely due to widespread 343 

hybrid working and the remaining oversea travel restrictions supressing tourism, which reduced 344 

traffic activity and restaurants visits. Conversely, OOA  concentrations were slightly higher than 345 

pre-lockdown levels. These were related to long-range transport, with relatively high mass 346 

concentrations of MO-OOA and LO-OOA during the lockdown (Figure S3).As shown in Figure 347 

4 The contribution to total OA concentrations from HOA, BBOA, and LO-OOA was consistent at 348 

different OA concentrations. However, the contribution of COA increased as total OA 349 
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concentrations increased (Figure 4), This suggests that cooking emissions in Central London are 350 

responsible for elevated OA concentrations. 351 

 352 

 353 

Figure 4 Contributions to total OA from the different identified OA sources at different OA concentrations. Total OA 354 
concentrations were split in 10 equally distributed bins. 355 

As shown in Figure 4 The contribution to total OA concentrations from HOA, BBOA, and LO-356 

OOA was consistent at different OA concentrations. However, the contribution of COA increased 357 
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as total OA concentrations increased (Figure 4), This suggests that cooking emissions in Central 358 

London are responsible for elevated OA concentrations. 359 

Impact of lockdown on OA ConcentrationsPre-lockdown Spring  360 

3.2.2 Pre-lockdown Spring 361 

 In general, OA concentration decreased by 3451%  in pre-lockdown spring compared to pre-362 

lockdown winter (Dec 1st, 2019–Feb 28th, 2020) due to seasonality, origins of airmass (Fig. S5), 363 

and  and the impact of lockdown. OOA concentrations also decreased were relatively unaffected 364 

drastically with some variability before, during, and after the lockdownby 50%.. due to  long-range 365 

transportation of airmasses from the continental Europe as observed for NH4, NO3, and SO4. 366 

Primary emissions were significantly lower due to reduced vehicle mileage and other economic 367 

activity before the official lockdown measure came into force on March 26th 2020 (Figure 3 and 368 

Figure 3Figure 2 (a) and Figure 4) as suggested by the 1st quarter drop in GDP (ONS, 2022). 369 

Atmospheric components related to vehicle emissionss (HOA and BC) decreased by 5048% and 370 

13% respectively, in early March 2020. COA and BBOA decreased by 6058% and 47% 371 

respectively. COA, due to fewer restaurant activity, BBOA decreased by 50% was likely reduced 372 

partly due to the reduced commercial cooking using charcoal and wood as well as warmer weather 373 

requiring less domestic space heating., and also due to reduced commercial cooking using charcoal 374 

and wood.  375 

3.2.3 Lockdown 376 

The diurnal variation of COA and BBOA during lockdown showed much less intensity overall but 377 

the distinctive lunchtime peak remained as the pre-lockdown; and the evening peak reduced its 378 

intensity (Figure 3). HOA retained distinct morning and evening rush hour peaks but at lower mass 379 
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concentrations during lockdown (Figure 3). This is because the takeout activities of some 380 

restaurants were still active as well as the potential increases for residential cooking activities 381 

during lockdown. After the first lockdown, the distinct lunch and evening peaks in diurnal patterns 382 

of COA and BBOA reappeared as the open-up of nearby restaurants. The morning and evening 383 

rush hour peaks for HOA enhanced considerably as the ease of the travel restrictions after the first 384 

lockdown. However, POA concentrations did not reach pre-COVID levels (Fig. 5). This is likely 385 

due to widespread hybrid working and the remaining oversea travel restrictions supressing tourism, 386 

which reduced traffic activity and restaurants visits. Conversely, OOA concentrations during 387 

lockdown were slightly higher than pre-lockdown levels. These were related to long-range 388 

transport, with relatively high mass concentrations of MO-OOA and LO-OOA during the 389 

lockdown (Fig. S5 and Fig. S6).  390 

Compared to the pre-lockdown spring, HOA and COA in the lockdown spring decreased by 811% 391 

and 1115%, respectively, while BBOA increased marginally by 513% (from 0.37 35 to 0.39 µg/m3) 392 

(Figure 5Figure 3). MO-OOA and LO-OOA increased by 43136% and 169279%, respectively due 393 

to long-range transportation of airmasses from continental Europe (Fig. S5 and Fig. S6) and 394 

increased photochemistry (enhanced temperature and ozone levels in Fig. S4) compared to the first 395 

25 days in Mar 2020. . This was accompanied by increased SO4 (+119211%), NH4 (+16132%) 396 
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and NO3 (+46237%) as shown in Fig. S9, despite the higher temperature could favour partitioning 397 

these species into the gas phase.  398 

 399 

Figure 5 The impacts on OA sources during different periods compared with business-as-usual cases with and without 400 
deweathering analysis. 401 

In June 2020, still in lockdown (Jun 1st– Jun 23rd, 2020), POA showed further but marginal 402 

decreases (-43%, -8%, and -1015% for HOA, COA, and BBOA, respectively, Figure 4Figure 3) 403 

compared to the lockdown spring as the enhanced photochemistry leads to increased formation of 404 

OOA from the POA. However, the overall mass concentration of MO-OOA and LO-OOA 405 

decreased significantly by 3445%, and 3734%, respectively as the result of fewer long-range 406 

transported airmasses (Fig. S5). 407 

During pre-EOTHO (Jun 24th–Aug 2nd, 2020), HOA, COA, and BBOA all showed considerably 408 

increases of 3416%, 6930%, and 2514%, respectively when compared to lockdown summer period. 409 

In which, MO-OOA and LO-OOA also increased by 45% and LO-OOA decreased by 1813%, 410 
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respectively as the results of long-range transported airmasses from continental Europe, enhanced 411 

biogenic emissions and photochemistryrelatively higher temperature and irradiations were 412 

favouring the vaporization of LO-OOA and production of MO-OOA from LO-OOA and POA. 413 

The As shown in Figure 5, the POA concentrations were much lower when compared to summer 414 

2019 (Aug 1st–Aug 31st, 2019) as travel and economic activities did not return to pre-COVID levels 415 

(ONS, 2022; Transport for London, 2020). Specifically, reduced vehicle mileage resulted in lower 416 

HOA (-2233%), BC (-3137%), COA (-4659%) due to the reduced commercial cooking activity. 417 

As BBOA is co-emitted with COA during of cooking activities, BBOA also decreased slightly 418 

from 0.53 to 0.44 38 µg/m3 (-1728%, Figure 5Figure 3). 419 

3.2.93.2.4 Eat out Out to To help Help out Out (EOTHO) 420 

During EOTHO (Aug 3rd–Aug 31st, 2020), MO-OOA and LO-OOA increased by 31% and 35% 421 

respectively compared to post-lockdown concentrations before EOTHO and correlated with 422 

increased NO3 and SO4 concentrations. This was due to long-ranged transported airmasses and 423 

enhanced photochemistry as well as the photooxidation of POAs. 424 
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 425 

Figure 5 . COA diurnal plots at different periods in relation with COVID-related policies 426 

However, EOTHO policy (Aug 3rd–Aug 31st, 2020) had a significant impact on all POA factors. 427 

In particular, the COA concentration increased by 38100% compared to the post-lockdown period 428 

(Pre-EOTHO Summer) from Jun 24th to Aug 2nd, 2020 (0.5 to 1.0 µg/m3, Figure 6Figure 5). HOA 429 

and BBOA concentrations also increased by 2240% and 2348%, respectively, which suggested the 430 

human activities resulting in these emissions recovered slowly after the lockdown (ONS, 2022; 431 

Transport for London, 2020). COA was significantly higher due to EOTHO, however, it did not 432 

reach pre-COVID concentrations (Figure 5 and Figure 6Figure 5) as its level was lower on each 433 

weekday except for Mon. After the EOTHO policy (Sep 1st–Oct 22nd, 2020), COA concentrations 434 

increased by 10% (Figure 5). This may have partially been due to lower temperatures, reduced 435 

dispersion and photochemistry in Autumn. 436 
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 437 

Figure 6 . COA diurnal plots for each weekday, diurnal plots, and weekly plots at different periods in relation with COVID-438 
related policies 439 

 440 

EOTHO only operated from Mon to Wed, and this was clear in the diurnal plots (Figure 6Figure 441 

6) and Figureig. S6 S12) with larger COA concentrations from Mon to Wed, in contrast with larger 442 

concentrations over the weekend (Fri to Sun) before EOTHO (Jun 24th–Aug 2nd, 2020). 443 

Interestingly, even after the EOTHO policy ceased (Sep 1st–Oct 22nd, 2020), COA levels remained 444 

elevated on Mon and Tue but a much higher level during the weekend was observed. This suggests 445 

that EOTHO had an influence on the consumer behaviour even after the lockdown. It is also worth 446 

noting that the high concentrations of COA and BBOA (Figure 6 and Figureig. S511) on Monday 447 

night were caused by the last day of EOTHO policy coinciding with a UK public holiday on Aug 448 

31st. 449 
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 450 

Figure 6 The diurnal cycles for each day of the week in COA concentrations before, during, and 451 

after the Eat Out To Help Out (EOTHO) policy in post-lockdown period (Jun 24th–Oct 22nd, 452 

2020)Also, Dduring EOTHO (Aug 3rd–Aug 31st, 2020), MO-OOA and LO-OOA increased by 63% 453 

and 70% respectively compared to post-lockdown concentrations before EOTHO and correlated 454 

with increased NH4, NO3 and SO4 concentrations. This was mainly due to long-ranged transported 455 

airmasses (Fig. S5) and enhanced photochemistry with increased temperature and mass 456 

concentration of POAs (Fig. S4). 457 

 458 

54 Conclusion 459 

This study demonstrates the importance of source apportionment studies to better understand how 460 

national and local government policies can impact the PM mixture, and how these effects can be 461 

differentiated from the influences of meteorology and large-scale atmospheric processes. PM 462 

concentrations increased at the beginning of the lockdown (Mar–Apr 2020), ) despite coinciding 463 

with reduced economic activities, which was caused by long-range transported airmasses instead 464 

of primary emissions,. however bThroughy examining the source apportionment (and inorganic 465 
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PM composition), the impact of lockdown policies on primary emissions could be quantified. 466 

COVID-related policies were found to have profound but largely unintended impacts on air quality. 467 

The first lockdown significantly reduced POA sources: including HOA by 52%, COA by 67%, 468 

and BBOA by 4142%. While all these components reduced dramatically during the lockdown, 469 

they only gradually increased again and did not reach pre-COVID levels during the duration of 470 

this study (Aug 2019– Oct 2020).  471 

Most significantly, while the Eat Out To Help Out (EOTHO) policy was effective in helping the 472 

hospitality industry to recover from economic losses during the lockdown, it had unintended 473 

impacts on air quality as cooking emissions increased. Clearly detecting this change confirms the 474 

presence of COA (20% to OA) as an important source of OA in London, and other cities,  and the 475 

importance of commercial cooking as a source. Also of note was the impact that EOTHO had on 476 

BBOA concentrations, which increased by 2348% while this policy was in place. This establishes 477 

a clear link between commercial cooking activity and BBOA measured in cities due to the use of 478 

charcoal and wood as cooking fuels (Defra, 2023), as well as potentially emissions from cooking 479 

ingredients. Cooking may therefore be underestimated as a source if COA concentrations are 480 

considered in isolation, and BBOA is only associated with other sources of solid fuel burning. This 481 

emphasises the need to develop policies and technical solutions to mitigate commercial cooking 482 

emissions in the urban environment, especially as there are limited regulations on this industry in 483 

terms of air pollution. There are filter technologies (e.g., electrostatic precipitators, UV-C lamp 484 

exhaust hood, hydrovents) available that have been implemented as law in Hong Kong to 485 

effectively control cooking emissions (Hong Kong EPD, 2024). It also demonstrated the 486 

importance in continuous monitoring with subsequent source apportionment analysis to better 487 

understand the influence of government policies to improve air quality more effectively.  488 
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