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Abstract. Aerosols have significant impacts on regional climate, which has been widely investigated with numerical 10 

experiments. However, uncertainties of simulated aerosol impact due to long-standing chaotic effect remain unclear. Here 

we propose a diagnostic method based on large ensemble simulations and random sampling algorithm to unveil the chaos-

induced uncertainties in simulated aerosol climatic impacts that is overlooked in previous studies. Taking dust impacts on 

Indian summer monsoon system as a demonstration, our findings reveal that, while dust generally enhances the large-scale 

summer monsoon circulation consistently among ensemble members, its impacts on regional systems, such as monsoon 15 

depressions, exhibit significant chaotic effect: the simulated aerosol impacts on precipitation from individual ensemble 

member differ substantially, even inversely. Through quantitative analysis, we demonstrate that the magnitude of these 

chaotic effects diminishes following a 𝑁−
1

2  relationship with ensemble size N. Furthermore, our results indicate that 

statistical significance testing alone may be insufficient for robust attribution of dust impacts, as even small ensembles can 

yield statistically significant yet contradictory results. This study emphasizes the necessity of employing adequate ensemble 20 

sizes to capture reliable physical impacts of aerosol on regional climate. 

1 Introduction 

Aerosols, consisting of suspended solid and liquid particles in the atmosphere, play a crucial role in modulating both regional 

(Bollasina et al., 2011; Li et al., 2016) and global (Ramanathan et al., 2001; IPCC, 2014; Bellouin et al., 2020) climate systems 

through various pathways (Rosenfeld et al., 2007, 2008), mainly through aerosol-radiation interactions (ARI) and aerosol-25 

cloud interactions (ACI) (IPCC, 2014). ARI involve scattering and absorption of radiation, thereby altering the Earth's radiation 

budget (Zhao et al., 2010, 2013a). ACI occur as aerosols serve as cloud condensation nuclei (CCN) and ice nuclei (IN), 

modifying cloud properties, precipitation patterns, and atmospheric dynamics (Fan et al., 2016; Ghan et al., 2016). These 

aerosol-induced modifications can significantly impact regional circulation patterns, precipitation distributions, and 
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temperature profiles, ultimately influencing climate variability on various temporal and spatial scales (Ramanathan et al., 2001; 30 

Rosenfeld et al., 2008; Zhao et al., 2011, 2012, 2020). 

The complex nature of aerosol impacts has necessitated the development and application of sophisticated numerical models. 

These models have emerged as essential tools for understanding the complex impacts of aerosols on climate systems. Modern 

climate models can simulate the emission, transport, transformation, and removal of aerosols, along with their interactions 

with radiation and cloud processes  (e.g., Fast et al., 2016; Feng et al., 2023). However, significant uncertainties persist in 35 

numerical simulations of aerosol impacts. These uncertainties can arise from several sources such as limited model resolution 

affecting the representation of small-scale physical processes, simplified parameterizations of aerosol physical and chemical 

processes (Kinne et al., 2006; Zhao et al., 2013b), and incomplete understanding of aerosol-cloud-radiation interaction 

mechanisms (Zhao et al., 2011; Myhre et al., 2013; Ghan et al., 2016; Kok et al., 2023). Beyond these widely recognized 

sources of uncertainty, the inherent chaotic nature of the climate system may also lead to significant simulation uncertainties. 40 

However, research on how chaotic effects influence the simulation of aerosol climate impacts remains relatively limited. 

In weather and climate research, the chaotic effects induced by initial condition perturbations have received widespread 

attention (e.g., Lorenz, 1963; Giorgi and Bi, 2000; Bei and Zhang, 2007; Hohenegger and Schar, 2007; Zhang et al., 2019; 

Judt, 2020). Since Lorenz (1963) first discovered weather systems' sensitive dependence on initial conditions, numerous 

studies have investigated the impact of this "butterfly effect" on weather forecasting and climate simulation.  For example, 45 

Giorgi and Bi, (2000) examined regional climate model sensitivity to initial conditions and found that the model internal 

variability significantly influences the day-to-day model solution, especially for summer precipitation: the domain-averaged 

daily precipitation RMSD was of the same order of magnitude as the average precipitation. Zhang et al., (2019) explored the 

influence of initial perturbations on predictability of weather forecasts in global climate models. (Hohenegger and Schar, 2007) 

demonstrated that cloud-resolving models are even more sensitive to initial perturbations than synoptic-scale models, with 50 

error growth rates about 10 times faster. (Bei and Zhang, 2007) found that error growth is strongly nonlinear and small-

amplitude initial errors, which are far smaller than those of current observational networks, may grow rapidly and quickly 

saturate at smaller scales. They subsequently grow upscale, leading to significant forecast uncertainties at increasingly larger 

scales. These studies demonstrate that even negligible initial field perturbations can lead to significant differences in simulation 

results. 55 

Nevertheless, currently, many studies rely on single numerical experiment to evaluate aerosol climate effects, potentially 

introducing significant uncertainties in interpreting modeling results (e.g., Wang et al., 2009; Zhong et al., 2017). Ensemble 

experiments, which involve running multiple simulations with slightly varying initial conditions or model parameters to 

capture a range of possible outcomes, have been widely employed to address these chaotic uncertainties (Bassett et al., 2020; 

Laprise et al., 2012; Schellander-Gorgas et al., 2017; Feng et al., 2024c). While ensemble approaches have been widely adopted 60 

to address the uncertainties arising from chaotic effects, most studies utilize relatively small ensemble sizes of typically around 
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10 (e.g., Meehl et al., 2008; Vinoj et al., 2014; Jin et al., 2015; Solmon et al., 2015; Lau et al., 2017). Whether this limited 

ensemble size adequately characterizes the uncertainties introduced by chaotic effects remains unknown. Moreover, the 

quantitative characteristics of chaotic effects on aerosol-induced impacts on climate systems require further investigation. 

To better understand the role of chaotic effects in simulating aerosol climate impacts, this study focuses on the Indian summer 65 

monsoon (ISM) region. This region exhibits high aerosol concentrations with complex spatiotemporal distributions and 

significant impacts on regional climate systems. Some studies have shown that aerosols influence Indian summer monsoon 

evolution through various mechanisms, including modification of radiation budgets, atmospheric thermal structure, and cloud 

microphysical processes (Lau et al., 2006, 2017; Lau, 2014, 2016; Sanap and Pandithurai, 2015). Despite significant progress, 

significantly different regional spatial and temporal details (even opposite results) have been found in many global or regional 70 

climate models (Jin et al., 2014; Vinoj et al., 2014; Jin et al., 2015; Solmon et al., 2015; Lau et al., 2017), indicating that there 

are still uncertainties remain in understanding aerosol impacts on the monsoon system in this region. For example, Vinoj et al. 

(2014) found rainfall increases mainly concentrated in southern India with minimal changes or decreases in central India; Jin 

et al. (2014) observed widespread rainfall enhancement across Pakistan and most of India, with maximum increases in the 

Indo-Gangetic Plain region; Solmon et al. (2015) reported yet another pattern, with increased rainfall in southern India but 75 

decreased precipitation in central and northern India and Pakistan. These divergent results making it an ideal case study for 

investigating the influence of chaotic effects in simulating aerosol climate impacts. 

In this study, we aim to bridge the gap in understanding uncertainties of simulating aerosols impacts introduced by the chaotic 

effect, and to distinguish between two types of effects in simulating aerosol impacts on the Indian Summer Monsoon (ISM): 

the physical effect and the chaotic effect. We define the physical effect as the deterministic response of meteorological fields 80 

to aerosols, which remains consistent across ensemble members despite initial condition perturbations. The ensemble-mean, 

by averaging out the chaotic effects arising from ensemble members, can be interpreted as an approximation of the underlying 

physical effect in the absence of chaotic influences. The chaotic effect, in contrast, represents the internally generated variations 

in simulation results arising from initial condition perturbations, manifested as the spread among ensemble members (Feng et 

al., 2024b). Through this investigation, we seek to determine whether the simulated aerosol impacts on the ISM are 85 

predominantly driven by physical processes that produce consistent responses, or are significantly influenced by chaotic 

behaviors that lead to divergent outcomes among ensemble members. This paper is organized as follows. Section 2.1 briefly 

introduces the iAMAS model we employed in this study. Section 2.2 describes the model configurations and method of 

generating perturbed initial conditions. Section 2.3 introduces the observational datasets. Section 3 analyses the chaotic effects 

on dust aerosol impacts on ISM and discusses the dependence of chaotic uncertainties on ensemble size. The conclusion and 90 

summary are in Sec. 4. 
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2 Methods 

2.1 Model 

In this study, we employed the integrated Atmospheric Model Across Scales (iAMAS) (Feng et al., 2023; Gu et al., 2022). 

The iAMAS model, which is built upon the dynamic core of Model for Prediction Across Scales - Atmosphere (MPAS-A) 95 

(Skamarock et al., 2012),  is a non-hydrostatic global variable-resolution atmospheric modeling system featuring online 

integrated aerosol feedbacks. The model is also designed for the supercomputer with heterogeneous many-core architecture 

such as China's Sunway supercomputer. The model incorporates a comprehensive suite of microphysical parameterization 

schemes, including the Predicted Particle Properties (P3) scheme (Morrison and Milbrandt, 2015), the Morrison double-

moment scheme (Morrison et al., 2005), and the Thompson scheme (Thompson et al., 2008) , the WRF Single-Moment 6-100 

class scheme (WSM6) (Hong and Lim, 2006), and the basic warm-rain Kessler scheme (Kessler, 1969). On convective 

processes, the model implements multiple parameterization options: the sophisticated multi-scale Kain-Fritsch (MSKF) 

scheme  (Zheng et al., 2016), the original Kain-Fritsch (KF) scheme (Kain, 2004), the original and new Tiedtke mass-flux 

schemes (Tiedtke, 1989; Zhang et al., 2011), and the modified version of the scale-aware Grell-Freitas scheme (Grell and 

Freitas, 2014). The surface layer physics options include the classical Monin-Obukhov similarity theory scheme (Monin and 105 

Obukhov, 2009) and the Mellor-Yamada-Nakanishi-Niino (MYNN) scheme (Nakanishi and Niino, 2006, 2009). For planetary 

boundary layer (PBL) processes, both the Yonsei University (YSU) scheme (Hong et al., 2006) and MYNN scheme are 

implemented. The land-atmosphere interactions are represented through the Noah land surface model with four soil layers 

(Chen and Dudhia, 2001). Radiative transfer processes are parameterized using either the Rapid Radiative Transfer Model for 

GCMs (RRTMG) for both shortwave and longwave radiation (Iacono et al., 2000; Mlawer et al., 1997) or the Community 110 

Atmosphere Model (CAM) radiation scheme. 

Recent studies have demonstrated the diverse capabilities of iAMAS. Feng et al., (2023) implemented an aerosol modeling 

framework into iAMAS that includes online emission, advection, diffusion, vertical turbulent mixing, dry deposition, 

gravitational settling, and wet scavenging processes, along with simulations of aerosol-radiation (Feng et al., 2024a) and 

aerosol-cloud interactions. Their study evaluated the model's capability in simulating atmospheric dust and examined how 115 

mesh refinement impacts dust simulations. Gu et al., (2022) achieved significant improvements in computational efficiency 

and reduced input/output (I/O) costs through multi-dimension-parallelism structuring, aggressive and finer-grained 

optimization, manual vectorization, and parallelized I/O fragmentation. These enhancements achieved the speed of 0.82 

simulation day per hour with forecasts including online aerosol simulations at a global convection-permitting scale with 3km 

resolution. In a subsequent study, Gu et al., (2024a) conducted comparative one-month forecasts at different resolutions (global 120 

3km, variable 4-60 km, and global 60 km) employing iAMAS. Their results revealed that the global 3km resolution forecast 

accurately captured the plum rain rainband around Japan, while lower-resolution forecasts showed northward displacement 

and weaker intensity, attributed to shifted atmospheric rivers over Japan. Gu et al., (2024b) employed iAMAS at a 3-km 
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resolution and achieved unprecedented accuracy, reducing track errors to below 100 km over a 120-hour forecast period. 

Notably, iAMAS successfully predicted Typhoon In-fa’s sudden track changes and dual landfall locations, outperforming 125 

current operational forecasts. Li et al., (2024) carried out global simulations with uniform resolution, and found that high 

spatial resolution (global 3km) experiment suppresses the excessive equatorial light rain simulated by experiment at coarser 

resolution (global 60km) and improve the dry bias of the South Asia summer monsoon rainfall over northern India by 

modulating the competition between the maritime and continental rainfall band. The successful applications of iAMAS across 

diverse research contexts have demonstrated its capability and reliability. The model's feature of global variable-resolution 130 

mesh makes it suitable for future high-resolution studies of local aerosol-climate impacts, while simultaneously enabling the 

investigation of cross-scale interactions between aerosols and climate systems from regional to large scales. 

2.2 Numerical Experiments 

2.2.1 Configuration of simulations 

We conducted two sets of ensemble experiments, each comprising 50 members with perturbed initial conditions generated 135 

using the method detailed in Sect. 2.2.2. The first set, called the “Control” experiment, included simulations with dust aerosols, 

while the second set, termed the “Sensitive” experiment, excluded dust aerosol emissions to examine their impacts on the ISM 

system. To isolate the influence of the local dust, the “Sensitive” experiment specifically eliminated dust aerosol emissions 

only in the Arabian region (7.5N~42N, 31E~78E, marked in Fig. S1 in supplement materials), while maintaining all other 

settings identical to the “Control” experiment.  140 

The simulations covered the period from June 10 to June 30, 2016, capturing the Indian summer monsoon season. We 

employed a quasi-uniform mesh with approximately 60 km grid spacing. The model’s top height is set at 30 km, with 55 

vertical layers. Initial meteorological conditions were derived from the European Centre for Medium-Range Weather Forecasts 

(ECMWF) ERA5 reanalysis dataset (Hersbach et al., 2020) , utilizing data at 0.25° horizontal resolution and 6-hour temporal 

intervals. Sea surface temperatures, prescribed from the ERA5 reanalysis dataset, were updated every 6 hours throughout the 145 

simulation period. The model physics configuration incorporated several well-established schemes: the Mellor-Yamada-

Nakanishi-Niino PBL scheme (Nakanishi and Niino, 2006, 2009), the NOAH land-surface scheme (Chen and Dudhia, 2001), 

the Thompson microphysics scheme (Thompson et al., 2008), the Grell-Freitas cumulus convection scheme (Grell and Freitas, 

2014), and the RRTMG longwave and shortwave radiation schemes (Iacono et al., 2000; Mlawer et al., 1997). The dust 

simulation framework followed the methodology established by Feng et al., (2023). 150 

2.2.2 Generating Perturbed Initial Conditions for Ensembles 

In this study, we employed the Breeding of Growing Modes (BGM) technique to generate initial perturbed conditions in 

ensemble simulations. The BGM method is straightforward to implement, computationally efficient, and superior in sampling 
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physically-balanced spatial uncertainties in initial conditions. This technique was first introduced by the National Centers for 

Environmental Prediction (NCEP) for generating initial perturbations of the global ensemble forecast system (Toth and Kalnay, 155 

1993, 1997). The general procedure of the BGM method includes the following steps: 

1. Introduction of Initial Random Perturbations: At a selected start time, typically 48 to 120 hours before the initial 

time of formal ensemble forecasts, small random perturbations are introduced to create various perturbed members. 

2. Breeding Cycle: The perturbed ensemble members are run through simulations to allow the perturbations to 

dynamically evolve and grow on the reference trajectory. 160 

3. Scaling: At regular intervals, such as every 6 hours, the perturbed simulation is compared with the reanalysis data 

(i.e., the reference trajectory), and their differences or perturbation vectors are adjusted by rescaling their magnitude 

to match the initial perturbations without changing the direction of perturbations. The rescaled perturbations would 

then be added to the corresponding reanalysis data to generate an updated perturbed initial condition for the perturbed 

integration in next cycle.  165 

4. Final Perturbations: After repeating steps 1-3 for several cycles, these “breeding” perturbations would become 

physically balanced across variables and quasi-orthogonal (Toth and Kalnay, 1997), serving as random sampling of 

uncertainties in initial conditions.  

The BGM method effectively captures the fast-growing perturbation directions conditioned on the reference background states 

with very low computational cost. This advantage of these initial ensemble perturbations favors the diverse evolution of 170 

perturbed simulations, enhancing the reliability of model ensembles. 

We also adapt the BGM method for use with SCVTs (Spherical Centroidal Voronoi Tessellations) grid characteristics to 

generate unstructured perturbation initial fields for iAMAS. The perturbation amplitude is calculated based on moist energy 

norm, with perturbations applied to three initial variables: potential temperature, surface pressure, and specific humidity. The 

calculation of the moist energy norm follows the method outlined by Ehrendorfer et al., (1999): 175 
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where 𝑐𝑝  (1005.7 J kg−1 K−1) is the specific heat capacity at constant pressure, 𝑅 (287.04  J kg−1 K−1) is the gas constant for 

dry air, 𝐿 (2.5104 × 106 J kg−1) represents the latent heat of vaporization, 𝑇𝑟(270 K) denotes the reference temperature, and 

𝑝𝑟 (1000 hPa)is the reference pressure. The terms 𝑢′ and 𝑣′ represent the differences between the simulation results and 

reanalysis fields of zonal and meridional wind components, respectively. 𝑇′ denotes the temperature difference, 𝑝𝑠′ represents 180 

the surface pressure difference, and 𝑞′ indicates the specific humidity difference. 𝐷 corresponds to the model grid cell area, 

and 𝜖 is the normalization factor for specific humidity, which is set to unity in this study. 

The procedure for generating initial perturbation fields on SCVTs grids is as follows: 
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1. Initialization of Perturbations: A 24-hour simulation is conducted 48 hours in advance. The initial perturbation 

amplitude (i.e., moist energy norm) is computed by comparing the simulation results with reanalysis data. 185 

Subsequently, each grid point’s root mean square error (RMSE) with its neighboring model cells is calculated and 

multiplied by a random number to generate the initial perturbations. The RMSE is calculated as:𝑅𝑀𝑆𝐸𝐶𝑒𝑙𝑙𝑎
=

√
∑ (𝑀𝐶𝑒𝑙𝑙𝑖

−𝑅𝐶𝑒𝑙𝑙𝑖)2𝑛
𝑖=1

𝑛
, where 𝑀 represents model values, 𝑅 represents reanalysis values, and 𝑛 is the number of 

neighboring grid points plus one, including 𝐶𝑒𝑙𝑙𝑎 itself. 

2. Breeding Cycle: Every 6 hours, the simulation results are compared with reanalysis data to compute the scaling 190 

factor by comparing the moist energy norm with the initial perturbations. This scaling factor is then applied to the 

difference between the model output and the reanalysis data. The scaled perturbations are added to the reanalysis 

field to replace the corresponding model variables, and the breeding cycle is continued. 

3. Mature Perturbations: Based on previous study (Toth and Kalnay, 1997), perturbations typically mature after 48 

hours of breeding. These perturbation fields are then superposed on the reanalysis state to produce initial members 195 

for ensemble simulations. 

4. Repetition: Different random seeds are used for each initialization to generate other perturbated initial conditions as 

ensemble members. 

The spatial distributions of initial surface potential temperature, surface pressure, and surface specific humidity across the 50 

ensemble members over the Indian monsoon region are presented in Fig. S2-S4 (supplementary materials). The perturbations 200 

introduced in these initial conditions exhibit minimal magnitude. To quantify these subtle perturbations, we calculated the 

deviations of individual members from the ensemble mean (Fig. S5-S7). Despite the small magnitude of initial perturbations, 

these deviations reveal random variations among ensemble members, confirming the effective implementation of our 

perturbation methodology in generating perturbed initial conditions while maintaining physical consistency within the 

meteorological fields. 205 

2.3 Datasets 

To evaluate the model performance and validate our simulation results, we utilized multiple observational and reanalysis 

datasets. The Multi-angle Imaging Spectro Radiometer (MISR) aboard NASA's Terra satellite provides global aerosol 

optical depth (AOD) measurements (Diner et al., 1998). We employed the MISR Level 3 version F08_0031 daily aerosol 

product with a spatial resolution of 0.5° × 0.5°. MISR's unique multi-angle observation capability enables accurate aerosol 210 

retrievals over both land and ocean surfaces, making it particularly suitable for monitoring dust aerosols over the ISM 

region. 
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To validate circulation conditions of the atmosphere, we used the fifth-generation ECMWF reanalysis (ERA5) dataset. ERA5 

provides high-resolution global analyses of atmospheric parameters at 0.25° × 0.25° spatial resolution and hourly temporal 

resolution with 37 vertical levels. The dataset incorporates various observation systems and advanced data assimilation 215 

techniques, offering reliable representations of atmospheric states (Hersbach et al., 2020). 

Precipitation data were obtained from the Climate Prediction Center Morphing Technique (CMORPH) Version 1.0 dataset, 

which provides global precipitation estimates at high spatial (0.25° × 0.25°) resolutions (Joyce et al., 2004).This dataset is 

particularly valuable for analyzing precipitation patterns over the Indian monsoon region due to its consistent spatial and 

temporal coverage. 220 

3 Results 

3.1 Chaotic effects on simulated Indian Summer Monsoon 

Figure 1 illustrates the comparative analysis between observational data and numerical simulations of monsoon circulation 

(represented by 850 hPa wind fields) and precipitation patterns during the monsoon onset period (June 10-30, 2016). The 

observed wind field at 850hPa is derived from ERA5 and the observed rainfall is from CMORPH. The 850 hPa wind field 225 

from ERA5 reveals key features of the early-summer monsoon circulation: a well-established cross-equatorial flow over the 

Arabian Sea that develops into strong southwesterly winds along the western Indian coast. This low-level jet serves as the 

primary moisture transport pathway. The precipitation distribution from CMORPH during this period shows three major 

rainfall zones: an intense precipitation band along the Western Ghats due to orographic lifting of moisture-laden monsoon 

winds, a broad rainfall maximum over the Bay of Bengal, and substantial precipitation over the northern Indian subcontinent 230 

where monsoon depressions frequently occur (Li et al., 2016; Srivastava et al., 2017). The ensemble-mean results (Fig. 1b) are 

able to reproduce these fundamental features of the monsoon system. While the simulated intense precipitation zone along the 

western coast of India shows a southward displacement, the model effectively captures the overall spatial distribution of rainfall 

and the large-scale circulation patterns, particularly the strong southwesterly monsoon flow and the precipitation associated 

with monsoon depressions over northern India. 235 
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Figure 1: The observations and simulations of monsoon circulation (wind field at 850hPa) and precipitation, averaged from June 10, 

2016, to June 30, 2016. The observed wind field at 850hPa derived from ERA5 and the observed rainfall is from CMORPH. The 

simulation results are shown as 50-member ensemble mean. 240 

 

As previously introduced, slight perturbations in initial conditions among ensemble members can lead to substantial 

divergences in simulation outcomes. This sensitivity to initial conditions warrants a detailed examination of chaotic behavior 

within these ensemble simulations. Figure 2 presents the precipitation patterns from 50 ensemble members of “Control” 

experiments over the Indian monsoon region (the results of “Sensitive” experiments are illustrated in Fig. S8). While these 245 

simulations exhibit some consistent features, such as notably the intense precipitation along the Himalayan southern slopes 

and southwestern Indian coast, they demonstrate remarkable inter-member variability, particularly over northern regions of 

the Indian subcontinent (highlighted by the black box in Fig. 2). Analysis of individual ensemble members reveals substantial 

variation in their ability to simulate monsoon depression-associated precipitation. Several members (e.g., members 3, 9, 14, 

17, 28, and 48) successfully capture the distinctive precipitation pattern associated with monsoon depressions. However, a 250 

subset of members (notably members 6, 18, 20, 30, and 49) fails to reproduce the precipitation in this region, highlighting the 

chaotic effect in simulating such synoptic-scale features. 
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Figure 2: The spatial distributions of precipitation derived from 50 ensemble members of “Control” experiments over the Indian 255 
monsoon region. The results are averaged from June 10, 2016, to June 30, 2016. The monsoon depression region is delineated by the 

black box. 

 

3.2 Chaotic effects on simulated dust aerosol impacts on ISM 

Given that this study aims to investigate the impacts of dust aerosols on ISM precipitation, accurate simulation of dust 260 

concentrations serves as a fundamental prerequisite. Figure 3 presents a comparison of Aerosol Optical Depth (AOD) at 550 

nm between satellite observations from MISR and the 50-member ensemble means for both control and sensitivity experiments. 

To ensure robust comparison with MISR observations, which are acquired from the Terra platform with an equatorial crossing 

time of approximately 10:45 local time, the model-simulated AOD values were temporally sampled to match Terra's overpass 

time. Additionally, spatial collocation was performed to align model outputs with MISR's valid retrieval grids.  265 
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Figure 3: Spatial distribution of AOD at 550nm derived from (a) MISR; (b) Control experiments; (c) Sensitive experiments. 

 

The spatial pattern reveals three distinctive high-AOD regions: the Arabian Peninsula, serving as the primary dust source 270 

region, the Arabian Sea, showing elevated AOD values due to dust transport along the monsoon flow path, and the Indo-

Gangetic Plain, where AOD is from both transported and local dust. The monsoon precipitation regions show notably lower 

AOD values due to efficient wet removal processes. The control experiment's ensemble mean (Fig. 3b) successfully reproduces 

these observed AOD patterns, particularly the high values over the dust source and transport regions. In contrast, the sensitivity 

experiment (Fig. 3c), with eliminated Arabian dust emissions, shows significantly reduced AOD values, clearly demonstrating 275 

the dominant contribution of Arabian dust to the ISM aerosol loading. 

Figure 4 illustrates the inter-member variability of AOD across 50 ensemble members. Notably, while the dust source and 

transport regions (Arabian Peninsula and Arabian Sea) show highly consistent AOD patterns, the monsoon precipitation 

regions exhibit more noticeable inter-member variations. This spatial difference in ensemble spread suggests that in high-dust 

regions, the consistent AOD patterns indicate that dust's physical impacts on monsoon circulation should be similar across 280 

members, and in precipitation-dominated regions, the chaotic effects on AOD likely result from differences in wet removal 

processes among members, reflecting precipitation's impact on dust distribution rather than vice versa. 
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Figure 4: Same as Fig. 2 but for AOD at 550nm of “Control” experiments. 285 

 

Figure 5 illustrates the ensemble-mean impacts of dust aerosols on the ISM rainfall and the wind field at 850hPa. The dust-

induced impacts are derived from the difference between Control and Sensitivity experiments. The results reveal that dust 

aerosols strengthen the southwesterly monsoon flow from the Arabian Sea toward the Indian subcontinent (as shown in Fig. 

5). This response aligns with the basic dust-monsoon interaction mechanism proposed by Vinoj et al. (2014), where increased 290 

atmospheric warming (see Fig. S9b) from high dust concentrations leads to a reduction in surface pressure and strengthening 

of the pressure gradient over the Arabian Sea. This pressure gradient enhancement drives stronger monsoon flow and moisture 

convergence. This enhanced circulation pattern leads to precipitation intensification along two primary regions: the western 

Indian coast and the western Himalayan foothills. Furthermore, dust aerosols generate a cyclonic wind anomaly in the monsoon 

depression region (delineated by the black box), consequently intensifying precipitation within this domain. The region-295 

average precipitation in the "Control" experiment (5.27 mm/day) is nearly 100% higher than the "Sensitive" run (2.66 mm/day), 

revealing significant dust impacts on precipitation based on ensemble means results. 
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Figure 5. The ensemble-mean impacts of dust aerosols on the ISM rainfall and the wind field at 850hPa, represented by the 

differences in simulated results between the “Control” and “Sensitive” experiments. 300 

 

Figure 6 presents precipitation and wind field responses across all 50 ensemble members, revealing both consistent signals 

and substantial inter-member variability in dust-induced impacts. Notably consistent features appear along the western coast 

of India and the Himalayan foothills, where most ensemble members show enhanced precipitation and strengthened 

southwesterly flows, suggesting these regions are less susceptible to chaotic effects.  305 
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Figure 6: Same as Fig. 5 but for each ensemble members. 

 

However, substantial chaotic effects emerge in specific regions, particularly within the monsoon depression region and central 310 

India, where ensemble members can yield opposing signs of precipitation response. This spatial pattern of uncertainty closely 

corresponds to regions that exhibit high chaotic effects in both “Control” (Fig. 2) and “Sensitive” (Fig. S8) simulations, 

indicating that areas naturally prone to chaotic behavior also show enhanced sensitivity to dust perturbations. This regional 

variability may help explain the contradictory findings in previous studies (Jin et al., 2014; Solmon et al., 2015; Vinoj et al., 

2014; see Sect. 1 for a detailed discussion of these discrepancies). These divergent results, particularly in regions we identify 315 

as highly sensitive to chaotic effects, suggest that limited ensemble sizes in previous studies may have captured different dust-

monsoon interaction, leading to contradictory conclusions about dust impacts in these regions. 

3.3 Dependence of chaotic uncertainties on ensemble size 

Our analysis demonstrates that dust aerosol impacts on regional-scale weather systems, particularly within the Indian Summer 

Monsoon region, display significant sensitivity to initial condition perturbations. This sensitivity manifests most prominently 320 

in the simulation of mesoscale features, where different ensemble members can produce opposing conclusions regarding dust 
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impacts on precipitation and circulation patterns. Such divergent results could potentially lead to mischaracterization of dust-

climate interactions if based on single simulations or limited ensemble sizes.  

To address this challenge, we investigate the relationship between simulated uncertainty of dust impacts and ensemble size, 

focusing specifically on the monsoon depression region where the inter-member variability is most pronounced. We quantify 325 

the uncertainty through the analysis of dust-induced precipitation responses, calculated as the difference in area-averaged 

precipitation between “Control” and “Sensitive” experiments across our 50-member ensemble set within the monsoon 

depression domain (delineated by the black box in Fig. 5). Then we performed resampling without replacement on all these 

differences. This process involves selecting N (N represents the number of members in ensemble) difference values from the 

original dataset as a single sample. Consequently, the number of possible samples of size N is given by 𝐶50
𝑁 =

𝑁!

𝑁!(50−𝑁)!
. 330 

However, as N increases, the number of samples becomes exceedingly large (for example, 𝐶50
15 ≈ 2.25 × 1012), making it 

impractical to calculate and analyze. Therefore, when the number of samples exceeds 10,000, we randomly select 10,000 

samples for analysis. To quantify the uncertainties among members of ensemble, we calculated the 2.5th and 97.5th percentiles 

of the sample estimations’ distribution. The range between these two percentiles is defined as the 95% confidence interval for 

N. In other words, there is a 95% probability that the result of a conducted ensemble simulation with N members falls within 335 

this interval. The narrower the confidence interval, the more reliable the ensemble simulation results with N members.  

Figure 7 examines how ensemble size affects the uncertainty in estimating dust impacts on precipitation. Figure 7a shows the 

95% confidence interval of regional average dust impacts on monsoon precipitation as a function of ensemble size, with the 

orange shading representing the spread of possible values. For small ensemble sizes (< 10 members), the distribution exhibits 

a wide spread, with some estimates even showing opposite signs of dust impacts. As the ensemble size increases, this spread 340 

gradually narrows, forming a more concentrated distribution around the mean value of approximately 2.8 mm/day (indicated 

by the white dashed line, representing the 50-member mean results). Figure 7a illustrates that, with smaller sample sizes, the 

impact of chaotic effects is significant, leading to a more dispersed distribution of the sample mean impacts of dust aerosols. 

The differences in precipitation among samples can even show opposite signs. This suggests that with a small ensemble size, 

the relationship between dust aerosols and the ISM precipitation appears highly chaotic, resulting in low reliability of the 345 

simulated conclusions. Fortunately, as the number of ensemble members increases, the sample estimates converge towards the 

true value (here, the average value of the 50 experiments is considered as the true value). 
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Figure 7: 95% confidence interval of regional average precipitation difference. The vertical axis represents the difference in average 350 
precipitation between the control experiment and the sensitivity experiment within the monsoon depression area. The definition of 

the 95% confidence interval is the range between the 97.5th percentile and the 2.5th percentile of the sample. (a) Shows the 95% 

confidence interval, with the black dashed line representing the average precipitation difference of 50 experiments, and the white 

dashed line representing the average value for each number of members in ensemble. (b) The black solid line in the figure shows 

how the width of the 95% confidence interval varies with number of members in ensemble, and the blue dashed line represents the 355 

logarithmic fitting curve, with the fitting expression being 𝟏𝟖. 𝟏𝟖𝑵−
𝟏

𝟐 − 𝟏. 𝟓𝟓. 

 

Figure 7b quantifies this uncertainty reduction by plotting the width of the 95% confidence interval against ensemble size. The 

confidence interval width decreases sharply from about ~16 mm/day with very few members to around 5 mm/day with 10 

members, followed by a more gradual decline until with 50 members. The fitting results of Fig. 10b demonstrate that the width 360 

of the confidence interval is roughly proportional to 𝑁−
1

2,  with the fitting expression being  18.18𝑁−
1

2 − 1.55  for this case. 

In summary, increasing the sample size reduces the uncertainties of impacts of aerosols in ensemble simulations. However, as 

the number of members increases, the "cost-effectiveness" of further increasing the ensemble simulation size decreases. 

While some studies have employed ensemble approaches to address uncertainties in aerosol-climate interactions (Meehl et al., 

2008; Jin et al., 2015; Solmon et al., 2015; Lau et al., 2017), most researches utilize around or less than 10 ensemble members. 365 

Figure 8 illustrates the spatial distribution of dust-induced precipitation impacts for two extreme cases selected from 10,000 

possible combinations of 10-member ensembles, representing the maximum (E1) and minimum (E2) area-averaged responses. 

Both cases maintain certain common features, such as positive precipitation changes along the Himalayan foothills and 

enhanced westerlies over the Arabian Sea. However, they differ substantially in the magnitude and spatial extent of 

precipitation responses, particularly over the monsoon precipitation region. E1 (panel a) shows a pronounced positive 370 

precipitation response concentrated over the northern Indian subcontinent, with maximum increases exceeding 10 mm/day 

(dark red) in the Indo-Gangetic Plain. The wind field anomalies in E1 demonstrate enhanced westerly flows over the Arabian 
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Sea and a strengthened cyclonic circulation over northern India. E2 (panel b), while showing some similarities in the broad-

scale pattern, exhibits notable differences in both magnitude and spatial distribution of precipitation and circulation changes. 

While positive precipitation changes are still present over parts of northern India, they are much weaker and spatially less 375 

extensive. Moreover, E2 shows a more prominent negative precipitation anomaly over central India and the Bay of Bengal. 

The circulation anomalies in E2, though similarly westerly over the Arabian Sea, show a weaker cyclonic component over 

northern India and a different spatial organization of the wind field over the Indian peninsula. These differences, derived from 

different 10-member ensemble combinations, indicate that even with a moderate ensemble size of 10 members, simulations 

can produce opposed conclusions regarding dust impacts, though the contradictions are less severe compared to single-member 380 

simulations (Fig. 6).  

 

 
Figure 8: The spatial distribution of dust-induced precipitation impacts for two extreme cases selected from 10,000 possible 

combinations of 10-member ensembles, representing the maximum (panel a) and minimum (panel b) area-averaged responses. 385 

 

Approach commonly employed with limited ensemble sizes involves statistical significance testing to validate simulation 

results. Figure 9 compares the spatial patterns of dust-induced precipitation changes from two 10-member ensemble 

combinations, with areas of statistical significance (p < 0.05) highlighted by purple stippling. The left panel shows the average 

of the 10 members producing maximum area-averaged responses, featuring strong positive precipitation changes over the 390 

northern Indian subcontinent. The right panel, representing the average of the 10 members with minimum area-averaged 

https://doi.org/10.5194/egusphere-2024-4037
Preprint. Discussion started: 30 January 2025
c© Author(s) 2025. CC BY 4.0 License.



18 

 

responses, displays a notably different pattern with weaker positive changes over northern India and more extensive negative 

anomalies over central India and the Bay of Bengal. Importantly, despite their contrasting precipitation patterns, both 

combinations show statistical significance (purple stippling) in key regions, even over regions with opposite dust-induced 

impacts on precipitation (such as marked by the black box). This suggests that achieving statistical significance alone may not 395 

guarantee reliable representation of dust impacts, as even small ensembles can produce statistically significant yet 

contradictory results. This analysis is particularly relevant because 10-member ensembles (or less members) are widely used 

in current climate modeling studies due to computational resource limitations. However, as demonstrated by these discussions, 

such commonly used ensemble sizes may still be insufficient for robust characterization of dust-monsoon interactions. While 

10-member ensembles represent a typical compromise between computational feasibility and scientific reliability in many 400 

studies, our results suggest that larger ensemble sizes might be necessary for more accurate representation of dust-induced 

impacts on the monsoon system. 

 

 
Figure 9:  95% significance test (t-test) results for two extreme cases selected from 10,000 possible combinations of 10-member 405 
ensembles, representing the maximum (panel a) and minimum (panel b) area-averaged responses. 

 

Figure 10 extends this analysis by examining the relationship between ensemble size and the range of simulated dust impacts. 

The panels are arranged to show the maximum (top row) and minimum (bottom row) area-averaged responses for increasing 

ensemble sizes from 1 to 40 members (1, 5, 10, 20, 30, and 40 are presented). For the monsoon depression region, ensembles 410 
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with fewer than 30 members can produce substantially different, or even opposing, dust-induced impacts on precipitation and 

circulation patterns. By 30 members, the spatial patterns become notably more similar between maximum and minimum cases, 

with main differences reduced to the magnitude rather than the sign of the response. Notably, this sensitivity to initial 

conditions varies considerably by region. For instance, precipitation responses along India's western coast and the southern 

slopes of the Himalayas achieve reasonable convergence with as few as 5 ensemble members. These findings lead to two key 415 

conclusions: (1) For mesoscale weather systems, such as monsoon depressions, large ensemble sizes (approximately 30 

members) are necessary to obtain robust simulations of dust climate effects. (2) For larger-scale processes, such as general 

monsoon circulation and moisture transport, smaller ensemble sizes (approximately 5 members) may suffice for accurate 

representation of dust impacts. This scale-dependent requirement for ensemble size reflects the inherent predictability 

differences between synoptic-scale and mesoscale atmospheric processes in dust-climate interaction studies. 420 

 

 
Figure 10: The spatial distribution of dust-induced precipitation impacts for two extreme cases selected from possible combinations 

of 1, 5, 10, 20, 30, and 40-member ensembles, representing the maximum (E1 in top panels) and minimum (E2 in bottom panels) 

area-averaged responses. 425 

 

4 Summary and Discussions 

This study investigates the role of chaotic effects in modulating complex interactions between dust aerosols and climate 

systems. We employed the iAMAS model to conduct large ensemble simulations with 50 members, aiming to bridge the gap 

in understanding uncertainties of simulating aerosols impacts introduced by the chaotic effect, and to distinguish between 430 

physical and chaotic effects in simulating aerosol impacts. Our results demonstrate that dust emissions from Central-East Asia 
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significantly influence the ISM monsoon, with pronounced effects on monsoon circulation and precipitation patterns. The 

results reveal that dust aerosols strengthen the southwesterly monsoon flow from the Arabian Sea toward the Indian 

subcontinent, leading to enhanced precipitation along the western Indian coast and the western Himalayan foothills, which is 

consistent among most ensemble members.  435 

However, the results also reveal the critical role of chaotic effects in dust-monsoon interactions. The simulated dust impacts 

on regional systems, such as monsoon depressions, exhibit significant uncertainties induced by chaotic effects. Even with 10-

member ensembles, a commonly used ensemble size in many studies, simulations can produce fundamentally different or even 

opposing conclusions about dust impacts on regional rainfall patterns. Statistical significance testing also be proved insufficient 

for establishing result robustness, as demonstrated by cases where contradictory results both achieve statistical significance. 440 

Moreover, our analysis reveals that the magnitude of chaotic effects diminishes with increasing ensemble size, which is 

proportional to 𝑁−
1

2, suggesting that larger ensembles are necessary for physical characterization of dust-monsoon interactions 

at regional scales. The required ensemble size exhibits strong spatial dependence, reflecting different predictability 

characteristics of atmospheric processes at various scales. While large-scale features like monsoon circulation can be reliably 

simulated with relatively few ensemble members (e.g., 5 members), mesoscale features such as monsoon depressions require 445 

substantially larger ensembles (e.g., 30 members or larger) to achieve convergence. This scale-dependent behavior suggests 

that studies focusing on regional-scale processes may need to carefully consider ensemble size requirements based on their 

specific phenomena of interest. 

While this investigation focuses on dust-monsoon interactions over ISM, the implications extend beyond this specific case 

study. Our findings suggest that chaotic effects should be carefully considered in broader aerosol-climate interaction studies, 450 

particularly those focusing on regional and mesoscale processes. The contrasting results reported in previous studies about 

aerosol-weather/climate interactions at regional scale might reflect insufficient ensemble sizes rather than fundamental 

disagreements in physical mechanisms. This raises important questions about the robustness of conclusions drawn from 

existing aerosol-climate studies that rely on limited ensemble sizes or single simulations. 

Several limitations and future research directions emerge from this work. First, our analysis excluded potentially important 455 

processes like dust-induced ice nucleation that could further amplify chaotic effects through cloud-precipitation feedbacks. 

Second, the required ensemble size likely varies across different geographical regions and meteorological systems - areas with 

strong mesoscale processes or complex topography might require larger ensembles than regions dominated by large-scale 

circulation patterns. Third, different aerosol species with distinct radiative and microphysical properties may exhibit varying 

sensitivities to chaotic effects. Future work should explore these chaotic effects across different regions, aerosol types, and 460 

meteorological systems to develop more comprehensive guidelines for chaotic effects on aerosol-climate studies. This is 

particularly important for regions with strong aerosol-climate interactions with complex mechanisms. Additionally, developing 
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more efficient methods to account for chaotic effects while maintaining computational feasibility remains an important 

challenge, especially for global climate simulations where large ensembles may be computationally prohibitive.  
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