
Response of the reviewers’ comments on " How COVID-19 

related policies reshaped organic aerosol source 

contributions in Central London" by Gang I. Chen et al.  
 

We thank the two reviewers for all the constructive comments. The following response to the 

reviewers, details original review comments with normal italic font, green font for authors’ 

responses, and blue italic font for changes in the revised version. 

Reviewer #1 

The authors addressed my comments well, and I now think this is acceptable for publication in 

Atmospheric Chemistry and Physics. I only have a few technical comments below. Line 

numbers refer to the cleaned, resubmitted version of the manuscript. 

Thank you for the comments. We have addressed the comments as follows: 

Line 199: Please revise “volatility of NH4NO3” to “semi-volatile nature of NH4NO3.” 

done 

Line 201: Add “across Europe” after “… enhanced photochemistry.” 

done 

Line 202: In addition to long-range transport, please note that airmasses originating from the 

sea can also affect SO4 enhancement, as mentioned in the author's response to comment #4. 

Thank you for the comment, we have revised the sentence as shown below: 

“During the lockdown in spring, SO4 concentrations remained high, which was 

associated with long-range transport and marine aerosols (e.g., methanesulfonic acid, 

MSA) (Fig. S7).” 

Lines 247–248: Still, seasonality is not clear as the effect of COVID-related policies from my 

perspective, considering the uncertainties of Q-ACSM. I suggest toning down this statement by 

removing “considerable.” 

done 

Line 253-258: Please add appropriate references for this statement. 

Two citations have been added as suggested. 

“It’s worth mentioning that the reduced POA concentrations in the warm season was 

not caused by reduced residential heating and energy consummation since Central 

London mainly uses natural gas and renewable energy rather than solid fuel 

combustion (Cliff et al., 2025). The OOA factor concentrations remain relatively 

consistent across seasons, while its contribution was larger during the warmer 

seasons (Fig. S4). This is because both high temperature and strong solar radiation 

will enhance the photochemistry and evaporation of POA sources, and increased 



volatile organic compound (VOC) emissions lead to high OOA production despite the 

evaporation of semi-volatile OOA (Fig. S4) (Chen et al., 2022).” 

Line 275: Briefly include the point you made in response to comment #13 to support the small 

diurnal variations observed for MO-OOA and LO-OOA. 

Corrected as shown below: 

“The MO-OOA showed a smaller diurnal variation compared to LO-OOA. This is 

because the LO-OOA is also known as semi-volatile OOA (SV-OOA), which evaporate 

during the day due to higher temperatures and accumulate in the evening due to the 

shallower boundary layer (Chen et al., 2022).” 

Line 320: How about adding a dedicated section on pre-EOTHO? I assume the authors 

separated this period because the lockdown policy was suspended, right? Since this period is 

also distinguished in Figure 4, it may be beneficial to treat it as its own section, but I’ll leave 

it to the authors to decide. 

Agreed, we have made it as a dedicated section as suggested. It now reads: 

“3.2.4 Pre-EOTHO 

During pre-EOTHO (Jun 24th–Aug 2nd, 2020) after the lockdown policy was eased, 

HOA, COA, and BBOA all showed considerably increases of 16%, 30%, and 14%, 

respectively when compared to lockdown summer period. In which, MO-OOA 

increased by 45% and LO-OOA decreased by 13%, respectively as the relatively 

higher temperature and solar radiation favoured the evaporation of LO-OOA and 

production of MO-OOA from LO-OOA and POA. As shown in Fig. 5, the POA 

concentrations were much lower when compared to summer 2019 (Aug 1st–Aug 31st, 

2019) as travel and economic activities did not return to pre-COVID levels (ONS, 

2022; Transport for London, 2020). Specifically, lower HOA (-33%), BC (-37%) due 

to reduced vehicle mileage resulted, and COA (-59%) due to the reduced commercial 

cooking activity. As BBOA is co-emitted with COA during of cooking activities, BBOA 

also decreased slightly from 0.53 to 0.38 µg/m3 (-28%, Fig. 5).” 

  



Reviewer #3 

This manuscript presents a year-long ACSM dataset to investigate the influence of short-term 

anthropogenic emission perturbations on the chemical composition of urban aerosols in 

London, with a particular focus on the source-resolved organic aerosol (OA) components. The 

dataset itself is valuable and potentially informative. From the content of the manuscript, this 

is a revised version addressing previous reviewer comments. However, it seems that the authors 

have not made a concerted effort to improve the manuscript to the standard required for 

publication in ACP. There are still numerous instances of careless editing errors. For example, 

on page 3, line 53: “Click or tap here to enter text.”, and on page 12, line 232: “tError!”. 

We agree with the reviewer that this work is valuable and will be informative, 

especially for policymakers to improve air quality in urban environments. We 

apologise for the editorial errors, which have been all addressed in the revised version. 

The writing also requires substantial improvement in terms of logic, coherence, rigour, and 

clarity. For instance, the Introduction is particularly difficult to follow. The narrative does not 

clearly articulate the main scientific question or its necessity in the context of prior studies. 

The figures also need improvement. Some of them, such as Figures 3 and 5, contain labels and 

text that are too small to be legible, and Figure 5 appears to be missing axis lines altogether. 

We apologise the small mistakes we made in the last revision, which have been dealt 

with in this version.  

Figure 3 and Figure 5 have been updated according to reviewer’s suggestions. 

 

Figure 1 Yearly averaged profiles (a) and diurnal cycles (b) of resolved factors from the rolling PMF analysis at the MY site. 

Time is expressed in local time. 



 

Figure 2 The impacts on OA sources during different periods compared with business-as-usual cases with and without 

deweathering analysis. 

Also, the whole introduction has been rewritten as follows to more coherently outline 

the context of the study, previous research and the impact of the study:  

“1 Introduction 

Atmospheric particulate matter (PM) are tiny particles suspended in the air, which 

impact the climate directly and indirectly (IPCC, 2021; Seinfeld et al., 2006), and 

cause adverse human health effects (Kelly and Fussell, 2012; World Health 

Organization, 2021). The PM present in urban areas, such as London, is emitted 

directly or indirectly from a wide range of natural and anthropogenic sources, can be 

changed through atmospheric reactions and remain airborne for many days. It is 

consequently a complex mixture including inorganic species (metals, minerals, black 

carbon, nitrate, sulphate, etc.) and thousands of organic compounds whose origins 

remain too complicated to fully quantify. PM2.5 (PM with aerodynamic diameter 

smaller than 2.5 µm) is strongly associated with increased risks of cardiovascular and 

respiratory related mortalities and hospital admissions (Dominici et al., 2006; Joo et 

al., 2024; Pye et al., 2021; Wei et al., 2022, 2024). Some studies (Lippmann et al., 

2013; UK Health Security Agency (UKHSA), 2022) have begun to demonstrate that 

some PM constituents and sources have stronger associations with a range of health 

metrics, including mortality, morbidity, and toxicities although the evidence remains 

inconsistent (Kelly and Fussell, 2012; Liu et al., 2023; Vasilakopoulou et al., 2023). 

With 99% of the urban population in Europe exposed to PM2.5 concentrations 

exceeding the WHO air quality guideline (European Environment Agency, 2024; 

World Health Organization, 2021), delivering clean air is a target for European and 

international governments according to the EU air quality directive (European Union, 

2024). However, delivering publicly acceptable policies to improve air quality 



remains challenging (Mebrahtu et al., 2023; Oltra et al., 2021). Targeting the sources 

of PM that are most health-relevant could be a more cost-effective (Wu et al., 2023), 

more easily communicated and more publicly acceptable approaches (Pinakidou, 

2025) to improve public health. It is therefore important to better quantify the sources 

of PM and understand how they respond to policy interventions.  

The COVID-19 pandemic is a natural experiment to assess the impact of policies 

which, while not aiming to reduce PM2.5 concentrations, significantly restricted social 

and economic activities and consequently reduced emissions. During the UK national 

lockdown, people were ordered to stay at home, and all non-essential businesses were 

closed, including pubs, cafes and restaurants from the end of Mar 26th, 2020. Non-

essential shops were allowed to open from Jun 15th, and the first national lockdown 

came to an end on Jun 23rd, 2020. However, pubs, restaurants, and cafes were only 

allowed to open from July 4th, 2020. The UK recorded a 2.5% drop in Gross Domestic 

Product (GDP) in the first quarter of 2020, partly as people reduced their own activity 

prior to national lockdown. This accelerated to a 19.8% fall in GDP in April to June 

2020 and household spending fell by over 20% over this period, the largest quarterly 

contraction on record, which was driven by falls in spending on restaurants, hotels, 

transport, and recreation (ONS, 2022). The UK Government Eat Out to Help Out 

(EOTHO) Scheme is examined specifically in this study as it influenced emissions from 

the commercial cooking sector. It was designed to help the hospitality industry recover 

from the financial impact of the national lockdown, offering a 50% meal discount up 

to a maximum of £10, which operated Mon to Wed, Aug 3rd to Aug 31st, 2020. 

While the impact of these lockdown policies on some air quality metrics was smaller 

than expected given the large change in emissions (Shi et al., 2021), the abrupt nature 

of the intervention ensures it is easier to detect than other air quality policies that are 

more incremental in nature (Mudway et al., 2019). Some studies have investigated the 

lockdown impacts on chemical composition and sources of PM, which mainly focused 

on cities in China (Hu et al., 2022; Tian et al., 2021; Xu et al., 2020), a kerbside site 

in Toronto, Canada (Jeong et al., 2022), and an urban background site in Paris, 

France (Petit et al., 2021). These studies all resolved primary sources including traffic 

related emissions, biomass burning emissions from residential heating, cooking 

emissions (except Paris), and secondary sources from PMF analysis on organic 

aerosol (OA). Traffic and cooking emissions appeared to decrease during the 

lockdown in all sites, while biomass burning predominately from residential heating 

sources in Chinese cities increased as result of remote work and rather early lockdown 

measures (Jan-Feb 2020) compared to France. Secondary organic aerosol (SOA) 

showed a more complex phenomenon given its abundance in organic components and 

dynamic spatiotemporal conditions. Overall, the lockdowns resulted in decreased 

SOA in both northwest cities in China (Tian et al., 2021; Xu et al., 2020) and Paris 

(Petit et al., 2021) due to lower primary emissions, and therefore fewer SOA formation 

products. However, Beijing experienced a large increase in SOA concentrations due 

to increased fossil fuel and biomass burning emissions, long-range transport 

influences as well as favourable meteorological conditions (high RH, low wind speed 

and low boundary layer height) for SOA formation during the lockdown period (Hu 

et al., 2022). Therefore, the lockdown effects on the SOA were dependent on the 

abundance of primary emissions, long-range transported air masses, and 

meteorological conditions. To date, there are few studies that investigate how COVID-

related policies could have impacted PM chemical composition and sources. Petit et 

al. (2021) and Gamelas et al. (2023) are the only two studies in Europe. The unique 



COVID-related policies in the UK therefore provide a rare opportunity to investigate 

the impacts these policies had on chemical composition and OA. We used highly time 

resolved measurements from an air quality supersite located in the Central London 

from 2019 to 2020, and advanced source apportionment approaches to quantify the 

PM composition and OA sources before, during and after the UK national lockdown 

and EOTHO scheme. This study provides valuable insight into PM sources and 

composition in a global mega city and how air quality responds to abrupt changes in 

emissions from different sources. Importantly, it helps to establish the importance of 

cooking as a source of PM and uniquely associates biomass burning organic aerosol 

with commercial cooking emissions. This provides crucial information to policy 

makers as they attempt to reduce exposure to air pollution in urban areas.” 

In this revised version, the authors have included the results from deweathering analyses. 

However, no details are provided regarding the modelling methodology, model configurations, 

validation approach, and/or cross-validation results. Such critical information is essential and 

should be explicitly described. Additionally, the meteorological parameters considered (i.e., 

relative humidity, wind speed, wind direction, and temperature) are rather limited and 

insufficient to represent the complexity of meteorological influences on atmospheric aerosol 

variability. It is strongly recommended that the authors include other relevant meteorological 

indicators such as planetary boundary layer height and air mass trajectory cluster analysis. 

Relevant references that may help improve this section include Grange and Carslaw (2019, Sci. 

Total Environ.) and Shi et al. (2021, Sci. Adv.). 

Thank you for reviewer’s comment on the deweathering analyses in our work. We 

have now included additional detail of the modelling methodology, model 

configurations, validation approach, and/or cross-validation results.  

Regarding the inclusion of additional meteorological indicators other authors (e.g. 

Grange and Carslaw, (2019)) have suggested boundary layer height, air mass cluster, 

or back trajectory information would be beneficial to include to deal with pollutants 

primarily controlled by regional scale process. However, the aim of this study is 

understanding how COVID-related policies affect primary/local emission sources (i.e., 

BC, HOA, COA, and BBOA), which will not be affected significantly by regional 

processes, and we do not feel that the additional metrics will improve the 

quantification of these PM components. It is consistent and comparable with previous 

studies (Font et al., 2022; Grange et al., 2021; Yao and Zhang, 2024) that includes 

similar meteorological parameters (i.e., wind speed, wind direction, relative humidity, 

temperature). It has already achieved excellent model performances with an R2 larger 

than 0.77, which are comparable with previous studies (Font et al., 2022; Grange et 

al., 2018, 2021; Grange and Carslaw, 2019; Krechmer et al., 2018; Shi et al., 2021; 

Yao and Zhang, 2024) All of which have provided scientifically insightful findings. 

Thus, the overall conclusion will not be changed even with the new analysis. To clarify 

this, we have added necessary text in the main text (Section 2.5 and 3.1). 

 

 

 

 



Table S 1 Boot regression trees model performance on the testing dataset for each PM species/sources  

  Slope R2 (Pearson) RMSE 

BC 0.98 0.94 0.46 

Org 1.01 0.93 1.80 

NH4 1 0.87 0.39 

NO3 1.02 0.92 1.52 

SO4 1.01 0.94 0.63 

HOA 0.97 0.77 0.34 

COA 0.99 0.82 0.66 

BBOA 1 0.86 0.29 

MO-OOA 1.01 0.92 0.64 

LO-OOA 1.01 0.89 0.45 

 

To expand on model performance, we have now included the performance of our BRT 

model for each PM species/source in Table S2 in SI as shown above. The performance 

are good to excellent with slopes from 0.97 to 1.02 and R2 (Pearson) from 0.77 to 0.94, 

which are comparable and consistent with previous studies (Font et al., 2022; Grange 

et al., 2018, 2021; Grange and Carslaw, 2019; Krechmer et al., 2018; Shi et al., 2021; 

Yao and Zhang, 2024). As suggested by Grange et al. (2018) and Yao and Zhang, 

(2024), BRT models generally suffer from overfitting, however, this does not appear 

to be significant in our study (i.e., generally consistent good performances for both 

training and testing datasets). This is in contrast to random forest models, which 

normally provide poorer statistical agreement (Grange et al., 2018; Yao and Zhang, 

2024). However, as our BRT model already provides good to excellent predictions 

without overfitting, we do not consider it necessary to perform random forest model 

by including additional meteorological parameters. Previous authors have also 

demonstrated that the BRT and random forest models show generally similar results 

(Yao and Zhang, 2024). Therefore, as the scope of this study is not deweathering and 

different models with different parameters will not change the results significantly, 

especially it will not change our conclusions how COVID-related policies will affect 

the primary emissions, we have decided not to perform the additional analyses 

reviewer suggested. However, to clarify the model performance, rationale for model 

and parameter selection, an additional section has been added in the Methodology 

section (Section 2.5 and 3.1) as follows: 

“2.5 Meteorological normalisation using boot regression tree model  

Meteorological normalisation, also known as deweathering analysis, has been 

conducted using the “worldmet” R package (Carslaw, 2025) to build boot regression 

tree (BRT) models for all resolved OA factors from PMF as well as chemical species 

measured. Considered variables, included relative humidity, wind speed, wind 

direction, and air temperature trend, hours of the day (local time), day of the week, 

Julian dates, week of the year as suggested by (Carslaw, (2025). While Grange and 

Carslaw (2019) have also suggested boundary layer height, air mass cluster, or back 

trajectory information would be beneficial to include to deal with pollutants primarily 

controlled by regional scale process. However, the aim of this study is understanding 

how COVID-related policies affect primary/local emission sources (i.e., BC, HOA, 

COA, and BBOA), which will not be affected significantly regional process, therefore 

additional metrics will most likely not improve the quantification of these PM 



components. It is consistent and comparable with previous studies (Font et al., 2022; 

Grange et al., 2021; Yao and Zhang, 2024) that includes similar meteorological 

parameters (i.e., wind speed, wind direction, relative humidity, temperature). In 

addition, since the trained BRT models are sufficiently good even without considering 

boundary layer height and back trajectories, performing random forest model will not 

improve the model significantly, nor change the results drastically as suggested by 

Yao and Zhang (2024). Thus, in this study, only BRT models were trained and the 

meteorological effects subsequently removed (i.e., relative humidity, wind speed, wind 

direction, and air temperature) on all PM/OA. 

3 Results and Discussions 

3.1 Model performance of meteorological normalisation  

The performance of each model (for individual species/source) is shown in Table S2 

with slopes from 0.97 to 1.02 and R2 (Pearson) from 0.77 to 0.94, which have similar 

or somewhat better performances compared with previous studies (Font et al., 2022; 

Grange et al., 2018, 2021; Grange and Carslaw, 2019; Krechmer et al., 2018; Shi et 

al., 2021; Yao and Zhang, 2024). As shown in the SI (Fig. S8 and Fig. S9) and the 

lower panel of Fig. 5, meteorological effects were generally considerable, especially 

for Pre-lockdown Spring period, while it does not change the conclusion of the effects 

from lockdown and EOTHO policies. Therefore, the main results presented in this 

study are based on the original measurements.” 

 

Overall, the work may be more appropriately considered as a measurement-report type 

submission. Major revisions are necessary before the manuscript can be considered suitable 

for publication in ACP. 

Thank you for the comment, however, we strongly disagree with the reviewer on this 

point. This work has potentially high impact for policy makers internationally, it 

provides clear evidence of cooking as a major source on PM2.5 in urban areas, which 

is currently an under-recognised source, and co-emission of BBOA which has 

previously been wholly ascribed to wood burning. It therefore has the potential to 

provide important scientific justification for further studies and mitigation approaches. 

Such mitigation has been suggested in London government guidance but not yet acted 

upon. This is especially important as cities such as London have substantially reduced 

traffic emissions yet still do not meet international air quality targets. 

Furthermore, the scope of this work fits perfectly with the special issue we have 

submitted to (https://acp.copernicus.org/articles/special_issue1175.html), which 

specifically focus on following aspects:  

• quantifying the spatial and temporal extent of stay-at-home policies on the 

European atmosphere, at both local and regional scales, 

• evaluating the impact of lockdown measures on the formation of secondary 

pollutants, 

• documenting the impact of reduced emissions (including air-traffic emissions) 

on cloud properties and occurrence, and 

• estimating the “missing” emissions using observation–model approaches. The 

outcome from the special issue aims to provide an in-depth analysis of the 

https://acp.copernicus.org/articles/special_issue1175.html


perturbation induced by the repeated lockdowns on the complex atmospheric 

system. 

This work is therefore not only scientific significant, aligns with the scope of this 

special issue of the ACP, but is also impactful for policies both locally and worldwide. 

In terms of writing, specific sentence improvements could be made. For instance: 

1. Line 17 sentence could be revised to: "Organic aerosol (OA), a major component of 

submicron particulate matter (PM1), has significant impacts on both human health and 

climate. Quantifying its sources is therefore crucial for developing effective mitigation 

strategies." 

Revised 

2. Lines 19 sentence could be rewritten as: "Positive matrix factorisation (PMF) applied to 

aerosol chemical speciation monitor (ACSM) mass spectral data offers a robust approach for 

quantifying OA sources." 

Revised 
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