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Abstract. The introduction of new processes in biogeochemical models brings new model parameters that must be set. 

Optimisation of the model parameters is crucial to ensure model performance based on process representation, rather than 

poor parameter values. However, for most biogeochemical models, standard optimisation techniques are not viable due to 

computational cost. Typically, (tens of) thousands of simulations are required to accurately estimate optimal parameter 

values of complex non-linear models. To overcome this persistent challenge, we apply surrogate machine learning methods 15 

to optimise the model parameters of a new version of the World Ocean Model of Biogeochemistry and Trophic dynamics 

(WOMBAT), which we call WOMBAT-lite. WOMBAT-lite has undergone numerous updates described herein with many 

new model parameters to prescribe. A computationally inexpensive surrogate machine learning model based on Gaussian 

Process Regression was trained on a set of 512 simulations with WOMBAT-lite. These simulations explored model fidelity 

to 8 observation-based target datasets by varying 26 uncertain parameters across their a priori ranges. The surrogate model, 20 

trained on these 512 simulations, facilitated a global sensitivity analysis to identify the most important parameters and 

facilitated Bayesian parameter optimisation. Our approach returned optimal posterior distributions of 13 important 

parameters that, when input to WOMBAT-lite, ensured excellent fidelity to the target datasets. This process improved the 

representation of chlorophyll-a concentrations, air-sea carbon dioxide fluxes and patterns of phytoplankton nutrient 

limitation. We present an optimal parameter set for use by the modelling community. Overall, we show that surrogate-based 25 

calibration can deliver optimal parameter values for the biogeochemical components of earth system models and can 

improve the simulation of key processes in the global carbon cycle. 
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1 Introduction 

Ocean biogeochemical models are crucial tools for unravelling the complex interactions between the physical transport of 35 

properties, the chemical reactions of compounds and the biological conversions between inorganic and organic matter (e.g., 

Fennel et al., 2022). They are key for understanding and quantifying the impact of climate change on ocean ecosystems and 

biogeochemical cycles. This includes both the natural pulses of climate variation, such as the El Nino Southern Oscillation, 

and the pervasive long-term climate change, such as that induced by accumulating greenhouse gas emissions. For instance, 

ocean biogeochemical models are used to estimate the ocean's uptake of carbon dioxide (CO2) (Doney et al., 2003; 40 

Friedlingstein et al., 2023; Joos et al., 2013; Orr et al., 2001; Terhaar et al., 2024), to understand the controls on interior 

oxygen concentrations (Buchanan and Tagliabue, 2021; Oschlies et al., 2018), to quantify changing volumes of oxygen 

minimum zones (Busecke et al., 2022), for projecting change in ocean primary productivity (Kwiatkowski et al., 2020; 

Tagliabue et al., 2021), to evaluate shifts in marine ecosystem community composition (Cael et al., 2021a; Follows et al., 

2007) and fisheries production (Lotze et al., 2019; Stock et al., 2017), and most recently to evaluate the efficacy of marine 45 

CO2 removal strategies (Fennel et al., 2023; Kwiatkowski et al., 2023; Siegel et al., 2021). 

 

At their core, ocean biogeochemical models include an ecosystem component. This component represents the growth of 

phytoplankton via uptake of nutrients and photosynthesis, their mortality via zooplankton grazing and respiration, and the 

routing of dead biomass from both phytoplankton and zooplankton to detritus. The detritus sinks through the water column 50 

and is acted on by heterotrophic remineralisation to return the organic matter to the inorganic nutrients from which 

phytoplankton biomass was initially constructed. This ecosystem component, at its simplest, is known as a nutrient-

phytoplankton-zooplankton-detritus (NPZD) model (e.g., Fennel et al., 2022). Other components may accompany it, such as 

those that encode the chemical reactions of the carbon system (Orr et al., 2017), exchanges with external reservoirs (i.e., 

rivers, sediments, and atmosphere), trace metals (Tagliabue et al., 2023), isotopes (Buchanan et al., 2021), or biogenic 55 

aerosols (Gantt et al., 2012). Some models consider different types of nutrients, phytoplankton, zooplankton and detritus, 

with some including dozens of types defined by distinct traits and/or sizes (Follett et al., 2022; Follows and Dutkiewicz, 

2011; Serra‐Pompei et al., 2022). Whether simple or complex, a defining feature of ocean biogeochemical models is their 

ecosystem component, which controls how elements cycle between inorganic and organic phases.  

 60 

Despite their critical applications, the construction of biogeochemical models suffers from numerous sources of uncertainty. 

Model simulations of air-sea fluxes of CO2, for instance, suffer from considerable seasonal biases, particularly in the 

Southern Ocean (Hauck et al., 2020) due, in part, to biases in the phasing and magnitude of biological activity (Mongwe et 

al., 2018). These biases stem from poor mechanistic understanding of the processes being modelled, the complex interplay of 
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those processes and a lack of observational constraint (Denman, 2003; Fennel et al., 2022; Matear, 1995; Rohr et al., 2023; 65 

Ward et al., 2010). However, even if our understanding and observational network were complete, there exist many tuneable 

and potentially inter-dependent parameters that control many target outcomes (air-sea CO2 fluxes, nutrient fields, chlorophyll 

concentrations, etc.) that must be reproduced simultaneously. One optimisation approach has been to reduce the number of 

processes being represented, both physical and biogeochemical, such that a smaller number of parameters requires 

optimisation (DeVries and Weber, 2017; Holzer and Primeau, 2013). While this approach has skill for reproducing the 70 

ocean’s large-scale fields in an equilibrium state, it arguably has less skill in emulating the many inter-dependent upper 

ocean processes that operate on higher frequencies. Optimising a model with these higher frequency processes would ideally 

involve: (1) a global sensitivity analysis that identified the most important parameters, followed by (2) a Bayesian 

optimisation procedure to constrain their optimal values from within their a priori ranges. Being Bayesian, the optimal 

parameter values would be taken from posterior distributions, recognising that many “optimal” parameter combinations are 75 

possible. Even so, the sheer number of parameters, their non-linear interactions and an objective function composed of many 

targets (i.e., trying to reproduce many features at once) makes this approach impossible without large and typically 

unfeasible computational costs.  

 

Machine learning techniques now offer a means to overcome this key challenge (Reddy et al., 2024b, a). Synthetic output 80 

may be generated by a surrogate machine learning model trained on a smaller set of real model output. The surrogate 

machine learning model is computationally cheap and can generate tens to hundreds of thousands of samples required for a 

detailed exploration of the parameter space. Such a high number of samples is critical to identify both the first-order and 

interactive effects of different parameters (Reddy et al., 2024b; Saltelli et al., 2019), as well as a means to undergo Bayesian 

optimisation (Reddy et al., 2024a). The surrogate-based calibration has been successful with physical and terrestrial 85 

biosphere components of climate system models (Li et al., 2018; Reddy et al., 2024a; Xu et al., 2022, 2018), but its 

application to marine biogeochemical components is in its infancy.  

 

In this study, we optimise version “lite” of the World Ocean Model of Biogeochemistry And Trophic dynamics (WOMBAT-

lite) using surrogate machine learning techniques (Fig. 1). This surrogate approach is crucial. Although WOMBAT-lite has 90 

few tracers and is computationally efficient, making it viable for high resolution configurations (Kiss et al., 2020; Matear et 

al., 2015; Menviel and Spence, 2024; Oke et al., 2013) and large ensembles (Mackallah et al., 2022; Rashid, 2022; Ziehn et 

al., 2020), it is nonetheless a global, three-dimensional, biogeochemical model. This makes it computationally demanding 

enough to prevent parameter calibration via traditional techniques. Second, surrogate-based optimisation has been 

successfully applied to physical and terrestrial components of climate models (Li et al., 2018; Reddy et al., 2024a; Xu et al., 95 

2022, 2018) and so offers real potential for, but has not been widely applied to, biogeochemical models. Finally, 

biogeochemical models are constantly undergoing major updates and new process development. The need for efficient and 

accurate optimisation is therefore constant. As an apt example, we made major updates during this study (detailed in 
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Appendix A) and focussed on improving Southern Ocean air-sea CO2 fluxes, which, shows persistent biases in ocean 

biogeochemical models (Hauck et al., 2020, 2023; Mongwe et al., 2018). 100 

 

 
Figure 1. Flow chart representation of the methodology. (1) Any updates to the numerical model, in this case a biogeochemical model, 
are finalized. Because the model has been altered, it requires optimization. (2) The target observations are chosen against which the model 
performance will be assessed and, eventually, optimized. (3) Sobol sequencing of the full parameter space selects 512 unique parameter sets 105 
from a priori ranges of the uncertain parameters. In this case, we chose 24 uncertain parameters. (4) The 512 unique parameter sets are used 
to run the numerical model forward to obtain 512 “simulated” solutions for each of the target observations. (5) Using a metric of model 
performance, in this case the root mean square error (RMSE), we train a surrogate machine learning model based on Gaussian Process 
Regression (GPR) to synthetically reproduce the model performance (RMSE) given a parameter set as input. (6) With a the GPR model we 
create thousands of synthetic model simulations to conduct a global Sobol sensitivity analysis. This tells us what the most important 110 
parameters are for model performance against our observational targets. (7) We resample the parameter space using only the most important 
parameters and (8) run a new set of simulations with these unique parameter sets. (9) The GPR model is then trained to reproduce the global 
cost-function (denoted “error” above), which accounts for the performance of the model across all observational targets, given a unique 
parameter set as input. (10) Thousands of synthetic cost-function results, estimated by the GPR model, are used to perform Bayesian 
optimization that solves for the optimal posterior distributions of the important parameters from within the a priori ranges. 115 
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2. Methods 

2.1 Optimisation Summary 

We have developed a new ocean biogeochemical model called WOMBAT-lite (Fig. 2). These updates (detailed below) 

necessitated a thorough sensitivity analysis and optimisation to a chosen set of observations. We performed Sobol sensitivity 

analysis, which gave an understanding of which parameters were most important to the model outcomes, followed by 120 

Bayesian optimisation to fine-tune parameter values and improve model accuracy. However, both Sobol sensitivity analysis 

and Bayesian optimisation require many thousands of samples to be reliable. To overcome this challenge, we employed a 

machine learning model based on Gaussian Process Regression to act as a surrogate of WOMBAT-lite. This computationally 

inexpensive surrogate, trained on hundreds of real simulations with WOMBAT-lite, was able to produce large samples of 

synthetic results that enabled sensitivity analysis optimisation (Fig. 1).  125 

 

 
Figure 2. Schematic representation of WOMBAT-lite. Tracers and biomass pools are represented by circles of different colours. Black 
tracers represent the carbon system, blue are inorganic nutrients. Inner circles of C, Chl and Fe within each biomass pool represent the units 
of carbon, chlorophyll and iron that are explicitly tracked. Major components are grouped within the dashed outlines. Although dissolved 130 
inorganic carbon (DIC), alkalinity (Alk) and oxygen (O2) are connected to primary production, they are only affected by it and do not limit 
primary production of phytoplankton. In contrast, both nitrate (NO3) and dissolved iron (dFe) are biogeochemical tracers whose availability 
both controls and is affected by phytoplankton growth. Dust and hydrothermal iron input dFe, while rivers input DIC, Alk, NO3 and dFe. 
Atmospheric concentrations of carbon dioxide (CO2) and O2 are not explicitly tracked by the ocean model (dashed circles). 

 135 
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2.2 Model development summary 

WOMBAT-lite (Fig. 2) considers 13 tracers: two nutrients, being nitrate (NO3) and dissolved iron (dFe), the carbon system 

(dissolved inorganic carbon (DIC), alkalinity (Alk), calcium carbonate (CaCO3)), oxygen (O2), the biomass pools of one 

phytoplankton (𝐵!), one zooplankton (𝐵") and one sinking detrital (𝐵#) functional type, prognostic chlorophyll (𝐵!$%&), as 

well as biogenic iron in phytoplankton (𝐵!'(), zooplankton (𝐵"'() and sinking detritus (𝐵#'(). In WOMBAT-lite, 140 

photosynthetically active radiation (PAR) is split into three wavelength bands associated with blue, green and red light, and 

each of these bands attenuates differently through the water column. The explicit chlorophyll content of phytoplankton 

allows for photoacclimation and the formation of deep chlorophyll maxima. The attenuation of blue, green and red light is 

affected by chlorophyll concentrations, and we implicitly account for the “packaging effect” by assuming a positive 

relationship between chlorophyll concentration and community mean cell size, where larger cells have less effect on light 145 

absorption. Phytoplankton limitation by nutrients is affected by an implicit positive relationship between cell size and cell 

density, where larger cells have less affinity for nutrients. Limitation by iron is modelled via variable quotas, allowing for 

luxury uptake in dFe-rich conditions and the export of Fe-rich detritus. Phytoplankton increase their iron requirements as 

their intracellular quota of chlorophyll increases, generating a co-limitation of light and iron on growth. Cycling of dFe now 

explicitly considers free, ligand-bound and colloidal iron, and is lost via nanoparticle formation, scavenging and colloidal 150 

coagulation. Zooplankton grazing is via a type III disk formulation that substantially dampens the temperature effect on 

grazing activity, aligning with rapid consumption rates in polar and tropical waters alike. The sinking of detritus is 

spatiotemporally variable and is dependent on phytoplankton biomass, emulating community shifts in mean cell size and 

bloom conditions, and depth, emulating a power law rather than an exponential decay associated with acceleration due to 

packaging with increasing pressure. A fraction of the detritus (and CaCO3) reaching the sediment is now permanently buried. 155 

In addition, WOMBAT-lite considers inputs of nitrate, dissolved inorganic carbon and alkalinity from rivers, simplistic 

sedimentary denitrification and nitrogen fixation routines, and the flux of dissolved iron from hydrothermal vents. All 

biogeochemical cycles in WOMBAT-lite are therefore open and their inventories can change. The basic unit of biomass is 

carbon with a fixed C:N:O2 of 122:16:-172. A full description of WOMBAT-lite is in Appendix A. 

 160 

2.3 Model experiments and evaluation 

2.3.1 Observational target fields for assessment 

We use 8 observational products/databases to assess the performance of WOMBAT-lite (Fig. 3) including the gridded, 

global products of surface nitrate (Garcia et al., 2024b) and dissolved iron (Huang et al., 2022). While nutrient distributions 

are useful, they have limited power by themselves for assessing biogeochemical models, since similar distributions of 165 

nutrients can be achieved for different rates of phytoplankton growth and recycling (Fennel et al., 2022). Remotely sensed 

chlorophyll is an important constraint that can be considered a proxy for the total stock of phytoplankton biomass and 
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features heavily in biogeochemical model evaluation (Fennel et al., 2022). We use the Copernicus three-dimensional 

chlorophyll-a product that combines remotely-sensed, hydrographic and BGC-Argo measurements of fluorescence to 

generate a depth-resolved climatology of chlorophyll (Sauzède et al., 2015). The extension of chlorophyll to depth allows for 170 

an assessment of patterns in the vertical, including spatiotemporal variations in the position of the deep chlorophyll 

maximum. Other important observations include a gridded and global product of air-sea CO2 fluxes for the year 1985 (Chau 

et al., 2022), the earliest year available, and vertically integrated net primary production (Westberry et al., 2008). Because 

the carbon-based productivity model (CbPM; Westberry et al., 2008)  is based on backscatter and explicitly accounts for 

growth rates separate from biomass its patterns are more orthogonal to chlorophyll than the Vertically Generalized 175 

Production Model (VGPM; Behrenfeld and Falkowski, 1997), and so offers greater potential as an independent constraint on 

model performance (Westberry et al., 2023). In addition to these gridded products, we also use a database of the primary 

limiting nutrient for phytoplankton growth (Browning and Moore, 2023) and sediment trap records of the sinking flux of 

detrital particles through the ocean interior (Mouw et al., 2016). 

 180 

While we recognise that these datasets are themselves subject to uncertainty, their combination allows for a powerful model 

assessment. Furthermore, our assessment focusses on the reproduction of large-scale, seasonal patterns. It is also worth 

noting that having too many target fields compounds the difficulty associated with parameter optimisation, while having too 

few risks poor performance in unconsidered targets. Target fields must therefore be chosen carefully. All gridded datasets as 

well as the particle flux database are resolved on a global 1º by 1º degree grid and on a monthly temporal resolution, while 185 

the primary limiting nutrient for phytoplankton, due to data scarcity, is represented annually (unchanging in time). 

2.3.2 Sensitivity experiments for evaluation and surrogate model training 

Our first goal was to understand which parameters in WOMBAT-lite were most important for model performance. We 

undertook 512 simulations that each sampled randomly from predefined ranges of 24 key parameters related to the 

ecosystem component of the model (Table 1; Fig. 1). Each experiment carried a unique biogeochemical parameter set that 190 

altered the biogeochemical behaviour, but all experiments had identical physical conditions and initial conditions. Physical 

fields were initialised from a previous spin up with the same ocean model (Kiss et al., 2020) forced by JRA55-do (Tsujino et 

al., 2018). We used a repeat “normal” year forcing of the JRA55-do to avoid inter-annual variability and extremes in climate 

modes (Stewart et al., 2020). Atmospheric CO2 was maintained at 315.2 ppm (i.e., levels at calendar year 1958). Nitrate, 

dissolved iron, dissolved oxygen, dissolved inorganic carbon and alkalinity fields were initialised from globally gridded 195 

datasets at the month of December (Garcia et al., 2024b, a; Huang et al., 2022; Lauvset et al., 2016). Concentrations of 

phytoplankton, zooplankton, detritus, and calcium carbonate were initialised at globally homogenous values of 0.1 mmol C 

m-3. Fe:C ratios of phytoplankton, zooplankton and detritus were initialised at 7 µmol per mol. Chlorophyll was initialised at 

0.004 mg per mg of phytoplankton carbon biomass.  
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 200 
Figure 3. Observation-based target fields used for assessment (sensitivity analysis and optimisation) of WOMBAT-lite. Annual means 
are shown here for illustration purposes, but monthly resolution was used for all products except the Primary Limiting Nutrient dataset. 
Boxes in maps of surface nitrate (NO3) and the air-sea flux of carbon dioxide (CO2) encapsulate the specific regions of focus when assessing 
model performance and optimization, being between 20ºS and 20ºN for surface NO3 and south of 20ºS for air-sea CO2 fluxes. CO2 fluxes 
out of the ocean are positive. 205 
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Table 1. Key ecosystem parameters for WOMBAT-lite and their predefined ranges for ocean-only experiments. Parameter values for 
other configurations, include for the Earth System Model (ACCESS-ESM1.6), are available at https://github.com/ACCESS-NRI.  

Component Parameter 
a priori 

range 

Default 

(optimal range) 
Description Units 

Phytoplankton 

𝛼! 0.25 - 1.25 
1.0 

(0.89 – 1.16) 
Scaler control on phytoplankton maximum growth rates day-1 

(i)𝛽! 1.040 - 1.080 
1.050 

(1.041 – 1.063) 
Base for temperature-dependent autotrophy - 

𝑃𝐼" 1.5 - 3.0 2.25 Initial slope of the photosynthesis-irradiance curve (W m-2)-1 (mg Chl m-3)-1 

(ii)𝐵#$%&'(% 0.01 - 1.0 
0.6 

(0.48 – 0.94) 

Biomass threshold of phytoplankton for implicit allometric 

scaling 
mmol C m-3 

𝐾#
)! 0.01 - 3.0 

2.0 

(1.04 – 2.30) 
Half-saturation coefficient for nitrogen uptake mmol N m-3 

𝐾#
*+'! 0.01 - 3.0 

2.5 

(2.07 – 2.97) 
Half-saturation coefficient for dissolved iron uptake μmol Fe m-3 

𝑄#
"+'-  20 - 100 

50 

(39 – 64) 
Maximum Fe:C quota of the cell μmol Fe (mol C)-1 

𝑄#
∗+'-  4 - 15 10 Optimal Fe:C quota of the cell μmol Fe (mol C)-1 

𝑄#
/-%0-  0.001 - 0.01 0.004 Minimum Chl:C quota of the cell mg Chl (mg C)-1 

𝑄∗
-%0
-  0.02 - 0.06 

0.036 

(0.020 – 0.038) 
Optimal Chl:C quota of the cell mg Chl (mg C)-1 

𝛾#" 0.01 - 0.10 
0.01 

(0.010 – 0.016) 
Linear mortality rate of phytoplankton day-1 

Γ#" 0.01 - 0.10 0.05 Quadratic mortality rate of phytoplankton (mmol C m-3)-1 day-1 

Grazing 

𝑔% 2.0 - 4.0 3.0 Scaler control on maximum zooplankton grazing rate day-1 

𝜀 0.05 - 1.5 
0.05 

(0.05 – 0.15) 
Zooplankton prey capture rate coefficient m6 (mmol C)-2 day-1 

(iii)𝜙1
# 1.0 1.0 Preference of zooplankton for phytoplankton - 

𝜙1* 0.01 - 0.50 0.25 Preference of zooplankton for detritus - 

(iii)λ 0.6 0.6 Zooplankton assimilation efficiency - 

𝛾1" 0.01 - 0.10 0.05 Linear mortality of zooplankton (respiration) day-1 

𝐾1
2 0.01 – 0.5 0.25 Half-saturation coefficient of zooplankton mortality mmol C m-3 

Γ1" 0.1 - 1.0 
0.9 

(0.61 – 0.99) 
Quadratic mortality rate of zooplankton (predation) (mmol m-3)-1 day-1 
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Component Parameter 
a priori 

range 

Default 

(optimal range) 
Description Units 

𝛽% 1.060 - 1.080 
1.065 

(1.060 – 1.075) 
Base for temperature-dependent heterotrophy - 

Detritus 

𝜔*"  5 - 20 
18 

(12.7 – 19.9) 
Scaler to sinking speed of detritus m day-1 

𝜔*3!4 20 - 50 35 Maximum sinking speed of detritus m day-1 

𝛾*" 0.025 - 0.1 
0.09 

(0.064 – 0.099) 
Linear rate of (implicit) bacterial remineralisation  day-1 

𝑅 -!-5"
*'$&6$7(

 0.01 – 0.15 0.050 CaCO3 to organic detrital ratio mol C / mol C 

𝜔-!-5"
"  3 - 10 6.0 Scaler to sinking speed of CaCO3 m day-1 

𝛾-!-5"
"  0.0005 - 0.01 0.01 Scaler control on (implicit) CaCO3 dissolution rate day-1 

Iron cycling 

(iii)𝐿𝑖𝑔 0.7 0.7 Concentration of Fe-binding organic ligand μmol m-3 

(iii)𝐾8!89#+'  0.01 0.01 Precipitation of 𝐹𝑒′ as nanoparticles (in excess of solubility) day-1 

(iii)𝐾(:!;+'  0.00005  0.00005 Scavenging of 𝐹𝑒′ onto biogenic particles (mmol C m-3)-1 day-1 

(iii)𝐾:9!<+'  0.0001 0.0001 Coagulation of dissolved Fe into colloidal Fe (mmol C m-3)-1 day-1 

(i)Parameter variations not included in initial sensitivity experiments for sensitivity analysis (steps 3-6 in Fig. 1). Only in 210 

optimization (steps 7-10 in Fig. 1). 
(ii)Parameter range was set equal to 0.01 to 0.1 in the initial sensitivity experiments for sensitivity analysis (step 3-6 in Fig. 1). 
(iii)Parameter space not explored. 
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 215 

 

We chose to run the experiments for only 10 years, making a total of 5120 model years and at a nominal horizontal 

resolution of 1º. This short timescale was enough to assess the skill of the biogeochemical model, at least regarding its 

ecosystem component. Marine phytoplankton contribute half of all primary production in the Earth system (Field, 1998) but 

represent less than 1% of photosynthetic biomass (Friedlingstein et al., 2023; Le Quéré et al., 2005), meaning that they turn 220 

over quickly. Changes to key parameters within the ecosystem component therefore result in a rapid realisation of different 

patterns in biological states (e.g., chlorophyll and net primary production, among others). Our analyses and optimisation thus 

focus on the ecosystem component using 10-year model runs. We do acknowledge that longer-term, low frequency modes of 

variation exist in biogeochemical models, and to partially address this we completed 100-year simulations with optimal 

parameter sets. However, we also note that longer integrations risk the compounding of physical and biogeochemical model 225 

errors. 

2.3.3 Measures of performance 

Output from the final year of the experiments (year 10) was compared directly to the target datasets (Fig. 3). Univariate 

measures of performance were calculated, including the correlation coefficient (Pearson’s), root mean square error, global 

mean bias and the normalised standard deviation (Stow et al., 2009). These were calculated across all grid cells and time 230 

points. For surface nitrate concentrations, we only calculated these statistics between 20ºS to 20ºN to focus on achieving a 

realistic transition of higher concentrations to lower concentrations from the equatorial to subtropical biome. We stress that 

fidelity in extra-tropical regions was captured independently via the limiting nutrient dataset. Also, surface nitrate in the 

equatorial region is highly responsive to changes in the ecosystem component due to warmer temperatures that accelerate 

metabolism. After only 10 years our simulations diverged most in this region. Additionally, surface nitrate concentrations 235 

were log10 transformed prior to calculating the measures of performance due to a skewed distribution towards very low 

values. This substantially improved the ability of our optimisation approach to select parameters that reproduced the high 

nitrate tongue in the equatorial region (see below). For air-sea fluxes of CO2, we assessed model performance exclusively in 

the Southern Ocean south of 20ºS. This region was also highly sensitive to the parameterisations of the model, showing 

positive or negative fluxes depending on our parameter set and aligning with findings that biological activity in this region is 240 

of high importance for model skill (Mongwe et al., 2018). 
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2.4 Details of the sensitivity analysis and model optimisation 

2.4.1 Global sensitivity analysis  

Sensitivity analysis (SA) methods are broadly categorized into local and global approaches. Local SA examines how small 245 

perturbations in parameters around certain reference points affect outputs, making it computationally feasible and widely 

used (Rakovec et al., 2014). However, for models where parameters interact or have non-linear impacts on the outputs, local 

SA can introduce substantial bias, underestimating parameter importance (Saltelli et al., 2019). The model parameters in this 

study are anticipated to exhibit complex, non-linear interactions influencing the outputs (Denman, 2003; Fennel et al., 2022; 

Matear, 1995; Ward et al., 2010), thus justifying the use of global SA to capture these dynamics accurately. One of the most 250 

effective global SA methods, Sobol sensitivity analysis, is widely adopted due to its precision in addressing interaction 

effects, discontinuities, and non-linear influences of parameters on model outputs (Baki et al., 2022; Reddy et al., 2024b). 

Based on the Hoeffding-Sobol decomposition, Sobol SA leverages Analysis of Variance (ANOVA) to decompose output 

variance into contributions from individual parameters, interactions between parameter pairs, and so on across increasing 

levels of dimensionality (Saltelli et al., 2010; Sobol′, 2001). Sobol sensitivity indices, representing the importance of 255 

parameter interactions in the context of total output variance, are then computed by evaluating ratios of these variances. To 

perform Sobol SA on the WOMBAT-lite outputs requires extensive parameter sampling, a computationally expensive task. 

To efficiently manage this, we use a surrogate Gaussian Process Regression (GPR) model (Williams and Rasmussen, 1995, 

2006), which is trained on a limited number of runs (sensitivity experiments; section 2.3.2; visualised in Fig. 1). The GPR 

model, designed for accuracy, provides predictions over a large sample space, allowing SA to be performed without 260 

extensive and computationally unfeasible simulations.  

 

The analysis focuses on the target fields detailed in Fig. 3 and section 2.3.1. Initially, a Quasi-Monte Carlo Sobol sequence is 

applied to generate 512 parameter samples using the Uncertainty Quantification Python Laboratory package (Wang et al., 

2020). Simulations are then run with these parameter samples, and root mean square error (RMSE) values are calculated by 265 

comparing the model outputs with observational data in space and time. RMSE is normalized via min-max scaling. A sample 

size of 512 is selected based on the sample size sensitivity experiments (Fig. S1). Next, the GPR model is trained using these 

parameter samples as inputs and the normalized RMSE as the output for each observation. K-fold cross-validation (K=8) is 

used to evaluate the GPR model’s accuracy. The data is split into K folds, and the model is trained on K-1 folds, with the 

left-out fold serving as the test set. This is repeated across all folds, and predictions are aggregated. The GPR model 270 

accuracy is assessed through the goodness-of-fit (R²) metric by comparing GPR predictions with WOMBAT-lite RMSE 

data, which indicates high accuracy (Fig. S2). Using this validated GPR model, RMSEs for 53,248 new parameter samples 

(generated via Sobol sequence) are predicted for each target field (all eight), consistent with methods from previous studies 
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(Baki et al., 2022; Reddy et al., 2024b). Finally, Sobol sensitivity indices are calculated based on these predictions for all 

eight target fields, offering insight into the relative influence of each parameter on the ability of WOMBAT-lite to reproduce 275 

the targets.  

 

2.4.2 Parameter optimisation 

This study uses Gaussian Process Regression-based Bayesian Optimisation (G-BO) (Reddy et al., 2024a) to identify the 

optimal parameter distributions so that WOMBAT-lite can best reproduce the eight target fields simultaneously. The process 280 

begins by generating 512 parameter samples via a Quasi Monte-Carlo (QMC) Sobol sequence design implemented through 

the Uncertainty Quantification Python Laboratory (UQ-PyL) package (Wang et al., 2020). For the optimisation, we explore 

only the parameter space of the most sensitive parameters identified by the global sensitivity analysis (Fig. 1). These 512 

sample parameter sets are used as input to WOMBAT-lite, and the model is run forward for 10 years (see above). A sample 

size of 512 is selected based on the sample size sensitivity experiments (Fig. S3). Then, the GPR surrogate model, trained on 285 

these 512 samples, predicts a normalized cost function,   

J = $1 − r),+,,( ∙ NRSME),+,,	,          (1) 

Where 𝐽 is the cost function for a given target field, 𝑁𝑅𝑆𝑀𝐸-,.,/ is the normalized root mean square error (scaled by the 

max-min) and 𝑟-,.,/ is the Pearson’s correlation coefficient evaluated across all longitude (subscript 𝑥), latitude (subscript 𝑦) 

and time (subscript 𝑡) points (time in this case being monthly in resolution). This cost function penalizes poor correlations, as 290 

well as bias and error in the variance because we use an uncentered NRMSE. Rather than optimise for the parameters that 

best reproduce each target field in isolation, we chose to optimise to a global cost function 

∑ J01
023 = ∑ ;$1 − r),+,,0 (NRMSE),+,,0 <1

023  ,          (2) 

Where superscript 𝑛 is the 𝑛th target field. Therefore, we aim to select parameter sets that optimise overall model 

performance. Using a composite kernel—constant, Matern, and white noise kernels—the GPR model accurately predicts the 295 

normalized cost function values, confirmed by R² scores > 0.8 from K-fold cross-validation (K=8) (Fig. S4). The trained 

GPR model is then used to estimate the normalized cost function value for optimisation purposes.  

 

Bayesian optimisation enables iterative learning of optimal model parameters using observational data. Here, a uniform prior 

is assumed for parameters, and the normalized cost function value predicted by the GPR model serves as the likelihood 300 

function (Reddy et al., 2024a). Since computing marginal likelihood (p(z)) directly is often complex, Markov Chain Monte 

Carlo (MCMC) sampling is employed, which estimates the posterior distribution without explicit calculation of this constant 

(Issan et al., 2023). Among MCMC methods, Affine invariant ensemble sampling, implemented using the “emcee” Python 

package (Foreman-Mackey et al., 2013), is selected for its efficient convergence properties. This method uses an ensemble 
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of chains to simplify sampling from anisotropic distributions. Fifty walkers and a stretch move of two are applied, with the 305 

first 10,000 steps used as a burn-in phase to ensure convergence, followed by 90,000 additional steps to achieve stable 

posterior distribution estimates (Foreman-Mackey et al., 2013; Goodman and Weare, 2010).  

3. Results 

3.1 Performance 

The 512 sensitivity experiments, each with a unique parameter set (Table 1), produced 512 unique realisations of 310 

biogeochemical and ecosystem dynamics. We compared year 10 of the experiments at all grid cells and at monthly temporal 

resolution with the target datasets (i.e., the observations). The skill of these simulations ranged widely (Fig. 4; Table 2). 

Global surface chlorophyll showed the greatest variation, ranging in correlations from -0.45 to 0.8, followed by the primary 

limiting nutrient of phytoplankton growth (-0.29 to 0.82) and the depth of the chlorophyll maximum (-0.25 to 0.69). Most 

experiments underestimated the variability in surface chlorophyll, and many produced surface chlorophyll concentrations 315 

that were low compared with the observation-based product. Unlike surface chlorophyll, there was too much variation in the 

depth of the chlorophyll maximum and many experiments had chlorophyll maxima that were positioned too deep (i.e., 

positive bias).  

 

For the air-sea flux of CO2 in the Southern Ocean (20ºS – 90ºS) and the depth-integrated rate of net primary production, our 320 

simulations showed a narrow range of correlations between 0 and 0.5. The narrower range potentially reflects the identical 

physical state across our experiments, which strongly influences air-sea gas exchange and nutrient delivery to the surface. 

For net primary production, the weaker correlations might reflect significant errors in the observation-based products 

themselves (Westberry et al., 2023) that limit the potential for agreement. Like chlorophyll, net primary production showed a 

negative bias in many experiments and a chronic inability to capture the observed magnitude of variations. The same general 325 

underestimation of values and variability was the case for the sinking flux of detritus. No experiment was able to reproduce 

the observed spatiotemporal variations in sinking detrital flux, although this is perhaps expected given that this dataset 

captures higher frequency variations in particle flux that are lost in a coarse resolution model.  

 

For surface dissolved iron, the experiments produced correlations ranging from -0.13 to 0.52, and thus the best performing 330 

experiments compared well with other biogeochemical models (Huang et al., 2022). Finally, the primary limiting nutrient of 

phytoplankton growth (i.e., nitrogen or iron) showed biases and correlations ranging from negative to positive, indicating 

that some were too nitrogen limited, some were too iron limited, and some performed well.  
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 335 
Figure 4. Performance of the 512 sensitivity experiments with WOMBAT-lite against the 8 key observational targets. Taylor Diagrams 
(Taylor, 2001) represent the agreement between a dataset and the target (red dot) by visualising the dataset in terms of its correlation (radii), 
normalised standard deviation (x and y axes), and the centered root mean square error (dashed grey contours). We also colour each 
experiment by its global mean bias. Positive bias in the Southern Ocean air-sea flux of CO2 signifies too much outgassing or not enough 
ingassing. These statistics were computed on the global 1º by 1º grid at monthly resolution, except the Primary Limiting Nutrient dataset 340 
which was computed as an annual mean.  
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Table 2. Performance ranges of experiments for key observations. Minimum and maximum values of correlations, normalised standard 
deviations and bias across all 512 sensitivity experiments. Surface nitrate was log10 transformed. NO3 = nitrate. dFe = dissolved iron. CO2 
= carbon dioxide. POC = particulate organic carbon. 345 

Observation Correlation Normalised standard deviation Bias 

Surface NO3 (20ºS – 20ºN) 

(µM) 
0.20 | 0.66 0.09 | 1.30 -2.14 | 1.33 

Surface dFe 

(nM) 
-0.13 | 0.52 1.15 | 2.51 -0.10 | 0.27 

Surface Chlorophyll 

(mg m-3) 
-0.45 | 0.80 0.01 | 1.41 

 
-0.27 | 0.21 

Depth of the chlorophyll maximum 

(m) 
-0.25 | 0.69 0.89 | 5.19 -49.4 | 271.4 

Depth-integrated net primary production 

(mg C m-2 day-1) 
0.02 | 0.49 0.00 | 2.26 -456 | 325 

Air-sea flux of CO2 (20ºS – 90ºS) 

(mol C m-2 year-1) 
0.03 | 0.44 1.01 | 1.73 -1.40 | 0.26 

Primary limiting nutrient 

(1=N, 2=Fe) 
-0.29 | 0.82 0.00 | 1.01 -0.46 | 0.51 

Sinking flux of POC 

(mg C m-2 day-1) 
0.08 | 0.59 0.00 | 0.79 -27.6 | 6.2 

 

 

3.2 Global sensitivity analysis  

Global sensitivity analysis with our first set of 512 experiments and supplemented by the surrogate machine learning model 

revealed that the overall performance of WOMBAT-lite was sensitive to 11 of the 24 parameters tested, based on an 350 

arbitrary threshold of a 5% contribution to variation (Fig. 5). These were the scaler on the maximum growth (𝛼4) and linear 

mortality rates of phytoplankton (𝛾!5), the half-saturation coefficients for phytoplankton uptake of dissolved iron (𝐾!#'() and 

nitrate (𝐾!6), the maximum quota of iron (𝑄#
"#$% ) and optimal quota of chlorophyll (𝑄#

∗%&'% ), the prey capture rate coefficient of 

zooplankton (𝜀) and their quadratic mortality rate (Γ1"), the sinking (𝜔#5) and remineralisation (𝛾#5) rate of detritus, and the 

temperature sensitivity of heterotrophy (𝛽%). For each of the 8 target fields, typically only a few of these key parameters 355 

were influential. We step through these parameters here.  
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All target fields were highly sensitive to the phytoplankton maximum growth rates (𝛼4) and their linear mortality (𝛾!5) (Fig. 

5). Of these, only the depth of the chlorophyll maximum and surface dFe concentrations were sensitive to 𝛼4 and 𝛾!5 via 

interactive effects with each other or other variables (i.e., higher-order interactive effects). All other target fields were 360 

directly affected by these parameters, making 𝛼4 and 𝛾!5 master parameters with largely predictable effects for controlling 

the performance and output of WOMBAT-lite. For example, while the air-sea flux of CO2 in the Southern Ocean (south of 

20ºS) was sensitive to several parameters, the model’s ability to reproduce the observations was primarily controlled by the 

ability of phytoplankton to accumulate biomass rapidly in the spring and summer. If 𝛾!5 was too high then too much biomass 

was lost over the winter, causing a lag in the spring bloom. If 𝛼4 was too low, then the bloom would be too weak. The link 365 

between CO2 ingassing in the summer and the phytoplankton bloom also meant that the prey capture rate coefficient of 

zooplankton (𝜀), the half-saturation coefficient for iron uptake by phytoplankton (𝐾!#'() and the sinking rate of detritus (𝜔#5) 

were also important controls on Southern Ocean CO2 fluxes. 

 

Surface nitrate concentrations in the tropics (20ºS – 20ºN), depth-integrated net primary production and the sinking flux of 370 

detritus were all affected by similar parameters. After 𝛼4 and 𝛾!5, the parameters of influence were the sinking and 

remineralisation rates of detritus (𝜔#5  and 𝛾#5). Elevated sinking rates and decelerated remineralisation both deepen the 

nitracline by stripping more nitrate out of the upper ocean and shrinking the large tongue of high nitrate water that spreads 

west across the equatorial Pacific. Surface nitrate in the equatorial band was also marginally affected by the temperature 

sensitivity of heterotrophy (𝛽%), which amplifies remineralisation rates (set also by 𝛾#5) in warmer waters and so can increase 375 

substantially how much detritus is returned to inorganic nutrients. 
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Figure 5. Sensitivity of WOMBAT-lite performance to variations in the parameters listed in Table 1. Performance is measured by the 
root mean square error (RMSE). Darker colours indicate a greater sensitivity of a target field to the parameter in question. In (a) we show 380 
first-order sensitivities and in (b) the higher-order sensitivities, otherwise referred to as an interaction effect, where the effect on the target 
is dependent on the variations in other parameters. Note that the parameter 𝜷𝒂 was not included at this stage but only later during the 
optimisation process (steps 7-10 in Fig. 1). 

 

 385 

Two key parameters controlling the model’s ability to reproduce surface dissolved iron (after 𝛼4 and 𝛾!5) and the primary 

limiting nutrient dataset were the half-saturation coefficient for iron uptake (𝐾!#'() and the maximum Fe:C quota of 

phytoplankton (𝑄!
"!"# ). Variations in these parameters had strong interactive effects. Elevating iron quotas increased the 

ability of phytoplankton to take excess dFe into their biomass, reduced surface dFe concentrations and strengthened iron 
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limitation as more Fe-rich biomass was exported as sinking detritus. However, if we also increased the half-saturation 390 

coefficient of dFe uptake, this slowed phytoplankton luxury uptake of dFe and made them less likely to achieve high intra-

cellular Fe:C quotas. As such, setting higher Fe:C quotas had little effect on surface dFe concentrations when 𝐾!#'( was high. 

On the other hand, setting high Fe:C quotas can have a substantial effect on dFe concentrations when 𝐾!#'( is low. For the 

primary limiting nutrient dataset, however, we found that increasing both Fe:C quotas and 𝐾!#'( elevated dFe limitation 

regardless of what happened to the dFe concentrations.  395 

 

Performance in surface chlorophyll was the most inter-dependent metric, meaning that many parameters were influential. In 

addition to the master parameters of 𝛼4 and 𝛾!5, surface chlorophyll was affected by the maximum Fe:C quota (𝑄!
"!"# ), the 

half-saturation of dFe uptake (𝐾!#'(), the maximum quota of chlorophyll to carbon in phytoplankton (𝑄!
"#$%# ), the prey capture 

rate coefficient of zooplankton (𝜀), and marginally by the quadratic mortality coefficient of zooplankton (Γ85). Thus, 7 of the 400 

11 important parameters were influential. The fact that many parameters were crucial for determining the performance of 

surface chlorophyll reflects that a delicate balance between phytoplankton growth and mortality must be struck to reproduce 

overall biomass.  

 

Finally, the depth of the chlorophyll maximum was overwhelmingly influenced by 𝛼4 and 𝛾!5, with weaker influences from 405 

the half-saturation coefficient for nitrogen uptake (𝐾!6), cell quotas of iron and chlorophyll (𝑄!
"!"#  and 𝑄!

"#$%# ), as well as 

parameters related to the sinking and remineralisation of detritus (𝛽%, 𝜔#5  and 𝛾#5). All these parameters affected the depth of 

the nitracline in direct and indirect ways, to which the depth of the chlorophyll maximum was strongly linked.   

 

3.3 Parameter optimisation 410 

Our optimisation procedure involved another 512 experiments that varied 13 parameters: the 11 parameters identified in the 

sensitivity analysis plus 2 additional parameters that were missed by our sensitivity analysis. All insensitive parameters were 

held at their default values (Table 1). The additional 2 parameters included wider variations in the biomass threshold of 

phytoplankton for allometric scaling (𝐵!/%9(:%) from 0.01 to 1.0 (previously this had been varied from 0.01 to 0.1), as well as 

variations in the base scaler of temperature-dependent autotrophy (𝛽4), which was previously held constant during the 415 

sensitivity experiments at a value of 1.066 (Q10 = 1.89), following Eppley (1972), but have nonetheless been shown to vary 

between phytoplankton types (Anderson et al., 2021a). We took the opportunity during the optimisation to vary these 

parameters. In our optimisation step, we explored a range of 1.040 to 1.080 (Q10 from 1.48 to 2.16) in 𝛽4 motivated by the 

results of Anderson et al. (2021a). Briefly, we explored variations in 13 parameters and sought their optimal values for best 
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reproducing the 8 target fields (Fig. 3) by minimizing the global cost function (Eq. 2). The 512 experiments were used to 420 

calibrate the global cost function synthetically using the machine learning model. 

 

 
Figure 6. Optimal probability density functions of 13 important parameters. Optimisation involved minimizing the global (summed) 
cost function (Eq. 2) of model performance across the 8 target variables shown in Figure 3. We show normalized distributions of each 425 
parameter here and refer the reader to the ranges (a priori and optimal) shown in Table 1 for their actual values. Parameters are organised 
according to whether they control phytoplankton, zooplankton or detritus. 

 

We identified posterior distributions of each of the 13 parameters from which optimal values could be chosen (Fig. 6). 

Optimal values for each of these parameters and their 95% confidence interval range are detailed in Table 1. For most of the 430 

parameters, the probability distributions showed peaks away from the edges of the predefined ranges, suggesting that our a 

priori ranges were sufficiently wide to capture the optimal values. For the scaler on maximum growth rates of phytoplankton 

(𝛼4), for instance, the model predicted optimal values with 95% confidence between 0.89 and 1.16 day-1, a range that sits 

within our a priori range of 0.25 to 1.25 day-1 (Table 1) and suggests that the rapid accumulation of biomass during the 

Phytoplankton DetritusGrazing
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growth season is crucial for model performance. We also note that the model predicted optimal values that often aligned well 435 

with ecological theory. Higher values of 𝐾!#'( over 𝐾!6 (half-saturation coefficients for uptake) reflect the lesser 

bioavailability of dFe relative to that of inorganic nitrogen due to its complexation with organics (Shaked et al., 2020; 

Tagliabue et al., 2017). Fidelity to observations was also better when the temperature sensitivity of autotrophy (𝛽4) was 

much lower than the temperature sensitivity of heterotrophy (𝛽%), consistent with ecological theory on metabolism (Brown et 

al., 2004) and experimental data (Chen et al., 2012). 440 

 

Optimal values for two parameters were predicted at the lower edge of their range. These were the linear mortality rate of 

phytoplankton at 0ºC (𝛾!5) and the prey capture rate coefficient of zooplankton (𝜀), for which the optimal values were 

predicted at 0.01 day-1 and 0.05 m6 (mmol C)-2 day-1, respectively (Table 1). Given that 𝛾!5 was strongly influential to the 

ability of WOMBAT-lite to reproduce all 8 of our target fields, it is likely that lower values of this parameter than explored 445 

herein would produce a better fit to the observations. Rates of mortality considerably lower (< 0.001 day-1) than the lowest 

value in our a priori range (0.01 day-1) were observed in phytoplankton cultures grown within their thermal niche (Baker and 

Geider, 2021). However, mortalities also increase severely at higher temperatures (Baker and Geider, 2021), and our choice 

of higher values in our a priori range was motivated by an attempt to account for the small proportion of phytoplankton taxa 

placed above their thermal niche or affected by other sources of environmental stress at any given time. The fact that our 450 

optimisation always chose the lowest values (near 0.01 day-1) suggests that the proportion of the community that is stressed 

is considerably lower than we assumed. Similarly, optimal values of 𝜀, the zooplankton prey capture rate coefficient, tended 

towards the lowest of our predefined range. This parameter was a strong control on the model’s ability to reproduce the 

observed surface chlorophyll and the summer uptake of CO2 in the Southern Ocean (Fig. 5). Values less than 0.05 m6 (mmol 

C)-2 day-1 suggest grazing pressure more in line with a zooplankton community with a large representation of 455 

mesozooplankton (Rohr et al., 2022). This type of community is typical for eutrophic and high latitude regions but may not 

be representative of zooplankton grazers in the oligotrophic gyres (Rohr et al., 2024). Importantly, the lower grazing 

pressure associated with this type of zooplankton community would allow phytoplankton growth during the spring to 

outpace zooplankton grazing for longer, which we note again was important for achieving summer CO2 uptake in the 

Southern Ocean. While we cannot say whether an expanded range would have selected for even lower values, we note that a 460 

value near 0.05 m6 (mmol C)-2 day-1 sits at the global median of empirical estimates across a large range of zooplankton taxa 

(Rohr et al., 2022). 
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3.4 Outcomes 

3.4.1 Finding the optimal parameter set 465 

After our optimisation, we chose 20 randomly sampled parameter sets from the optimal posterior distributions shown in 

Figure 6 and ran WOMBAT-lite forward for 10 years from initial conditions. These optimal versions of WOMBAT-lite 

show good fidelity to the target fields, with all registering good performances in terms of the global cost function that were 

as good as or better than the best of the 512 sensitivity experiments (yellow bars in Fig. 7). Continuing to run the model 

forward for 100 years post initialization showed some degradation in the performance (red bars in Fig. 7). This is expected, 470 

since our optimisation procedure was trained on model output only 10 years post initialization due to computational 

constraints. Model outcomes drift further away from the target fields with longer integrations. Lower frequency variability 

and trends are thus missed by the optimisation that are nonetheless present in the biogeochemical model, and these play out 

as the model is integrated forward for longer. After 100 years, we chose our best performing parameter set, detailed in Table 

1 (red star in Fig. 7). This experiment showed good performance across all observational metrics in its 100th year and we 475 

hereafter show output from this experiment. 

 
Figure 7. Overall performance of WOMBAT-lite in terms of the global cost function (summed across all target variables; Eq. 2). We 
show all 512 sensitivity experiments (grey), the 20 optimal experiments that selected parameter values randomly from the optimal probability 
density functions (Fig. 6) after 10 years (gold) and 100 years (red), and the performance of the optimal parameter set after 100 years (red 480 
star).  
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3.4.2 Performance improvements 485 

A key challenge in model development is that the addition of new processes can degrade performance if the new processes 

are implemented poorly and/or if these processes have complex interactive effects once introduced. Our sensitivity analysis 

and optimisation procedure provided a means to constrain both the effects and values of the WOMBAT-lite parameter set, so 

that any advances in functionality are accompanied by an improvement in performance. We take the opportunity to compare 

the optimised WOMBAT-lite with an unoptimised biogeochemical model (Appendix A.1), run under the same conditions 490 

and without the functional improvements described in Appendix A.2. The optimised WOMBAT-lite shows a better tropical 

distribution of surface nitrate (Fig. 8a-c), lower concentrations of dissolved iron at the surface (Fig. 8d-f) and, consequently, 

the appearance of iron-limited regimes for phytoplankton growth in the Southern Ocean, subarctic North Pacific and 

Atlantic, eastern Equatorial Pacific, and the upwelling centres of the Benguela, Arabian and Canary current systems (Fig. 8s-

u). Note that the surface iron distribution shown in Figure 8 is of the annual average, which includes higher concentrations 495 

caused by winter mixing (Tagliabue et al., 2014b), whereas much of the observations will have been taken during the polar 

summer when dFe concentrations are drawn down by biology. WOMBAT-lite also shows a 50% increase in globally 

integrated net primary production (from 18.5 Pg C yr-1 to 27.9 Pg C yr-1) compared to the unoptimised model, and less 

diffuse peaks of primary production in the highly productive upwelling zones, consistent with observations (Fig. 8m-o). The 

increase in primary production combined with the spatially variable sinking scheme, which includes a linear increase in 500 

sinking speeds with depth, likely contributed to elevating the flux of detritus into the deep ocean (Fig. 8v-x). We note, 

however, that any improvements to sinking of detritus are marginal and deep ocean organic particle fluxes are still 

underestimated, likely because WOMBAT-lite still underestimates globally integrated net primary production (Buitenhuis et 

al., 2013) and stocks of sinking detritus (Fox et al., 2024). Finally, WOMBAT-lite shows good agreement with surface 

chlorophyll and the broad patterns in the depth of the chlorophyll maximum (Fig. 8g-l), although the chlorophyll maxima are 505 

situated too deep in the gyres and are too shallow in the Southern Ocean.  
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Figure 8. Comparison of the previous, unoptimised WOMBAT (left) and WOMBAT-lite (middle) with the 8 target observations 
(right). (a-c) Surface nitrate concentration (µM). (d-f) Surface dissolved iron concentration (nM). (g-i) Surface chlorophyll concentration 510 
(mg m-3). (j-l) Depth of the chlorophyll maximum (m). (m-o) Depth-integrated net primary production (mg C m-2 day-1). (p-r) Downward 
flux of CO2 (mol C m-1 year-1) (µM). (s-u) Primary limiting nutrient to phytoplankton growth at the surface. (v-x) Downward flux of 
particulate organic carbon (mg C m-1 day-1). We show annual means here even though statistical measures of performance shown in Figure 
6 are computed including temporal variations on a monthly resolution. Output after 100 years of forward simulation from initialization with 
repeat atmospheric forcing for calendar year 1990-1991 conditions using the JRA-55do (Tsujino et al., 2018). Atmospheric CO2 set at 315 515 
ppm in the experiments. Note that the ocean-only hindcast runs performed here with the previous, unoptimized WOMBAT used a parameter 
set detailed in Law et al. (2017) that is intended for the ACCESS-1.5 Earth System Model. 
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3.4.3 Phytoplankton bloom phenology 

A major update to WOMBAT-lite has been to inclusion of prognostic chlorophyll to carbon ratios within its phytoplankton 520 

functional type. This allows for direct comparison with remotely sensed chlorophyll products, including those that 

investigate the phenology of phytoplankton blooms (Nicholson et al., 2024). WOMBAT-lite was not optimised for its 

representation of phytoplankton phenology, but nonetheless performs well in respect to the timing of its annual blooms (Fig. 

9a,b). The model captures the sharp change in bloom initiation (using the cumulative sum method) between the subtropical 

and subpolar regimes in both hemispheres, with autumn-winter subtropical blooms and spring-summer polar blooms. 525 

WOMBAT-lite also shows a general increase in duration of its blooms in the tropics compared to the polar regions (Fig. 

9c,d), as well as increases in the mean and integrated chlorophyll concentrations in the polar and upwelling regions 

compared to the subtropical gyres (Fig. 9e-h). 

 

That said, WOMBAT-lite shows some clear biases compared with the Nicholson et al. (2024) dataset, which was built from 530 

the Ocean Color – Climate Change Initiative remotely-sensed chlorophyll product (Sathyendranath et al., 2019). Blooms at 

the poles start too early and their duration is too long. Overly long blooms in the Southern Ocean contributed to an 

overestimate of mean and integrated concentrations of chlorophyll than that calculated by Nicholson et al. (2024) (Fig. 9i). 

This bias may be associated with an excess of dFe due to a ferricline that is placed too shallow (Fig. 8e,f), a common model 

bias (Tagliabue et al., 2016) that is also present in our simulations, and which amplifies iron supply and chlorophyll 535 

accumulation. Meanwhile, in the subtropics and northern high latitudes, the phytoplankton blooms in WOMBAT-lite appear 

to be too low in mean and integrated chlorophyll (Fig. 9i). This is possibly caused by bloom durations that are too short in 

the subtropics (they are > 300 days in the remote-sensing product), although this is not the case in the north polar region. 

Equally, though, these biases in bloom chlorophyll metrics may be due to our optimisation against a different chlorophyll 

product (Sauzède et al., 2016), with which the model shows good agreement. Capturing the bloom phenology of 540 

phytoplankton is important because there is evidence of multi-decadal trends in their start, end, and duration in both the 

Southern and Arctic Oceans (Ardyna and Arrigo, 2020; Thomalla et al., 2023), and according to the results herein, the timing 

and duration of the bloom is influential to air-sea CO2 fluxes. 
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 545 
Figure 9. Comparison of WOMBAT-lite (left) with phenological indicators of the annual phytoplankton bloom observed via 
chlorophyll-a (right). (a-b) Bloom initiation day. (c-d) Bloom duration (days). (e-f) Mean bloom chlorophyll-a across duration (mg m-3). 
(g-h) Integrated bloom chlorophyll (mg m-3 bloom-1). (i) Zonal mean integrated bloom chlorophyll for the observations (black) and 
WOMBAT-lite (red). Observations are provided by Nicholson et al. (2024). Phenological metrics are calculated via the cumulative sum 
method. For WOMBAT-lite these results come from the optimized model after 100 years of forward simulation from initialization with 550 
repeat atmospheric forcing for calendar year 1990-1991 conditions using the JRA-55do (Tsujino et al., 2018).  
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3.4.4 Carbon fluxes 

Previous assessments of ocean biogeochemical models show that the Southern Ocean air-sea CO2 fluxes are strongly biased 555 

(Hauck et al., 2020, 2023). We therefore sought to improve this aspect within WOMBAT-lite. To properly assess the 

performance of WOMBAT-lite for reproducing global CO2 fluxes, we performed a hindcast simulation with the optimal 

version of WOMBAT-lite from 1958 to 2019 forced by the inter-annually changing JRA55-do atmospheric fields and with 

the historical increase in atmospheric CO2. This hindcast simulation was initialised with biogeochemical fields at the end of a 

200-year spin-up simulation with the same repeat “normal” year forcing of the JRA55-do (Stewart et al., 2020), with 560 

atmospheric CO2 set at 315.2 ppm (equivalent calendar year 1957) and where alkalinity and preindustrial DIC budgets were 

at quasi-equilibrium. Budgets of major tracers at year 200 are presented in Table 3. This hindcast simulation did not strictly 

adhere to the recommendations of the OMIP2 protocol (Orr et al., 2017), but was sufficient to assess the seasonality of air-

sea CO2 fluxes in WOMBAT-lite.  

Figure 10. 565 
Climatological evolution of the integrated air-sea CO2 flux over the latitudinal bands in the Southern Ocean averaged over years 
1990 to 2010. (a), Observational product from the Copernicus Marine Environmental Monitoring Service (black) are compared with fluxes 
from WOMBAT-lite (red) and an unoptimized, previous version of WOMBAT (blue) integrated between 20ºS-35ºS (subtropics). Pearson’s 
correlations are shown for both models. Negative values are net ingassing of CO2 into the ocean. Background shading denotes the seasonal 
transition from summer to winter to summer. Panels (b), (c), and (d) are the same as in (a), but integrated within 35ºS-50ºS for the subtropical-570 
subantarctic transition, 50ºS-65ºS for the Antarctic Circumpolar Current and 65ºS-80ºS for Antarctic zone, respectively.  
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Table 3. Key rates in WOMBAT-lite after 200-year spin-up under repeat normal year forcing with optimised parameters. 

Cycle Description Units WOMBAT-lite 

Carbon 

Net primary production Pg C yr-1 27.9 

Organic export (100 m) Pg C yr-1 6.2 

CaCO3 export (100 m) Pg C yr-1 0.60 

Preindustrial air-sea flux Pg C yr-1 -0.358 

Sedimentary burial Pg C yr-1 -0.20 

CaCO3 sedimentary burial Pg C yr-1 -0.012 

Riverine flux Pg C yr-1 0.587 

Alkalinity 

Sedimentary burial Pmol Eq. yr-1 0.002 

CaCO3 sedimentary burial Pmol Eq. yr-1 -0.002 

Riverine flux Pmol Eq. yr-1 0.018 

Sedimentary denitrification Pmol Eq. yr-1 0.0028 

Nitrogen fixation Pmol Eq. yr-1 -0.0015 

Nitrogen 

Sedimentary burial Tg N yr-1 -30.8 

Riverine flux Tg N yr-1 35.8 

Nitrogen fixation Tg N yr-1 20.4 

Sedimentary denitrification Tg N yr-1 -39.6 

Oxygen 
Preindustrial air-sea flux Pmol O2 yr-1 -0.04 

Volume of hypoxia (< 60 µM) 1015 m3 79.1 

Iron 

Atmospheric deposition Gmol Fe yr-1 1.1 

Hydrothermal flux Gmol Fe yr-1 9.9 

Sedimentary burial Gmol Fe yr-1 0.60 

575 

28

https://doi.org/10.5194/egusphere-2024-4026
Preprint. Discussion started: 4 February 2025
c© Author(s) 2025. CC BY 4.0 License.



29 
 

 

 

With optimal parameters, WOMBAT-lite shows improvement in its seasonality and regional agreement of CO2 fluxes 

compared with an unoptimised version of the model (Fig. 10). While CO2 fluxes are strongly controlled by thermal processes 

in the subtropics and are thus well approximated by optimised and unoptimised versions alike (Fig. 10a), CO2 fluxes at 580 

higher latitudes are, however, more affected by biological drawdown and release (Mongwe et al., 2018; Takahashi et al., 

2002). In the transition from subtropical to subantarctic zones (35ºS-50ºS) the observations show overall oceanic uptake of 

CO2, but importantly a greater uptake in the summer (Fig. 10b). Our optimised WOMBAT-lite manages to show some 

improvement over the unoptimised model, with lower uptake in the winter and a trend towards uptake in the spring/summer. 

Nonetheless, this improvement is marginal in this zone and suggests that further improvement can be made in the future. The 585 

best match between WOMBAT-lite and the data is achieved in the Antarctic Circumpolar Current zone (50ºS-65ºS), where 

WOMBAT-lite shows good climatological correlations with the observations, while the unoptimised model shows negative 

correlations. The flip from poor to good performance is caused by the net outgassing in the late winter and a trend towards 

oceanic uptake in the spring summer (Fig. 10c). Better seasonal correlations (0.87 à 0.96) are also achieved in the Antarctic 

Zone (65ºS-80ºS), although with WOMBAT-lite potentially overestimating the summer flux of CO2 into these waters (Fig. 590 

10d).  

 

These seasonal improvements in air-sea CO2 fluxes are clear by looking at correlations at each grid cell (Fig. 11). We 

directly compared the monthly CO2 fluxes between an observation product (Chau et al., 2022) and WOMBAT-lite as well as 

the unoptimised model from January 1985 to December 2018. Negative correlations across a broad swath of the Southern 595 

Ocean are evident in the unoptimised model, as well as the subarctic Pacific and Atlantic Oceans. The optimised WOMBAT-

lite, however, shows many positive correlations in these regions. Negative and near-zero correlations do still exist in 

WOMBAT-lite, suggesting room for further improvement, but the area and intensity of these poorly performing locations are 

considerably reduced. 

 600 

Improvement in air-sea CO2 fluxes is noteworthy from a zonally integrated perspective that incorporates the Northern 

Hemisphere (Fig. 12). North of 40ºN, the oceanic uptake of CO2 in the unoptimised version of the model exceeded the 

observations. Winter-time uptake north of 40ºN in WOMBAT-lite is, however, substantially reduced (Fig. 12b), while 

summer uptake is increased (Fig. 12c), resulting in a better match to observed CO2 fluxes in the Northern Hemisphere (Fig. 

12a) that is also visible in the temporal correlations (Fig. 11). Meanwhile, there is little difference between the optimised and 605 

unoptimised versions of the model in the low latitudes, emphasising how thermal changes dominate air-sea CO2 fluxes in 

this region (Takahashi et al., 2002). Once again, in the Southern Ocean, we see clear improvements from a zonally integrated 

perspective. Winter outgassing is now achieved in WOMBAT-lite, although the zone of peak outgassing occurs too far north 

(Fig. 12c). Similarly, summer oceanic uptake is now achieved and is a closer match to the observations, although again the 
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zones of maximum uptake are shifted too far north by roughly ~5º (Fig. 12b). Overall, the changes in the biogeochemical 610 

functionality of WOMBAT-lite show some improvements in reproducing observed air-sea CO2 fluxes.  

 

 
Figure 11. Temporal correlations in monthly CO2 fluxes with an observation product (Chau et al., 2022). (a), optimised WOMBAT-
lite and (b), unoptimized, previous WOMBAT over years 1985 to 2019.  615 
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Figure 12. Zonally integrated air-sea CO2 fluxes. (a), Annual mean observations (black) averaged over years 1990-2010 are compared 
with fluxes from WOMBAT-lite (red) and a previous, unoptimized version of WOMBAT (blue). Panels (b) and (c) are the same as in (a) 
but are averages over the months of January-March and July-September, respectively. Positive fluxes are out of the ocean. 620 
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Summary 

We have updated The World Ocean Model of Biogeochemistry And Trophic dynamics (WOMBAT) in a new version called 

WOMBAT-lite. Although “lite”, this version is more complex than the previous WOMBAT. Updates include an implicit 

representation of the packaging effect of cell size, which explicitly controls light attenuation through the water column; 625 

explicit photoacclimation of phytoplankton; a dynamic colimitation of iron and light, whereby phytoplankton require 

increases in their iron quotas as they photoacclimate (i.e., increase their chlorophyll quotas) in low light conditions; spatial 

variations in nutrient affinities of phytoplankton for nitrogen and iron; expanded iron cycling, with additional sinks due to 

scavenging onto detrital particles, colloidal coagulation and nanoparticle precipitation; riverine sources offset by permanent 

burial in sediments; a spatially varying sinking rate of detritus that increases with an implicit estimate of mean community 630 

cell size and also with depth; simplistic sedimentary denitrification and nitrogen fixation routines; and dampened 

temperature-dependence of zooplankton grazing.  

 

These updates necessitated optimisation of the many model parameters now present in WOMBAT-lite. To do so, we used a 

surrogate machine learning model trained on a limited sample of real model output. It is critical for accurate global 635 

sensitivity analysis (Saltelli et al., 2019) and Bayesian parameter optimisation techniques (Reddy et al., 2024a) to have a 

large number of samples. These surrogate-based sensitivity analyses and parameter optimisation techniques are therefore 

gaining traction in climate and environmental sciences where computational overhead severely restricts the number of direct 

model simulations that can be done (Li et al., 2018; Reddy et al., 2024a, b; Xu et al., 2022, 2018). Ocean biogeochemical 

models are no different. Here we applied the surrogate-based method to a new model, WOMBAT-lite, optimised the model 640 

parameters and delivered improved performance in reproducing 8 target datasets. Our approach is a powerful way to 

optimise the parameter set of complex models with large computation overhead and to identify the most important 

parameters for realistic simulations. This was done in ocean-only simulations with repeating atmospheric conditions to limit 

physical biases and focus evaluation on the biogeochemical component and its influence on upper ocean fields. 

 645 

The improvements showcased herein included surface distributions of iron and nitrate, surface chlorophyll concentrations, 

the representation of deep chlorophyll maximums, phytoplankton phenology, and particularly the seasonality of air-sea CO2 

fluxes in the high latitudes, where in some regions the seasonality flipped from a negative correlation in the unoptimised 

model to a positive correlation with our optimised, new model. Surface chlorophyll was also well reproduced, as was the 

distribution of iron-limited regions of primary productivity. Additionally, global net primary production was increased by 650 

50%, partially rectifying a low bias in the previous unoptimised model, although our simulated rate of 28 Pg C yr-1 remains 

low compared with data-based estimates of ~50 Pg C yr-1 (Buitenhuis et al., 2013).  
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Despite these improvements, biases do remain. Chief among them is a difficulty in reproducing the seasonality of air-sea 

CO2 exchange in the Southern Ocean, despite the improvements achieved here. WOMBAT-lite does manage to represent the 655 

austral winter outgassing of CO2 from the polar frontal region but fails to absorb enough CO2 in the summer, particularly in 

the subantarctic zone. Other models struggle with representing the seasonality of CO2 exchange in the Southern Ocean, with 

some absorbing too much (e.g., Yool et al., 2021) and others, like WOMBAT-lite, too little (see Hauck et al., 2020, 2023). 

Physical biases in the model are no doubt important here, such as those that have insufficient winter mixing, as has been 

proposed (Hauck et al., 2023). Our sensitivity analysis and optimisation procedure, however, would also suggest that how we 660 

chose to represent the biology contributes substantially to model skill in air-sea CO2 fluxes (also see Mongwe et al., 2018). 

Two parameters of importance for Southern Ocean CO2 fluxes were optimised at the lower edge of their a priori ranges: the 

linear mortality coefficient for phytoplankton (𝛾!5) and the prey capture rate coefficient of zooplankton (𝜀). This suggests that 

further improvement in Southern Ocean CO2 fluxes can be gained by exploring lower values for these parameters than those 

explored here, or alternatively introducing spatial variations in 𝜀 that would capture transitions from nano- to meso-665 

zooplankton grazing from oligotrophic to eutrophic regimes (Rohr et al., 2024). Interestingly, lowering these parameters 

would serve to accelerate the phytoplankton bloom at the beginning of the growth season, suggesting that the phenology of 

the annual spring bloom is a primary control on Southern Ocean CO2 fluxes. According to a recent analysis, this phenology 

is changing (Thomalla et al., 2023), which may imply a changing strength and/or seasonality of air-sea CO2 fluxes in the 

region. 670 

 

As a final word, we note that a surrogate-based optimisation of a complex numerical model can only be as good as the initial 

sample set on which the surrogate is trained. A clear example of this limitation is evident in Figure 7. Even with its optimal 

parameters, WOMBAT-lite suffered a loss in performance when run over 100 years compared to when run over only 10 

years. Future iterations of surrogate-based optimisation would therefore benefit from extending the length of simulations 675 

done by initial set of sensitivity experiments. That said, significant savings in computation efficiency would be needed 

before this is possible with computationally demanding models, such as ocean biogeochemical models, but could be feasible 

by running the biogeochemical model offline from the ocean physics (e.g., Séférian et al., 2013). This approach would also 

eliminate any confounding errors caused by an evolution of the ocean’s physical state since the physical state would not be 

allowed to evolve. Future versions of WOMBAT, including WOMBAT-lite, WOMBAT-mid and WOMBAT-full, and their 680 

deployment into different configurations (e.g., higher resolution versions) would benefit from this methodology of 

optimisation. 
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Code availability 

Model code of WOMBAT-lite developed for the simulations done in this paper is available at 685 

https://github.com/pearseb/WOMBAT_dev. Future versions will be implemented using the GFDL “generic tracer” 

framework to enable its use in MOM5 and MOM6. The code is available at https://github.com/ACCESS-NRI/GFDL-

generic-tracers. Code for the sensitivity analysis and optimisation routines are at https://github.com/Jyoteesh38/Bayesian-

Optimization-of-the-World-Ocean-Model-of-Biogeochemistry-and-Trophic-dynamics-WOMBAT-. Code for the analysis in 

sections 3.1 and 3.4 and the figures therein is available at https://github.com/pearseb/WOMBAT-lite_optimisation_analysis.  690 

Data availability 

Model output will be made available upon request due to the size of the output (> 50 Gb). 
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Appendix A 

A.1 Key equations of the previous WOMBAT  1065 

The previous version of WOMBAT is a simple nutrient-phytoplankton-zooplankton-detritus model (Law et al., 2017; Oke et 

al., 2013) simulating the biomass pools of one phytoplankton, one zooplankton and one detrital functional type, two nutrients 

of phosphate * 16, which is often referred to conveniently as nitrate, (NO3, mmol m-3) and dissolved iron (dFe, µmol m-3), 

the carbonate system (dissolved inorganic carbon, alkalinity, and calcium carbonate; mmol C m-3), and dissolved oxygen 

(mmol O2 m-3). The basic currency of the ecosystem component is 16 times phosphorus (i.e., nitrogen but without external 1070 

sources and sinks). Biological stoichiometry is fixed at a C:N:O2 ratio of 106:16:-172, and the Fe:N of phytoplankton is 20:1 

µmol:mol. The minimum of nutrient availability or availability of photosynthetically activate radiation (PAR, W m-2) control 

phytoplankton growth rates. Growth of phytoplankton is calculated by first solving for a maximum growth rate (µ;<), day-1), 

dependent on temperature (T, ºC), and then applying the minimum of nutrient (L0=,>?@0,) and light (LABC) limitation terms to 

scale down from the maximum to a realised growth rate (µ, day-1).  1075 

 

The budgets for the previous WOMBAT are as follows: 

DEF&
D,

= γG + γ8 + γH − µBH ,           (A1) 

DGI@
D,

= $γG + γ8 + γH − µBH( ;
I@
E
< − Scavenging ,         (A2) 

DF'
D,
= $µBH − γG − γ8 − γH( ;

F'
E
< ,          (A3) 1080 

DJ(
D,
= µBH − γH − ΓH − gB8 ,           (A4) 

DJ)
D,
= gB8λ − γ8 − Γ8 ,            (A5) 

DJ*
D,
= ΓH + Γ8 + gB8(1 − λ) − γG ,           (A6) 

DJ+,+-&
D,

= ;ΓH + Γ8 + gB8(1 − λ)< ;
K
E
< f?0L>M − γK<KF& ,       (A7) 

DNOK
D,

= $γG + γ8 + γH − µBH( ;
K
E
< − W;ΓH + Γ8 + gB8(1 − λ)< ;

K
E
< f?0L>M − γK<KF&X ,     (A8) 1085 

DBPQ
D,

= −$γG + γ8 + γH − µBH( − 2W;ΓH + Γ8 + gB8(1 − λ)< ;
K
E
< f?0L>M − γK<KF&X .     (A9) 
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Regarding phytoplankton growth rates (µ, units of day-1) the individual terms are 

µ;<) = αβ(S) ,            (A10) 1090 

LABC = (1 − eU
./⋅.12
34,5 ) ,           (A11) 

L0=,>?@0, = min; EF&
EF&VW6

, GI@
GI@VW78

< ,         (A12) 

µ = min	(µ;<)LABC, µ;<)L0=,>?@0,) ,         (A13) 

where α and β control the non-linear temperature-dependency of phytoplankton metabolism (Eppley, 1972), PI is the slope 

of the photosynthetic-irradiance curve (mg N (mg Chl)-1 (W m-2)-1 day-1), and KE and KI@ are the half saturation coefficients 1095 

for nutrient limitation by NO3 and dFe (mmol m-3 and µmol m-3, respectively). The realised growth of phytoplankton (µ, day-

1) is multiplied by their biomass (BH, mmol N m-3) to retrieve growth of phytoplankton (mmol N m-3 day-1). PAR is solved 

for as 0.43 of incoming shortwave radiation and then attenuated at a constant rate through the water column. 

Phytoplankton mortality occurs via zooplankton grazing, as well as linear (γ) and quadratic (Γ) mortality terms. The specific 

grazing rate for zooplankton (g, units of day-1) is described by a Type III disk equation (Gentleman and Neuheimer, 2008) 1100 

g = M4,5XJ('

M4,5VXJ('
  ,             (A14) 

where g;<) is the constant, temperature-independent, maximum (prey replete) specific grazing rate in units of day-1 and ε 

describes how fast the prey capture rates increase with the ambient phytoplankton (or prey) concentration in units of m6 / 

(mmol N)-2 day-1 (Rohr et al., 2022). Phytoplankton losses to grazing then occur according to the product of g and 

zooplankton biomass (B8, mmol N m-3). A fraction of the grazed phytoplankton biomass is routed to zooplankton according 1105 

to gB8λ, where λ is the assimilation efficiency (akin to gross growth efficiency). The fraction that is not assimilated into 

zooplankton (1 − λ) is routed to detritus (BG, mmol N m-3). Linear mortality is temperature dependent, such that 

γH = γH5BHβS ,             (A15) 

whereas quadratic mortality is density dependent, but temperature independent, such that 

ΓH = ΓH5BHY .             (A16) 1110 

Both γH5  and ΓH5 are constant parameters in units of day-1 and m3 mmol-1 day-1, respectively. Zooplankton are also affected by 

linear (γ8) and quadratic (Γ8) mortality terms of the same form according to predefined values of γ85 and Γ85. All quadratic 

mortality of phytoplankton and zooplankton biomass is routed to detritus, while linear mortality losses are routed to 
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dissolved nutrients and inorganic carbon. Remineralisation of detritus follows the same form as linear mortality (Eq. A15), 

with its own rate controlled by the γG5  coefficient, which is halved at depths below 180 metres.  1115 

Both detritus and calcium carbonate sink at constant rates. Calcium carbonate is produced at the same time as detritus (i.e., 

via unassimilated phytoplankton and quadratic mortality losses of phytoplankton and zooplankton), but at a constant rate 

controlled by f?0L>M, which is equal to 6.2% of the organic detritus being produced. In contrast to the detrital pool, the 

calcium carbonate pool (BK<KF&, mmol C m-3) is remineralised (dissolved) at a constant rate (γK<KF&) that is not temperature 

dependent. 1120 

In addition to its biological cycling, dissolved iron is affected by abiotic scavenging. This is represented implicitly via a 

relaxation term (KZ[<\GI@ , day-1) to a background dFe concentration set by an assumed concentration of ligand-bound iron 

(Fe]?M, µmol m-3), where 

Scavenging = 	KZ[<\GI@ ⋅ max	(0, dFe − Fe]?M) .         (A17) 

dFe is also reduced to a maximum of 1 µmol m-3 at the continental shelves where the sediments are less than 200 metres deep. 1125 

A.2 Key equations of WOMBAT-lite 

The budgets for the full set of ecosystem equations of WOMBAT-lite are as follows: 

DEF&
D,

= $γG + γ8 + γH − µBH( ;
E
K
< ,          (A18) 

DGI@
D,

= gγGQG
78
+ + γ8Q8

78
+ + γHQH

78
+ − µI@i ⋅ 1000 − FeH>@[?HGI@→ − FeZ[<\GI@→ − Fe[L<M

GI@→J*
78

 ,     (A19) 

DF'
D,
= $µBH − γG − γ8 − γH( ;

F'
K
< ,          (A20) 1130 

DJ(
D,
= µBH − γH − ΓH − gB8 W

J(
J(98:

X ,          (A21) 

DJ(78

D,
= µI@ − gγH + ΓH + gB8 W

J(
J(98:

XiQH
78
+  ,          (A22) 

DJ(+;<

D,
= µK_P − 12gγH + ΓH + gB8 W

J(
J(98:

XiQH
+;<
+  ,         (A23) 

DJ)
D,
= gB8λ − γ8 − Γ8 ,            (A24) 

DJ)78

D,
= gB8λ W

J(
J(98:

XQH
78
+ + gB8λ W

`)*J*
J(98:

XQG
78
+ − (γ8 + Γ8)Q8

78
+  ,        (A25) 1135 
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DJ*
D,
= ΓH + Γ8 + gB8(1 − λ) − γG − gB8 W

`)*J*
J(98:

X ,         (A26) 

DJ*
78

D,
= ΓHQH

78
+ + Γ8Q8

78
+ + gB8(1 − λ) W

J(
J(98:

XQH
78
+ + gB8(1 − λ) W

`)*J*
J(98:

XQG
78
+ − gγG + gB8 W

`)*J*
J(98:

XiQG
78
+  ,   (A27) 

DJ+,+-&
D,

= gΓH + Γ8 + gB8(1 − λ) W
J(

J(98:
Xi f?0L>M − γK<KF& ,       (A28) 

DNOK
D,

= $γG + γ8 + γH − µBH( − jgΓH + Γ8 + gB8(1 − λ) W
J(

J(98:
Xi f?0L>M − γK<KF&k ,     (A29) 

DBPQ
D,

= −$γG + γ8 + γH − µBH( − 2jgΓH + Γ8 + gB8(1 − λ) W
J(

J(98:
Xi f?0L>M − γK<KF&k .     (A30) 1140 

 

A2.1 Phytoplankton growth 

Growth of phytoplankton (BH) is controlled by a combination of temperature, light and nutrient supply. Temperature, T (ºC), 

sets the maximum potential growth rate of phytoplankton, µ;<) (day-1), following the Eppley curve (Eppley, 1972), 

µ;<) = α<β<
(S) ,            (A31) 1145 

and where both α< and β< (subscript a for autotrophy) are predefined (Table 1). 

 

A2.2 Phytoplankton growth: light limitation 

Incoming shortwave radiation at the surface (W m-2) is multiplied by 0.43 to return the photosynthetically active radiation 

(PAR), which is further split into three major wavelength bands associated with blue, green, and red light. Each band has 1150 

unique attenuation through the water column according to the power law coefficients (c and e) provided by Morel and 

Maritorena (2001) in their Table 2, which change depending on the chlorophyll concentration and implicitly account for the 

packaging effect of larger cells, assuming that more chlorophyll brings with it an increase in the mean community cell size. 

Attenuation of blue, green and red light is increased as chlorophyll concentrations increase, but as cells grow larger they 

absorb less light per unit chlorophyll. We calculate the depth of the euphotic zone to be the depth at which PAR is 1% of its 1155 

incident intensity, resulting in typical depths between 50 and 150 metres. 

 

The maximum potential growth rate is multiplied by a light limitation term, LABC, to return light-limited primary production, 

µABC. LABC depends on the availability of PAR, the ratio of the euphotic depth to mixed layer depth ( 88=(
8>?@

), the linear 
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mortality rate (γ, day-1) and on the chlorophyll quota of the cell (Q
+;<
+ , mg mg-1). First, we solve for the initial slope of the 1160 

photosynthetic-irradiance curve, PI, which is altered by Q
+;<
+  such that 

PI = PI5Q
+;<
+  ,            (A32) 

and where PI5 can be altered to increase or decrease the response of phytoplankton to light. Following PI, we calculate LABC 

via 

LABC = g1 − e
U./∙.12BCD( iL@=H ,          (A33) 1165 

L@=H = min;1, 88=(
8>?@

< ,           (A34) 

where L@=H is scaled down when the mixed layer is deeper than the euphotic zone, representing the disadvantageous mixing 

of cells into darkness due to deep mixed layers. Light limited phytoplankton growth, µABC (units of mmol C m-3 day-1), is 

then  

µABC = µ;<)LABC .           (A35) 1170 

 

A2.3 Phytoplankton growth: nutrient limitation 

The minimum of multiple nutrient limitation terms (L0=,>?@0,) is then multiplied against µABC to return the realised growth 

rate, µ (day-1) 

µ = µABCL0=,>?@0, =	µ;<)LABCL0=,>?@0, .         (A36) 1175 

The limitation terms include growth limitation by nitrogen (LE) and dissolved iron (LI@), such that 

L0=,>?@0, = min	(LE, LI@) .           (A37) 

The nutrient limitation terms are dependent on the availability of resource, R, and the half-saturation coefficient for uptake of 

that resource by the phytoplankton (KHC), which itself is dependent on the biomass of phytoplankton in terms of carbon (BH). 

Initial KHC values are predefined (KH
CE; Table 1) but are made to vary with phytoplankton biomass. We relate the biomass 1180 

concentration of phytoplankton to the mean community cell size, which then affects the half-saturation coefficients for 

resource uptake. Using compilations of marine phytoplankton and zooplankton communities, Wickman et al. (2024) show 

that the nutrient affinity, aff, of a phytoplankton cell is related to its volume, V, via 

aff = VU5.bc .            (A38) 
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Additionally, the authors demonstrate that the volume of the average phytoplankton cell is related to the density (i.e., 1185 

concentration; here BH) of phytoplankton via 

V = BH5.db (combining panels c and f of their Figure 1), making       (A39) 

aff = BHU5.ec .            (A40) 

Finally, the affinity of phytoplankton for a given nutrient is proportional to the inverse of the half-saturation coefficient, KHC, 

such that we can relate KHC to the biomass concentration of phytoplankton via 1190 

KHC = KH
CEBH5.ec .            (A41) 

 

For nitrogen limitation we follow the simple Monod formulation of 

LE = E
EVW(6

 .            (A42) 

For iron we follow Aumont et al. (2015), who use the Droop formulation to assign growth limitation according to the quota 1195 

model (Droop, 1983; Flynn, 2003). First, a minimum cellular iron requirement in terms of an Fe:C ratio is solved for, Qf
78
+ , 

dependent on chlorophyll content (Q
+;<
+ ), the prescribed N:C ratio of 122:16, and nitrogen limitation terms (Flynn and 

Hipkin, 1999). 

Qf
78
+ = W5.553d

bb.1b
12Q

+;<
+ X + ;1.21 × 10Ub 3g

bb.1b
E
K
	 ⋅ 0.5	 ⋅ 1.5LE< + (1.15 × 10Ug 3g

bb.1b
E
K
	 ⋅ 0.5	LE) .   (A43) 

Limitation of growth by iron (LI@) is then calculated as the difference between the current quota (Q
78
+ ) and the minimum 1200 

requirements of the cell (Qf
78
+ ) divided by a predefined optimal iron quota (Q∗

78
+ ) assigned according to estimates from the 

literature (Hopkinson et al., 2013; Strzepek et al., 2012; Sunda et al., 1991; Twining et al., 2021), such that 

LI@ = minp1,maxp0,
ij

78
+ UjF

78
+ k

j∗
78
+

qq .         (A44) 

 

A2.4 Phytoplankton growth: chlorophyll 1205 

Chlorophyll concentration in phytoplankton (BHK_P, mg m-3) is explicitly considered as a tracer in WOMBAT-lite (Eq. A23). 

It has a direct influence on phytoplankton growth. The concentration of chlorophyll in the water column increases light 

attenuation, affecting light availability, and the chlorophyll quota of phytoplankton (Q
+;<
+ = J(+;<

J(
, mg Chl (mg C)-1) influences 
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the slope of the photosynthetic-irradiance curve, PI (Eq. A32). Also, an elevated chlorophyll quota increases the iron demand 

of phytoplankton (Eq. A43). Phytoplankton attempting to reduce light limitation through photoacclimation therefore have a 1210 

higher iron demand.  

Growth of chlorophyll occurs similarly to growth of biomass carbon but with its own light limitation term, LK_PABC, where 

LK_PABC = j1 − e
Ui ./∙.12>?@

34,5	IBJ?K=L9M8KLN
k
kL@=H .         (A45) 

Note the adjustments to LK_PABC (Eq. A45) relative to LABC (Eq. A33). These adjustments are responsible for photoacclimation. 

They increase chlorophyll accumulation in phytoplankton at depth, where there is less light, waters are cooler and where 1215 

there are more nutrients, but cause chlorophyll depletion near the surface in warm oligotrophic waters. 

We step through why this is the case. PARl]N is the average availability of light within the mixed layer. PARl]N is 

therefore less than PAR near the surface, but greater than PAR towards the bottom of the mixed layer. Beneath the mixed 

layer PARl]N = PAR. That chlorophyll sees PARl]N makes light limitation of chlorophyll stronger than phytoplankton near 

the surface where PARl]N < PAR, but weaker than phytoplankton limitation at depth where PARl]N > PAR. Additionally, 1220 

the placement of µ;<)(1 − L0=,>?@0,) in the denominator decreases LK_PABC more so than respiration (1 + γH in Eq. A33) 

decreases LABC for phytoplankton in warm waters (where µ;<) is high) and in nutrient deplete waters (where (1 − L0=,>?@0,) 

is high).  

 

Growth of chlorophyll is then calculated similarly to growth of phytoplankton, where a maximum growth rate is scaled down 1225 

by limitations associated with light and nutrient availability. However, chlorophyll production is affected by the minimum 

(Qf
+;<
+ )  and optimal (Q∗

+;<
+ ) quotas (units mg Chl (mg C)-1). Minimum and optimal chlorophyll production rates, µK_P;?0 and 

µK_P
LH, (mg Chl m-3 day-1), ensure that phytoplankton chlorophyll growth always stays within specified bounds, where 

µK_P;?0 = µ	BH12	Q
f+;<+  , and           (A46) 

µK_P
LH, = µ	BH12	Q

∗+;<+  .           (A47) 1230 

Chlorophyll growth rate is then calculated as 

µK_P = µK_P;?0 +
mn+;<
O(LUn+;<

4MKo]+;<
.12]K=L9M8KL

AO⋅ABC>?@
 ,         (A48) 

where we include the light response in the denominator to further accelerate chlorophyll growth in low light environments 

and depress it in high light environments. This effectively increases or decreases the maximum quota that is attainable by a 
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phytoplankton cell around its optimal quota that is predefined (Q∗
+;<
+ , Table 1). Losses of chlorophyll occur in the same way 1235 

as losses of phytoplankton but are multiplied by the chlorophyll quota (Eq. A23). 

 

A2.5 Phytoplankton growth: iron uptake 

Like chlorophyll, the iron content of phytoplankton (BHI@, mmol m-3) is explicitly tracked as a tracer in WOMBAT-lite (Eq. 

A22). First, an uptake rate is found dependent on the maximum quota of Fe within the phytoplankton type (Q"
78
+ ) and the 1240 

maximum phytoplankton growth rate via 

µI@;<) = µ;<)BHQ
"78+  .           (A49) 

Following Aumont et al. (2015), this rate is scaled by three terms relating to (i) michaelis-menten type affinity for dFe, (ii) 

up-regulation of dFe uptake representing investment in transporters when cell quotas are limiting to growth, and (iii) down-

regulation of dFe uptake associated with enriched cellular quotas: 1245 

i. GI@
GI@VW(*78

 ,           

 (A50) 

ii. 4 − g.b]78

5.bV]78
 ,           (A51) 

iii. max

⎝

⎜
⎛
0, 1 −

P
78
+

P"
78
+

<qZr3.5bUP
78
+

P"
78
+
s	
⎠

⎟
⎞

 ,         (A52) 

such that dFe uptake by phytoplankton is simulated as 1250 

µI@ = µI@;<) ⋅ W
GI@

GI@VW(*78
X ⋅ ;4 − g.b]78

5.bV]78
< ⋅ max

⎝

⎜
⎛
0, 1 −

P
78
+

P"
78
+

<qZr3.5bUP
78
+

P"
78
+
s	
⎠

⎟
⎞
	.     (A53) 

The iron to carbon ratios of phytoplankton are passed to zooplankton and detritus and are also tracked in these pools. 

A2.6 Zooplankton grazing 

Grazing is represented as a Holling Type III function of prey biomass (Holling, 1959). This choice assumes that at very low 

prey concentrations grazing is impaired by increased searching (i.e., slower clearance rate (Gentleman and Neuheimer, 1255 

2008)); at moderate prey concentrations zooplankton grazing accelerates exponentially to account for their learning to feed 
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on a growing prey source; at high prey density zooplankton handling time becomes the limiting factor (Gentleman and 

Neuheimer, 2008; Rohr et al., 2022). This formulation allows for greater stability in the ecosystem and elongates the 

phytoplankton spring bloom. The Holling Type III formulation requires two basic parameters to estimate grazing, g, in units 

of day-1. These are the maximum grazing rate, g;<) (day-1), and a prey capture rate coefficient, ε (m6 (mmol C)-2 day-1). The 1260 

grazing formula is 

g = M4,5XJ(98:'

M4,5VXJ(98:'   .            (A54) 

Both WOMBAT-lite and legacy WOMBAT therefore use the same grazing formulation. However, an important distinction 

is that the maximum grazing rate, g;<), is now made dependent on temperature (T, in ºC) according to  

g;<) = g_β_
(S)	,            (A55) 1265 

where both g_ and β_ (subscript h for heterotrophy) must be predefined (Table 1). The application of g;<) in both the 

numerator and denominator make this grazing formula unique (Rohr et al., 2023) and equivalent to a disk formulation, rather 

than a Michaelis Menten formulation (Rohr et al., 2022). Practically, this amplifies grazing in warmer climes, but to a lesser 

extent than other formulations that apply the temperature amplification (i.e., β_
(S)	) only in the numerator of Eq. A54 (Rohr et 

al., 2023). This dampens the effect that variations in temperature have on grazing activity, amplifying the effect of ε, and 1270 

aligning with observations that the ratio of grazing to phytoplankton growth varies little between tropical and polar climes 

(Calbet and Landry, 2004). Theoretically, this assumes some evolutionary adaptation to account for the physiological effects 

of temperature across environmental niches, such that the efficiency of prey capture and handling become more important to 

grazers than metabolic constraints due to temperature. 

 1275 

Both phytoplankton (BH) and detritus (BG) contribute to the available prey biomass (BH>@+), scaled by the preference of 

zooplankton for these prey types (φ8
H, φ8G; Table 1), such that 

BH>@+ = φ8
HBH +φ8GBG .           (A56) 

 

Finally, an assimilation efficiency, λ, controls how efficiently prey biomass is ingested by the grazer, with the 25% of 1280 

remainder being lost to the environment as detritus (i.e., sloppy feeding) and 75% as inorganic nutrients (i.e., excretion). For 

our experiments, λ is set to 0.6 to align with measurements of gross growth efficiency from the literature (Anderson et al., 

2021b), such that sloppy feeding is 10% and excretion is 30% of what is grazed. Variations in gross growth efficiency and 

excretion associated with food quality and quantity (Anderson et al., 2021b) will be considered in a future version of 

WOMBAT-lite. 1285 
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A2.7 Non-grazing losses of biomass 

Phytoplankton, zooplankton and organic detrital functional types are affected by both linear (γH and γ8) and quadratic (ΓH 

and Γ8) mortality coefficients. These terms are of the form 

γ = γ5β_
(S)B , and           (A57) 1290 

Γ = Γ5BY ,            (A58) 

Where γ5 and Γ5 are predefined (Table 1) and are different for different biomass pools (i.e., γH5 ≠ γ85 ≠ γG5), and β_
(S) is a 

temperature-dependent amplifier for heterotrophic processes (Table 1). The linear mortality term for phytoplankton emulates 

thermally dependent losses of biomass that escalate as a greater proportion of the phytoplankton community is pushed above 

their thermal niche (Baker and Geider, 2021). These losses are also associated with increased respiration and efflux, for 1295 

instance of exopolymers (Bar-Zeev et al., 2013; Thornton, 2014), that route biomass to the inorganic nutrient pool. The 

quadratic mortality term emulates density-dependent losses of phytoplankton biomass that are not accounted for by grazing, 

for instance due to viral lysis (Brussaard et al., 2008; Suttle, 1994), and is not thermally dependent but density dependent. 

These quadratic losses are routed to sinking detritus. 

 1300 

Linear mortality for zooplankton represents rates of respiration (i.e., losses to inorganic nutrients) that are thermally 

dependent due to metabolism scaling positively with temperature (Ikeda, 1985; Ikeda et al., 2001), while the quadratic 

mortality closure term represents density-dependent predation by higher trophic levels not included in the model. As for 

phytoplankton, linear and quadratic loss terms are routed to inorganic nutrients and sinking detritus, respectively. For 

zooplankton, the linear losses associated with respiration are reduced by a Michaelis-Menten function of zooplankton 1305 

biomass,  

γ8 = γ85B8 W
J)

J)VW)
DX ,           (A59) 

such that in environments with little zooplankton their losses are reduced. This additional term ensures more stable 

population dynamics of zooplankton, and ecologically, mimics the greater prevalence of gelatinous zooplankton (tunicates, 

ctenophores, cnidarians, etc.) in oligotrophic regions with lower metabolic demands. 1310 

 

Detritus undergoes remineralisation at a rate that is linearly dependent on the concentration of detritus (Eq. A57). There are 

no quadratic losses (Eq. A58; i.e., no explicit variations in bacterial biomass are considered) but remineralisation rates are 

halved beneath 200 metres depth to account implicitly for more intense heterotrophic bacterial activity in the upper ocean. 

 1315 
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A2.8 Sinking detritus 

One sinking detrital pool BG is considered. One quarter of the prey that is not assimilated into zooplankton biomass (i.e. 

sloppy feeding) and the product of quadratic mortality of both phytoplankton (ΓHBHY) and zooplankton (Γ8B8Y) are routed to 

this detrital pool. Since we only account for one detrital pool, we consider that base sinking rates of this detritus (ω5, metres 

day-1) are varied as a function of phytoplankton concentration (in a similar fashion to half-saturation coefficients described 1320 

earlier). This approach is to emulate observations of varying sinking speeds (Riley et al., 2012) and that such variations may 

be strongly dependent on phytoplankton community composition (Bach et al., 2016). 

 

In accordance with a more general Navier-Stokes drag equation and using a compilation of particle sinking speeds, Cael et 

al. (2021b) identified that the sinking velocity of particles (ω, meters per day) is proportional to their diameter raised to the 1325 

power of roughly 0.63, such that 

ω ∝ d5.de	.            (A60) 

Knowing that d = ;du
v
<
B
& and given that the average volume of phytoplankton cells can be approximated by V = BH5.db 

(Wickman et al., 2024), we can relate ω to the biomass concentration of phytoplankton multiplied by the scaler ω5: 

ω = ω5$BH(
5.Y3	.            (A61) 1330 

This formula is identical to that presented by Cael et al. (2021b) in their Eq. 3, with the exception that we have related 

sinking rates to the biomass concentration of phytoplankton (BH) by assuming that V = BH5.db (Eq. A26) based on marine 

phytoplankton data (Wickman et al., 2024).  

 

However, phytoplankton concentrations are negligible beneath the euphotic zone. Using in situ BH would therefore result in 1335 

negligible sinking speeds throughout most of the dark ocean. To address this, we use BH in the upper-most grid cell (k=1) 

within Eq. A61 (BHQ23). This assumes that the sinking velocities of marine aggregates can be related to phytoplankton 

community composition (Bach et al., 2016; Iversen and Lampitt, 2020), which varies more horizontally across the ocean 

than vertically. Moreover, because we do not include dissolved/suspended organic matter as a tracer in WOMBAT-lite, we 

must also account for the large fraction of organics that are suspended and thus neutrally buoyant in the gyres. As such, we 1340 

vary Eq. A61 to include a phytoplankton biomass threshold (BH,_>@Z_, in mmol C m-3) above which sinking accelerates and 

beneath which any produced detritus emulates dissolved (neutrally buoyant) organic matter: 

ω = ω5 ∙ max$0.0, BHQ23 − BH,_>@Z_(
5.Y3	.         (A62) 
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Finally, we apply a linear increase to sinking speeds with depth to ensure that the trend in the concentration of detritus with 

depth exhibits a power-law behaviour, which is widely observed (Berelson, 2001; Martin et al., 1987), thought to be 1345 

associated with a greater attenuation of slower sinking particles, and shows better performance than a constant sinking rate in 

models (Tjiputra et al., 2020). This is applied after Eq. A62 as 

ω = ω+max W0.0, G@H,_
b555

⋅ (ω;<) −ω)X	.         (A63) 

 

A2.9 Sinking CaCO3 1350 

No changes have been made to CaCO3 dynamics in WOMBAT-lite, except for permanent burial in the sediments (see 

section A.2.11) and changes to the parameter values (Table 1). Calcium carbonate (CaCO3) is produced alongside organic 

detritus but scaled according to the CaCO3 to organic detritus ratio, R +,+-&
*8L9ML=R

. It sinks at a predefined rate of 6 metres per day 

(ωK<KF&
5 ) and dissolves at a temperature-independent rate of 0.01 day-1 (𝛾$4$w&

5 ). 

 1355 

A2.10 Iron cycling outside the ecosystem component 

Treatment of dissolved iron (dFe, µmol m-3) follows Aumont et al. (2015). Equilibrium concentrations of ligand-bound 

dissolved iron (Fe]?M, µmol m-3) and free iron (Fe′, µmol m-3) are estimated using the concentration of ligand (Lig, µmol m-3) 

and an equilibrium constant (K@xI@, µmol m-3) dependent on temperature in degrees Kelvin (TW = T + 273.15) 

K@xI@ =	10
3c.YcUBSTS.VWX ⋅ 1 × 10Uy ,          (A64) 1360 

Fe) = 	1 + K@xI@Lig −	K@xI@dFe ,          (A65) 

Fe′ =
UI@5Vz(I@5)'VgW8Y78GI@

YW8Y78
 .          (A66) 

Ligand-bound dissolved iron is then the difference between total dissolved iron in seawater and free iron 

Fe]?M = dFe − Fe′ .           (A67) 

 1365 

Following the equilibrium partitioning of dFe into Fe′ and Fe]?M, we estimate losses of dFe due to precipitation, scavenging 

and coagulation. These processes work to increase the quota of iron within the detritus as it sinks deeper, emulating 

observations of increased iron content of particulates with increasing depth (Bressac et al., 2019). 
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Precipitation of Fe′ onto nanoparticles (FeH>@[?HGI@→ ), which represents a permanent loss of dFe from the model domain (hence 1370 

the superscript dFe →), occurs when the concentration of Fe′ is in excess of the solubility of Fe(III) in solution, Fe(III)ZLP. 

This solubility is calculated using experimentally derived coefficients (c3Ub
I@(OOO)) dependent on temperature, TW (ºK), salinity, 

sal (psu), and pH: 

sal) =
3y.yYg	Z<P

3555	U	3.55b	Z<P
 ,           (A68) 

c3
I@(OOO) = 10U3e.g1d	U	5.31bd	{Z<P5	V	5.e5ceZ<P5	V	

S'SZ
WX  ,        (A69) 1375 

cY
I@(OOO) = 10Y.b3cU5.111b	{Z<P5	V	5.Y3eyZ<P5	V	

B&'E
WX  ,        (A70) 

ce
I@(OOO) = 105.gb33	U	5.ee5b	{Z<P5	U	

B[[T
WX  ,         (A71) 

cg
I@(OOO) = 10U5.Yydb	U	5.c113	{Z<P5	U	

ZE\T
WX  ,         (A72) 

cb
I@(OOO) = 10g.ggdd	U	5.1b5b	{Z<P5	U	

V[\E
WX  ,         (A73) 

Fe(III)ZLP = c3
I@(OOO) WpH3 + cY

I@(OOO)pH2 + ce
I@(OOO)pH +	cg

I@(OOO) + [S
78(///)

pH
X .     (A74) 1380 

Precipitation of nanoparticles is then estimated as that in excess of solubility, multiplied by a parameterised rate, K0<0LHI@  

(day-1), via: 

FeH>@[?HGI@→ = max(0, Fef − Fe(III)ZLP) K0<0LHI@  .         (A75) 

 

Scavenging of Fe′ onto particles (FeZ[<\GI@→) is linearly dependent on the concentration of particles in solution, which we 1385 

estimate roughly as the sum of detrital carbon and calcium carbonate: 

particles = BG + BK<KF& .           (A76) 

Scavenging then occurs at a parameterised rate controlled by KZ[<\I@  ((mmol C m-3)-1 day-1) via 

FeZ[<\GI@→ = Fef$3 × 10Ub + KZ[<\GI@ particles( .         (A77) 

FeZ[<\GI@→ represents the total scavenging rate of Fe′, which is subtracted from the dFe pool. However, the proportion of 1390 

scavenging due to detrital particles (FeZ[<\
GI@→J*

78
) is apportioned to detrital iron (BGI@) according to the proportion of BG in the 

total mass of particles. 
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Coagulation of colloidal iron, which represents a transfer of dissolved iron to detrital iron, is estimated as linearly dependent 

on the concentration of detrital organic carbon. First, we assume that half of all Fe]?M is colloidal, where 1395 

Fe[LPP =
I@?M_
Y

 .            (A78) 

The concentration of colloidal iron is multiplied by the coagulation rate, K[L<MI@  ((mmol C m-3)-1 day-1) and the concentration 

of detrital carbon to control the transfer of Fe[LPP to the detrital iron pool (BGI@): 

Fe[L<M
GI@→J*

78
= Fe[LPP$0.001 + BGK[L<MI@ ( .         (A79) 

Colloidal aggregation rates are scaled down by a factor of 100 beneath the mixed layer to reflect a reduction in encounter 1400 

rates associated with reduced mixing. 

 

Finally, we elevate scavenging in waters close to the coasts, specifically in waters shallower than 200 metres, by setting dFe 

to a maximum of 1.0 µmol m-3 in these environments. Precipitation, scavenging and colloidal coagulation rate constants are 

described in Table 1. 1405 

 

 

A2.11 Boundary fluxes 

WOMBAT-lite has been updated to include boundary fluxes from rivers, hydrothermal vents and burial in the sediments. 

Riverine fluxes are annually repeating climatologies of dissolved inorganic carbon (DIC), alkalinity and nitrate. For nitrate, 1410 

the flux is based on GLOBAL-NEWS2 (Mayorga et al., 2010) and combines their estimates of inorganic and organic 

nitrogen loads at a total of 35.8 Tg N yr-1. For DIC the fluxes are based on Ludwig et al. (1996) and amount to a total of 

0.587 Pg DIC yr-1. Alkalinity is added at a rate of 0.216 Pg C equivalents yr-1 to correct for a long-term positive trend in 

global alkalinity. Hydrothermal fluxes include constant release of dissolved iron to the ocean at a rate of 9.9 Gmol Fe yr-1 

(Tagliabue et al., 2014a). The iron cycle in legacy WOMBAT already includes a monthly climatology of atmospheric flux of 1415 

dissolved iron from Mahowald et al. (2005) at a rate of 1.1 Gmol Fe yr-1, and this has not been updated in this version.  

 

We consider burial of detrital organic carbon, nitrogen, iron and CaCO3. The fraction of incoming organic matter (C, N and 

Fe) and inorganic matter (CaCO3) that is permanently buried in the sediments (fq=>+) and therefore removed from the model 

domain is computed according to the metamodel of Dunne et al. (2007), where  1420 

fq=>+ = 0.013 + 0.53 ∗ 	�IO9_�
'

�cVIO9_�
' .          (A80) 

Here, FL>M is the flux of detrital organic carbon to the sediments in units of mmol C m-2 day-1. The fraction of organic and 

inorganic matter that is not buried is routed to a labile sedimentary pool, which is acted upon by remineralisation/dissolution 

at each timestep. Sedimentary pools of iron and calcium carbonate are tracked explicitly, such that the 
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remineralisation/dissolution of this material to the overlying water occurs at ratios with detrital organic carbon and nitrogen 1425 

that differ spatially and temporally. The remineralisation of sedimentary detrital organic carbon, nitrogen, iron and calcium 

carbonate is computed according to temperature via Eq. A51, with the exception that the α_ terms scaling the rate of 

remineralisation are equal to 0.02 day-1 and 0.0035 day-1 for organics (C, N and Fe) and inorganics (CaCO3), respectively.  

 

A fraction of the sedimentary organic matter that is remineralised is remineralised anaerobically, specifically via 1430 

denitrification. We compute this fraction (fG@0?,) using the metamodel of Middelburg et al. (1996), where 

fG@0?,
PLM = −2.2567 − 1.185 log35$FL>M( − 0.221$log35$FL>M((

Y − 0.3995 log35(NOeU) log35(OY) + 2 log35(NOeU) +

0.04721 log35(OY) − 0.0996 log35(z) + 0.4256 log35$FL>M( log35(OY)	,      (A81) 

fG@0?, = 10�*8KML
<O_

∙ EF&J

EF&JV3
 ,           (A82) 

denitrification = fG@0?, ;
yg.g
3YY
< .          (A83) 1435 

 

Here, NOeU is the concentration of nitrate in mmol m-3, OY is the concentration of oxygen in mmol m-3 and z is the depth in 

metres. Eq. A82 differs slightly from that of Middelburg et al. (1996) in that we accelerate sedimentary denitrification when 

nitrate concentrations are high by scaling by 2 instead of 1.25 in the 5th term. Eq. A84 includes the theoretical stoichiometry 

of the denitrification nitrate demand of 94.4/122 (Paulmier et al., 2009). To ensure balance in the nitrogen cycle, we track the 1440 

total rate of denitrification at each timestep and add this evenly to surface waters. This proxy for nitrogen fixation will be 

updated in future versions to account for environmental conditions favourable for diazotrophs, ensuring a more realistic 

distribution. When nitrate is consumed or added to the ocean model via denitrification and nitrogen fixation, respectively, we 

add and remove alkalinity in equal measure. 

Appendix B 1445 

B.1 Interior tracer distributions 

One hundred years of simulation is sufficient to understand the impacts of WOMBAT-lite on the distributions of key tracers 

at mesopelagic depths. Distributions of nitrate, dissolved iron, oxygen, dissolved inorganic carbon (DIC) and alkalinity at 

500 metres depth are shown in Figure S5. Nitrate, DIC and alkalinity all show accumulation in the eastern Pacific that is well 

in excess of the observations, and coincident severe oxygen depletion in this region. Despite this and other biases, 1450 

WOMBAT-lite shows some slight improvements in the distribution of these tracers within the mesopelagic. Oxygen is 

slightly more depleted in the subarctic North Pacific in WOMBAT-lite consistent with the observations. Alkalinity 

distributions in WOMBAT-lite show less bias compared with legacy WOMBAT, although the North Atlantic and Indian 

Oceans still have too much alkalinity compared with the observations. The biggest change has been to the iron cycle, which 
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now shows less uniform interior distributions. Concentrations of dFe are highest in the tropics and subarctic North Pacific 1455 

and this is consistent with the broad patterns observed (Huang et al., 2022). However, there is too much dFe in the 

mesopelagic of WOMBAT-lite, meaning that the ferricline is placed too shallow. This bias is most important in the Southern 

Ocean, where concentrations of dFe should be low even at 500 metres but instead are too high in WOMBAT-lite. Despite 

overestimating dFe in the mesopelagic Southern Ocean, primary production in the Southern Ocean is still dominantly limited 

by iron during the spring and summer (Fig. 8t). This suggests that future versions of WOMBAT-lite may benefit from 1460 

elevating the iron scavenging term on particles to help strip out the excess dFe in the interior.  
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