
The authors present the use of a machine learning-based approach to emulate the output, or 
more specifically, the model-data misfit as quantified by a cost function of a NPZD-style global 
ocean biogeochemical model to estimate model parameters. The approach is interesting, 
appears to work well in a relatively high-dimensional parameter space; however, some of the 
implementation details are not described well, and a key model shortcoming is not 5 
emphasized enough. 

We thank the reviewer for their thoughtful suggestions and have attended to them in our answers below, 
and we feel that these comments have substantially improved the manuscript. 

general comments 

One aspect of the study that may and is not emphasized enough in the current version of the 10 
manuscript is the use of a single phytoplankton and a single zooplankton tracer/variable in a 
global ocean model. Phytoplankton growth rates and other key parameters vary greatly 
between different phytoplankton groups, for example those that dominate coastal 
ecosystems in comparison to phytoplankton more commonly found in the open ocean. Thus, 
in some way, this study aims to do the impossible: fit the parameters of a one phytoplankton 15 
variable to a global dataset which is based on a complex spatially and temporally varying 
phytoplankton population. Here, I am not arguing that such as study should not be 
conducted -- the use of a machine learning surrogate model is very interesting -- but many of 
the shortcomings of the model identified in the study may be due to the very simple plankton 
representation in the model. For example, the manuscript describes underestimates of net 20 
primary production and issues in bloom phenology, and provides possible reasons for these 
model shortcomings, but the use of a single phytoplankton variable is not among them. Yet, a 
single phytoplankton model is unlikely to provide good primary production and bloom 
phenology estimates globally. 

We agree wholeheartedly that a single phytoplankton and a single zooplankton functional 25 
group is not sufficient to represent the global marine ecosystem, particularly the transition 
from coastal to open ocean biomes. The reviewer is correct to assert that the model is simple, 
and that this simplicity limits its potential to represent regional variability in the processes of 
primary production, remineralisation, carbon export and air-sea gas exchange, among 
others.  30 

However, we note that extending the model to many functional types of phytoplankton and 
zooplankton is beyond the scope of this work. The biogeochemical model itself is called 
WOMBAT-lite precisely because of its computational efficiency, which relies on having less 



tracers and process complexity. That said, we also point the reviewer to the extensive 
developments that were made to the model architecture during this study (Appendix A), 35 
which form a considerable jump in model complexity compared to the previous WOMBAT 
model, while still maintaining its “lite” tracer number. Some of these developments involve 
implicitly accounting for variations in community average cell size, which emulate changes in 
community composition with only the one phytoplankton functional type. As an additional 
point, we are also actively developing “heavier” versions of WOMBAT (“mid” and “full”) that 40 
have more PFTs. 

With respect to our study here, to acknowledge and address the reviewers concern, we have: 

• Acknowledged in the introduction that the ocean-biogeochemical model is simple 
compared to others, but nonetheless is complex enough to demand optimization with 
surrogate techniques, and this optimization is required to realize the full potential of 45 
the model. 

Lines 93:99 - In this study, we optimise a relatively simple ocean-biogeochemical model 
designed to represent open-ocean biomes using surrogate machine learning techniques: version 
“lite” of the World Ocean Model of Biogeochemistry And Trophic dynamics (WOMBAT-lite) 
(Fig. 1). This surrogate approach is crucial. Although WOMBAT-lite has few tracers and is 50 
computationally efficient, making it viable for high resolution configurations (Kiss et al., 2020; 
Matear et al., 2015; Menviel and Spence, 2024; Oke et al., 2013) and large ensembles 
(Mackallah et al., 2022; Rashid, 2022; Ziehn et al., 2020), it is nonetheless a global, three-
dimensional, biogeochemical model with complex non-linear process interactions. This makes it 
computationally demanding enough to prevent parameter calibration via traditional techniques. 55 

• Acknowledged in section 3.4.3 (Phytoplankton bloom phenology) that  
 
Lines 635:637 - “Alternatively, it is possible that representing the global marine phytoplankton 
community with only one functional type limits the model’s potential to realize the full 
variation.” 60 
 

• Acknowledged in the Summary that  
 
Lines 797:803 - “Alternatively, spatial variations in 𝜀 that capture transitions from nano- to 
meso-zooplankton from oligotrophic to eutrophic regimes (Rohr et al., 2024) may serve to 65 
accelerate the phytoplankton bloom at the beginning of the growth season. Furthermore, the 
succession of different types of phytoplankton is important for the biological carbon pump 
(Tréguer et al., 2018). Therefore, representing these shifts in community with additional 



functional types of plankton beyond that explored herein might be important for the phenology 
of the annual spring bloom, and by extension Southern Ocean CO2 fluxes.”  70 

One more example: the authors highlight the "difficulty in reproducing the seasonality of air-
sea CO2 exchange in the Southern Ocean" (l. 654) as a chief issue of the model. There are 
many studies that emphasize the unique phytoplankton composition in the Southern Ocean 
and the role of Southern Ocean diatoms in modulating carbon export, for example "Influence 
of diatom diversity on the ocean biological carbon pump" (Tréguer et al., 2018, DOI: 75 
10.1038/s41561-017-0028-x). Thus, it does not seem surprising that a single phytoplankton 
model, optimized on a global dataset, does not perform particularly well in the Southern 
Ocean. 

In the revised manuscript, we have acknowledged and addressed that the model has limits in 
its potential to more completely represent the succession of different forms of phytoplankton 80 
due to only having one functional type, and that this may feed directly or indirectly into error 
in other features of the model, such as air-sea exchange of CO2. (See above). 

A related aspect to the comments above is that model performance can easily be biased 
based on the observation locations and the amount of data from each location. That is, if 
more open-ocean than nearshore observations are included in the RMSE-based cost function 85 
used for parameter estimation, then the phytoplankton variable will be parameterized more 
like a general open-ocean species (likely adapted to low-nutrient conditions) whereas the 
parameter estimates may be quite different if mostly nearshore observations are used. In 
summary, I suggest emphasizing the drawbacks of simple biogeochemical models more. Yes, 
parameter estimation becomes easier with fewer plankton variables, but even optimized 90 
parameters cannot capture the complex plankton ecosystem on a global scale for simple 
NPZD-style models. 

We agree with the reviewer that the simplicity of the model will necessitate some acceptance 
of model-data misfit. We accept that this is the case, and we chose to optimize towards 
observational target fields with a bias towards open-ocean environments. Thus, our global 95 
ocean biogeochemical model is optimised towards representing open-ocean biomes.  

We acknowledge this directly in the introduction: 

Lines 93:95 – “In this study, we optimise a relatively simple ocean-biogeochemical model designed to 
represent open-ocean biomes using surrogate machine learning techniques: version “lite” of the World 
Ocean Model of Biogeochemistry And Trophic dynamics (WOMBAT-lite) (Fig. 1).” 100 



 

We also note for clarity that if the surrogate model was to optimise a more complex BGC 
model with multiple PFTs then the cost function would need to include a target field of 
relative abundance, such as the microphytoplankton to nanophytoplankton ratio. 

 105 

Building suitable and balanced cost functions for parameter estimation experiments is not 
easy and the authors include 8 data products in their cost function (Eq. 2), making it quite 
complex and interesting. Here modelers and readers like me might be interested in a bit 
more detail that can be obtained without additional model experiments: One question if 
interest is how "orthogonal" the different cost function parts are, i.e. which cost function 110 
parts/data products provide additional constraints on the parameters. Calculating the linear 
correlation of the cost functions parts for the 512 simulations or visualizing them using a 
"scatter plot matrix" could be of interest and would show which cost function parts can be 
optimized together and which move the parameter estimates in different directions. 

This is a great idea. We show in the figure below the linear correlations between all cost 115 
functions for the 512 sensitivity experiments. Some are poorly correlated, and others are 
relatively well correlated. Among those most well correlated (r ≥ 0.7) are: 

- Air-sea flux of CO2 (20ºS-90ºS) – sinking particle flux 
- Air-sea flux of CO2 (20ºS-90ºS) – surface chlorophyll concentration 
- Sinking particle flux – surface chlorophyll concentration 120 
- Air-sea flux of CO2 (20ºS-90ºS) – surface NO3 concentration (20ºS-20ºN) 
- Sinking particle flux – surface NO3 concentration (20ºS-20ºN) 

This suggests that these target fields are not providing completely orthogonal constraints on 
the parameter set, and that optimising for one is optimising for another, which effectively 
increases its weight in the global cost function. Mechanistically, it suggests that how we 125 
represent the biological pump has important effects on the air-sea flux of CO2. 

All other associations between target fields are moderately to poorly correlated, meaning that 
they are more orthogonal and that their optimisation can proceed without always affecting 
the other fields. 



We can include this figure as a supplementary figure 5 for the manuscript and reference it 130 
here: 

Lines 344:346 - “Although expected, we note that the predicted cost functions using the GPR models 
are not completely orthogonal, with some being well correlated (Fig. S5), indicating that the 
optimization of parameters towards one target field will affect other target fields.” 



 135 

Figure S5. Pair-wise correlations between cost functions of the 8 target fields. If positive and significant, the gains in the skill of 
the model to reproduce one target field will positively a:ect the models skill in reproducing the other.



 

Relatedly, it would be good to know if the optimal parameter values that were 
obtained perform well (have low values) for all cost function parts or if they perhaps 
do not fit certain datasets very well at all. 

The optimal sample sets (sampling of the posterior distributions in Figure 6) 
performed well, as shown in Figure 7 in terms of the global cost function. However, 
what the reviewer is asking for is how the optimal parameter sets behaved in terms 
of the individual cost functions for all 8 target fields. This is presented below in the 
box and whisker plot, where the “optimal” experiments are coloured gold and the 
sensitivity experiments are coloured black.. 

Some fields are optimised more effectively than others. The air-sea flux of CO2, 
surface chlorophyll concentrations, sinking particle flux and surface NO3 
concentrations are well reproduced. Surface dissolved iron and the primary limiting 
nutrient for phytoplankton growth are not as well reproduced. 

 

Figure S6. Performance of sensitivity and optimal experiments. Performance measured by the cost function of all 512 
sensitivity experiments (black) against all 20 optimal experiments (gold) for each of the 8 target variables. The best 
performing of the 512 experiments (grey star) is compared with the best performing of the optimal experiments (red 
star). Best here is defined according to the global cost function. Negative values in the cost function are possible for 
the “optimal” experiments because their RMSE is normalised to the range of RMSE in the 512 sensitivity experiments, 
where zero is the minimum RMSE and one is the maximum RMSE. 

 



Although not made explicit, the simulations in this study appear to rely on a 9-year 
spin up (output from year 10 was used for model data-comparison). The authors 
state that "Continuing to run the model forward for 100 years post initialization 
showed some degradation in the performance" (l. 469). Parameter estimation relies 
on not having too much drift in the model and for the parameter values to have 
taken effect (there is no longer drift introduced by the change in parameter values). 
How did the authors ensure that the 9-year spin up was sufficient? 

We discuss the choice of 10-year simulations in the final summary paragraph, 
acknowledging that this is a key caveat of our work. The degradation in the 
performance of the model that occurs by running the model forward for 100 years, 
rather than just 10 years, is an unfortunate symptom of only running our 512 
training experiments for only 10 years. 

We stress that this choice was unavoidable because of computational demands of 
running the ocean model. Moreover, because the ocean model was run online with 
the physics (we did not have the infrastructural option of running the model offline 
from the physics), our choice of using only 10 years was also informed by a desire to 
optimise the biogeochemical ecosystem component, which overturns quickly, while 
limiting physical biases, which grow as the simulation progresses. Optimising the 
biogeochemical component of an ocean model should be done in a physical setting 
that is as close to the observations as possible. If we optimised the model using 
simulations that extended for centuries or even millennia, then it is likely that we 
would be correcting for mismatches that are generated due to physical error, rather 
than biogeochemical error. 

We fully acknowledge and discuss this caveat at several points in the manuscript 
and suggest future fixes: 

Lines 253:263 – “We chose to run the experiments for only 10 years, making a total of 
5120 model years and at a nominal horizontal resolution of 1º. This short timescale was 
suAicient to assess the skill of the biogeochemical model, at least regarding its 
ecosystem component. Marine phytoplankton contribute half of all primary production 
in the Earth system (Field, 1998) but represent less than 1% of photosynthetic biomass 
(Friedlingstein et al., 2023; Le Quéré et al., 2005), meaning that they turn over quickly. 
Changes to key parameters within the ecosystem component therefore result in a rapid 
realisation of diAerent patterns in biological states (e.g., chlorophyll and net primary 
production, among others). Our analyses and optimisation thus focus on the ecosystem 
component using 10-year model runs. We do acknowledge that longer-term, low 
frequency modes of variation exist in biogeochemical models, and to partially address 
this we completed 100-year simulations with optimal parameter sets. However, we also 
note that longer integrations risk the compounding of physical and biogeochemical 
model errors as the physical state drifts further from the observations. Optimisation of 
the biogeochemistry under these conditions can cause over-tuning of the 
biogeochemical parameter set that compensate for physical errors (e.g., Singh et al., 



2025).“ 
 
Lines 559:564 – “Continuing to run the model forward for 100 years post initialization 
showed some degradation in the performance (red bars in Fig. 7). This is expected, 
since our optimisation procedure was trained on model output only 10 years post 
initialization due to computational constraints. Model outcomes drift further away from 
the target fields with longer integrations. Lower frequency variability and trends are thus 
missed by the optimisation that are nonetheless present in the biogeochemical model, 
and these play out as the model is integrated forward for longer.”  
 
Lines 807:816: “Even with its optimal parameters, WOMBAT-lite suAered a loss in 
performance when run over 100 years compared to when run over only 10 years. Future 
iterations of surrogate-based optimisation would therefore benefit from extending the 
length of simulations done by initial set of sensitivity experiments. That said, significant 
savings in computation eAiciency would be needed before this is possible with 
computationally demanding models, such as ocean biogeochemical models, but could 
be feasible by running the biogeochemical model oAline from the ocean physics (e.g., 
Séférian et al., 2013). This approach would also eliminate any confounding errors 
caused by an evolution of the ocean’s physical state since the physical state would not 
be allowed to evolve. Future versions of WOMBAT, including WOMBAT-lite, WOMBAT-
mid and WOMBAT-full, and their deployment into diAerent configurations (e.g., higher 
resolution versions) would benefit from this methodology of optimisation.” 
 

One of the metrics used in the cost function is primary limiting nutrient data, but 
there is not much information about its use and how model-data misfit is 
quantified. The model seems to include carbon and iron, all other elemental 
quotas/ratios are considered to be fixed. Fig. 3g shows nitrogen, iron and 
phosphorus as limiting nutrients in the data, how are these compared to model 
output? How is the RMSE computed? Some more information is needed. 

We have included a greater discussion of how this comparison is made between the 
observations and the model. 

Lines 204-209: “For the primary limiting nutrient dataset, we only consider nitrogen and 
iron as limiting (excluding phosphorus) and ascribe nitrogen limitation, iron-nitrogen co-
limitation and iron limitation as equal to 1.0, 1.5 and 2.0, respectively. This is compared 
directly to the degree of limitation by the model, which varies continuously from strong 
nitrogen limitation to strong iron limitation (1.0 to 2.0). Although the model does not include 
co-limitation as a process, simulated values between 1.0 and 2.0 can represent seasonal 
variations between nitrogen and iron limitation over an annual timescale.” 

Several aspects of study design and implementation details are not described well 
and can lead to confusion. For example, the generation of 512 parameter samples is 
mentioned in several places independently: "We undertook 512 simulations that 
each sampled randomly from predefined ranges of 24 key parameters related to 



the ecosystem component of the model" (l. 189). Then, later: "Initially, a Quasi-
Monte Carlo Sobol sequence is applied to generate 512 parameter samples using 
the Uncertainty Quantification Python Laboratory package" (l. 263). Here, it is not 
clear if the 512 parameter samples are the same ones mentioned before; these 
methods sections need to be connected better. Furthermore, the text mentions that 
512 parameter samples are drawn initially and then a sample size of 512 was 
selected based on the sample size sensitivity experiments (l. 267). Was it sheer luck 
that the initial number of experiments was also the right number of experiments 
confirmed in later tests? 

We have added extra text to explain why 512 experiments were done for both 
steps: the sensitivity analysis and the optimisation. This information is already in the 
supplementary material, but we have been more explicit in pointing the reader 
towards it and have also added more sentences to explain why two sets of 512 
experiments were done. 

Lines 220:222 – “A total of 512 experiments was selected because it was enough for training 
the surrogate machine learning model to an acceptable standard (Fig. S1).” 

Lines 301:302 – “The analysis focuses on the target fields detailed in Fig. 3 and section 
2.3.1. To generate the 512 sensitivity experiments required to train the surrogate machine 
learning model,” 

Lines 322:332 – “Following sensitivity analysis, which identified the most important 
parameters for model performance (RMSE) of the eight target fields, we performed 
parameter optimisation (Fig. 1). This study uses Gaussian Process Regression-based 
Bayesian Optimisation (G-BO) (Reddy et al., 2024a) to identify the optimal parameter 
distributions so that WOMBAT-lite can best reproduce the eight target fields simultaneously. 
The process begins by generating another 512 parameter samples via the same Quasi Monte-
Carlo (QMC) Sobol sequence design implemented through the Uncertainty Quantification 
Python Laboratory (UQ-PyL) package (Wang et al., 2020). This set of 512 sensitivity 
experiments are different from those generated during the sensitivity analysis because we 
now use a reduced set of only the most important parameters, which also provides a denser 
sampling of the parameter space essential for the G-BO process (Reddy et al., 2024a). These 
512 sample parameter sets are used as input to WOMBAT-lite, and the model is run forward 
for 10 years (see above). A sample size of 512 is selected based on the sample size sensitivity 
experiments (Fig. S3).” 
 
specific comments 

L 12: "Optimisation of the model parameters is crucial to ensure model 
performance based on process representation, rather than poor parameter 
values.": This sentence is not very clear, please rephrase. 

Rephrased for clarity: 



Lines 12-13 - “Optimisation of the model parameters is crucial to ensure that model 
performance is based on process representation (i.e., functional forms), rather than poor 
choices of input parameter values.” 

L 19: Isn't the size of the training dataset (512) somewhat in conflict with the 
previous claim that "(tens of) thousands of simulations are required to accurately 
estimate optimal parameter values" (l 14). Perhaps it would be useful to add some 
qualifiers that this large number of simulations would be required by naive 
approaches like grid search and for a certain number of estimated parameters. 

We have added a clarifying clause to this sentence: 
Lines 18:20 - “A computationally inexpensive surrogate machine learning model based on 
Gaussian Process Regression was trained on a set of 512 simulations with WOMBAT-lite 
and was used to produce synthetic results emulating tens of thousands of simulations.” 

L 22: What are "optimal posterior distributions"? From a Bayesian technique, one 
would expect to obtain (samples from) the posterior distribution, or perhaps 
maximum a posteriori (MAP) point estimates. But there is no "optimal" posterior 
distribution. 

Replaced “optimal” with “constrained” 

L 66: "However, even if our understanding and observational network were 
complete, there exist many tuneable and potentially inter-dependent parameters 
that control many target outcomes...": True, but with complete understanding, we 
would know the relevant rates that these parameters aim to represent. We would 
not even need models if our understanding and observational network were 
complete. I would suggest rephrasing the issue and avoiding the fictional scenario 
of "complete" knowledge. 

Rephrased. 

Lines 69:71 – “However, even with greater understanding and observations, there exist 
many tuneable and potentially inter-dependent parameters that control many target outcomes 
(air-sea CO2 fluxes, nutrient fields, chlorophyll concentrations, etc.) that must be reproduced 
simultaneously.” 

L 74: Does the "a priori ranges" imply that the prior distributions are uniform? As a 
first-time reader familiar with Bayesian techniques, I would have expected the term 
"prior estimates" here or a brief explanation of the "a priori ranges". 

The prior distributions are indeed uniform over the prescribed range. We have 
added “uniform” as an adjective. 

L 118: "We have developed a new ocean biogeochemical model called WOMBAT-
lite": This statement is a bit confusing to the reader, as a previous sentence appears 



to suggest that WOMBAT-lite has been applied in previous studies: "Although 
WOMBAT-lite has few tracers and is computationally efficient, making it viable for 
high-resolution configurations (Kiss et al., 2020; Matear et al., 2015; Menviel and 
Spence, 2024; Oke et al., 2013)" (l 90). I would suggest clarifying. 

Changed to “updated”. 

L 118: Fig. 2 is referenced before Fig. 1. 

Figure 1 is referenced in the Introduction. 

L 119: It would be useful to many readers to add a brief description of Sobol 
sensitivity analyses or at least a reference. 

Reference added. 

L 145: How is cell size included in the model using just one phytoplankton tracer? 

See the Appendix for this explanation. Variable cell size is emulated by considering a 
relationship between the density of phytoplankton and the average cell size. This 
affects half-saturation coefficients for nutrient uptake, the packaging effect on light 
transmission and also on the sinking rates of detritus. 

L 174: The connection between CbPM, VGPM and the data used for model 
evaluation needs a better explanation. 

Added a sentence to explain why we use CbPM-based NPP rather than chlorophyll-
based NPP. 

Lines 200:202 – “Net primary production (NPP) built from the CbPM products should 
therefore provide more independent constraints on model assessment than an NPP product 
built from chlorophyll concentrations.” 

L 189: Where samples obtained "randomly" or via a more sophisticated sampling 
strategy like Latin hypercube sampling? How were the parameter ranges selected? 

Additional information given: 
Lines 218:220 - “We undertook 512 simulations that each sampled randomly from 
predefined ranges of 24 key parameters related to the ecosystem component of the model 
(Table 1; Fig. 1) using a Quasi-Monte Carlo Sobol sequence (see section 2.4).” 

L 288: How does the max-min scaling work? Are max and min values taken from the 
512 samples, are outliers considered in the normalization (for example those in the 
depth of the DCM, Fig. S2 d)? 

Clarified. 



Lines 334:335 - “is the normalized root mean square error (scaled by the max-min, such that 
the worst experiment has an NRMSE of one and the best is zero)” 

Eq. 2: I would recommend placing the superscript into parentheses "(n)" to avoid 
confusing it for an exponent. 

Done. 

L 301: The "p(z)" here is not very helpful without providing additional context. 

Removed. 

Fig. 4: It is unclear how the primary limiting nutrient is turned into a number and 
how the misfit is quantified. 

This information has been added earlier in the manuscript within section 2.3.1 
Observational target fields for assessment. 

Fig. 5: What kind, if any, normalization was applied to the RMSE values here? Not 
using any would make the values dependent on the scale and units of the 
properties/target field shown. Using max-min (previously denoted as NRMSE) would 
make it dependent on the variability that can be introduced by any changes in the 
parameter values -- which might vary greatly between properties. 

The RMSE values are presented here as normalised by the max-min scaling. We 
have added an extra note of this in the figure legend. 

Lines 441:445 – “Performance is measured by the root mean square error (RMSE), which is 
here normalised by the full range (max-min scaling). First-order indices are direct individual 
effect of a parameter on the target field, while higher-order indices indicate that interaction 
effects with other parameters are important. First-order indices sum to at most one for a 
given target field, while first-order + higher-order indices sum to at least one. If there are no 
interaction effects, then higher-order effects are nil.” 

L 444: The units here would raise fewer eyebrows by changing the "m^6 (mmol C)^-
2" to "(mmol C m^-3)^-2". 

Agreed! 

L 450: "The fact that our optimisation always chose the lowest values (near 0.01 day-
1) suggests that the proportion of the community that is stressed is considerably 
lower than we assumed.": I would suggest being careful in generalizing from the 
"optimal" value of a single global phytoplankton tracer to properties of the full 
plankton community. 
Agreed. Rephrased. 
 



Lines 535:537 - “The fact that our optimisation always chose the lowest values (near 0.01 
day-1) perhaps suggests that, at least with our simple model, the proportion of the community 
that is stressed is lower than initially assumed.” 
 



Overview 

Research summary 

(1) In this paper, the authors introduce a new version of the marine biogeochemical model, 
WOMBAT-lite. The updated model incorporates several new processes and requires tuning 
using observational datasets. The authors leverage machine learning methods to optimize the 
model. First, a machine learning model is trained on outputs from 512 experiments, each with 
different parameter sets (same parameters but different values), to predict 8 root mean square 
errors (RMSEs) relative to observational products. This trained machine learning model is 
used to perform a sensitivity analysis, identifying the parameters that most significantly 
impact the RMSEs — a total of 11 parameters are identified. Then, a second machine 
learning model is trained using outputs from 512 new experiments, focusing solely on the 11 
selected parameters, to replicate a cost function that measures the deviation from 
observations. This trained model is utilized for optimization analysis to determine the optimal 
values and ranges of the 11 parameters. The optimized version of the model is then compared 
to observational data and a previously unoptimized version of WOMBAT. The new 
optimization approach proves to be successful, with the optimized model showing 
improvements across all evaluated variables, albeit to varying degrees. 

Overall assessment 

(2) This technical paper is clearly written and presents a novel method for optimizing the new 
version of the biogeochemical model. The authors have made great efforts to describe the 
machine learning approach, detailing the sequential steps used first to identify key parameters 
and then to optimize them. I have a few major comments, that summarize as: 1) Additional 
justifications are needed to ensure that ten years of simulations are long enough, in relation to 
the model’s intended usage and the influence of the optimization strategies. 2) Further 
discussion on alternative model tuning approaches would be beneficial. 3) The advantages of 
this optimization approach over simply selecting the best of the 512 experiments need to be 
further explained. 4) Further details on the machine learning algorithms may be necessary. I 
elaborate on these major comments below. Most of these comments can probably be 
addressed by adding text in the introduction or conclusive section of the manuscript. 
Additionally, I have a list of minor or specific comments and suggestions. Finally, given the 
length of the manuscript and the number of figures, any content that could be shortened 
would be beneficial. I tried to provide some suggestions. Overall, this is a quality piece of 
work, and I recommend it for publication after some minor revisions. 

We thank the reviewer for their thorough and constructive suggestions that have substantially 
improved the manuscript. 

Major comments 

(3) My first concern is the ten-year-long simulations used for conducting the 
sensitivity/optimization analysis. I understand the constraints associated with running a large 
number of longer simulations. Nonetheless, I would like to have a clearer picture of the 
equilibrium achieved in ten years. What are the drifts at various depths? Although ten years 
may be enough for the surface ocean, what about the deeper ocean that can impact the surface 
on longer time scale? The authors have noted a drift away from the optimal fit when 



simulations are extended to 100 years. Could the authors discuss the risk of further drift in 
these simulations? Additionally, is the drift of the optimized simulation weaker compared to 
the best initial simulation or any of the 512 simulations? If the drift is indeed weaker, this 
would be a strong point in favor of the optimization strategy. 

Both reviewers are correct to point out one of the biggest caveats of our work. 10 years is 
sufficient time for the upper ocean biogeochemistry (higher frequency cycling) to equilibrate 
into different states given the input parameter set, but it is certainly not long enough for the 
whole ocean biogeochemistry to equilibrate. Typically, this requires thousands of years of 
continuous simulation.  

The choice of 10 years was due to three factors: (1) that we assess (evaluate the cost function) 
only the high frequency turnover of the ecosystem and biogeochemical components of the 
model, rather than the low frequency, long timescale effects such as the drift the reviewer 
mentions; (2) due to computational constraints we cannot run 512 simulations for 100+ years 
each; and (3) even if computational constraints were not an issue, we wouldn’t choose 100+ 
years because of the confounding effect of error in the ocean’s physical state that propagates 
error into the biogeochemical fields. Because we initialise the model with observed 
temperature and salinity fields and run the physics online with the biogeochemical model, the 
longer we continue the simulations the more that the model physical state will drift from the 
observed fields, even when we force the ocean model with a repeat climatological forcing 
like the Japanese Atmospheric Reanalysis (JRA55).   

We fully acknowledge and address the reviewers concerns here by adding additional text 
discussing the advantages and disadvantages of our 10-year simulations. 

Lines 253:263 – “We chose to run the experiments for only 10 years, making a total of 
5120 model years and at a nominal horizontal resolution of 1º. This short timescale was 
suAicient to assess the skill of the biogeochemical model, at least regarding its 
ecosystem component. Marine phytoplankton contribute half of all primary production 
in the Earth system (Field, 1998) but represent less than 1% of photosynthetic biomass 
(Friedlingstein et al., 2023; Le Quéré et al., 2005), meaning that they turn over quickly. 
Changes to key parameters within the ecosystem component therefore result in a rapid 
realisation of diAerent patterns in biological states (e.g., chlorophyll and net primary 
production, among others). Our analyses and optimisation thus focus on the ecosystem 
component and the upper ocean using 10-year model runs. We do acknowledge that 
longer-term, low frequency modes of variation exist in biogeochemical models, and to 
partially address this we completed 100-year simulations with optimal parameter sets. 
However, we also note that longer integrations risk the compounding of physical and 
biogeochemical model errors as the physical state drifts further from the observations, 
even when applying a repeat climatological atmospheric forcing. Optimisation of the 
biogeochemistry under these conditions can cause over-tuning of the biogeochemical 
parameter set that compensate for physical errors (e.g., Singh et al., 2025).“ 
 
Lines 559:564 – “Continuing to run the model forward for 100 years post initialization 
showed some degradation in the performance (red bars in Fig. 7). This is expected, 
since our optimisation procedure was trained on model output only 10 years post 
initialization due to computational constraints. Model outcomes drift further away from 



the target fields with longer integrations. Lower frequency variability and trends are thus 
missed by the optimisation that are nonetheless present in the biogeochemical model, 
and these play out as the model is integrated forward for longer.”  
Lines 807:816: “Even with its optimal parameters, WOMBAT-lite suAered a loss in 
performance when run over 100 years compared to when run over only 10 years. Future 
iterations of surrogate-based optimisation would therefore benefit from extending the 
length of simulations done by initial set of sensitivity experiments. That said, significant 
savings in computation eAiciency would be needed before this is possible with 
computationally demanding models, such as ocean biogeochemical models, but could 
be feasible by running the biogeochemical model oAline from the ocean physics (e.g., 
Séférian et al., 2013). This approach would also eliminate any confounding errors 
caused by an evolution of the ocean’s physical state since the physical state would not 
be allowed to evolve. Future versions of WOMBAT, including WOMBAT-lite, WOMBAT-
mid and WOMBAT-full, and their deployment into diAerent configurations (e.g., higher 
resolution versions) would benefit from this approach.” 

 

(4) Somewhat connected with the previous point, could the authors specify/discuss the 
intended usage for which the model is optimized? For instance, will the model perform 
equally well when incorporated into an Earth System model for climate simulations? I am 
curious whether the optimization based on ten-year simulations and focusing on the surface 
ocean would remain effective during the longer processes, such as a thousands of years spin-
up to achieve preindustrial equilibrium, followed by hundreds of years for simulating 
historical and future climate conditions. 

The optimisation is immediately valid for ocean-only simulations and the parameter set 
defined here will be applied directly. Its application within Australia’s Earth System Model, 
the ACCESS-ESM1.6, is however not so simple and will require additional tuning. Ideally, 
we would run the same surrogate machine learning optimisation procedure on 512 
simulations with the ESM, but this is computationally expensive and prohibitive. We 
therefore accept that the optimal parameter set from these ocean-only experiments will need 
to be varied and manually tuned to some degree to deliver similar skill in the ESM. We also 
note that in more recent longer runs (~500 years) with the ocean-only model the BGC fields 
do not depreciate substantially from what was achieved in this study. 

We have added a sentence clarifying this in the introduction. 

Lines 111:114 – “This optimised version of WOMBAT-lite is intended for use within the 
Australian Community Climate and Earth System Simulator (ACCESS) umbrella of 
ocean-only model configurations (e.g., Kiss et al., 2020), while slight changes would be 
needed for the full earth system configurations to accommodate the diAerences in the 
physical state of the ocean (e.g., Law et al., 2017).” 

(5) Another major comments reside in emphasizing the utility of this optimization approach. 
Considering that the ML approach will identify the optimal parameter set in the space that 
has been explored, why not using the best performing of the 512 experiment? Could the 
authors comment a bit around that? I guess the optimization approach also provide some 
uncertainty and sensitivity quantification but can’t we get the same from the 512 



experiments? What about comparing the optimal simulations with the best of the 512 initial 
simulations? 

This comparison is made in the current Figure 7, where we show (yellow star) that the 
optimal parameter set outperforms the best of the 512 simulations in terms of the global cost 
function. We also provide a new supplementary figure that shows the distribution of 
performances between the optimal and full set of sensitivity experiments.  

This figure shows that the optimal parameter sets always perform well, with the majority of 
optimal experiments always performing better than at least 75% of sensitivity experiments 
(with the exception of surface dissolved iron, which performs better than at least 50%). For 
air-sea flux of CO2 and particle sinking flux, one optimal experiment has skill exceeding the 
skill of all sensitivity experiments. For other target fields, the best performing of the optimal 
experiments either has slightly greater skill or slightly less skill than the best of the 512 
sensitivity experiments. The consistently good performance of the optimal experiments, 
particularly related to the skill improvements in air-sea flux of CO2, shows that there is value 
in selecting the optimal parameter set over the best of the 512 sensitivity experiments. 
However, we acknowledge that good solutions do exist from within the sensitivity 
experiments. 

Lines 557:560 – “These optimal versions of WOMBAT-lite show good fidelity to the target 
fields, with all registering good performances in terms of the global cost function that 
were as good as or better than the best of the 512 sensitivity experiments for the 
majority of the target fields (yellow bars in Fig. 7; Fig. S6).” 

 

Figure S6. Performance of sensitivity and optimal experiments. Performance measured by the cost function of all 512 
sensitivity experiments (black) against all 20 optimal experiments (gold) for each of the 8 target variables. The best 
performing of the 512 experiments (grey star) is compared with the best performing of the optimal experiments (red 
star). Best here is defined according to the global cost function. Negative values in the cost function are possible for 



the “optimal” experiments because their RMSE is normalised to the range of RMSE in the 512 sensitivity experiments, 
where zero is the minimum RMSE and one is the maximum RMSE. 

(6) I would appreciate further discussion on model tuning and alternative approaches, 
particularly those employing ensembles/surrogate models/emulators. For instance, the work 
of Singh et al. (2025) and Williamson et al. (2017) seem relevant. 

We have included a greater discission of these papers and their relevance to our work in the 
discussion. 

Lines 756:764 – “Here we applied the surrogate-based method to WOMBAT-lite, 
optimised the model parameters and delivered improved performance in reproducing 8 
target datasets. Other approaches do exist for optimisation of biogeochemical models, 
such as iterative ensemble methods (Singh et al., 2025), which do not rely on surrogate 
methods but instead uses ensembles to iteratively adjust either the initial state or the 
parameters towards their optimal values through regular data assimilation (Dowd et al., 
2014). While this approach can provide time-evolving parameter optimisation, the 
surrogate approach employed herein represents another way to optimise the parameter 
set of a complex biogeochemical model, albeit statically, but importantly without large 
computation overhead. Once the surrogate is trained, it can be deployed cheaply to 
explore the parameter space in diAerent ways, oAering flexibility to select a new set of 
parameters with perhaps an emphasis on one target field (e.g., air-sea CO2 flux) over 
another, if required. One disadvantage, however, is that the optimisation can only be as 
good as the skill of the surrogate, meaning that careful training is critical.” 

(7) Last major comment, while the approach is explained very well, I believe it lacks a 
detailed description of the machine learning techniques used. This aspect is beyond my 
area of expertise, so I cannot adequately assess it. However, a thorough explanation 
might be essential for reproducibility and for the benefit of readers interested in 
machine learning methods applied to a specific problem. 
 
We point the reviewer to the code for sensitivity analysis and optimisation that is 
available at https://github.com/Jyoteesh38/Bayesian-Optimization-of-the-World-
Ocean-Model-of-Biogeochemistry-and-Trophic-dynamics-WOMBAT-. Following this 
code will allow any reader with access to python to reproduce the analysis in this study 
and this link is available under the “Code Availability” section. 
 

Minor and specific comments 

Introduction 

(8) l. 47: Reformulation suggestion for clarification: "This component represents the 
growth..." -> "This component, in its simplest form, represents the growth..." 

Done. 

(9) l. 96: There is a typo, remove "apt" in "As an apt example, ..." 

https://github.com/Jyoteesh38/Bayesian-Optimization-of-the-World-Ocean-Model-of-Biogeochemistry-and-Trophic-dynamics-WOMBAT-
https://github.com/Jyoteesh38/Bayesian-Optimization-of-the-World-Ocean-Model-of-Biogeochemistry-and-Trophic-dynamics-WOMBAT-


Done. 

Methods 

(10) l. 163-179: I first counted 7 observation products before understanding that chlorophyll 
data where actually providing 2 product: depth of the maximum and surface chlorophyll. Can 
the authors reformulate to clarify? 

Done. 

Lines 190:192 - “The extension of chlorophyll to depth allows for an assessment of 
patterns in the vertical, including spatiotemporal variations in the position of the deep 
chlorophyll maximum, which we assess in addition to surface chlorophyll 
concentrations.” 

(11) l. 172: Why optimizing to the CO2 flux and not pCO2? The CO2 flux is itself estimated 
from pCO2, thus introducing an additional source of potential errors in the observational 
target. Can the authors clarify/justify the choice? 

Done. 

Lines 194:196 - “We opt for CO2 fluxes rather than pCO2 concentrations to also account 
for any error in the windspeed-dependent gas exchange formulation, which we do not 
update or optimise at this stage.” 

(12) l. 225: Can the authors gives some example and eventually some reference (if they 
exists) to clarify what they have in mind? 

Clarified. 

Lines 261:263 – “However, we also note that longer integrations risk the compounding of 
physical and biogeochemical model errors as the physical state drifts further from the 
observations. Optimisation of the biogeochemistry under these conditions can cause 
over-tuning of the biogeochemical parameter set that compensate for physical errors 
(e.g., Singh et al., 2025).” 

(13) l. 239: I find misleading using "Southern Ocean" for all the ocean south of 20°S. Here it 
includes some of the subtropical gyres. I found this misleading in some other part of the 
manuscript. Can the authors use an other term? 

Replaced “Southern Ocean” with “Southern Oceans” in all places where appropriate. 

(14) l.271: For clarifying "... by comparing GPR predictions with WOMBAT-lite RMSE...", 
the authors can be specific and say that they compare the GPR predictions of RMSE with 
WOMBAT-lite RMSE. 

Done. 



Lines 309:311 – “This is repeated across all folds, and predictions are aggregated. The 
GPR model accuracy is assessed through the goodness-of-fit (R²) metric by comparing 
GPR predictions of RMSE with WOMBAT-lite RMSE data, which indicates high accuracy 
(Fig. S2).” 

(15) l. 267-268: Is there one training for the 8 RMSE or 8 training? i.e 1 GPR model 
predicting 8 RMSE or 8 GPR model? Can the authors clarify? 

8 GPRs are trained, one for each of the 8 target fields. Clarified this. 

Lines 306:307 - “Next, GPR models are trained for each observational target using these 
parameter samples as inputs and the normalized RMSE as the output.” 

(16) l. 276: Why not doing the optimization directly with the 24 parameters? Why having 
first a sensitivity analysis? (ie. why not doing step 10 just after step 5?) Can the authors 
clarify? 

Clarified. 

Lines 327:329 - “This set of 512 sensitivity experiments are diAerent from those 
generated during the sensitivity analysis because we now use a reduced set of only the 
most important parameters. This second iteration using a reduce parameter set and 
denser sampling of the parameter space is essential for the G-BO process (Reddy et al., 
2024).” 

(17) l.285-297: Similar to comment 15, can the authors clarify? Is there one training for the 8 
cost functions? Or one for the global cost function? Or 8 training for each cost function? To 
be entirely clear, the model is trained on a cost function (defined in Eq. 1 or 2), whereas for 
the sensitivity analysis, it focuses on the RMSE. Is that correct? 

Clarified. And yes. 

Lines 337:338 - “Unlike the sensitivity analysis that measured model performance via 
the RMSE, this cost function penalizes poor correlations and bias and error in the 
variance by using an uncentered NRMSE.” 

Results 

(18) l. 349-356: Why not including PI0 in the most important parameters? On figure 5b it has 
a value of 0.05 for the depth of chlorophyll maximum, i.e. 5% if I understood correctly the 
threshold. Can the authors clarify? 

Lines 415:416 - “The initial slope of the photosynthesis-irradiance curve (𝑃𝐼!) was not 
included because it fell just below the 5% threshold (shown rounded up in Figure 5b) in its 
higher order effects.” 

(19) l. 405: The depth of the chlorophyll maximum is indeed heavily influenced by αa and 
γ0p but only "in interaction" (i.e. panel b of Figure 5). It is the only target (with maybe iron 



but it is not as marked) that have 2 parameters standing out so much in interaction while no 
parameters seems to strongly influence it at first order. Can the authors comment one that? 

Lines 473:475 - “Increasing 𝛼"  while simultaneously decreasing 𝛾#!, for example, would 
cause an accelerated deepening of the nitracline since phytoplankton consume more 
nutrients but can also survive for longer under light limitation at depth.” 

(20) l. 412: It reads a bit strange to mention 2 additional parameters and not have them 
specified right away. There are mentioned just a bit after, but maybe the authors can slightly 
reformulate the paragraph so that 2 additional parameters are specified right after being 
mentioned. 

Structure improved. 

Lines 478:491 - “Our optimisation procedure involved another 512 experiments that 
varied 13 parameters: the 11 parameters identified in the sensitivity analysis plus 2 
additional parameters that were missed by our sensitivity analysis. The additional 2 
parameters included wider variations in the biomass threshold of phytoplankton for 
allometric scaling (𝐵#$%&'(%) from 0.01 to 1.0 (previously this had been varied from 0.01 to 
0.1), as well as variations in the base scaler of temperature-dependent autotrophy (𝛽"), 
which was previously held constant during the sensitivity experiments at a value of 
1.066 (Q10 = 1.89), following Eppley (1972), but have nonetheless been shown to vary 
between phytoplankton types (Anderson et al., 2021). We took the opportunity during 
the optimisation to vary these parameters. In our optimisation step, we explored a range 
of 1.040 to 1.080 (Q10 from 1.48 to 2.16) in 𝛽"  motivated by the results of Anderson et al. 
(2021). All remaining, insensitive parameters were held at their default values (Table 1). 
Thus, we explored variations in 13 parameters (11 parameters from the sensitivity 
analysis and 2 additional parameters) and sought their optimal values for best 
reproducing the 8 target fields (Fig. 3) by minimizing the global cost function (Eq. 2). The 
512 experiments were used to calibrate the global cost function synthetically using the 
machine learning model.” 

(21) l. 413-418: Any reason why these parameters where not included in the sensitivity 
analysis? Can the authors clarify? 

This was an oversight. We hope that the rephrasing in the previous response (#20) is 
sufficient to clarify this. 

(22) l. 437: "... due to its complexation with organics..." is not clear to me. What is organics? 
Organic form of dFe? Can the authors clarify? 

This is a detail of the cycling of dissolved iron in the ocean (Shaked et al., 2025; Tagliabue et 
al., 2017). As it is a very large topic, we refer the interested reader to these references. 

(23) l. 506: In the subtropical or subpolar gyres? 

Clarified. 



(24) l. 504-506: It seems to me there is a very shallow chlorophyll maximum in the 
subtropical gyres that is not present in the observation (Fig. 8k, l). Any explanation? This is a 
bit contradictory with the "too deep maxima in the gyres." Can the authors clarify? 

Lines 599:601 - “We note that in places where the chlorophyll maxima appear very 
shallow in the subtropical gyres is where chlorophyll concentrations are so low as to not 
form any appreciable maximum at depth, essentially where the nitracline is so deep as 
to be placed in darkness.” 

(25) l. 486-506: What about the CO2 flux? Can the authors mention that it receive a detailed 
analysis further in the paper. 

Done. 

Lines 595:596 – “In the annual averages presented in Figure 8, there is little obvious 
change in air-sea CO2 fluxes, but this hides compensating improvements in the 
seasonality which we detail in section 3.4.4.” 

(26) l. 483-484: "Our optimised WOMBAT-lite manages to show some improvement..." I 
don’t find Figure 10b to be the most effective way to illustrate this. Instead, Figure 11 
demonstrates the improvement in the seasonality of the CO2 flux through better local 
correlation, whereas the correlation on Figure 10b actually decreases. I agree nonetheless that 
on figure 10 the amplitude seems to be a bit closer. It also seems to me that comparing a 
transition zone based on average is rather complex. Could the authors reformulate to provide 
a more precise explanation/description? 

This is why we include both figures. It is also essential to show where the changes to 
parameter values may have altered things for the worse locally while improving them 
globally. We respectfully wish to keep Figure 10 as it is. We also note that we are 
forthcoming that there is much room for improvement regarding the model’s representation 
of CO2 fluxes. 

(27) l. 593-599: This paragraph seems to be a repetition of the the one just before. Can the 
authors merge it and combine figure 10 and 11 (maybe not all panel of figure 10)? 

Done. Combined the paragraphs, however we respectfully opt to maintain Figures 10 and 11 
as separate. 

Lines 674:703 – “We directly compared the monthly CO2 fluxes between an observation 
product (Chau et al., 2022) and WOMBAT-lite as well as the unoptimised model from 
January 1985 to December 2018. With optimal parameters, WOMBAT-lite shows 
improvement in its seasonality and regional agreement of CO2 fluxes compared with an 
unoptimised version of the model (Fig. 10; Fig. 11). While CO2 fluxes are strongly 
controlled by thermal processes in the subtropics and are thus well approximated by 
optimised and unoptimised versions alike (Fig. 10a; Fig. 11), CO2 fluxes at higher 
latitudes are, however, more aAected by biological drawdown and release (Mongwe et 
al., 2018; Takahashi et al., 2002). In the transition from subtropical to subantarctic 
zones (35ºS-50ºS) the observations show overall oceanic uptake of CO2, but 
importantly a greater uptake in the summer (Fig. 10b). Optimised WOMBAT-lite manages 



to show some improvement over the unoptimised model, with lower uptake in the 
winter and a trend towards uptake in the spring/summer. Nonetheless, this 
improvement is marginal in this zone and suggests that further improvement can be 
made in the future. The best match between WOMBAT-lite and the data is achieved in 
the Antarctic Circumpolar Current zone (50ºS-65ºS), where WOMBAT-lite shows good 
climatological correlations with the observations, while the unoptimised model shows 
negative correlations (Fig. 10c; Fig. 11). The flip from poor to good performance is 
caused by the net outgassing in the late winter and a trend towards oceanic uptake in 
the spring summer (Fig. 10c). Better seasonal correlations (0.87 à 0.96) are also 
achieved in the Antarctic Zone (65ºS-80ºS), although with WOMBAT-lite potentially 
overestimating the summer flux of CO2 into these waters (Fig. 10d).  
 
Improvement in air-sea CO2 fluxes is noteworthy from a zonally integrated perspective 
that incorporates the Northern Hemisphere (Fig. 12). North of 40ºN, the oceanic uptake 
of CO2 in the unoptimised version of the model exceeded the observations and this is 
somewhat reduced in WOMBAT-lite due to a substantial reduction in winter ingassing 
(Fig. 12b), while summer uptake is increased (Fig. 12c), resulting in a better match to 
observed CO2 fluxes in the Northern Hemisphere (Fig. 12a) that is also visible in the 
temporal correlations (Fig. 11). Meanwhile, there is little diAerence between the 
optimised and unoptimised versions of the model in the low latitudes, emphasising how 
thermal changes dominate air-sea CO2 fluxes in this region (Takahashi et al., 2002). 
Once again, in the Southern Ocean, we see clear improvements from a zonally 
integrated perspective. Winter outgassing is now achieved in WOMBAT-lite, although the 
zone of peak outgassing occurs too far north (Fig. 12c). Similarly, summer oceanic 
uptake is now achieved and is a closer match to the observations, although again the 
zones of maximum uptake are shifted too far north by roughly ~5º (Fig. 12b). Overall, the 
changes in the biogeochemical functionality of WOMBAT-lite show some improvements 
in reproducing observed air-sea CO2 fluxes, although we note some degree of caution is 
required given the uncertainty in the observational-based product itself (Gloege et al., 
2021; Hauck et al., 2023a).” 

(28) l. 593: The improvement are clear for the equatorial band (10S to 10N) and the high 
latitude (>50N and <30S). For the rest (10S-30S and 10N-50N) the unoptimized model is 
already well correlated with the observations and even better (darker red) in a few places. 
Can the authors reformulate to provide a more precise explanation/description? 

Lines 677:679 - “While CO2 fluxes are strongly controlled by thermal processes in the 
subtropics and are thus well approximated by optimised and unoptimised versions alike 
(Fig. 10a; Fig. 11), CO2 fluxes at higher latitudes are, however, more aAected by 
biological drawdown and release (Mongwe et al., 2018; Takahashi et al., 2002).” 

(29) l. 593-599: Can the authors mentioned that the observations also have some caveats 
(Hauck et al., 2023; Gloege et al., 2021)? 

Done.  

Lines 700:703 - “Overall, the changes in the biogeochemical functionality of WOMBAT-
lite show some improvements in reproducing observed air-sea CO2 fluxes, although we 



note some degree of caution is required given the uncertainty in the observational-
based product itself (Gloege et al., 2021; Hauck et al., 2023).” 
 

(30) l. 602: "the unoptimised version of the model exceeded the observations." The optimized 
version also exceed the observation on figure 12a. Can the authors clarify their point? 

Clarified. 

Lines 692:695 - “North of 40ºN, the oceanic uptake of CO2 in the unoptimised version of 
the model exceeded the observations and this is somewhat reduced in WOMBAT-lite 
due to a substantial reduction in winter ingassing (Fig. 12b), while summer uptake is 
increased (Fig. 12c), resulting in a better match to observed CO2 fluxes in the Northern 
Hemisphere (Fig. 12a) that is also visible in the temporal correlations (Fig. 11).” 

(31) l.601-611: On figure 12 we see that the optimized version has a much better seasonal 
cycle in the high latitude (in line with what we see on figure 11). This important 
improvement does not appear so much on the annual average because of compensation 
between the errors in summer and winter. This should be stated more clearly. 

Stated earlier as per your request and wording. 

Appendix 

(32) l. 1430: There is typo, "is remineralised" is repeated. 

Corrected. 

Figures 

(33) Fig. 1: In the text of step (6) in the figure, consider to keep the same format as the other 
steps. Maybe something like "Run a global sensitivity..." 

Done. 

(34) Fig. 4: Can the authors add the performance of the optimized model and the 20 optimal 
experiments after 10 and 100 years. 

Yes this can be added, but we opt for these to be shown as supplementary figures to not 
distract or clutter an already lengthy manuscript. This has been added as Supplementary 
Figure 6. 

(35) Fig. 4: Why is the standard deviation of sinking detritus, NPP and chlorophyll so weak 
for many experiments? Can the authors explain/comment? 

Likely that our NPP and sinking fluxes are too high in the gyres and too low in the productive 
regions. Or also that the measurements in the case of sinking particulate fluxes are highly 
localised in space and time, while the model necessarily produces smoothed (i.e., temporally 
and spatially averaged) output. 



(36) Fig. 5: Should the sum of each row in the table be equal to one, including both tables a) 
and b)? Could the authors clarify the difference between the first-order and higher-order 
values? It would be helpful to include an explanation of this in the methods section, for 
example at the end of section 2.4.1. 

The total order (the sum of both tables) does not necessarily sum to 1. The first-order indices 
sum to at most 1, while the total-order indices sum to at least 1. If there are no interactions, 
then the first and total-order indices are equal, and both the first and total-order indices sum 
to 1. We have included this information in the Figure legend. 

(37) Fig. 6: The figure is not much referenced in the text, and because the values are 
normalized, it is difficult to compare them with Table 1 (I assume that the optimal values and 
ranges are derived from this figure in some way) and it does not provide a finer 
understanding of the optimal range. Perhaps it could be moved to the supplementary 
materials. 

It is possible to move this to the supplement, but it is also a visualisation of a key outcome of 
the work. We defer to the editor, but have also added another reference to Figure 6 in the text 
as a way to show its importance. 

(38) Fig. 10: As mentioned in comment 13, I find misleading the term Southern Ocean in the 
caption. 

Corrected to “Southern Oceans”. 

(39) Fig. 11: Can the authors add the latitude on the map. 

Yes. 
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