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Abstract. Aerosols have significant impacts on regional climate, which has been widely investigated with numerical 10 

experiments. However, uncertainties of simulated aerosol impact due to long-standing chaotic effect remain unclear. Here 

we propose a diagnostic method based on large ensemble simulations and random sampling algorithm to unveil the chaos-

induced uncertainties in simulated aerosol climatic impacts that is overlooked in previous studies. Taking dust impacts on 

Indian summer monsoon system as a demonstration, our findings reveal that, while dust generally enhances the large-scale 

summer monsoon circulation consistently among ensemble members, its impacts on regional systems, such as monsoon 15 

depressions, exhibit significant chaotic effect: the simulated aerosol impacts on precipitation from individual ensemble 

member differ substantially, even inversely. Through quantitative analysis, we demonstrate that the magnitude of these 

chaotic effects diminishes following a 𝑁!!"  relationship with ensemble size N. Furthermore, our results indicate that 

statistical significance testing alone may be insufficient for robust attribution of dust impacts, as even small ensembles can 

yield statistically significant yet contradictory results. This study emphasizes the necessity of employing adequate ensemble 20 

sizes to capture reliable physical impacts of aerosol on regional climate. 

1 Introduction 

Aerosols, consisting of suspended solid and liquid particles in the atmosphere, play a crucial role in modulating both regional 

(Bollasina et al., 2011; Li et al., 2016) and global (Ramanathan et al., 2001; IPCC, 2014; Bellouin et al., 2020) climate systems 

through various pathways (Rosenfeld et al., 2007, 2008), mainly through aerosol-radiation interactions (ARI) and aerosol-25 

cloud interactions (ACI) (IPCC, 2014). ARI involve scattering and absorption of radiation, thereby altering the Earth's radiation 

budget (Zhao et al., 2010, 2013a). ACI occur as aerosols serve as cloud condensation nuclei (CCN) and ice nuclei (IN), 

modifying cloud properties, precipitation patterns, and atmospheric dynamics (Fan et al., 2016; Ghan et al., 2016). These 

aerosol-induced modifications can significantly impact regional circulation patterns, precipitation distributions, and 
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temperature profiles, ultimately influencing climate variability on various temporal and spatial scales (Ramanathan et al., 2001; 30 

Rosenfeld et al., 2008; Zhao et al., 2011, 2012, 2020). 

The complex nature of aerosol impacts has necessitated the development and application of sophisticated numerical models. 

These models have emerged as essential tools for understanding the complex impacts of aerosols on climate systems. Modern 

climate models can simulate the emission, transport, transformation, and removal of aerosols, along with their interactions 

with radiation and cloud processes  (e.g., Fast et al., 2016; Feng et al., 2023). However, significant uncertainties persist in 35 

numerical simulations of aerosol impacts. These uncertainties can arise from several sources such as limited model resolution 

affecting the representation of small-scale physical processes, simplified parameterizations of aerosol physical and chemical 

processes (Kinne et al., 2006; Zhao et al., 2013b), and incomplete understanding of aerosol-cloud-radiation interaction 

mechanisms (Zhao et al., 2011; Myhre et al., 2013; Ghan et al., 2016; Kok et al., 2023). Beyond these widely recognized 

sources of uncertainty, the inherent chaotic nature of the climate system may also lead to significant simulation uncertainties. 40 

However, research on how chaotic effects influence the simulation of aerosol climate impacts remains relatively limited. 

In weather and climate research, the chaotic effects induced by initial condition perturbations have received widespread 

attention (e.g., Lorenz, 1963; Giorgi and Bi, 2000; Bei and Zhang, 2007; Hohenegger and Schar, 2007; Zhang et al., 2019; 

Judt, 2020). Since Lorenz (1963) first discovered weather systems' sensitive dependence on initial conditions, numerous 

studies have investigated the impact of this "butterfly effect" on weather forecasting and climate simulation.  For example, 45 

Giorgi and Bi, (2000) examined regional climate model sensitivity to initial conditions and found that the model internal 

variability significantly influences the day-to-day model solution, especially for summer precipitation: the domain-averaged 

daily precipitation RMSD was of the same order of magnitude as the average precipitation. Zhang et al., (2019) explored the 

influence of initial perturbations on predictability of weather forecasts in global climate models. (Hohenegger and Schar, 2007) 

demonstrated that cloud-resolving models are even more sensitive to initial perturbations than synoptic-scale models, with 50 

error growth rates about 10 times faster. Bei and Zhang, (2007) found that error growth is strongly nonlinear and small-

amplitude initial errors, which are far smaller than those of current observational networks, may grow rapidly and quickly 

saturate at smaller scales. They subsequently grow upscale, leading to significant forecast uncertainties at increasingly larger 

scales. O’Brien et al., (2011) indicated that intrinsic variability (IV) of precipitation in regional climate models can be large 

enough to violate the assumptions of sensitivity study. These studies demonstrate that even negligible initial field perturbations 55 

can lead to significant differences in simulation results. 

Nevertheless, currently, many studies rely on single numerical experiment to evaluate aerosol climate effects, potentially 

introducing significant uncertainties in interpreting modeling results (e.g., Wang et al., 2009; Zhong et al., 2017). Ensemble 

experiments, which involve running multiple simulations with slightly varying initial conditions or model parameters to 

capture a range of possible outcomes, have been widely employed to address these chaotic uncertainties (Bassett et al., 2020; 60 
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Laprise et al., 2012; Schellander-Gorgas et al., 2017; Feng et al., 2024b). While ensemble approaches have been widely adopted 

to address the uncertainties arising from chaotic effects, most studies utilize relatively small ensemble sizes of typically around 

10 (e.g., Meehl et al., 2008; Vinoj et al., 2014; Jin et al., 2015; Solmon et al., 2015; Lau et al., 2017). Whether this limited 

ensemble size adequately characterizes the uncertainties introduced by chaotic effects remains unknown. Moreover, the 

quantitative characteristics of chaotic effects on aerosol-induced impacts on climate systems require further investigation. 65 

To better understand the role of chaotic effects in simulating aerosol climate impacts, this study focuses on the Indian summer 

monsoon (ISM) region. This region exhibits high aerosol concentrations with complex spatiotemporal distributions and 

significant impacts on regional climate systems. Some studies have shown that aerosols influence Indian summer monsoon 

evolution through various mechanisms, including modification of radiation budgets, atmospheric thermal structure, and cloud 

microphysical processes (Lau et al., 2006, 2017; Lau, 2014, 2016; Sanap and Pandithurai, 2015). Despite significant progress, 70 

significantly different regional spatial and temporal details (even opposite results) have been found in many global or regional 

climate models (Jin et al., 2014; Vinoj et al., 2014; Jin et al., 2015; Solmon et al., 2015; Lau et al., 2017), indicating that there 

are still uncertainties remain in understanding aerosol impacts on the monsoon system in this region. For example, Vinoj et al. 

(2014) found rainfall increases mainly concentrated in southern India with minimal changes or decreases in central India; Jin 

et al. (2014) observed widespread rainfall enhancement across Pakistan and most of India, with maximum increases in the 75 

Indo-Gangetic Plain region; Solmon et al. (2015) reported yet another pattern, with increased rainfall in southern India but 

decreased precipitation in central and northern India and Pakistan. These divergent results making it an ideal case study for 

investigating the influence of chaotic effects in simulating aerosol climate impacts. 

While substantial progress has been made in characterizing dust-monsoon interactions, most previous studies have focused on 

the mature monsoon season (July-August), during which atmospheric circulation is more stable and convective systems are 80 

already well established. In contrast, the onset phase is dynamically transitional and thus more sensitive to radiative and 

thermodynamic perturbations. During this transition, atmospheric circulation is dynamically unstable, the Intertropical 

Convergence Zone (ITCZ) and low-level jets are reorganizing, and synoptic systems such as monsoon depressions are forming. 

Under such complex conditions, dust-induced heating may exert outsized influence. Furthermore, to investigate the influence 

of chaotic effects of dust impacts, we plan to conduct a large ensemble of experiments with 50 members, which demands 85 

substantial computational resources. Given that dust may exert a pronounced influence during the onset period and to manage 

the computational resource constraints, we select only the onset period of the ISM in 2016 (June 10–30) as our simulation 

period. 

This study has three primary objectives: (1) to quantify the uncertainties in simulating aerosol impacts introduced by chaotic 

effects, (2) to distinguish between physical and chaotic effects in the dust aerosol impacts on ISM system, and (3) to determine 90 

whether simulated aerosol impacts on the ISM are predominantly driven by physical processes or significantly influenced by 
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chaotic behaviors. We define the “physical effect” as the deterministic response of meteorological fields to aerosols that 

remains consistent across ensemble members despite initial condition perturbations. The ensemble-mean approximates this 

underlying physical effect by averaging out chaotic influences. Conversely, the “chaotic effect” represents internally generated 

variations arising from initial condition perturbations, manifested as the spread among ensemble members (Feng et al., 2024a).  95 

The remainder of this paper is structured as follows: Section 2 describes our methodology, including the iAMAS model 

employed (Section 2.1), experiments configurations and methods for generating perturbed initial conditions (Section 2.2), and 

observational datasets used for validation (Section 2.3). Section 3 presents our analysis of chaotic effects on dust aerosol 

impacts on the ISM and discusses the relationship between ensemble size and chaotic uncertainties. Section 4 provides 

conclusions and summarizes the implications of our findings and discusses the limitations of this study. 100 

2 Methods 

2.1 Model 

In this study, we employed the integrated Atmospheric Model Across Scales (iAMAS) (Feng et al., 2023; Gu et al., 2022). 

The iAMAS model is a non-hydrostatic global variable-resolution atmospheric modeling system featuring online integrated 

aerosol feedbacks. The model is also designed for the supercomputer with heterogeneous many-core architecture such as 105 

China's Sunway supercomputer.  

iAMAS’s dynamic core is adapted from the Model for Prediction Across Scales – Atmosphere (MPAS-A) (Skamarock et al., 

2012), which discretizes the computational domain horizontally on a C-grid staggered unstructured Voronoi mesh using finite-

volume formation (Skamarock et al., 2012). The fully compressible non-hydrostatic equations are casted in terms of geometric-

height hybrid terrain-following coordinate, and the solver applies the split-explicit time integration scheme. The time-110 

integration scheme employs the 3rd-order Runge-Kutta (RK3) method and the explicit time-splitting technique (Wicker and 

Skamarock, 2002). 

For physics suite, iAMAS incorporates a comprehensive suite of microphysical parameterization schemes, including the 

Predicted Particle Properties (P3) scheme (Morrison and Milbrandt, 2015), the Morrison double-moment scheme (Morrison et 

al., 2005), and the Thompson scheme (Thompson et al., 2008) , the WRF Single-Moment 6-class scheme (WSM6) (Hong and 115 

Lim, 2006), and the basic warm-rain Kessler scheme (Kessler, 1969). On convective processes, iAMAS implements multiple 

parameterization options: the sophisticated multi-scale Kain-Fritsch (MSKF) scheme  (Zheng et al., 2016), the original Kain-

Fritsch (KF) scheme (Kain, 2004), the original and new Tiedtke mass-flux schemes (Tiedtke, 1989; Zhang et al., 2011), and 

the modified version of the scale-aware Grell-Freitas scheme (Grell and Freitas, 2014). The surface layer physics options 

include the classical Monin-Obukhov similarity theory scheme (Monin and Obukhov, 2009) and the Mellor-Yamada-120 
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Nakanishi-Niino (MYNN) scheme (Nakanishi and Niino, 2006, 2009). For planetary boundary layer (PBL) processes, both 

the Yonsei University (YSU) scheme (Hong et al., 2006) and MYNN scheme are implemented. The land-atmosphere 

interactions are represented through the Noah land surface model with four soil layers (Chen and Dudhia, 2001). Radiative 

transfer processes are parameterized using either the Rapid Radiative Transfer Model for GCMs (RRTMG) for both shortwave 

and longwave radiation (Iacono et al., 2000; Mlawer et al., 1997) or the Community Atmosphere Model (CAM) radiation 125 

scheme. 

For aerosol related suite, iAMAS  includes the processes of online emission, advection, diffusion, vertical turbulent mixing, 

dry deposition, gravitational settling, and wet scavenging. In the experiments conducted for this study, only dust aerosols are 

included to isolate their effects from those of other aerosols. iAMAS uses sectional approach to represent a 10-bin size 

distribution of aerosol particles ranging from ~0.04 to 40 µm. Each size bin is assumed to be internally mixed so that all 130 

particles within a size bin have the same properties. The dust emission scheme of iAMAS is adapted from the Goddard 

Chemistry Aerosol Radiation and Transport (GOCART) scheme (Ginoux et al., 2001). The dry deposition of aerosols is 

calculated based on Peters and Eiden, (1992) in iAMAS and wet deposition of aerosols both in-cloud and below-cloud are also 

treated in the model.  

Aerosol-cloud interaction (ACI) is implemented in the model based on the method described by (Gustafson et al., 2007) for 135 

calculating the activation and resuspension between dry aerosols and cloud droplets. Aerosol activation (or droplet nucleation) 

is based on a maximum supersaturation determined from a Gaussian spectrum of updraft velocities, similar to the methodology 

used in (Ghan et al., 2001). The activated droplet number is then coupled with the Thompson microphysics scheme. In this 

way, aerosols can affect cloud droplet number, and clouds can also alter aerosol concentration through aqueous processes and 

wet scavenging. The hygroscopicity of dust aerosols are assumed to be 0.10 in this study. Within the Thompson cloud 140 

microphysics scheme, the number of ice nucleation (IN) in mixing-phase clouds from dust is calculated following the formula 

proposed by DeMott et al.(DeMott et al., 2010). This study only considers the wet scavenging process of activated dust aerosols 

into cloud droplet, ignoring the conversion of dust into IN because the IN feedback calculations are not fully evaluated in 

iAMAS at this stage. 

iAMAS also incorporates the aerosol-radiation interaction (ARI). Following the new method proposed by Feng et al., (2025), 145 

aerosol optical properties are computed and coupled with the RRTMG radiation scheme for both shortwave and longwave 

bands. For dust aerosols, this study utilizes the Optical Properties of Aerosols and Clouds (OPAC) dataset (Hess et al., 1998) 

to provide their shortwave and longwave refractive indices. 

Recent studies have demonstrated the diverse capabilities of iAMAS. Feng et al., (2023) implemented an aerosol modeling 

framework into iAMAS along with simulations of aerosol-radiation and aerosol-cloud interactions. Their study evaluated the 150 
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model's capability in simulating atmospheric dust and examined how mesh refinement impacts dust simulations. Gu et al., 

(2022) achieved significant improvements in computational efficiency and reduced input/output (I/O) costs through multi-

dimension-parallelism structuring, aggressive and finer-grained optimization, manual vectorization, and parallelized I/O 

fragmentation. These enhancements achieved the speed of 0.82 simulation day per hour with forecasts including online aerosol 

simulations at a global convection-permitting scale with 3km resolution. In a subsequent study, Gu et al., (2024a) conducted 155 

comparative one-month forecasts at different resolutions (global 3km, variable 4-60 km, and global 60 km) employing iAMAS. 

Their results revealed that the global 3km resolution forecast accurately captured the plum rain rainband around Japan, while 

lower-resolution forecasts showed northward displacement and weaker intensity, attributed to shifted atmospheric rivers over 

Japan. Gu et al., (2024b) employed iAMAS at a 3-km resolution and achieved unprecedented accuracy, reducing track errors 

to below 100 km over a 120-hour forecast period. Notably, iAMAS successfully predicted Typhoon In-fa’s sudden track 160 

changes and dual landfall locations, outperforming current operational forecasts. Li et al., (2024) carried out global simulations 

with uniform resolution, and found that high spatial resolution (global 3km) experiment suppresses the excessive equatorial 

light rain simulated by experiment at coarser resolution (global 60km) and improve the dry bias of the South Asia summer 

monsoon rainfall over northern India by modulating the competition between the maritime and continental rainfall band. The 

successful applications of iAMAS across diverse research contexts have demonstrated its capability and reliability. The model's 165 

feature of global variable-resolution mesh makes it suitable for future high-resolution studies of local aerosol-climate impacts, 

while simultaneously enabling the investigation of cross-scale interactions between aerosols and climate systems from regional 

to large scales. 

2.2 Numerical Experiments 

2.2.1 Configuration of simulations 170 

We conducted two sets of ensemble experiments, each comprising 50 members with perturbed initial conditions generated 

using the method detailed in Sect. 2.2.2. The first set, called the “Control” experiment, included simulations with dust aerosols, 

while the second set, termed the “Sensitive” experiment, excluded dust aerosol emissions to examine their impacts on the ISM 

system. To isolate the influence of the local dust, the “Sensitive” experiment specifically eliminated dust aerosol emissions 

only in the Arabian region (7.5N~42N, 31E~78E, marked in Fig. S1 in supplement materials), while maintaining all other 175 

settings identical to the “Control” experiment.  

The simulations covered the period from June 10 to June 30, 2016, focusing on a specific intense rainfall period occurring 

during the 2016 Indian summer monsoon season. To be clarified, this period does not cover the entire dust-ISM interactions 

throughout the monsoon season or across different years. We selected this specific period as it features a monsoon onset period 

with monsoon depression system that is particularly sensitive to aerosol impacts, making it suitable for investigating physical 180 

and chaotic effects. This approach also balances computational costs (necessitated by the large number of ensemble 
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experiments) with scientific objectives, though we recognize that longer-term simulations would be valuable for future work 

to capture the full range of dust-ISM interaction. We employed a quasi-uniform mesh with approximately 60 km grid spacing. 

The model’s top height is set at 30 km, with 55 vertical layers. Initial meteorological conditions were derived from the 

European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis dataset (Hersbach et al., 2020) , utilizing 185 

data at 0.25° horizontal resolution and 6-hour temporal intervals. Sea surface temperatures, prescribed from the ERA5 

reanalysis dataset, were updated every 6 hours throughout the simulation period. This approach is common for short-term 

atmospheric process studies as the simulation period (20 days) is short compared to typical SST adjustment timescales. Besides, 

since SST is prescribed, the model differences will only be attributed to dust aerosol effects associated with aerosol-monsoon 

interaction. The model physics configuration incorporated several well-established schemes: the Mellor-Yamada-Nakanishi-190 

Niino PBL scheme (Nakanishi and Niino, 2006, 2009), the NOAH land-surface scheme (Chen and Dudhia, 2001), the 

Thompson microphysics scheme (Thompson et al., 2008), the Grell-Freitas cumulus convection scheme (Grell and Freitas, 

2014), and the RRTMG longwave and shortwave radiation schemes (Iacono et al., 2000; Mlawer et al., 1997). The dust 

simulation framework followed the methodology established by Feng et al., (2023). 

2.2.2 Generating Perturbed Initial Conditions for Ensembles 195 

In this study, we employed the Breeding of Growing Modes (BGM) technique to generate initial perturbed conditions in 

ensemble simulations. The BGM method is straightforward to implement, computationally efficient, and superior in sampling 

physically-balanced spatial uncertainties in initial conditions. This technique was first introduced by the National Centers for 

Environmental Prediction (NCEP) for generating initial perturbations of the global ensemble forecast system (Toth and Kalnay, 

1993, 1997). The BGM method effectively captures the fast-growing perturbation directions conditioned on the reference 200 

background states with very low computational cost. This advantage of these initial ensemble perturbations favors the diverse 

evolution of perturbed simulations, enhancing the reliability of model ensembles. 

Based on the original BGM method, we also adapt it for use with SCVTs (Spherical Centroidal Voronoi Tessellations) grid 

characteristics to generate unstructured perturbation initial fields for iAMAS. The perturbation amplitude is calculated based 

on moist energy norm, with perturbations applied to three initial variables: potential temperature, surface pressure, and specific 205 

humidity. The calculation of the moist energy norm follows the method outlined by Ehrendorfer et al., (1999): 
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where 𝑐'	(1005.7	J	kg!#	K!#) is the specific heat capacity at constant pressure, 𝑅	(287.04		J	kg!#	K!#) is the gas constant for 

dry air, 𝐿	(2.5104 × 10)	J	kg!#) represents the latent heat of vaporization, 𝑇((270	K) denotes the reference temperature, and 
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𝑝(	(1000	hPa)is the reference pressure. The terms 𝑢′ and 𝑣′ represent the differences between the simulation results and 210 

reanalysis fields of zonal and meridional wind components, respectively. 𝑇′ denotes the temperature difference, 𝑝*′ represents 

the surface pressure difference, and 𝑞′ indicates the specific humidity difference. 𝐷 corresponds to the model grid cell area, 

and 𝜖 is the normalization factor for specific humidity, which is set to unity in this study. 

The procedure for generating initial perturbation fields on SCVTs grids is as follows: 

1. Initialization of Perturbations: A 24-hour simulation is conducted 48 hours in advance. The initial perturbation 215 

amplitude (i.e., moist energy norm) is computed by comparing the simulation results with reanalysis data. 

Subsequently, each grid point’s root mean square error (RMSE) with its neighboring model cells is calculated and 

multiplied by a random number to generate the initial perturbations. The RMSE is calculated as:𝑅𝑀𝑆𝐸+,--# =

M∑ (0$%&&'!1$%&&')
"(

')!

3
, where 𝑀 represents model values,	𝑅 represents reanalysis values, and	𝑛	is the number of 

neighboring grid points plus one, including 𝐶𝑒𝑙𝑙4 itself. 220 

2. Breeding Cycle: Every 6 hours, the simulation results are compared with reanalysis data to compute the scaling 

factor by comparing the moist energy norm with the initial perturbations. This scaling factor is then applied to the 

difference between the model output and the reanalysis data. The scaled perturbations are added to the reanalysis 

field to replace the corresponding model variables, and the breeding cycle is continued. 

3. Mature Perturbations: Based on previous study (Toth and Kalnay, 1997), perturbations typically mature after 48 225 

hours of breeding. These perturbation fields are then superposed on the reanalysis state to produce initial members 

for ensemble simulations. 

4. Repetition: Different random seeds are used for each initialization to generate other perturbated initial conditions as 

ensemble members. 

The spatial distributions of initial surface potential temperature, surface pressure, and surface specific humidity across the 50 230 

ensemble members over the Indian monsoon region are presented in Fig. S2-S4 (supplementary materials). The perturbations 

introduced in these initial conditions exhibit minimal magnitude. To quantify these subtle perturbations, we calculated the 

deviations of individual members from the ensemble mean (Fig. S5-S7). Despite the small magnitude of initial perturbations, 

these deviations reveal random variations among ensemble members, confirming the effective implementation of our 

perturbation methodology in generating perturbed initial conditions while maintaining physical consistency within the 235 

meteorological fields. 
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2.3 Datasets 

To evaluate the model performance and validate our simulation results, we utilized multiple observational and reanalysis 

datasets. The Multi-angle Imaging Spectro Radiometer (MISR) aboard NASA's Terra satellite provides global aerosol 

optical depth (AOD) measurements (Diner et al., 1998). We employed the MISR Level 3 version F08_0031 daily aerosol 240 

product with a spatial resolution of 0.5° × 0.5°. MISR's unique multi-angle observation capability enables accurate aerosol 

retrievals over both land and ocean surfaces, making it particularly suitable for monitoring dust aerosols over the ISM 

region. 

To validate circulation conditions of the atmosphere, we used the fifth-generation ECMWF reanalysis (ERA5) dataset. ERA5 

provides high-resolution global analyses of atmospheric parameters at 0.25° × 0.25° spatial resolution and hourly temporal 245 

resolution with 37 vertical levels. The dataset incorporates various observation systems and advanced data assimilation 

techniques, offering reliable representations of atmospheric states (Hersbach et al., 2020). 

Precipitation data were obtained from the Climate Prediction Center Morphing Technique (CMORPH) Version 1.0 dataset, 

which provides global precipitation estimates at high spatial (0.25° × 0.25°) resolutions (Joyce et al., 2004).This dataset is 

particularly valuable for analyzing precipitation patterns over the Indian monsoon region due to its consistent spatial and 250 

temporal coverage. 

3 Results 

3.1 Chaotic effects on simulated Indian Summer Monsoon 

Figure 1 illustrates the comparative analysis between observational data and numerical simulations of monsoon circulation 

(represented by 850 hPa wind fields) and precipitation patterns during the monsoon onset period (June 10-30, 2016). The 255 

observed wind field at 850hPa is derived from ERA5 and the observed rainfall is from CMORPH. The 850 hPa wind field 

from ERA5 reveals key features of the early-summer monsoon circulation: a well-established cross-equatorial flow over the 

Arabian Sea that develops into strong southwesterly winds along the western Indian coast. This low-level jet serves as the 

primary moisture transport pathway. The precipitation distribution from CMORPH during this period shows three major 

rainfall zones: an intense precipitation band along the Western Ghats due to orographic lifting of moisture-laden monsoon 260 

winds, a broad rainfall maximum over the Bay of Bengal, and substantial precipitation over the northern Indian subcontinent 

where monsoon depressions frequently occur (Li et al., 2016; Srivastava et al., 2017). The ensemble-mean results (Fig. 1b) are 

able to reproduce these fundamental features of the monsoon system. While the simulated intense precipitation zone along the 

western coast of India shows a southward displacement, the model effectively captures the overall spatial distribution of rainfall 
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and the large-scale circulation patterns, particularly the strong southwesterly monsoon flow and the precipitation associated 265 

with monsoon depressions over northern India. 

 

 

Figure 1: The observations and simulations of monsoon circulation (wind field at 850hPa) and precipitation, averaged from June 10, 
2016, to June 30, 2016. The observed wind field at 850hPa derived from ERA5 and the observed rainfall is from CMORPH. The 270 
simulation results are shown as 50-member ensemble mean. 

 

As previously introduced, slight perturbations in initial conditions among ensemble members can lead to substantial 

divergences in simulation outcomes. This sensitivity to initial conditions warrants a detailed examination of chaotic behavior 

within these ensemble simulations. Figure 2 presents the precipitation patterns from 50 ensemble members of “Control” 275 

experiments over the Indian monsoon region (the results of “Sensitive” experiments are illustrated in Fig. S8). While these 

simulations exhibit some consistent features, such as notably the intense precipitation along the Himalayan southern slopes 

and southwestern Indian coast, they demonstrate remarkable inter-member variability, particularly over northern regions of 
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the Indian subcontinent (highlighted by the black box in Fig. 2). Analysis of individual ensemble members reveals substantial 

variation in their ability to simulate monsoon depression-associated precipitation. Several members (e.g., members 3, 9, 14, 280 

17, 28, and 48) successfully capture the distinctive precipitation pattern associated with monsoon depressions. However, a 

subset of members (notably members 6, 18, 20, 30, and 49) fails to reproduce the precipitation in this region, highlighting the 

chaotic effect in simulating such synoptic-scale features. 

 

 285 

Figure 2: The spatial distributions of precipitation derived from 50 ensemble members of “Control” experiments over the Indian 
monsoon region. The results are averaged from June 10, 2016, to June 30, 2016. The monsoon depression region is delineated by the 
black box. 
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3.2 Chaotic effects on simulated dust aerosol impacts on ISM 290 

Given that this study aims to investigate the impacts of dust aerosols on ISM precipitation, accurate simulation of dust 

concentrations serves as a fundamental prerequisite. Figure 3 presents a comparison of Aerosol Optical Depth (AOD) at 550 

nm between satellite observations from MISR and the 50-member ensemble means for both control and sensitivity experiments. 

To ensure robust comparison with MISR observations, which are acquired from the Terra platform with an equatorial crossing 

time of approximately 10:45 local time, the model-simulated AOD values were temporally sampled to match Terra's overpass 295 

time. Additionally, spatial collocation was performed to align model outputs with MISR's valid retrieval grids.  

 

 

Figure 3: Spatial distribution of AOD at 550nm derived from (a) MISR; (b) Control experiments; (c) Sensitive experiments. 

 300 

The spatial pattern reveals three distinctive high-AOD regions: the Arabian Peninsula, serving as the primary dust source 

region, the Arabian Sea, showing elevated AOD values due to dust transport along the monsoon flow path, and the Indo-

Gangetic Plain, where AOD is from both transported and local dust. The monsoon precipitation regions show notably lower 

AOD values due to efficient wet removal processes. The control experiment's ensemble mean (Fig. 3b) successfully reproduces 

these observed AOD patterns, particularly the high values over the dust source and transport regions. In contrast, the sensitivity 305 

experiment (Fig. 3c), with eliminated Arabian dust emissions, shows significantly reduced AOD values, clearly demonstrating 

the dominant contribution of Arabian dust to the ISM aerosol loading. 

Figure 4 illustrates the inter-member variability of AOD across 50 ensemble members. Notably, while the dust source and 

transport regions (Arabian Peninsula and Arabian Sea) show highly consistent AOD patterns, the monsoon precipitation 
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regions exhibit more noticeable inter-member variations. This spatial difference in ensemble spread suggests that in high-dust 310 

regions, the consistent AOD patterns indicate that dust's physical impacts on monsoon circulation should be similar across 

members, and in precipitation-dominated regions, the chaotic effects on AOD likely result from differences in wet removal 

processes among members, reflecting precipitation's impact on dust distribution rather than vice versa. 

 

 315 

Figure 4: Same as Fig. 2 but for AOD at 550nm of “Control” experiments. 

 

Figure 5 illustrates the ensemble-mean impacts of dust aerosols on the ISM rainfall and the wind field at 850hPa. The dust-

induced impacts are derived from the difference between Control and Sensitivity experiments. The results reveal that dust 

aerosols strengthen the southwesterly monsoon flow from the Arabian Sea toward the Indian subcontinent (as shown in Fig. 320 

5). This response aligns with the basic dust-monsoon interaction mechanism proposed by Vinoj et al. (2014), where increased 
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atmospheric warming (see Fig. S9b) from high dust concentrations leads to a reduction in surface pressure and strengthening 

of the pressure gradient over the Arabian Sea. This pressure gradient enhancement drives stronger monsoon flow and moisture 

convergence. This enhanced circulation pattern leads to precipitation intensification along two primary regions: the western 

Indian coast and the western Himalayan foothills. Furthermore, dust aerosols generate a cyclonic wind anomaly in the monsoon 325 

depression region (delineated by the black box), consequently intensifying precipitation within this domain. The region-

average precipitation in the "Control" experiment (5.27 mm/day) is nearly 100% higher than the "Sensitive" run (2.66 mm/day), 

revealing significant dust impacts on precipitation based on ensemble means results. The large magnitude of this dust-induced 

precipitation change can be attributed to the specific meteorological mechanism we investigated: dust aerosols' influence on 

monsoon during the monsoon onset. As we discussed in our analysis of individual ensemble members in Section 3.1, dust 330 

plays a role in determining whether monsoon depression-associated precipitation patterns develop successfully in our 

simulations. This binary-like behavior—where dust presence can influence whether or not a monsoon depression system 

forms—explains the large precipitation difference we observe. Monsoon depressions are known to produce large amounts of  

rainfalls, capable of generating several mm/day of precipitation over extensive areas (Srivastava et al., 2017). Therefore, the 

difference between successfully simulating versus missing such a system naturally leads to substantial percentage changes in 335 

regional precipitation. To be clarified, our results on precipitation response patterns reflect this specific meteorological 

situation (Jun 10 to Jun 30, 2016), and the large effect we document here specifically applies to dust's role during the monsoon 

onset period in modulating the formation of monsoon depression systems during favorable meteorological conditions, rather 

than representing a general dust-monsoon interaction magnitude that could be extrapolated to seasonal or climatological time 

scales. 340 



15 

 

 

Figure 5. The ensemble-mean impacts of dust aerosols on the ISM rainfall and the wind field at 850hPa, represented by the 
differences in simulated results between the “Control” and “Sensitive” experiments. 

 

Figure 6 presents precipitation and wind field responses across all 50 ensemble members, revealing both consistent signals 345 

and substantial inter-member variability in dust-induced impacts. Notably consistent features appear along the western coast 

of India and the Himalayan foothills, where most ensemble members show enhanced precipitation and strengthened 

southwesterly flows, suggesting these regions are less susceptible to chaotic effects.  
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 350 

Figure 6: Same as Fig. 5 but for each ensemble members. 

 

However, substantial chaotic effects emerge in specific regions, particularly within the monsoon depression region and central 

India, where ensemble members can yield opposing signs of precipitation response. This spatial pattern of uncertainty closely 

corresponds to regions that exhibit high chaotic effects in both “Control” (Fig. 2) and “Sensitive” (Fig. S8) simulations, 355 

indicating that areas naturally prone to chaotic behavior also show enhanced sensitivity to dust perturbations. This regional 

variability may help explain the contradictory findings in previous studies (Jin et al., 2014; Solmon et al., 2015; Vinoj et al., 

2014; see Sect. 1 for a detailed discussion of these discrepancies). These divergent results, particularly in regions we identify 

as highly sensitive to chaotic effects, suggest that limited ensemble sizes in previous studies may have captured different dust-

monsoon interaction, leading to contradictory conclusions about dust impacts in these regions. 360 
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3.3 Dependence of chaotic uncertainties on ensemble size 

Our analysis demonstrates that dust aerosol impacts on regional-scale weather systems, particularly within the Indian Summer 

Monsoon region, display significant sensitivity to initial condition perturbations. This sensitivity manifests most prominently 

in the simulation of mesoscale features, where different ensemble members can produce opposing conclusions regarding dust 

impacts on precipitation and circulation patterns. Such divergent results could potentially lead to mischaracterization of dust-365 

climate interactions if based on single simulations or limited ensemble sizes.  

To address this challenge, we investigate the relationship between simulated uncertainty of dust impacts and ensemble size, 

focusing specifically on the monsoon depression region where the inter-member variability is most pronounced. We quantify 

the uncertainty through the analysis of dust-induced precipitation responses, calculated as the difference in area-averaged 

precipitation between “Control” and “Sensitive” experiments across our 50-member ensemble set within the monsoon 370 

depression domain (delineated by the black box in Fig. 5). Then we performed resampling without replacement on all these 

differences. This process involves selecting N (N represents the number of members in ensemble) difference values from the 

original dataset as a single sample. Consequently, the number of possible samples of size N is given by 𝐶5$6 = 6!
6!(5$!6)!

. 

However, as N increases, the number of samples becomes exceedingly large (for example, 𝐶5$#5 ≈ 2.25 × 10#&), making it 

impractical to calculate and analyze. Therefore, when the number of samples exceeds 10,000, we randomly select 10,000 375 

samples for analysis. To quantify the uncertainties among members of ensemble, we calculated the 2.5th and 97.5th percentiles 

of the sample estimations’ distribution. The range between these two percentiles is defined as the 95% confidence interval for 

N. In other words, there is a 95% probability that the result of a conducted ensemble simulation with N members falls within 

this interval. The narrower the confidence interval, the more reliable the ensemble simulation results with N members.  

Figure 7 examines how ensemble size affects the uncertainty in estimating dust impacts on precipitation. Figure 7a shows the 380 

95% confidence interval of regional average dust impacts on monsoon precipitation as a function of ensemble size, with the 

orange shading representing the spread of possible values. For small ensemble sizes (< 10 members), the distribution exhibits 

a wide spread, with some estimates even showing opposite signs of dust impacts. As the ensemble size increases, this spread 

gradually narrows, forming a more concentrated distribution around the mean value of approximately 2.8 mm/day (indicated 

by the white dashed line, representing the 50-member mean results). Figure 7a illustrates that, with smaller sample sizes, the 385 

impact of chaotic effects is significant, leading to a more dispersed distribution of the sample mean impacts of dust aerosols. 

The differences in precipitation among samples can even show opposite signs. This suggests that with a small ensemble size, 

the relationship between dust aerosols and the ISM precipitation appears highly chaotic, resulting in low reliability of the 

simulated conclusions. Fortunately, as the number of ensemble members increases, the sample estimates converge towards the 

true value (here, the average value of the 50 experiments is considered as the true value). 390 
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Figure 7: 95% confidence interval of regional average precipitation difference. The vertical axis represents the difference in average 
precipitation between the control experiment and the sensitivity experiment within the monsoon depression area. The definition of 
the 95% confidence interval is the range between the 97.5th percentile and the 2.5th percentile of the sample. (a) Shows the 95% 395 
confidence interval, with the black dashed line representing the average precipitation difference of 50 experiments, and the white 
dashed line representing the average value for each number of members in ensemble. (b) The black solid line in the figure shows 
how the width of the 95% confidence interval varies with number of members in ensemble, and the blue dashed line represents the 
logarithmic fitting curve, with the fitting expression being 𝟏𝟖. 𝟏𝟖𝑵!𝟏𝟐 − 𝟏. 𝟓𝟓. 

 400 

Figure 7b quantifies this uncertainty reduction by plotting the width of the 95% confidence interval against ensemble size. The 

confidence interval width decreases sharply from about ~16 mm/day with very few members to around 5 mm/day with 10 

members, followed by a more gradual decline until with 50 members. The fitting results of Fig. 10b demonstrate that the width 

of the confidence interval is roughly proportional to 𝑁!!",  with the fitting expression being  18.18𝑁!!" − 1.55  for this case 

(see also O'Brien et al. (2011) for similar 𝑁!!" convergence behavior with ensemble size)". In summary, increasing the sample 405 

size reduces the uncertainties of impacts of aerosols in ensemble simulations. However, as the number of members increases, 

the "cost-effectiveness" of further increasing the ensemble simulation size decreases. 

While some studies have employed ensemble approaches to address uncertainties in aerosol-climate interactions (Meehl et al., 

2008; Jin et al., 2015; Solmon et al., 2015; Lau et al., 2017), most researches utilize around or less than 10 ensemble members. 

Figure 8 illustrates the spatial distribution of dust-induced precipitation impacts for two extreme cases selected from 10,000 410 

possible combinations of 10-member ensembles, representing the maximum (E1) and minimum (E2) area-averaged responses. 
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Both cases maintain certain common features, such as positive precipitation changes along the Himalayan foothills and 

enhanced westerlies over the Arabian Sea. However, they differ substantially in the magnitude and spatial extent of 

precipitation responses, particularly over the monsoon precipitation region. E1 (panel a) shows a pronounced positive 

precipitation response concentrated over the northern Indian subcontinent, with maximum increases exceeding 10 mm/day 415 

(dark red) in the Indo-Gangetic Plain. The wind field anomalies in E1 demonstrate enhanced westerly flows over the Arabian 

Sea and a strengthened cyclonic circulation over northern India. E2 (panel b), while showing some similarities in the broad-

scale pattern, exhibits notable differences in both magnitude and spatial distribution of precipitation and circulation changes. 

While positive precipitation changes are still present over parts of northern India, they are much weaker and spatially less 

extensive. Moreover, E2 shows a more prominent negative precipitation anomaly over central India and the Bay of Bengal. 420 

The circulation anomalies in E2, though similarly westerly over the Arabian Sea, show a weaker cyclonic component over 

northern India and a different spatial organization of the wind field over the Indian peninsula. These differences, derived from 

different 10-member ensemble combinations, indicate that even with a moderate ensemble size of 10 members, simulations 

can produce opposed conclusions regarding dust impacts, though the contradictions are less severe compared to single-member 

simulations (Fig. 6).  425 
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Figure 8: The spatial distribution of dust-induced precipitation impacts for two extreme cases selected from 10,000 possible 
combinations of 10-member ensembles, representing the maximum (panel a) and minimum (panel b) area-averaged responses. 

 430 

Approach commonly employed with limited ensemble sizes involves statistical significance testing to validate simulation 

results. Figure 9 compares the spatial patterns of dust-induced precipitation changes from two 10-member ensemble 

combinations, with areas of statistical significance (p < 0.05) highlighted by purple stippling. The statistical significance of 

the differences is assessed using Student's t-test, performed at each grid cell by comparing 10 samples of ensemble member 

values from the "Control" experiment against 10 corresponding samples from the "Sensitive" experiment, to determine if the 435 

results between the two experiments are significantly different. The left panel shows the average of the 10 members producing 

maximum area-averaged responses, featuring strong positive precipitation changes over the northern Indian subcontinent. The 

right panel, representing the average of the 10 members with minimum area-averaged responses, displays a notably different 

pattern with weaker positive changes over northern India and more extensive negative anomalies over central India and the 

Bay of Bengal. Importantly, despite their contrasting precipitation patterns, both combinations show statistical significance 440 

(purple stippling) in key regions, even over regions with opposite dust-induced impacts on precipitation (such as marked by 

the black box). To determine whether these contradictory results of precipitation are caused by dust radiative forcings, we also 

calculate the corresponding dust TOA forcing difference of E1 and E2. The results show that, consistent with the high spatial 

coherence in dust AOD across ensemble members (Fig. 4), the dust-induced TOA radiative forcing differences between 

contrasting subsets (e.g., E1 and E2) were found to be very small (Fig. S10). This analysis demonstrates that achieving 445 

statistical significance alone may not guarantee reliable representation of dust impacts when using small ensembles (e.g., only 

10 members). Crucially, in practice, the specific subset of 10 members run in a study is essentially a random draw from the 

larger possible set. It could be any subset, including ones like E1 or E2 that produce statistically significant yet contradictory 

results. Rather than suggesting statistical tests are not meaningful, our results emphasize the importance of adequate ensemble 

size to ensure robust characterization of aerosol impacts. This analysis is particularly relevant because 10-member ensembles 450 

(or less members) are widely used in current climate modeling studies due to computational resource limitations. However, as 

demonstrated by these discussions, such commonly used ensemble sizes may still be insufficient for robust characterization of 

dust-monsoon interactions. While 10-member ensembles represent a typical compromise between computational feasibility 

and scientific reliability in many studies, our results suggest that larger ensemble sizes might be necessary for more accurate 

representation of dust-induced impacts on the monsoon system. It is crucial to emphasize that the ensemble size requirements 455 

discussed here are specific to the analysis of synoptic-scale processes within this 20-day simulation during the monsoon onset 

period. Studies focusing on longer-term climatological means (e.g., seasonal averages or multi-year averages) inherently 

integrate over more weather events. This temporal smoothing might accelerate the convergence towards a robust physical 

effect in function of ensemble size, which is a promising hypothesis that warrants systematic investigation in future studies. 
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Our findings on the necessity of larger ensembles therefore primarily apply to dust aerosol impacts on synoptic events, where 460 

the stochastic component of variability remains dominant and unresolved by temporal averaging. 

 

 

Figure 9:  95% significance test (Student’s t-test) results for two extreme cases selected from 10,000 possible combinations of 10-
member ensembles, representing the maximum (panel a) and minimum (panel b) area-averaged responses. 465 

 

Figure 10 extends this analysis by examining the relationship between ensemble size and the range of simulated dust impacts. 

The panels are arranged to show the maximum (top row) and minimum (bottom row) area-averaged responses for increasing 

ensemble sizes from 1 to 40 members (1, 5, 10, 20, 30, and 40 are presented). For the monsoon depression region, ensembles 

with fewer than 30 members can produce substantially different, or even opposing, dust-induced impacts on precipitation and 470 

circulation patterns. By 30 members, the spatial patterns become notably more similar between maximum and minimum cases, 

with main differences reduced to the magnitude rather than the sign of the response. Notably, this sensitivity to initial 

conditions varies considerably by region. For instance, precipitation responses along India's western coast and the southern 

slopes of the Himalayas achieve reasonable convergence with as few as 5 ensemble members. These findings lead to several 

key conclusions: (1) For mesoscale weather systems, such as monsoon depressions, large ensemble sizes (approximately 30 475 
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members) are necessary to obtain robust simulations of dust aerosols effects. (2) For larger-scale processes, such as general 

monsoon circulation and moisture transport, smaller ensemble sizes (approximately 5 members) may suffice for accurate 

representation of dust impacts. (3) The chaotic nature of mesoscale systems likely depends on their dominant formation 

mechanisms—orographically-forced systems (the southern slopes of the Himalayas, for example) might be less sensitive to 

the initial conditions, which may show greater deterministic behavior. This scale-dependent and process-dependent 480 

requirement for ensemble size reflects the inherent predictability differences between synoptic-scale and mesoscale 

atmospheric processes in dust impacts studies. Please note that our findings of 30 members for mesoscale systems and 5 

members for larger-scale processes are specific to our case study of dust effects on the ISM during June 10-30, 2016, and may 

vary for different aerosol types, regions, or seasons. The optimal ensemble size ultimately depends on the specific research 

questions, phenomena of interest. 485 

 

Figure 10: The spatial distribution of dust-induced precipitation impacts for two extreme cases selected from possible combinations 
of 1, 5, 10, 20, 30, and 40-member ensembles, representing the maximum (E1 in top panels) and minimum (E2 in bottom panels) 
area-averaged responses. 

We extend a similar analysis to dust impacts on 850 hPa temperature following Figure 10. The results (as shown in Figure 490 

S11) indicate that temperature responses to dust aerosol forcing may converge with smaller ensemble sizes compared to 

precipitation responses. While we did not focus on temperature in this study, the observed patterns suggest that temperature 

fields could be used to isolate aerosol radiative effects with relatively modest ensemble sizes. This likely reflects that 

temperature responses more directly reflect the radiative perturbation from dust, whereas precipitation involves additional 

complex processes such as cloud microphysics, convective dynamics, and boundary layer interactions, which amplify the 495 
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influence of chaotic variability. The role of chaotic effects in modulating dust aerosol impacts across different climate variables 

and processes represents a compelling avenue for future research. 

4 Summary and Discussions 

This study investigates the role of chaotic effects in modulating complex interactions between dust aerosols and climate 

systems. We employed the iAMAS model to conduct large ensemble simulations with 50 members, aiming to bridge the gap 500 

in understanding uncertainties of simulating aerosols impacts introduced by the chaotic effect, and to distinguish between 

physical and chaotic effects in simulating aerosol impacts. Our results demonstrate that dust emissions from Central-East Asia 

significantly influence the ISM monsoon, with pronounced effects on monsoon circulation and precipitation patterns. The 

results reveal that dust aerosols strengthen the southwesterly monsoon flow from the Arabian Sea toward the Indian 

subcontinent, leading to enhanced precipitation along the western Indian coast and the western Himalayan foothills, which is 505 

consistent among most ensemble members and aligns with previous studies (Vinoj et al., 2014; Jin et al., 2015; Lau et al., 

2017).  

However, the results also reveal the critical role of chaotic effects in dust-monsoon interactions. The simulated dust impacts 

on regional systems, such as monsoon depressions, exhibit significant uncertainties induced by chaotic effects. Even with 10-

member ensembles, a commonly used ensemble size in many studies, simulations can produce fundamentally different or even 510 

opposing conclusions about dust impacts on regional rainfall patterns. Statistical significance testing also be proved insufficient 

for establishing result robustness, as demonstrated by cases where contradictory results both achieve statistical significance. 

Moreover, our analysis reveals that the magnitude of chaotic effects diminishes with increasing ensemble size, which is 

proportional to 𝑁!!", suggesting that larger ensembles are necessary for physical characterization of dust-monsoon interactions 

at regional scales. The required ensemble size exhibits strong spatial dependence, reflecting different predictability 515 

characteristics of atmospheric processes at various scales. While large-scale features like monsoon circulation can be reliably 

simulated with relatively few ensemble members (e.g., 5 members), mesoscale features such as monsoon depressions require 

substantially larger ensembles (e.g., 30 members or larger) to achieve convergence. This scale-dependent behavior suggests 

that studies focusing on regional-scale processes may need to carefully consider ensemble size requirements based on their 

specific phenomena of interest. 520 

While this investigation focuses on dust-monsoon interactions over ISM, the implications extend beyond this specific case 

study. Our findings suggest that chaotic effects should be carefully considered in broader aerosol-climate interaction studies, 

particularly those focusing on regional and mesoscale processes. The contrasting results reported in previous studies about 

aerosol-weather interactions at regional scale might reflect insufficient ensemble sizes rather than fundamental disagreements 
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in physical mechanisms. This raises important questions about the robustness of conclusions drawn from existing aerosol-525 

climate studies that rely on limited ensemble sizes or single simulations. 

Several limitations and future research directions emerge from this work. First, our analysis excluded potentially important 

processes like dust-induced ice nucleation that could further amplify chaotic effects through cloud-precipitation feedbacks. 

Second, the required ensemble size likely varies across different geographical regions and meteorological systems - areas with 

strong mesoscale processes or complex topography might require larger ensembles than regions dominated by large-scale 530 

circulation patterns. Third, different aerosol species with distinct radiative and microphysical properties may exhibit varying 

sensitivities to chaotic effects. Fourth, longer model integrations might dampen the chaotic effects seen at short time scale 

by temporal averaging, which deserves further research to be carefully addressed. As we only conducted experiments 

for 20 days, the ensemble size suggested in this study might bigger than that needed for multi-year or seasonal mean 

studies. Finally, it is important to consider the implications of prescribing SST. The absence of interactive ocean feedbacks 535 

(e.g., damping of atmospheric fluctuations through SST changes) may influence the development of internal variability (the 

constant supply of moisture and energy from the ocean surface could potentially enhance the growth and stochasticity of 

perturbations compared to a coupled system where the ocean would respond and potentially dampen atmospheric fluctuations). 

This suggests that the chaotic effects might be larger in our experimental setup than they would be in a fully coupled system 

with interactive ocean feedbacks. Consequently, the ensemble size requirements we derived for robustly detecting dust aerosol 540 

impacts could be viewed as conservative estimates in the context of coupled modeling. Future work should explore these 

chaotic effects across different regions, aerosol types, and meteorological systems to develop more comprehensive guidelines 

for chaotic effects on aerosol impacts studies. This is particularly important for regions with strong aerosol-weather interactions 

with complex mechanisms. Furthermore, our team plans to extend this analysis to seasonal and multi-year timescales to 

quantify how temporal averaging affects the required ensemble size and to characterize the chaotic effects across different 545 

timescales. Additionally, developing more efficient methods to account for chaotic effects while maintaining computational 

feasibility remains an important challenge, especially for global climate simulations where large ensembles may be 

computationally prohibitive.  
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