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Abstract. Developing operational data assimilation systems for sea-ice models is challenging, especially using a variational

approach due to the absence of adjoint models. NeXtSIM, a sea-ice model based on a brittle rheology paradigm, enables high-

fidelity simulations of sea-ice dynamics at mesoscale resolution (∼ 10 km) but lacks an adjoint. By training a neural network

as an Arctic-wide emulator for sea-ice thickness based on mesoscale simulations with neXtSIM, we gain access to an adjoint.

Building on this emulator and its adjoint, we introduce a four-dimensional variational (4D–Var) data assimilation system to5

correct the emulator’s bias and to better position the marginal ice zone (MIZ). Firstly, we perform twin experiments to demon-

strate the capabilities of this 4D–Var system and to evaluate two approximations of the background covariance matrix. These

twin experiments demonstrate that the assimilation improves the positioning of the MIZ and enhances the forecast quality,

achieving an average reduction in sea-ice thickness root-mean-squared error of 0.8 m compared to the free run. Secondly, we

assimilate real CS2SMOS satellite retrievals with this system. While the assimilation of these rather smooth retrievals amplifies10

the loss of small-scale information in our system, it effectively corrects the forecast bias. The forecasts of our 4D–Var system

achieve a similar performance as the operational sea-ice forecasting system neXtSIM-F. These results pave the way to the use

of deep learning-based emulators for 4D–Var systems to improve sea-ice modeling.

1 Introduction

Combining observational data with sea-ice models by data assimilation can improve the accuracy of sea-ice forecasts for15

practical applications such as maritime routing but is computationally expensive. Deep learning offers a solution by providing

efficient neural network emulations that serve as auto-differentiable alternatives to costly physical models, which often have no

adjoint available. This enables the implementation of four-dimensional variational data assimilation systems (4D–Var), which

can potentially enhance the accuracy and scalability of sea-ice forecasts.

In this paper, we introduce a 4D–Var system based on the sea-ice thickness (SIT) emulator previously developed by Durand20

et al. (2024). This emulator aims at reproducing the evolution of the sea-ice thickness as modeled by the state-of-the-art sea-ice

model neXtSIM (Rampal et al., 2016; Ólason et al., 2022). We initially demonstrate the feasibility of employing this emulator

and its adjoint within a 4D–Var framework through twin experiments. Subsequently, we present promising outcomes derived
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from applying this approach to real observational data, with the assimilation of SIT retrievals from the merged product of

Cryosat-2 altimeter and the Soil Moisture and Ocean Salinity (SMOS) radiometer, called CS2SMOS (Ricker et al., 2017).25

Forecasts obtained with our system are comparable to those of the operational neXtSIM-F system (Williams et al., 2021), with

-F standing for "Forecast".

Arctic sea-ice thickness is heavily dependent on the sea ice rheological model. NeXtSIM has been developed around brittle

rheologies (Girard et al., 2011; Dansereau et al., 2016) to better parameterize the observed small-scale processes of sea ice.

Run at a mesoscale resolution of approximately 10 km, the model successfully simulates the observed scaling and multifractal30

properties of sea ice across space and time (Rampal et al., 2019; Bouchat et al., 2022). Until now, two data assimilation systems

have been developed for neXtSIM: an ensemble Kalman filter (Cheng et al., 2023b) has been tested to assimilate observations

of the sea-ice thickness and concentration. For operational forecasting, the neXtSIM-F system resorted instead to a simple

nudging technique (Williams et al., 2021).

Various data assimilation techniques are currently implemented in operational sea-ice forecasting systems (Liu et al., 2019).35

Ensemble Kalman filters with flow-dependent covariances are often utilized in sea-ice forecasting systems, (Sakov et al., 2012;

Kimmritz et al., 2018), particularly for assimilating key variables like sea-ice concentration (Massonnet et al., 2015). Other

techniques use covariances that are static in time such as optimal interpolation (Wang et al., 2013; Ji et al., 2015), or three-

dimensional variational assimilation (Hebert et al., 2015; Toyoda et al., 2015; Lemieux et al., 2015) and are employed in

diverse systems (Caya et al., 2010; Donlon et al., 2012; Zuo et al., 2019). Initialization techniques using nudging (Lindsay and40

Zhang, 2006; Tietsche et al., 2013) have also been implemented.
::
In

:::
this

::::::
paper,

:::
we

::::::
present

:::
the

:::::::::
application

:::
of

:::::::::
variational

::::
data

::::::::::
assimilation

:::::::
methods

::
in

::::::::
neXtSIM,

:::::::
enabled

:::
by

:
a
::::::::::
data-driven

::::::::
emulator.

In this work, we focus on four-dimensional variational data assimilation methods (4D–Var), which rely on a cost func-

tion whose efficient minimization requires gradients and the adjoint of the model. The idea behind (strong constraints) four-

dimensional variational methods is to estimate a model trajectory that fits best the observations throughout a time period45

(Sasaki, 1970; Talagrand and Courtier, 1987), called data assimilation window (DAW). The propagation of the gradient infor-

mation from the observational time backwards in time within the DAW relies
:
is

::::::::
achieved

::
by

:::::::
running

:
on the model’s adjoint

during the cost function minimization. Hence, by updating the analysis
::
the

:::::::
analysis

:::::::::
increment at initialization time , the data

assimilation accounts for all parts of
:::::::::
incorporates

:::
all

:::::::::::
observational

:
information up to the end of the DAW. Adjoints for sea-ice

models, including its rheology, are rarely developed because of potential numerical instabilities (Kauker et al., 2009; Fenty50

and Heimbach, 2013). While adjoints for simplified free-drift models are achievable (Koldunov et al., 2017), they yield limited

realism for full Arctic sea-ice simulations. Usui et al. (2016); Toyoda et al. (2015, 2019) developed an adjoint of their sea-ice

model, which relies on an slightly simplified elasto-visco-plastic (EVP) rheology scheme (Hunke and Dukowicz, 1997) within

a coupled ocean-sea ice model framework to avoid numerical instabilities. Their approach includes a sensitivity analysis of the

adjoint, particularly targeting grid-cells in the Marginal Ice Zone (MIZ) and the central Arctic. Koldunov et al. (2017) studied55

sea-ice concentration assimilation with an adjoint (Hibler, 1979) in the MIT-gcm model. The rheology in those adjoints is

either discarded or simplified.
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Recent advances in deep learning for sea-ice modeling encompass a range of applications, from the full emulation of vari-

ables such as sea-ice thickness (Durand et al., 2024), probabilities of sea-ice coverage (Andersson et al., 2021), or sea-ice

concentration itself (Liu et al., 2021), to more specialized tasks like model error correction (Finn et al., 2023) or the emulation60

of melt ponds (Driscoll et al., 2024). Additionally, techniques to integrate neural networks with data assimilation have been

proposed, including learning data assimilation increments for model bias correction (Gregory et al., 2023, 2024a), as well as

the calibration of sea-ice forecasts (Palerme et al., 2023).

In the present work, we exploit the sea-ice thickness emulator developed by Durand et al. (2024) for both forward and adjoint

modeling, as needed for the 4D–Var data assimilation system. The principle of using an emulator for 4D–Var was introduced by65

Hatfield et al. (2021) and showcased in Lorenz 63 toy examples (Chennault et al., 2021). Recently, this principle was extended

to a Numerical Weather Prediction (NWP) emulator based on ERA5 data (Xiao et al., 2023). However, our study represents

the first 4D–Var data assimilaton system that is built around an emulator specifically designed to capture the evolution of sea

ice and the adjoint of the dynamics.

We explore two setups in this paper. Firstly, we focus on twin data assimilation experiments where observations are ar-70

tificially generated by introducing noise into neXtSIM simulation outputs. Secondly, we assimilate real satellite observations

from the merged CS2SMOS product. The paper is organized as follows. Section 2 presents the sea-ice model and the additional

forcings. Section 3 provides a brief description of the emulator. Section 4 outlines the 4D–Var framework and the metrics used

for the results evaluation. Results from twin experiments and with real observations are presented in Section 5 and Section 6,

respectively, followed by a discussion in Section 7 and conclusions in Section 8.75

2 Physical model simulation and preprocessing of atmospheric forcings

In this section, we begin by introducing the geophysical sea-ice model, neXtSIM, which serves as the ground model for our

results. We then present the atmospheric forcings used as additional inputs for the emulator. NeXtSIM is a state-of-the-art sea-

ice model (Rampal et al., 2016) built around brittle rheologies (Girard et al., 2011; Dansereau et al., 2016). In the here-used

simulations (Boutin et al., 2023), neXtSIM is employed with the brittle Bingham-Maxwell rheology (Ólason et al., 2022) to80

replicate the observed subgrid-scale behavior of sea ice. Originally run on a Lagrangian triangular mesh, neXtSIM’s outputs

are projected onto a Eulerian curvilinear grid, forming the basis of our surrogate model (Durand et al., 2024). Additionally,

the sea-ice model is coupled with the Nucleus for European Modelling of the Ocean (NEMO) framework’s ocean model, OPA

(version 3.6, Madec et al., 1998; Rousset et al., 2015). For further information about the model and its setup, we refer to Boutin

et al. (2023).85

In this study, we predict the sea-ice thickness with a neural network which is trained on simulations spanning from 2009 to

2016. The simulations are run on the regional CREG025 mesh configuration (Talandier and Lique, 2021), a regional subset

of the global ORCA025 configuration developed by the Drakkar consortium (Bernard et al., 2006). The simulated area covers

the Arctic and parts of the North Atlantic down to 27◦N latitude, with a nominal horizontal resolution of 0.25◦ (≃ 12km in

the Arctic basin). The data is cropped in lower latitudes and areas in Eastern Europe and America where no sea ice is present,90
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and then coarse-grained by averaging over a 4× 4 window, resulting in a final resolution of 128× 128 grid-cells. A simulated

sea-ice thickness snapshot is displayed in Fig. 1a).

Let x ∈ R128×128 be the sea-ice thickness. The normalized sea-ice thickness x̃ is then defined by

x̃=
x−µ SIT

σ SIT
, (1)

with µ SIT the globally averaged sea-ice thickness and σ SIT the global standard deviation, computed over all the coarse-grained95

grid-cells in the training dataset (2009 to 2016). The subtraction and division are pointwise operations.
:::
The

:::::::::::
normalization

:::
of

::
all

:::::
input

:::::
fields

::
in

:::
the

::::::
neural

:::::::
network

::
is

::
a

:::::::
common

:::::::
practice

::
to
::::::::

stabilize
:::
and

::::::
speed

::
up

:::
the

:::::::
training

::::::::::::::::::::::
(Ioffe and Szegedy, 2015)

:
. Masking land-covered cells within the original 128× 128 grid-cells, Nz = 8871 remain unmasked covered by either open

water or sea ice. Hence, the data assimilation is performed on the 1-D state vector x̃1D ∈ RNz which represents the normalized

sea-ice thickness on the unmasked grid-cells. We will further drop the 1D superscript for the sake of readability.100

We also consider the 2m temperature (T2M), and the atmospheric u- and v-velocities in 10m height (U10 and V10)

from the ERA5 reanalysis dataset (Hersbach et al., 2020).
::::::
Several

::::::::::
atmospheric

::::::::
forcings

:::
are

:::::
added

:::
as

:::::
inputs

:::
to

:::
the

::::::
neural

:::::::
network,

:::
as

::::::
sea-ice

::::::::
thickness

:::::::::
dynamics

:::
are

:::::::
largely

:::::
driven

:::
by

::::
the

::::::::::
atmosphere

::::::::::::::::::
(Guemas et al., 2014).

:::
In

:::::::::
particular,

::::::
Arctic

::::::
surface

:::::::::
circulation

:::
and

:::::::
sea-ice

:::::::::
movement

:::
are

:::::::
strongly

:::::::::
influenced

:::
by

::::::::::
atmospheric

:::::
winds

::::::::::::::::::
(Serreze et al., 1992),

:::::
while

:::::::
surface

::::::::::
temperature

:::::::::
fluctuations

::::
also

::::
play

::
a
:::
key

::::
role

::
in

::::::
sea-ice

:::::::::
variability

:::::::::::::::::::::
(Olonscheck et al., 2019).

:
Interpolated onto the native Eu-105

lerian curvilinear grid with nearest neighbors, forcings at time t, t+6h and t+12h are then coarse-grained, normalized and

added as predictors to the input of the neural network, as commonly done in sea-ice forecasting (Grigoryev et al., 2022).

The normalization of all input fields in the neural network is a common practice to stabilize and speed up the training

(Ioffe and Szegedy, 2015).

3 Surrogate model110

In this section, we describe our surrogate model, which has the same structure as the emulator previously developed in Durand

et al. (2024), with the only update being that it is trained to account for the positivity of sea-ice thickness.

The surrogate model gθ predicts the full sea-ice thickness x̃t+∆t with a ∆t= 12 h lead time. The neural network fθ with its

weights and biases θ is trained to predict the evolution of the SIT after ∆t= 12 h based on the initial conditions x̃t and given

atmospheric forcings F, fθ(x̃t,Ft)≈ x̃t+∆t− x̃t. Added to x̃t, this results in the prediction of the full SIT field x̃t+∆t,115

x̃t+∆t = gθ(x̃t,Ft) (2a)

=Relu
(
x̃t + fθ(x̃t,Ft)

)
, (2b)

with the point-wise activation function, Relu(x̃) = max(SITmin, x̃), limiting the output to the lower physical bound in the

normalized space. Note that fθ is an intermediate emulator. As similarly done in Durand et al. (2024), the idea is to simplify the

problem by focusing on the tendencies that happen in 12 h instead of predicting directly
:::::
Firstly,

::::
with

:::
fθ,

:::
we

:::::
focus

::
on

:::
12

:::::
hours120

::::::::
tendencies

::::::
rather

::::
than

::::::::
predicting

:
the full state , where small changes can be harder to predict. By splitting the whole learning
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process , we ensure that the emulator learns the
::::::
directly,

:::::
since

:::::
small

:::::::
changes

:::
are

:::::
harder

::
to

:::::::
capture.

::::
The

:::::::
learning

::::::
process

::
is

::::
then

::::
split:

:::
we

:::
first

::::
train

:::
the

::::::::
emulator

::
to

::::::::
reproduce

:
SIT evolution, and in a second time that gθ respects the positiveness

:::::::::::
subsequently

:::
use

::::::
transfer

:::::::
learning

:::
so

:::
that

::
gθ::::

also
:::::::
respects

:::
the

::::::::
positivity

:
constraint.

The neural network is trained with a mean-squared error loss between the predicted sea-ice thickness and the targeted sea-ice125

thickness as simulated by neXtSIM. The main part of the loss function is defined by a pixel-wise mean-squared error (MSE)

on all Nx×Ny = 128× 128 grid-cells, multiplied by the land-sea mask,

Llocal(x, x̂) =MSE(x, x̂) =
1

Nx ·Ny

Nx∑
i

Ny∑
j

(xi,j − x̂i,j)
2. (3)

Note that, to simplify the equation, we did not include here the land-sea mask, which is applied in the numerical implementation

to compute the loss solely on grid cells with open ocean and sea ice
::
the

:::
Nz:::::

valid
:::::
pixels. To address the systematic bias of the130

surrogate model and to mitigate its influence, which is already accounted for in the MSE loss, we introduce an additional

penalty term to the loss function,

Lglobal(x, x̂) =

 1

Nx ·Ny

Nx∑
i

Ny∑
j

(xi,j − x̂i,j)

2

. (4)

Note in particular that the loss in Eq. (4) is squared after averaging, differing from Eq. (3). The total loss is then given by

L(x, x̂) = Llocal(x, x̂)+λLglobal(x, x̂), (5)135

with λ weighting the two terms. First, we pre-train the model fθ, omitting the clipping in Eq. (2b) during training, with a first

loss. As in Durand et al. (2024), we use λ= 100. Trained until convergence, we select the best model in the validation dataset.

Secondly, we fine-tune gθ to account for the clipping with a second loss. Here, we select λ= 10 as penalty weight, striking a

good balance between Llocal and Lglobal which have a different magnitude during second training. Results of the training and

inference of the surrogate are presented in Appendix A.140

4 Four-dimensional variational data assimilation

In this section, we describe the experimental setup of our 4D–Var, which is based on the surrogate model and its adjoint, as

previously discussed in Sec. 3. Note that we are focusing on full 4D–Var rather than incremental 4D–Var.

4.1 4D–Var setup

The forecast model is our data-driven emulator of neXtSIM. ỹk represents the observation at time k, x̃b represents the back-145

ground state, x̃a represent the analysis and x̃0 the first guess. B is the background error covariance matrix and its specific

parameterizations will be described below. R is the observation error covariance matrix and is defined by R= σ2
obsI, with I

the identity matrix. To initialize the cycling of the data assimilation, we start with a field as simulated by neXtSIM for the 1st of
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January 2016, which is contained in our training dataset and which can be seen as sample from the climatology for the starting

day.150

For twin experiments, observations are generated directly in the model space, requiring no special preprocessing, as opposed

to real observations, as explained in Sec. 6.1. The observation operatorH is simply defined as a diagonal matrix H.

In this study, the 4D–Var is cycled across Ncycle cycles. The state at the end of each DAW is used as first guess and

background state for the next DA cycle. To evaluate the 4D–Var system, forecasts are run for 45 days after the end of the DAW

in the twin experiment case, and for 9 days in the real observations case.155

Two types of 4D–Var are evaluated
::::::::
considered. 4D–Var-diag, which corresponds to the use of a diagonal matrix as covariance

matrix of background errors B (see Sec. 4.2), and 4D–Var-EOF in which the minimization is carried out in the empirical

orthogonal function (EOF) space (see Sec. 4.3).

4.2 4D–Var with diagonal B matrix: 4D–Var-diag

The cost function associated to the 4D–Var minimization problem is160

J (x̃0) = J b +J o (6a)

=
1

2

∥∥x̃0− x̃b
∥∥2
(λ2

infB)−1 +
1

2

K∑
k=1

∥ỹk −Hkx̃k∥2R−1
k

, (6b)

with

x̃k =M07→k·∆t(x̃0) = gθ ◦ · · · ◦ gθ︸ ︷︷ ︸
k−times

(x̃0), (7)

and where ∥x∥A =
√
x⊤Ax is the Mahalanobis norm, and B is defined by B= σ2

bI. Through all experiments, σ2
b = 0.42165

(non-dimensional, as x̃ has been normalized). The
:::
Rk,

:::::::
defined

::
by

::::::::::
Rk = σ2

obsI:::::
with

:
I
:::
the

:::::::
identity

::::::
matrix,

:::
are

:::
the

::::::::::
observation

::::
error

:::::::::
covariance

::::::::
matrices,

:::
and

:::
are

::
all

::::::
equals.

::::
The coefficient λinf is a multiplicative inflation term for background errors, which

is set to 1 when no inflation is used and is further described in Appendix E. Note that the observation error covariance matrices

Rk are not inflated because, with diagonal matrices, this is equivalent to background inflation, as far as the cost function

minimization is concerned. Within the DAW of 16 days, with observations taken
::
on

::::
each

::
of

:::
the

:::
Nz::::

grid
::::::
points,

:::
and

:::
on every170

second day starting on day 2, the total number of observation times is K = 8. The results of the minimization of the cost

function is the analysis xa
0.

4.3 4D–Var projected onto the EOFs basis: 4D–Var-EOF

Empirical orthogonal functions (EOFs) are a set of orthogonal state vectors derived from data, which form a basis of the

full state space. Details about the computation and the analysis of the EOFs are given in Appendix B. A reduced strategy to175

enhance 4D–Var by projecting onto the EOFs has been proposed by Robert et al. (2005) for ocean models. The projection

onto the EOFs enables access to cross-covariances and may improve the numerical conditioning of the minimization of J .
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The minimization is carried out with respect to the control variable w ∈ Rm defined by the projection of the vector x̃ onto the

matrix φm ∈ RNz×m:

x̃= x̄+φmw, (8)180

with x̄ representing the temporal average sea-ice thickness field over the dataset used to construct the EOFs and m standing

for the truncation index corresponding to the number of EOFs which are kept in the definition of the minimization subspace.

The goal is to run the 4D–Var minimization in this affine truncated space spanned by the φm.

In this subspace, the cost function reads, at cycle n,

J (w0) =
1

2λ2
inf

∥∥w0−wb
0

∥∥2 + 1

2

K∑
k=1

∥∥∥∥ỹk −Hkg
k×Nf

θ (x̄+φmw0,Fk×Nf 7→00 7→k×Nf
::::::

)

∥∥∥∥2
R−1

k

. (9)185

The details of the 4D–Var cost function computation are presented in Alg. C1 and Alg. C2. The result of this minimization is

the control variable at the beginning of the DAW, wa
0. The value of the truncation index is set to m= 7000 for all experiments

and is further discussed in the Appendix B while further details on the optimization are given in Appendix C.

4.4 Metrics for the evaluation of the experiments

To evaluate the efficiency of the data assimilation scheme, we compute the root-mean-squared error (RMSE) between the190

predicted state performed by applying the emulator with the analysis as initial state, xf(t) =M07→t∆t(x
a
0), and the truth xt,

which corresponds to the neXtSIM simulation in the twin experiment case, and to CS2SMOS fields in the real observations

case, for each cycle n, at the lead time t, and over all unmasked pixels i ∈Nz . Inside the DAW (up to 16 days for the twin

experiments case and 8 days for the real observations case), this corresponds to an analysis RMSE and afterwards a forecast

RMSE.
::
In

:::
the

::::
case

::
of

::::
real

:::::::::::
observations,

::
the

:::::::
forecast

::::::
RMSE

::
is

::::::::
computed

:::
by

:::::::::
comparing

:::
our

:::::::
scheme

::::
with

::::::::::
observations

::::
that

::::
have195

:::
not

:::
yet

:::::
been

::::::::::
assimilated.

RMSEn(t) =

√√√√ 1

Nz

Nz∑
i=1

(xfi,n(t)− xti,n(t))
2. (10)

This RMSE is defined for each cycle of each experiment, and can then be averaged across all cycles to get the mRMSE, which

becomes a function depending on the lead time t only.

mRMSE(t) =
1

Ncycle

Ncycle∑
n=1

RMSEn(t). (11)200

::::
Note

:::
that

:::
the

:::::::
RMSE

:::
and

:::
the

::::::::
mRMSE

:::
are

:::::::
defined

::
in

:::
the

:::::::
physical

::::::
space,

:::
for

::
an

:::::
easier

::::::::::::
interpretation.

:
For the evaluation of

CS2SMOS assimilation, see Sec. 6, we use two additional metrics, the bias error,

biasn(t) =
1

Nz

Nz∑
i=1

xfi,n(t)−
1

Nz

Nz∑
i=1

xti,n(t), (12)
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and the Ice Integrated Edge Error (IIEESIT), as initially introduced by Goessling et al. (2016), but slightly modified by using

sea-ice thickness instead of sea-ice concentration as the threshold. Specifically, we define a metric that counts the grid cells205

where the surrogate model disagrees with CS2SMOS on the presence of sea ice. A grid cell is considered to be covered

by sea ice if the thickness exceeds 0.1 m (cf Durand et al., 2024, B1 for the threshold justification), analogous to the sea-

ice concentration threshold of 0.15 defined in Goessling et al. (2016). The IIEESIT is expressed as the total area (km2) of

disagreement between the observations and the forecast.

5 Twin experiments210

In this section, the results from the twin experiments are presented in Sec. 5.2, after the description of the simulated observations

in Sec. 5.1.

5.1 Simulated observations from neXtSIM

In the first approach, a twin experiment setup is employed, wherein synthetic observations are generated by adding noise to

neXtSIM simulations from 2017 and 2018. Using the observation error variance σ2
obs = 0.42 (non-dimensional), we define215

several variants of perturbed observations,

x̃G
t,obs = x̃t + ϵG, ϵG ∼N (0,σ2

obs), (13a)

x̃LN
t,obs =

xt exp(ϵ
LN)−µ SIT

σ SIT
, ϵLN ∼N

(
0,σobs−

1

2
σ2
obs,

)
, (13b)

x̃cond−clipped
t,obs =min

(
x̃t

(
1+ ϵG

)
,SITmin

)
. (13c)

with exp the exponential function. The Gaussian observation noise as defined in Eq. (13a), is an idealized case tailored to220

the common assumptions of 4D–Var, to test an adaptive inflation scheme which will be defined later. Equation (13b) specifies

a log-normal distribution for the noise, as more commonly encountered in sea-ice observations from satellites (Landy et al.,

2020). Furthermore, a variant to log-normal noise is introduced in Eq. (13c) by adding a fraction of the sea-ice thickness

and incorporating clipping, based on SITmin,
:
the corresponding 0m thickness in the normalized space. This

::::
noise

:::::::::
definition

:
is
::::::

called
:::::::::::::
cond− clipped

::
in

:::
the

:::::::::
following.

:::::
This approach ensures that the observations remain confined within the physical225

bounds of sea ice, unlike Gaussian noise, but similarly to log-normal noise. Examples of the different noises are shown in

Fig. 1b)–d).

These noise definitions yield different noise magnitudes. The log-normal noise, defined in Eq. (13b), provides a more sig-

nificant spread, especially for thicker ice. In average, the log-normal noise definition results in a standard deviation of 0.35 m,

because of the skewness of the log-normal law, whereas the conditioned noise, defined in Eq. (13c), results in a smaller standard230

deviation of 0.29 m.
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neXtSIM
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Gaussian noise
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Figure 1. Snapshots of neXtSIM SIT (a) and different type of observations (b) Gaussian noise, (c) log-normal noise (LN) and (d) conditioned

noise (cond-clipped). The colorbar for panels (b), (c) and (d) is shared and displayed on the right.
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Table 1. Comparison of RMSE for different types of simulated observation noise (cf. Sec. 5.1) for the two types of 4D–Var algorithms (with

diagonal B matrix and with projection onto the EOFs). Results are presented with the mRMSE computed inside the DAW across 2018.

The RMSEs between neXtSIM and the perturbed observations, are outlined in the second column. They correspond to the averaged RMSE

between the observations and their associated non-perturbed SIT field.

mRMSE (m) Observations 4D–Var-diag 4D–Var-EOF

No noise 0.000 0.305 0.256

Gaussian noise 0.638 0.321 0.272

LN noise 0.587 0.333 0.281

Cond-clipped noise 0.527 0.318 0.264

5.2 Results

The length of the DAW is set to Ndaw = 16 days which corresponds to 32 iterations of the surrogate model. In the twin

experiment setup, observations are acquired every 2 days (every Nf = 4 iterations). In all twin experiments, we initialize the

first data assimilation cycle with a past neXtSIM SIT field from the 1st of January 2016. In this section, the multiplicative235

inflation coefficient is set to 1. Experiments are conducted throughout years 2017 and 2018, which are after the training dataset

(years 2009− 2016). To compute averaged results, only the year 2018 is used, i.e. 2017 is used as spin-up. The 4D–Var is run

on a single trajectory starting the January 1st 2017, for Ncycle = 45 cycles , until
::::
from

::::::
January

:::
1st

:::::
2017

::
to

:
December 21th,

2018.

As shown in Tab. 1, the choice of noise distribution—whether Gaussian, log-normal, or cond-clipped as defined in Sec. 5.1,240

influences the efficiency of the assimilation process. However, all experiments remained stable, meaning that there was no

divergence in the results. While the assimilation of perfect observations yields the best results, the different noise definitions

produce comparable outcomes. Using the cond-clipped perturbations provide the best RMSE among the three different types

of perturbations. This could be linked to the lower RMSE of its observations. As shown in Tab. 1, projecting the 4D–Var onto

the EOFs yields improvements in all cases, with relative improvements in the range 15%−17% for the different types of noise.245

This improvement can be attributed to the non-diagonal terms in the
::::::
implied

:
B matrix. This systematic improvement is also

observed in Fig. 2 during forecast. When extending the forecast beyond the DAW, the advantage of the 4D–Var-EOF over the

4D–Var-diag remains noticeable but diminishes as the lead time increases. On average, both forecasts show an improvement

of 0.8 m over the emulator’s free run (initialized on January 1st, 2017) across all lead times. Additionally, when comparing the

4D–Var-EOF forecast to the emulator forecast (initialized with perfect conditions at the end of each DAW, red dashed curve),250

we observe comparable RMSE, showing the stability of the forecast produced by the analysis.

Figure 3 displays fields to illustrate the benefit of data assimilation over a cycle. The first guess field is smoother because

of the emulator, whereas the analysis is actually noisier than the truth, because of the observations’ noise. The largest
:::::::
negative
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Figure 2. Cycle-averaged mRMSE of x̃f over 2018 during forecast stage. The dashed red line represents the free run of the emulator started

at the end of each DAW (with perfect initial conditions, PIC). The mRMSE of the 4D–Var-EOF forecast is shown in purple, and the 4D–Var-

diag forecast is shown using in grey. Cond-clipped noise is used in both cases. The black dotted line corresponds to the emulator free run,

initialized on January 1st, 2017.

corrections are applied to the MIZ to correct its position, especially in the Beaufort Sea, Chukchi Sea, and Hudson Bay. In the

other places, we observe a positive correction, which is consistent with the negative bias (≃−0.015 m) of the surrogate model255

at the time of the depicted cycle.

As seen in Fig. 4, at the start of each cycle, the initial analysis RMSE is generally lower than the first guess RMSE, which

corresponds to the end of the previous DAW, indicating that the analysis improves over the first guess, of 2 cm in average

across all cycles. In the specific case on late February 2018 (cycle 26), large differences between the truth and the analysis are

located near the Canadian Archipelago, leading to a higher RMSE compared to the first-guess RMSE, where such differences260

do not occur. We hypothesize that, in order to minimize the RMSE throughout the DAW, the 4D–Var removes sea ice in this

region. This is consistent with the emulator’s positive bias during this period. The
:::::::
Overall,

::
the

:
analysis from Fig. 4(top) reveals

a strong seasonality in results, with RMSE peaking in July. The peak aligns with significant changes in sea-ice extent at this

period, with an important decrease due to the warmer temperatures in the Arctic. This suggests that 4D–Var possibly struggles

more with dynamic shifts. See additional multi-year results in Appendix. D. Additionally, the bias error of the emulator (Fig. 4,265

lower panel), indicative of model error, shows a similar seasonal pattern, transitioning from a positive to negative bias around

summer and reverting in December. The key factor affecting assimilation accuracy appears to be not just the amplitude but also

the seasonal variation of this bias.

An important factor influencing the quality of the assimilation is the frequency of the observations. We denote the number

of observations during one cycle of 16 d (32 model iterations) as Nobs. As shown in Fig 5, when there are too few observation270
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Figure 3. Fields of the SIT at the beginning of the 25th cycle of the DA, corresponding to 2018-02-05, are shown in the 4D–Var-EOF case.

The upper left panel represents the first guess, which is the output of the forecast from the previous minimization. The upper right panel

corresponds to the analysis of the 25th cycle. For comparison, the associated neXtSIM field, considered as the truth, is displayed in the

lower left panel. Note that these three fields share the same colormap and scale. The lower right panel shows the analysis increment, which

represents the analysis minus first guess.
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Figure 4. Time evolution of the 4D–Var-EOF analysis RMSE (inside the DAW) in 2018 (upper panel), with cond-clipped simulated noise.

Corresponding bias error of the emulator is represented below, as defined in Eq. (A2) with a 16 days lead time, with a new forecast starting

every 6 h, at the given time of the x-axis.

times per cycle, no improvement is observed in the analysis compared to the forecast at the end of the previous cycle (this is the

case for both 2 and 4 observation times per cycle). Once 8 observation times per cycle are reached, this divergence disappears,

which is why we choose 8 observation times per cycle in our setup.

6 CS2SMOS assimilation

In this section, the results from the real observations are presented in Sec. 6.2, after the description of the observations used in275

Sec. 6.1.

6.1 Real observations: combined Cryosat2-SMOS retrieval

The dataset of CS2SMOS (Ricker et al., 2017) retrievals provides real observations. The retrievals merge observations from

CryoSat-2 (Kurtz and Harbeck, 2017), known for its accurate observations of thick and perennial sea ice, and from SMOS

(Tian-Kunze et al., 2014), used to infer the thickness of thin ice. Merged weekly to account for the different temporal resolution280

of CryoSat-2 and SMOS observations, the retrievals are available as daily moving window average. Note that the CS2SMOS is

the result of Kriging and has been considerably smoothed in the process, even when compared to a weekly average of neXtSIM,

as illustrated in Fig. 7.
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Figure 5. 2018 RMSE of 4D–Var-EOF depending on the number of observations in every assimilation cycle in the twin experiment case.

Curves indicated the RMSE of the 4D–Var analysis with regard to neXtSIM SIT, with 2 observations per cycle (purple curve), 4 observations

per cycle (blue curve), 8 observations per cycle (gray curve) and 16 observations per cycle (green curve). The dashed grey line correspond to

the averaged RMSE between log-normal (LN) noise and the truth.

CS2SMOS retrievals are only available on grid-cells covered by sea ice, and no information is available on grid-cells with

open water. This creates a temporally changing mask, and we assume that grid-cells without information contain no sea ice.285

Additionally, the CS2SMOS retrievals come with their own errors and uncertainties (Ricker et al., 2017). Note that Nab

et al. (2025) showed that modifying SIT observation uncertainties introduces significant sensitivities during SIT assimilation.

Based on the diagnostics of Desroziers et al. (2005), Xie et al. (2018) proposed an empirical formula for the observation error

variance σ2
obs,CS2SMOS as an increasing function of ice thickness hice, with the coefficient

::::::::::
coefficients 0.2,0.02,0.1 in m2, 3

in m and 1.5 without unit,
:
.290

σ2
obs,CS2SMOS =

 min(0.2,0.02e1.8(hice−3)) if hice > 3m,

max(0.02,0.1e−1.5hice) otherwise.
(14)

This observation error variance is also used in Cheng et al. (2023a).
:::
The

:::::
graph

:::
of

:::
the

:::::::
function

::
is
:::::::::
displayed

::
in

::::
Fig.

:
6
:

We

will rely on this assessment to introduce observation error statistics for the real observation setup. Note that, unlike the usual

approach in data assimilation where the model state is projected onto the observation space using H, we simplify the process

by doing the other way around. In a preprocessing step, real observations are interpolated onto the model space, making them295

retrievals. This is feasible because the observations are at a higher resolution in their native grid, and then coarse-grained by a

factor 2. Even in their original resolution, they remain smoother than the forecasts of our surrogate model.

6.2 Results

In this section, instead of assimilating simulated observations, we assimilate CS2SMOS retrievals daily (every two iterations of

the emulator) within an 8-day window for Ncycle = 20 cycles. We use the observations for the winter 2020-2021, since there are300
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Eq.(14).
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Figure 7. Difference (right) between daily CS2SMOS (left) and neXtSIM SIT (middle). CS2SMOS is interpolated on neXtSIM reduced

grid. neXtSIM SIT is averaged over one week in order to mimic CS2SMOS weekly averaging, centered on 2018-01-04.

no CS2SMOS retrievals during summer. We consider the truth now as
:::::::
compare

:::
the

::::::::
forecasts

::::
from

:::
the

::::::
4D–Var

:::::::
analysis

:::::
(after

:::
the

:::::
8-day

:::::::
window)

::::
with CS2SMOS . Note that ground truth is a quantity that is assimilated, and hence that the analysis score should

not be over-interpreted.
::::::::::
observations

::::
that

::::
have

:::
not

:::
yet

::::
been

::::::::::
assimilated,

::::::::
following

:::
the

:::::::
standard

::::::::::::::::::::::::::
observation-minus-background

:::::
(O–B)

::::::::
approach.

:
To initialize the cycling of the data assimilation, we start with the CS2SMOS retrieval from the date of the first

assimilation cycle. The observation error variance used is defined in Eq. (14). Only results performed with the 4D–Var-EOF305

are presented in this section. Note that no multiplicative inflation scheme is used.

In order to compare the results to a practical forecast benchmark, we use the past forecasts from neXtSIM-F (Williams et al.,

2021), a forecasting system that consists of a stand-alone version of neXtSIM, forced by the TOPAZ ocean forecast (Sakov

et al., 2012) and ECMWF atmospheric forecasts. The past forecasts have been obtained in 2023, corresponding to the version

of the forecasting system released in November 2023 (European Union-Copernicus Marine Service, 2020). In neXtSIM-F, the310

model is nudged to CS2SMOS sea-ice thickness observations weekly. It produces a 9-day forecast, which we systematically

use for numerical comparison with our data assimilation scheme, starting the neXtSIM-F forecast at the end of each DAW.

Both data assimilation systems are compared directly to CS2SMOS observations for forecasts beyond the DAW.
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Figure 8. RMSE results for CS2SMOS assimilation across several DAWs throughout the full CS2SMOS observation period in 2020-2021

are shown. The black dotted line represents the free run of the emulator through all cycles, initialized with a SIT field from October 2018.

The solid purple line corresponds to the analysis of the 4D–Var over the DAW, while the associated dashed purple lines represent the

additional forecasts using ECMWF atmospheric forecasts for 9 days. The RMSE values from neXtSIM-F, corresponding to a 9-day forecast,

are displayed as blue dots and should be compared with the end of each corresponding dashed line. All RMSE values are computed with

CS2SMOS considered as the truth.

The 4D–Var analysis is using atmospheric reanalysis F from ERA5 as input for the emulator. For the sake of fairness, for

the 9-day forecast that is run beyond the DAW, we use atmospheric forcings from the ECMWF atmospheric model HRES,315

which provides 10-day forecasts at a 16 km resolution. By contrast, ERA5 is a reanalysis product that assimilates observations,

making it unsuitable for an operational forecasting setup where the aim is to predict the future. Therefore, following the

approach used in neXtSIM-F, we rely on atmospheric forecasts as forcings of the emulator during the forecast period. These

forecasts are interpolated onto the neXtSIM grid and normalized using the same processing method as the ERA5 forcings

preparation, replacing them when applying the emulator during forecast.320

As seen in Fig. 8, the assimilation of real data into our 4D–Var works and yields RMSEs similar to those of the neXtSIM-F

assimilation forecast. The free run, initialized with a SIT field from October 2018 (due to the lack of simulation outputs in

2020), produces a stable trajectory but significantly deviates from the CS2SMOS fields. Assimilating real observation yields a

substantial decrease in RMSE, of −0.49 m during forecast. Results after the 9-day forecast are compared with the neXtSIM-

F 9-day forecast and show similar outcomes. On average, neXtSIM-F has a 0.34 m RMSE while our forecast has a 0.36 m325

RMSE. Initially, neXtSIM-F exhibits lower RMSEs; however, we see improved results in term of forecast towards the last

cycles of the assimilation. The RMSE metric penalizes the high level of details of the neXtSIM model more than the emulator

that smooths gradually with time.

As seen in the twin experiment results, especially with the Fig. 4, we can infer that our data assimilation system is less

efficient during periods of strong dynamic change. This is also shown here, with better results after January, at the end of330

the refreezing period when comparing the end of each cycle forecast (end of the purple dashed lines) with corresponding

neXtSIM-F. Conversely, after the refreezing period, it faces fewer difficulties in predicting the optimal state. Yet, the high

initial RMSEs could also be linked to the spin-up of the assimilation. Similarly, to evaluate our assimilation framework, we
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Figure 9. Bias (upper panel) and IIEESIT (lower panel) results for CS2SMOS assimilation across several DAWs throughout the full

CS2SMOS observation period in 2020-2021 are shown. The black dashed line represents the free run of the emulator through all cycles,

initialized with a SIT field from October 2018. The solid purple line corresponds to the analysis of the 4D–Var over the DAW, while the

associated dotted purple lines represent the additional forecasts using ECMWF atmospheric forecasts for 9 days. The bias errors and IIEE

from neXtSIM-F, corresponding to a 9-day forecast, are displayed as blue dots and should be compared with the end of each corresponding

dashed line. All bias errors and IIEE are computed with CS2SMOS considered as the truth.

use the bias error and the IIEESIT as defined in Sec. 4.4 in the same data assimilation cycles, see Fig. 9. The absolute value of

the bias of the emulator free run is generally reduced, with the exception of December 2020, where the free run bias is smaller335

than the forecast bias. At the end of the forecast, the assimilation run brings a bias reduction of 6.7 cm compared to the free

run. The average bias of the assimilation run compared to CS2SMOS at the end of the forecast is −0.22 cm, while the bias

of neXtSIM-F is −1.5 cm. The biases at the beginning of the DAWs are systematically positive and then generally decrease.

Since the emulator tends to reduce the amount of sea ice, as indicated by its negative bias, the analysis overestimates sea

ice to compensate for this loss. NeXtSIM, on which the emulator is trained, has a different SIT distribution than CS2SMOS,340

which could explain this phenomenon, as it can be seen with the different order of magnitude of the bias between the emulator

initialized with neXtSIM fields in Fig. 4b) (around 0.02 m) and the emulator initialized with CS2SMOS (around 0.1 m). The

IIEESIT serves as a reliable indicator of how accurately the MIZ is positioned. The IIEE of neXtSIM-F is 5.29%
::::::
469km2

:
and

is slightly better than that of the assimilation run (5.88%)
::::::
522km2. At the end of each forecast, the assimilation run shows a

15% improvement
::
an

::::::::::::
improvement

::
of

::::::::
1400km2

:
in IIEE compared to the free run, highlighting a significant enhancement in345

MIZ positioning achieved through the 4D–Var-EOF assimilation.

The data assimilation analysis acts as a bias correction for the emulator. However, it relies on smooth observations, thereby

losing the small-scale information available in neXtSIM and neXtSIM-F, as illustrated in Fig. 10. In Fig. 3, we observe that
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Figure 10. Visualization of the forecast for 2021-03-26 is shown. The upper left panel displays the neXtSIM-F 9-day forecast, while the

upper right panel shows the 9-day forecast from the 4D–Var. The lower left panel presents the CS2SMOS observations, and the lower right

panel illustrates the difference between the 4D–Var forecast and the CS2SMOS observations.

the first guess, corresponding to the end of the previous cycle forecast, appears smoother than the truth. This smoothing is

linked to the deterministic nature of the emulator (Durand et al., 2024), as it optimizes its MSE loss by smoothing fine-scale350

dynamics. While in the twin experiments, the use of observations closely aligned with neXtSIM could help recover some

small-scale dynamics, smooth observations result in a complete loss of these finer details. Nevertheless, our data assimilation

system effectively acts as a model error correction mechanism.

7 Discussion

We have demonstrated that using an emulator as forecast model in a 4D–Var framework for sea-ice forecasting is feasible,355

thanks to its numerical efficiency and auto-differentiability. However, this approach raises several important questions: one key
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observation is that while replacing the physics-based model with an emulator allows for the benefits of adjoint optimization

in a 4D–Var system, the success of the data assimilation is inherently tied to the emulator’s accuracy. As illustrated in Fig. 3,

the emulator tends to smooth out SIT during forecasts extending up to 16 days, a behavior previously noted in Durand et al.

(2024).360

In the case of real observations, we observe a significant bias correction in the assimilation run. Yet, it is worth noting that

this study does not consider weak-constraint 4D–Var, which incorporates model error into the cost function minimization.

However, we speculate that improving the emulator’s quality—addressing both bias and smoothing issues—would result in

more accurate 4D–Var analyses.

An analysis comparing the numerical efficiency of the 4D–Var method between 4D–Var-diag and 4D–Var-EOF is presented.365

For twin experiments, all computations were executed on a single NVIDIA A100 SXM4 80 GB GPU. On average, over a

full data assimilation run of 45 cycles, 4D–Var-EOF takes 155 s per cycle, while 4D–Var-diag takes approximately 229 s per

cycle, making the 4D–Var-EOF around 32% faster. Although the gradient computation times differ slightly between the two

methods — 1.66 s for 4D–Var-EOF versus 1.36 s for 4D–Var-diag — the forward pass through the DAW is similar, with times

of 578 ms and 552 ms, respectively. The computation of the gradient involves the emulator adjoint evaluation and reshaping370

the one-dimensional vector of assimilated grid cells into the two-dimensional field required to run the emulator, as well as

computing the cost function terms gradients. Note that the emulator adjoint is evaluated 8 times in each DAW. Interestingly,

while individual operations are faster in 4D–Var-diag (as expected due to the absence of projections to and from the EOF

basis), the complete cycles are faster with the EOF-based method. In other words, fewer iterations of the L-BFGS optimizer are

required on average for 4D–Var-EOF to achieve the analysis at each cycle, indicating better conditioning of the minimizations.375

A significant reduction in RMSE (16%) was indicated by our results, achieved through the projection of the minimization

onto the EOFs basis. Although a substantial number of EOFs is retained in the ensemble to preserve information, it is con-

ceivable that computational time could be further reduced by decreasing the number of EOFs. However, it is important to note

that the forward pass of the emulator and the computation of its adjoint are inherently performed in the (128× 128 grid-cells)

physical space. Consequently, the computational time savings from reducing the number of EOFs may not be substantial. On380

the other side, it might lead to a loss of the small scale information, which can also be observed in Fig. B2, where the RMSE

increases as the truncation index decreases, down to a certain threshold.

We introduce in Appendix E an inflation scheme to tune the background cost function term. Two versions are evaluated: a

more often used constant model inflation and an adaptive one, based on the χ2
p (with p degrees of freedom) diagnostic (Michel,

2014). The adaptive background error inflation can be easily implemented in twin experiment scenarios, under a Gaussian385

noise simulation. We observe a modest improvement in the time-averaged RMSE, with most of the gains occurring at the

beginning of each assimilation window. Interestingly, in both cases, we have to deflate the B-matrix for an optimal analysis

RMSE (around 0.5 to 0.6 with a seasonal dependency).

A major factor for the quality in terms of RMSE is the frequency of the observations. While most of the results above focus

on a fixed number of observations per cycle, additional experiments using varying frequencies in a twin experiment setup were390

presented in Fig. 5, showing important improvement in RMSE when increasing the frequency of the observations. However,
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current satellite data either provide spatially and temporally sparse observations (like Cryosat-2
:::
with

::::::
dense

:::::::::
along-track

::::
but

:::::
sparse

:::::::::
cross-track

::::::::
coverage

::::
(like

:::::::::
CryoSat-2) or smooth, time-averaged full coverage products, which introduces inherent cor-

relations between the observations errors (like CS2SMOS). It is important to note that our comparison with neXtSIM-F occurs

9 days after the last batch of assimilated observations, thus falling outside the average observation window
::::
DAW. Yet, in the395

case of real observations, there is currently no SIT retrieval dataset that provides daily, non-smoothed, and non-time-correlated

SIT measurements to validate our experiments against. Ongoing works are proposing ML-based approaches to derive com-

plete daily sea ice freeboard fields from satellite altimetry at fine spatial resolution (5 km), by modeling the spatio-temporal

covariance of daily fields rather than relying solely on temporal averaging (Gregory et al., 2024b; Chen et al., 2024).

Let us note that neXtSIM, as well as neXtSIM-F exhibits more small-scale features than our emulator that tends to smooth400

out the fields. By assimilating CS2SMOS observations, we lose small scale information. Yet, as the observations are extremely

smooth, the comparison is not as fair to neXtSIM-F, which provides more small scale dynamics, and hence suffers from double

penalty effects. Implementing a stochastic emulator (Finn et al., 2024a, b) could yield more physically consistent results

by conserving spectral energy. This approach may enhance the performance of the model within the 4D–Var minimization

framework, although it raises questions about the reliability of the associated gradients and the increase in computation time.405

Newer satellites will hopefully provide data at higher resolution and better accuracy, but we expect that the current trade-off

between resolution (by altimeters) and coverage (by passive microwaves) will remain an issue in the foreseeable future. Another

option is to apply super-resolution algorithms to enhance local scale dynamics in the data assimilation system (Barthélémy

et al., 2022). Exploring these possibilities could significantly improve the efficacy of data assimilation with emulators for sea

ice modeling.410

One important aspect to monitor is the evolution of the cost function during minimization, as well as its associated gradient.

More details are provided in the Appendix C. As seen in Fig. C2, there is more than an order of magnitude difference in

the gradient norm during minimization within a single cycle. It is worth noting that the only stopping criterion consistently

achieved is related to the tolerance of the cost function, where its decrease becomes smaller than a given value. Occasionally,

a second criterion related to the gradient norm may also be considered, which requires that the maximal value of the gradient415

for the entire field be below another specified threshold. However, this gradient criterion is never met in our case. As shown

in Fig. C2, there are still some grid-cells, often located in the MIZ, where the gradient norm remains non-negligible. Yet, as

seen in Fig. C1, at each cycle, the cost function attains a stable minimum which indicate that the L-BFGS optimization worked

correctly.

An important point to discuss is the realism of the emulator’s adjoint. In deep learning, the high number of degrees of420

freedom often results in noisier gradients (Sitzmann et al., 2020). In the 4D–Var framework, this issue is mitigated by the

background term, which regularizes the emulator’s potentially noisy gradient. This noise is evident in the analysis, as shown in

Fig. 3 and Fig. C2, particularly near the MIZ. While a dedicated training procedure for the emulator could potentially improve

this aspect, it does not appear to hinder the current 4D–Var setup. In fact, the successful results achieved with this system

indirectly validate the adjoint of both the emulator and the cost function. Furthermore, correctness checks for both adjoints are425

provided in Appendix C4.
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Since the emulator provides fast forecasts of the SIT dynamics, and due to the fast data assimilation, we can investigate the

possibility to run ensemble data assimilation (EDA) (Raynaud et al., 2008; Isaksen et al., 2010) by running an ensemble of

4D–Vars, with perturbations of the observations and the background term. This ensemble can be used to build an ensemble

of trajectories, but also to improve the flow-dependency of the background covariances in the EOF space. Interestingly, this430

approach also allows for the comparison with other data assimilation methods using this emulator, such as the ensemble

Kalman filter. This would enable a more straightforward comparison with current state-of-the-art data assimilation methods

for sea ice. However, it would be important to further discuss the capability of our deterministic surrogate model to generate a

state ensemble in this context.

These results are promising and demonstrate the potential for using model emulators in data assimilation, particularly with435

classical methods in real-world applications. Furthermore, it could be interesting to see the impact of assimilating several

variables, like SIT and sea-ice concentration (SIC) onto an emulator.

8 Conclusions

In this paper, we introduced the first 4D–Var system based on a surrogate model that is trained to fully emulate the evolution of

the sea-ice thickness. This work is a preliminary step towards the use of fully emulated models in data assimilation. Through440

twin experiments, we initially demonstrate the ability of the surrogate model to leverage its automatic gradient in a 4D–Var

minimization. The 4D–Var system can be efficiently implemented by using EOFs extracted from the model’s climatology.

The assimilation in EOF space improves the system compared to a diagonal background covariance. Inflation techniques

bring small improvement. In the second part of the study, we investigate the assimilation of real observations with the 4D–

Var system. Assimilating real observations improves the positioning of the MIZ. These observations act as a bias correction,445

highlighting the potential need for weak-constraint 4D–Var to address such biases. This could also create opportunities to

train a bias correction model or refine the emulator using analysis increments. With limited resources, such as emulating

only sea-ice thickness and assimilating CS2SMOS observations, the developed 4D–Var system performs comparably to the

operational neXtSIM-F system. Moreover, the emulator-based 4D–Var system is significantly more computationally efficient

than ensemble Kalman filter systems relying on geophysical models. Although these results are derived from a coarse-grained450

emulator of the available neXtSIM dataset, no major issues are anticipated in increasing the resolution of both the surrogate

model and the observations. The computational cost of this data assimilation approach remains well within the standards of

current sea-ice data assimilation systems.
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Appendix A: Surrogate modeling

In this section, we present the forecast ability of the emulator. The root-mean-squared error (RMSE) between the prediction

xf(n+ k∆t) and the simulation xt(n+ k∆t) is computed over all pixels (i, j) of the field of size (Nx,Ny), for each sample n

of the validation set containing Ns = 1470 trajectories, initialized at time tn,460

RMSE(k) =
1

Ns

Ns∑
n=1

√√√√ 1

Nx ·Ny

Nx,Ny∑
i,j

(
xfi,j(tn + k∆t)− xti,j(tn + k∆t)

)2
. (A1)

In order to quantify systematic errors of the surrogate model, we compute its mean error (bias). This metric tells about the

ability of the neural network to correctly estimate the total amount of sea ice in the full domain,

bias(k) =
1

Ns

Ns∑
n=1

1

Nx ·Ny

Nx,Ny∑
i,j

(
xfi,j(tn + k∆t)− xti,j(tn + k∆t)

)
. (A2)

The code structure of the surrogate model gθ is presented in Alg. A1. Let us note that fθ maps x̃t to ỹt+∆t = x̃t+∆t−x̃t which465

corresponds to the normalized difference in sea-ice thickness over 12 hours. The normalization is defined as in Eq. (1) with

µout and σout the associated global mean and standard deviation of yt+∆t = xt+∆t−xt, computed over the training dataset.

Algorithm A1 Full-state surrogate model gθ mapping from x̃t to x̃t+∆t, using the previously trained fθ. This algorithm

describe exactly how the state x̃t+∆t is obtained by the application of the fine-tuned fθ neural network as defined in Eq (2b).

Require: fθ(x̃t,F,θ), x̃t, F, and normalization values (µ SIT, σ SIT, µ out, σout)

ỹt+∆t← fθ(x̃t,F,θ)

yt+∆t← σoutỹt+∆t +µ out

xt← σ SITx̃t +µ SIT

xt+∆t← xt +yt+∆t

x̃t+∆t← xt+∆t−µSIT

σSIT

x̃t+∆t← ReLU(x̃t+∆t) = gθ(x̃t)

The training of the emulators are shown in Fig. A1, with the display of the training losses and the validation losses. The

training loss measures how well the emulator fits the training data, while the validation loss assesses its performance on unseen

data to detect overfitting and ensure generalization. The baseline consists of the UNet trained by learning fθ. By transfer470

learning, fθ weights are fine-tuned in order to learn gθ, with a constrain (λ= 10) inside the loss function, see Eq. (5). Results

in term of forecast ability of those emulators are presented in Fig. A2. The forecast skill of gθ is compared to the one of fθ,

and the persistence, which consist to take the initial condition as the constant state of the system. We can see that in terms of

RMSE, gθ is slightly worse than the baseline, but in terms of bias, the fine-tuned constrained emulator display a smaller bias

error compared to fθ.475
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Figure A1. Left: Training and validation losses of the surrogate model. Right: Training and validation global losses of the surrogate models.

Light blue and light green lines in transparency indicate the validation losses. The green dashed line indicates the experiment where the

weights of fθ are frozen and a linear activation function is applied after the renormalization process. Blue line corresponds to the training of

gθ . The weights of fθ are retrained with the new learning objective, with λ= 10.
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Figure A2. Left: Forecast skill (RMSE) of the surrogate model. Right: Bias errors of the surrogate models. The green dashed line indicates

the results for fθ . Blue line corresponds to the training of gθ . The weights of fθ are retrained with the new learning objective, with λ= 10.
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Appendix B: Empirical Orthogonal Functions

B1 EOFs definition

We build an ensemble of perturbations using neXtSIM simulation outputs, X of size RNt×Nz , with Nz = 8871 the number of

unmasked pixels and Nt the number of state in the ensemble, this number depends on the number of years taken to compute

the ensemble and varies from 1500 to 11000. After the removal of the temporal mean from this ensemble:480

X̃=X− x̄, (B1)

we can compute the singular value decomposition of X̃,

X̃=UΣV⊤, (B2)

with U an orthogonal matrix of size (Nt×Nt), Σ a diagonal matrix of size (Nt×Nz) containing the Nt singular values of X̃

and V an orthogonal matrix of size (Nz ×Nz). We then define the EOFs φ as the columns of V.485

One advantage of using EOFs is the ability to reduce the dimensionality of the minimization space by projecting the state

vector onto a truncated set of EOFs. We denote this truncation by φm, where m represents the truncation index. In practice,

this involves limiting the projection of the orthonormal matrix to the first m EOFs, ordered by explained variance, thereby

reducing the computational burden while retaining the most significant modes of variability. The four predominant EOFs are

displayed in Fig. B1, as well as their associated variance.490

B2 Choice of the truncation index m

In order to validate the best truncation index, we run an experiment with 4D–Var-EOF, in the twin experiment setup, with

a value of m ranging from 10 to 8871. We then compute the total RMSE over all cycles. Results are presented in Fig. B2.

We observe that for m> 5000, the RMSE has reached a minimum. Let us note that using a smaller value of m reduces the

minimization time, as it is reducing the dimension of the minimization space. Based on these results, and while we wanted to495

maintain a good reconstruction capacity, we chose to maintain m= 7000 for all experiments.

Appendix C: 4D–Var optimization

C1 4D–Var algorithms

We present here the algorithms for the computation of the 4D–Var optimization, in the 4D–Var-EOF case. The computation

of the cost function, for a given cycle, is shown in Alg. C1. The state w0 is mapped back to the physical space, forecasted500

throughout the DAW using the emulator, where the observation term of the cost function is computed and then transformed

back into the affine space of the EOFs. The total computation across all DAW is presented in Alg. C2.

24



EOF 1, explained variance : 59.07 % EOF 2, explained variance : 6.24 %

EOF 3, explained variance : 4.46 % EOF 4, explained variance : 3.35 %

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

Four predominant EOFs

Figure B1. Four predominant EOFs of SIT, at the top left of each EOF is indicated the associated explained variance.
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Algorithm C1 Cost function (J ) computation for the 4D–Var-EOF

Require: gθ, w0, ỹk:1,...,K , the number of application of the emulator between two observations Nf , K, σobs, λinf , H, φm, F

Jb = 1
2λ2

inf
(w0−wb

0)
⊤(w0−wb

0)

Jo = 0

x̃0 = x̄+φmw0

for i in range (1, ...,K) do

x̃i = gNf

θ (x̃i−1,Fi−1→i)

Jo = Jo + 1
2σ2

obs
∥ỹi−Hx̃i∥2

end for

J = Jo +Jb

Algorithm C2 Wrapper for cycling the 4D–Var-EOF, using the loss (J ) defined in Alg. C1.

Require: gθ(x̃t,F), ỹk:1,...,K , Nf , Ncycle, K, w0, DOF, λinf , φm

for n in range (1, ...,Ncycle) do

wa
0,n = L−BFGS(w0,n, loss(w0,n, ỹk:1,...,K))

x̃a
0,n = x̄+φmwa

0,n

x̃a
Nf (n→n+1) = gθ(x̃

a
0,n,Fn→n+1)

x̃b
n, x̃

0
n = x̃a

Nf (n+1)

w0,n+1 =φ⊤
m(x̃0

n− x̄)

n← n+1

end for

The L-BFGS-B (Broyden, 1967; Liu and Nocedal, 1989) algorithm is used to minimize the cost function J , defined in

Alg. C1. The optimization is constrained by bounds defined over all the variables of x̃ with a minimal value set to SITmin

as defined previously, in the case of the 4D–Var-diag. Two criteria are used to stop the minimization: ftol, which corresponds505

to a threshold below which the cost function improvement is considered sufficient, and a gradient norm threshold gtol, below

which the norm of the gradient must fall. Note that we did not define a maximal number of iterations of the L-BFGS-B and the

criteria ftol was systematically reached.

In practice, in our case the only stopping criterion used is ftol, as the gradient is significantly decreasing, yet, some instabili-

ties at each iteration, especially on the MIZ are still observed.510

C2 Cost function diagnostics

The value of the cost function J as defined in Eq. (6b) or Eq. (9) and minimized with a L-BFGS-B can be followed across all

cycles, as shown in Fig. C1. The RMSE increase observed in Fig. 4 can also be observed in the cost function. The increase in

May comes after 9-10 cycles, which corresponds to 2 cycles before the time where the observation cost function decreases and
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Figure C2. Evolution of the gradient during the 4D–Var-diag minimization. The left panel shows the gradient at the end of the first mini-

mization of one cycle (cycle 31), while the right panel displays the gradient at the end of the last minimization of the same cycle, when the

minimization criterion is reached. In this case, the synthetic observations are perfect observations (no noise addition).

the background cost function increases and becomes predominant. Based on this observed seasonality, we introduce an adaptive515

background
::::::::::::::
background-error

:
strategy to offer an estimation of the order of magnitude of the background cost function. This

implementation is further described in Appendix. E.

C3 Gradient analysis

We can also investigate the gradient of the cost function, and its evolution between the beginning and the end of the cycle, as

shown in Fig. C2. We can observe a global decrease of the gradient across the full Arctic. Yet, some grid-cells keep a strong520

gradient, especially on the MIZ.
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C4 Tests of the emulator and the cost function gradients

First of all, we test the gradient of the cost function. With Taylor’s expansion

J (x+ ϵh) = J (x)+ ϵJ ′(x) ·h+O
(
∥ϵ∥2

)
, (C1)

we look at the ratio525

I(ϵ) =
〈∣∣∣∣J (x+ ϵh)−J (x− ϵh)

2ϵJ ′(x) ·h

∣∣∣∣〉
∥h∥=1

, (C2)

with x a state on the trajectory of the emulator. Note that we have

J (x+ ϵh) = J (x)+ ϵJ ′(x) ·h+O
(
∥ϵ∥2

)
(C3a)

J (x− ϵh) = J (x)− ϵJ ′(x) ·h+O
(
∥ϵ∥2

)
. (C3b)

By making the difference of those two equations we obtain530

J (x+ ϵh)−J (x− ϵh) = 2ϵJ ′(x) ·h+O
(
∥ϵ∥2

)
. (C4)

By averaging, we expect

I(ϵ)≃ 1+O
(
∥ϵ∥

)
. (C5)

In practice, we take for the trajectory the full 2 years free run without assimilation, with the same parameters as defined in

Sec. 5, with observations perturbed with cond-clipped noise. We evaluate several values h, including canonic vectors to focus535

only on single pixel, especially in the MIZ, and in Central Arctic. We define the canonic vectors hzone ∈ R8871 as

hzone = (0, · · · ,0,1,0, · · · ,0), (C6)

with the 1 at the position corresponding to the chosen area. We select 5 pixels for the MIZ and 5 pixels for Central Arctic. The

results are shown in Fig. C3. While the residual errors remain small, they increase for ϵ < 10−7. Above the ϵ value, we observe

the expected behavior, but the residual errors are slightly noisy. Interestingly, we obtain similar behavior for the different values540

of h.

To test the gradient of the emulator, we evaluate the test function

L(z,x) = z⊤gθ(x,F), (C7)

whose Taylor’s expansion in x is

L(z,x+ ϵh) = z⊤gθ(x+ ϵh,F) (C8a)545

= L(z,x)+ ϵz⊤g′θ(x,F) ·h+O
(
∥ϵ∥2

)
(C8b)
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We study the ratio

Iz(ϵ) =
〈∣∣∣∣L(z,x+ ϵh)−L(z,x− ϵh)

2ϵz⊤g′θ(x) ·h

∣∣∣∣〉
∥h∥=1

, (C9)

with x in the trajectory of the emulator. We expect the same behavior as for I(ϵ). In this case, we look at several values for z,

defined exactly as the previous h. The emulator is evaluated onto the full 2017-2018 dataset. Results are presented in Fig. C4.550

We obtain satisfying results, with a divergence of the residual for ϵ < 10−8. The curves for all different z vectors depict similar

behavior, following the expected evolution inO
(
∥ϵ∥

)
. The displacement in the MIZ and in Central Arctic yields lower residual

results than with a random z vector.

Appendix D: Multi-year experiment

In this section, we present additional results showing the full two-year assimilation, including the one year spin-up cycles555

which are not included in the metrics computation. This shows the seasonality of the analysis RMSE, with increase during

highly thermodynamics-driven period (spring melting and winter refreezing).
:::
The

::::::
second

::::
part

::
of

:::
the

::::
curve

:::::::::::
corresponds

::::::
exactly

::
to

:::
the

::::::
RMSE

:::::
shown

:::
in

:::
Fig.

::::
4a),

:::::
where

:::
the

::::::
spring

::::::
RMSE

:::::::
increase

::
is

::::
also

::::::
evident

::
in
::::::

2017,
:::::::::
confirming

:::
this

::::::::
recurrent

::::::::
behavior

:::::
during

:::::::
periods

::
of

::::::
intense

:::::::::::::
thermodynamic

:::::::
change.

::
In

:::::::
addition,

:::
we

::::
note

::
a

::::::::::
pronounced

::::
peak

::
in

:::::::::
November

:::::
2017,

:::::::::
coinciding

::::
with

::
the

:::::::::
refreezing

::::::
period.

:
560
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Figure D1. 2017 and 2018 RMSE of 4D–Var-EOF in the twin experiment case, with cond-clipped perturbations. The curve represents the

RMSE of the 4D–Var analysis with regard to neXtSIM SIT.
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Appendix E: Background inflation

We adopt an adaptive multiplicative inflation scheme on the background error term, materialized by λinf,n and which is evalu-

ated on each cycle n. It can be decomposed in two terms:

λinf,n = λm×λa,n. (E1)

λm corresponds to the inflation term associated with the model error. It is constant throughout the experiments. In order to test565

the consistency of the solution of the innovation vector, we perform the χ2
p test. Under Gaussian assumption, the minimum

value of the cost function has a χ2
p distribution with p the number of observations assimilated (Michel, 2014). It means that the

average of the cost function minimum should stay around p, in our case 8871×Nobs/2, with Nobs the number of observations

per window. Yet, with the different noise investigated in our study, this test does not work under other assumptions.

Following the χ2 assumption, for each cycle, the minimal value of the cost function J should in average be equal to the570

number of degree of freedom (DOF), which is equal to p. In practice, we define for each cycle n,

λa,n+1 =

√
J n
b

|DOF−J n
o |

, (E2)

where J n
b corresponds to the background term of the cost function at cycle n and J n

o corresponds to the observation term of

the cost function at cycle n; with,
:
for the initial cycle, a value of 1 for λa,0.The multiplication of the two terms λm and λa,n

gives us the total inflation λinf,n in the adaptive case.575

In order to help the optimization of the 4D–Var, we investigate the use of inflation scheme as defined in Eq. (E2). Two

schemes are evaluated, a constant inflation, only modeled by λm and an adaptive inflation scheme with the multiplication of

λa based on the χ2 estimation of J and λm. Only Gaussian noise for the observations are considered and the value of λm

ranges between 0.6 and 3. Results with the mRMSE are outlined in Fig. E1. As observed before we can see that 4D–Var-EOF

is clearly better than 4D–Var-diag, but both inflation schemes have similar behavior in both cases. Using an inflation scheme580

(λinf ̸= 1) yields better results in terms of mRMSE in both cases if we correctly tune λm. Interestingly, in the case of constant

inflation, the mRMSE increases almost linearly with λm. This indicates that, when using constant inflation, emphasizing the

Jo term tends to undermine the performance of the 4D–Var. Conversely, in the adaptive case, assigning a significant value to

λm while still optimizing the ratio between Jb and Jo results in improved mRMSE.

As shown in Fig. E2, in which is plotted the ratio between the
:::
two

:::::::
analysis

:::::::::
xa,inflation :::

and
:::::::::::
xa,noinflation,

::::
with

:::::::::
xa,inflation :::

the585

::::::
analysis

:::::
with

:::
the adaptive inflation scheme with λm set to 3 and the

::::::::::
xa,noinflation:::

the
:::::::
analysis

:::
of

:::
the run with Gaussian noise

without any inflation scheme, in 2018, we can see that the benefit from inflation is primarily observed at the start of the DAW

and more prominently at the beginning of the year. On average, the gain from the adaptive inflation is mitigated, as some end

of cycle ratio are above 1. By using the inflation, we favor the improvement at the beginning of the DAW to the detriment of

the end of the DAW. Let us also note that the major gain from the inflation come from March to July, which corresponds to the590

period where the RMSE of the analysis xa is higher.
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inflation λm. In the case of the constant inflation, λa is automatically set to 1 whereas in the adaptive case, it is defined as per Eq. (E2).
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Figure E2. Evaluation of the gain from the adaptive inflation, compared to no inflation, for both 4D–Var-EOF (dark blue lines) and 4D–Var-

diag (green lines). The ratio between the RMSE of xa,inflation and xa,noinflation is plotted with respect to time. The dotted red line indicates

the position where there is no gain from the inflation. A value of this ratio below 1 means a gain from the adaptive scheme whereas a value

above 1 corresponds to a loss in RMSEs.

To conclude, adaptive background inflation can be easily implemented in twin experiment scenarios. We observe a modest

improvement in the total average RMSE, with most of the gains occurring at the beginning of the assimilation windows. In the

case of adaptive inflation, the inflation values fluctuate around 0.5, exhibiting a seasonal pattern.

Code and data availability. The outputs of neXtSIM model used here (Boutin et al., 2022) are available at https://ige-meom-opendap.595

univ-grenoble-alpes.fr/thredds/catalog/meomopendap/extract/SASIP/model-outputs/OPA-neXtSIM_CREG025/OPA-neXtSIM_CREG025-ILBOXE140-S/

catalog.html. Forcings data from ERA5 are publicly available in the Copernicus Data Store (C3S, 2018). All the codes to build the datasets,

train the emulator and build the 4D–Var system are provided, the jupyter-notebook used to create the figures, as well as the post-processed

datasets and neural network weights (Durand, 2024). Additionally, for real observations assimilation, CS2SMOS retrievals are publicly
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available (European Space Agency, 2023). ECMWF forecast (Owens and Hewson, 2018) were provided by Alban Farchi from the ECMWF.600

neXtSIM-F forecast archives are not publicly available but can be requested by e-mail from nextsimf@nersc.no.
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