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Abstract

Increase in riverine nutrient loads was generally recognized as the primary cause of
coastal deoxygenation, whereas the role of other riverine factors, especially suspended
sediments, has received less attention. This study aims to discern the impacts of
anthropogenic alterations in various riverine inputs on the subsurface deoxygenation
over the past three decades in a large river-dominated estuary, the Pearl River Estuary
(PRE). Using a physical-biogeochemical model, we reproduced the observed dissolved
oxygen (DO) conditions off the PRE in the historical period (the 1990s with high
suspended sediments concentration (SSC), high DO, and low nutrients) and the present
period (the 2010s with low SSC, low DO, and high nutrients). In the 2010s, the PRE
exhibited more extensive and persistent summer hypoxia, with the low oxygen area
(DO < 4 mg/L) expanding by ~148% (to ~2926 km?) and the hypoxia area (DO < 3
mg/L) increasing by 192% (to ~617 km?). Low-oxygen durations extended to 15-35
days, and three distinct hypoxic centers formed under different controlling factors.
Single-factor experiments suggested that decreased riverine DO content (46%) alone
expanded low-oxygen areas in the upper estuarine regions by 44%, the decreased SSC
(by 60%) alone cause a 47% expansion in the lower reach of PRE, and the increased
nutrients alone (100% in dissolved inorganic nitrogen and 225% in phosphate) drove a
31% expansion. In comparison, the combined nutrient increases and the SSC declines
synergistically enhanced primary production and bottom oxygen consumptions
(dominated by sediment oxygen uptake), amplifying low-oxygen (104%) and hypoxic
(192%) area growth in lower estuaries. Our results revealed that SSC declines, by
improving light availability for productivity, play a larger role than nutrient increases
in exacerbating deoxygenation off the PRE. This synergy complicates hypoxia
mitigation efforts focused solely on nutrient controls. Given the widespread global
declines in riverine suspended sediments, our findings underscore the importance for
incorporating sediment-mediated processes, a relatively overlooked factor, in coastal

deoxygenation studies.
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1. Introduction

Hypoxia emerges when dissolved oxygen (DO) concentration drops below 3 mg/L
in aquatic systems. It is an undesirable phenomenon which can lead to a series of
biological and ecological consequences, such as damaging the habitat for aquatic
organisms and imposing detrimental effects on the ecosystem community structure
(Diaz and Rosenberg, 2008; Roman et al., 2019). Due to the substantial impacts from
human socioeconomic activities, coastal regions have become a hotspot for hypoxia
(Breitburg et al., 2018; Pitcher et al., 2021). Moreover, long-term exacerbation of
hypoxia with spatial expansion and increased frequency has been frequently reported
in estuarine and coastal regions worldwide during the past decades, including the Baltic
Sea (Carstensen et al., 2014), the northern Gulf of Mexico (Bianchi et al., 2010),
Chesapeake Bay (Murphy et al., 2011), the Yangtze River Estuary (Chen et al., 2017),
and the Pearl River Estuary (Hu et al., 2021).

Plenty of studies were conducted to reveal the mechanism of hypoxia formation
3
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and evolution in coastal regions. It has been widely recognized that coastal
deoxygenation is largely attributed to the eutrophication-driven production of organic
matters (Su et al., 2017; Wang et al., 2016; Howarth et al., 2011), which sink to the
subsurface waters and bottom sediments, leading to intense oxygen depletion (Wang et
al., 2014; Hagy et al., 2005). This would induce hypoxia when the density stratification
restricts DO replenishment from the surface waters (Wang et al., 2018; Murphy et al.,
2011). One important reason underlying eutrophication and hypoxia is the excessive
nutrients that are discharged into the water column and stimulate phytoplankton blooms
(Cullen, 2015; Wang et al., 2021; Cormier et al., 2023). In addition, human activities,
such as dam construction (Bussi et al., 2021) and soil-water conservation measures
(Yang et al., 2024) can significantly reduce suspended sediment in estuaries. Hence, an
improved light condition, e.g., due to the decreased suspended sediment loads, could
also favor the enhancement of local production and hence hypoxia (Ge et al., 2020;
Huang et al., 2022). The effects of nutrient and light conditions vary in coastal systems
due to different hydrodynamic and topographic features, which makes the formulation
of hypoxia mitigation strategies more challenging. Therefore, a quantitative assessment
on the importance of these factors in generating hypoxia is crucial for understanding
the primary drivers of hypoxia evolution and for proposing effective countermeasures.

A case in point is the Pearl River Estuary (PRE), which is situated in the northern
South China Sea and close to the Guangdong-Hong Kong-Macao Great Bay Area (Fig.
la). Owing to the relatively large nutrient inputs and vertical stratification formed by
freshwater plume, hypoxia typically occurs during summer in the bottom waters of the
PRE. Before the 2000s, it was an episodic and small-scale issue because of the
synergetic effect of shallow topography, high turbidity (Ma et al., 2022), and the
intermittent stratification due to periodic disturbance by the tides. However, large-scale
occurrences of low oxygen (when DO <4 mg/L) and hypoxia were frequently reported
in recent years. For example, it was estimated that the low-oxygen area within the PRE

achieved 1000 km? and 1500 km? during summer in 2010 (Wen et al., 2020) and 2015
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(Li et al., 2018), respectively, which were nearly double to that before the 2000s (Li et
al., 2020). Hu et al. (2021) compiled historical observations over four decades to
investigate the long-term deoxygenation trend and its spatial expansion in the PRE.
They highlighted the significant contributions of increased nutrient and decreased
sediment fluxes from the Pearl River to the exacerbation of low-oxygen conditions in
the region. Besides, the low-oxygen inflows from the Pearl River could also contribute
to the low-oxygen area in the upper estuary (Hu et al., 2021). Nevertheless, a
quantitative understanding of their relative contributions to the low-oxygen expansion
in the PRE is lacking, particularly in different subregions (Fig.1b) where the
mechanisms controlling the low-oxygen conditions are different. In the upper part of
the PRE (Lingdingyang waters), aerobic respiration of terrestrial organic matter plays
a greater role (Su et al., 2017; Yu et al., 2020); in the downstream regions of the PRE,
deoxygenation is primarily controlled by eutrophication (Yu and Gan, 2022; Chen et
al., 2024)

In this study, we used a coupled physical-biogeochemical model to investigate the
decadal changes (the 1990s versus the 2010s) in summertime DO contents and related
biogeochemical processes in the PRE and to quantify the relative contributions of the
changing riverine inputs (including nutrients, suspended sediments, and oxygen content;
Fig. 1c-f) to the long-term expansion of low oxygen (DO <4 mg/L) and hypoxia (DO

<3 mg/L) in the region.
2. Material and methods

2.1 Study area

The PRE and its adjacent shelf waters (Fig. 1a) represent an estuarine system
under intensive human activities. One major anthropogenic impact in the PRE is the
terrestrial substances fed by the Pearl River, which is the third largest river in China
with an average annual runoff of 3.26x10'! m3/ Year (Luo et al., 2002), through eight

river outlets, including Humen, Jiaomen, Honggqili, Hengmen, Modaomen, Jitimen,
5
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Hutiaomen, and Yamen (Fig. 1a). The long-term DO and water quality data used here
were collected from open sources (e.g. government websites) and published studies
(detailed in Data availability and Table S1 of Supplement). Over the past few decades,
the terrestrial inputs from the Pearl River have experienced remarkable changes in
oxygen content, sediment loads, and nutrients including dissolved inorganic nitrogen
(DIN) and dissolved inorganic phosphorus (DIP) (Fig. 1c-f). Consequently, the

ecological environments of the PRE have changed significantly.
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Fig. 1. (a) Study area of the PRE and sampling sites during 1985-2017; (b) Five
subregions and a transect along the coastal transition zone used for analysis and the
surface water flow direction; (c¢) Annual loads of suspended sediments (SS) from the
Pearl River; (d-f) Summer-averaged (June to August) surface-layer (within the upper 2
m of water column) concentrations of nutrients (DIN, DIP) and dissolved oxygen (DO)
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at Humen Outlet (the primary monitoring site). Error bars indicate intra-summer
variability across sampling dates.

During the 1990s, the Pearl River Estuary (PRE) experienced low eutrophication
levels, consistent with limited upstream urbanization and relatively high sediment loads.
This period saw extensive construction of water infrastructure, mostly completed by
2000, including over 8,636 reservoirs in the Pearl River Basin (Wu et al., 2016), which
drove a significant decline in riverine suspended sediment concentration (SSC) (Zhang
etal., 2008). After 2000, accelerated urbanization and continued hydraulic development
further altered river inputs, with monitoring data showing decreased sediment loads
(Fig. 1c) and increased nutrient concentrations (Fig. 1d—e). These changes collectively
enhanced phytoplankton blooms potential, exacerbating eutrophication and hypoxia.
These long-term variations of riverine substances have also been reported by Lai et al.
(2022) and Hu et al. (2021). In the meantime, the oxygen content in the PRE has
exhibited a notable drawdown with significant expansions in low-oxygen extents in
recent summers (Fig. 2), which has been revealed by the cruise observations in the PRE

(Lietal., 2021; Suetal., 2017; Hu et al., 2021; Lu et al., 2018).
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Fig. 2. (a) Interannual variations of low-oxygen area (HA4, DO <4 mg/L) and hypoxic
area (HA3, DO < 3 mg/L) in the bottom waters (~1-2 m above sediments) of the PRE,
calculated via liner interpolation on a 0.01° x 0.01° grid using summer cruise
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observations (note that the grey patches indicate data gaps). Spatial distributions of
summer-averaged bottom DO concentrations during (b) 1991-1996 and (c) 2013-2017.

2.2 Model settings and validation

2.2.1 Model descriptions and settings

An online 1D-3D coupled physical-biogeochemical model, which has been
extensively verified and applied in the PRE (Wang et al., 2017; Wang et al., 2018; Hu
et al., 2011; Zhang et al., 2022), was utilized here to reproduce the oxygen dynamics
under the long-term changes in riverine nutrients, suspended sediment concentration
(SSC), and oxygen content (Fig. 1c-f). This 1D-3D modeling framework integrates a
1D representation of the Pearl River network with a 3D simulation of the Pearl River
Estuary and adjacent shelf region, operating in an online coupling mode. The 1D
component numerically solves the Saint-Venant equations using a Preissmann scheme,
discretizing the river network into 299 sections with five upstream boundaries
(specified as either discharge or water level inputs). The 3D component employs the
ECOM model with 16 vertical layers and adaptive horizontal resolution (400m to 3km),
forced by tides, atmospheric forcing, and open boundary conditions. The two
components exchange fluxes at eight river outlets: the 3D model incorporates river
discharge from the 1D model as upstream boundary conditions, while the 1D model
uses water levels computed by the 3D model as its downstream boundaries at each time
step. This 1D-3D modeling framework was initially developed to investigate nutrient
fluxes to the PRE and has been extended and validated to simulate oxygen dynamics
and hypoxia in the PRE (Wang et al., 2017; Wang et al., 2018; Hu et al., 2011; Zhang
et al., 2022; Chen et al., 2024). For the sake of conciseness in the main text, detailed
descriptions on the physical and suspended sediment modules were provided in the
Supplement (Text S1). Regarding the biogeochemical module, it is based on the Row-
Column Aesop (RCA), which simulates interactive cycles of oxygen, carbon, nitrogen,
phosphorus, and silicon in the water column (HydroQual, 2004). The schemes for DO

dynamics and phytoplankton growth in the model can be found in previous studies
8
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(Wang et al., 2017; Wang et al., 2018). The nutrient limitation factor (Gy(N))is

parameterized as:

Gn(N) = Min ( (1)

DIN DIP Si )
Kmn+DIN’ Kypyp+DIP’ Koy gi+Si

where DIN, DIP, and Si are concentrations (mg L) of dissolved inorganic nitrogen
(NOs~, NH4"), phosphorus (PO+*"), and silicon (Si0s*), respectively. K,,y, Kyp, and
Kpsi are their corresponding half-saturation constants. A higher Gy (N) indicates
weaker nutrient limitation. Given the stronger N and P limitation compared to Si in the

Pearl River Estuary (PRE), this study emphasizes N and P.

The light limitation factor G;(I) is parameterized as:

—Ip(t) _ —Io(t)
Gi(1) = ;55 [exp (FL2 e el ) — exp 0] @)

with the light extinction coefficient:

ke = kepase + ke * aceny * Po + Kkgeq ¥ SSC + kpoc * POC 3)
and the surface light at depth:

Io = Lsyry * e7Fe ™ 4)
Here, H is water depth (m), I the saturation light intensity (ly day™), Is,,s is the
surface light (ly day ), and the k-terms are light attenuation coefficients due to water,
Chl a, SSC, and POC.

To assess light conditions, the eutrophic depth Hg is computed as the depth where light
is 1% of surface intensity:

Isurf x e "keHE = surf * 1% (5)

A deeper H; implies better light conditions for phytoplankton growth.

2.2.2 Model validation

The coupled physical-biogeochemical model mentioned above has already been
validated against a variety of observations for several periods, which showed good
performance in reproducing the physical conditions, suspended sediment dynamics,
and biogeochemical cycles in the PRE. We briefly summarized the validation results

here. For the physical and suspended sediment modules, Hu and Li (2009) has applied

9
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the 1D-3D coupled model to establish 30-day realistic simulations for July 1999 and
February 2001. The simulated water levels, discharges, salinity, and SSC agreed well
with the observations in the Pearl River network and the PRE for both periods, with
correlation coefficients all greater than 0.65 in summer. The simulated SSC at the
surface was also compared to satellite remote sensing data, which showed a fairly close
spatial pattern and comparable concentration magnitude. Furthermore, Wang et al.
(2017) provided an extensive model validation using field data collected from four
seasonal cruises in 2006, with high correlations for water levels (> 0.95), salinity (>
0.90) and temperature (> 0.80) and low root-mean-standard-errors between the
simulation and observations in summer.

Then, the biogeochemical module was established and used to explore the nutrient
and oxygen dynamics off the PRE in July 1999 and January-December 2006 (Hu and
Li, 2009; Wang et al., 2017). Detailed model settings and parameters can be found in
Wang et al. (2017). For validation, comparisons with the water quality data from cruise
surveys indicated that the biogeochemical module was robust to reproduce the spatial
distributions of nutrient, chlorophyll a, and oxygen concentrations in the PRE (Figs. 3,
5). To further assess light attenuation dynamics, we obtained diffuse attenuation
coefficient at 490 nm (Ka(490)) data for the PRE from the EUMETSAT Ocean color
Thematic Assembly Centre (https://www.oceancolour.org/). We converted Kq4(490) to
photosynthetically active radiation attenuation coefficient (Kpar) using the empirical
formula proposed by Lee et al. (2005), and then calculated the euphotic depth using Eq.
5 in Section 2.2.1. Model-simulated and satellite-derived euphotic depths show close
agreement in both the 1990s and 2010s (Fig. 4b, d), demonstrating consistent model
performance across decades.

For hypoxia simulation, the model accurately captured the observed temporal
expansion of hypoxia, transitioning from localized bottom hypoxia in the 1990s (Fig.
2b-c) to widespread occurrences in the 2010s (Fig. 5d-e). Initial validation against

1994-1999 summer observations showed close agreement, with simulated low-oxygen

10
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(HA4=1179.7 km?) and hypoxic (HA3=211.3 km?) areas matching observational
estimates (802+437 km? and 131+£84 km?; Fig. 2a, Table 3). For the 2013-2017 period,
the model successfully replicated hypoxia intensification, as evidenced by HA4
expansion to 2925.5 km? aligning with observed 2715+1068 km?. For the 2010s,
simulated HA3 doubled to 617.2 km?, consistent with observational uncertainty ranges
(901£591 km?; 2013-2017 data). These results collectively confirm the model's
robustness in simulating both historical patterns and emerging hypoxia dynamics. In
addition, Wang et al. (2017) has compared the simulated oxygen kinetic terms
(including the air-sea re-aeration rate, water-column respiration and production rates,
and sediment oxygen demand) with observations in summer, which demonstrated the
model’s capability in representing the important oxygen source-sink processes (e.g.,
oxygen consumptions across the sediment-water interface) in the PRE. Detailed model

settings and parameters can be found in Wang et al. (2017).

2.3 Model experiments

Based on the well-validated model run in 2006 (Wang et al., 2017), the present study
performed diagnostic simulations for two representative periods, characterized by low
nutrients and high suspended sediments and oxygen content during 1991-1996
(referring as to the “1990s case”; Table 1) versus high nutrients and low suspended
sediments and oxygen content during 2013-2017 (referring as to the “2010s case”™).
Each case was run from 1 January to 31 August, driven by climatological physical
conditions (freshwater discharges and wind speeds detailed in Text S1 of the
Supplement) averaged over 1990-2017 and by mean observed values of riverine water
quality components in the corresponding period. The riverine boundary conditions for
DIN, DIP, DO, and SSC during summertime are listed in Table 1 for both the 1990s and
2010s cases. Notably, the 2010s SSC was set based on field data (Chen et al., 2020),
whereas the 1990s SSC was back-calculated from the 2.5-fold difference in sediment

loads. Long-term monitoring at river outlets showed no significant temporal trend in
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chemical oxygen demand (COD) compared to the marked increases in nutrients and
decreases in DO (Lai et al., 2022), indicating stable oxygen-consuming organic matters
(OM) inputs. We therefore maintained constant OM concentrations between study
periods (organic carbon: 2 mg/L; organic nitrogen: 0.2 mg/L; organic phosphorus: 0.03
mg/L), consistent with published historical observations (Wang et al., 2018).
Furthermore, three additional model scenario simulations were conducted in order to
disentangle the individual impact of each varying riverine input on the summer
deoxygenation off the PRE. The setting of each scenario was identical to that of the
1990s case except that the riverine nutrients, SSC, and DO were separately replaced by
the representative value in the 2010s (referring as to the “High-nutrient case”, “Low-
SSC case”, and “DO-restore case”, respectively; Table 1)

Table 1. Riverine inputs (in unit of mg L") for model experiments.

Cases DIN DIP DO SSC
1990s 1.0 0.020 6.5 100
2010s 2.0 0.065 3.5 40
High-nutrient 2.0 0.065 6.5 100
Low-SSC 1.0 0.020 6.5 40
DO-restore 2.0 0.065 6.5 40
3. Results

3.1 Responses of eutrophication to human-induced changes in

the PRE

3.1.1 Long-term variations in water quality distributions

To examine changes in eutrophication (a key process affecting DO dynamics) and
its influential factors during summer in the PRE, we compared the simulated
distributions of SSC, nutrients, Chl @, and POC in the surface waters between the 1990s
and the 2010s cases (Fig. 3) as well as their vertical integrations in subregions (Table

2). Model results showed that the surface SSC within the PRE largely declined during

12
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the two periods. In the 1990s, SSC maintained at a high level in the inner Lingdingyang
Bay (see its location in Fig. 1b), ranging from 70.0 to 100.0 mg/L (Fig. 3a). Due to the
particle sinking as waters advected downstream, SSC decreased to ~10.0 mg/L in the
lower reaches of the PRE in the 1990s. While in the 2010s, the riverine sediment loads
have remarkably decreased, resulting in a corresponding drawdown in SSC
downstream (Fig. 3b-c). Overall, the vertically-integrated SSC content in the inner
Lingdingyang Bay and lower PRE dropped by 56.1% and 45.6%-47.3% to 244.5 mg/m?
and 38.4-69.2 mg/m?, respectively (Table 2).

In terms of nutrients, the variation induced by riverine inputs was also evident
during the two periods, acting on the main estuary in association with the spreading of
the river plume. As shown, the DIN content in the 1990s was mostly below 1.5 mg/L
within the entire PRE (Fig. 3d). With respect to the 2010s, the DIN concentration has
increased by 0.8 mg/L and 0.2 mg/L in the surface waters of the upper Lingdingyang
Bay and the lower PRE, respectively (Fig. 3e-f). The vertically-integrated DIN mass
has increased by 41.9%-102% in the PRE (Table 2). A similar situation occurred with
respect to DIP, with its content increasing from 0.04 mg/L in the 1990s to 0.07 mg/L in
the 2010s in the high-DIP area adjacent to the middle Lingdingyang Bay (Fig. 3g-1). In
terms of vertical integration, DIP increased by 9%-108%, with the lowest increases

located in the Hong Kong waters downstream of the estuary (Table 2).
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In response to changes in light (affected by the SSC content) and nutrient
conditions, phytoplankton biomass has substantially grown in the 2010s, indicated by
the increased Chl a concentration. In the 1990s, the phytoplankton biomass was at a
low level, with the Chl a generally below 8.0 pg/L in the surface waters (Fig. 3j). As
for the 2010s, significant phytoplankton blooms were found along the Modaomen sub-
estuary, outer Lingdingyang Bay, and Hong Kong waters (Fig. 3k-1), with the vertically-
integrated Chl a content rising by 31.0 pg/m? (by 78.7% compared to the 1990s), 32.2
pg/m? (79.1%), and 34.6 pg/m? (46.6%), respectively (Table 2). As a result of the
elevated primary production, a great amount of organic matter was produced in the PRE.
Spatially coupled to the growth of Chl a (Fig. 31), the POC content has significantly
increased in the 2010s, especially in the lower PRE (Fig. 3m-0), with the vertically-
integrated concentration increasing by 1.5-2.0 mg/m? (by 27.4%-32.6% compared to

the 1990s) over the water column (Table 2).
3.1.2 Long-term variations in nutrient and light limitations

The primary production in the PRE was controlled by the synergistic effects of
nutrient and light conditions. We calculate the nutrient limitation factor and the
eutrophic depth to quantify the intensity of nutrient limitation and light limitation on
algae growth. It should be noted that a smaller nutrient limitation index and a shallower
eutrophic depth represent a stronger nutrient limitation and a stronger light limitation,
respectively. Results showed that the nutrient limitation exhibited a distinct estuary-
shelf gradient, in which the Hong Kong waters experienced more severe nutrient
limitation than the Modaomen sub-estuary and Lingdingyang Bay (Fig. 4a, c).
Specifically, the nutrient limitation index decreased from the upper estuary (0.94) to the
Hong Kong waters (0.83) in the 1990s. In contrast, light limitation attenuated along the
river plume transport pathway (Fig. 4b), largely ascribed to the decreasing SSC (Fig.
3a-b). Both observations and model simulations revealed consistent spatial patterns,
with the eutrophic depth progressively increasing from severely light-limited regions

near river outlets (Lingdingyang Bay: 1.3 m; Modaomen sub-estuary: 9.5 m) to the less-
16



344  limited Hong Kong waters (20.7 m; Fig. 4b).
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347  Fig. 4. Comparisons of (a, ¢) simulated nutrient limitation index for phytoplankton
348  growth and (b, d) euphotic depths (in meters) between the 1990s and the 2010s, with
349  their differences shown in (e) and (f), respectively. Colored dots in (b) and (d) represent
350  corresponding euphotic depth observations. Note: Euphotic depth is measured as
351 negative values increasing downward from the sea surface; thus, more negative
352  differences in (f) indicate deeper light penetration in the 2010s.

353

354 The increased nutrient loads in the 2010s alleviated nutrient limitation. For
355  instance, the nutrient limitation index in Hong Kong waters has increased to 0.85 (a 2.4%
356  increase from the 1990s levels; Table 2). By contrast, the relief of light limitation due
357  to the reduced riverine suspended sediments was more evident. Both model simulations
358 and observations revealed significantly greater deepening of the euphotic depth in the
359 Lingdingyang Bay compared to the lower estuary (Fig. 4b, d, f). In the inner
360 Lingdingyang and middle Lingdingyang Bays, the euphotic depth increased by 1 m and
361  2.2m(by 76.9% and 110.0% relative to the 1990s, Table2), respectively. The alterations
362  in light conditions in the remaining area were relatively minor, with the eutrophic depth
363  increasing to 11.2 m (by 17.9%) in the Modaomen sub-estuary and to 21 m (by 1.4%)
364  in the Hong Kong waters during the 2010s (Table 2).



365 3.2 Responses of DO dynamics to human-induced changes in

366 the PRE
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368

369 Fig. 5. (a-c) Surface DO and (d-f) bottom DO distributions, (g-i) vertical DO
370  distributions along the transect (see its location in panel a), and (j-1) low-oxygen
371  frequency (HF4, DO < 4 mg/L) and (m-0) hypoxia frequency (HF3, DO <3 mg/L) in
372  the bottom waters of the PRE for the 1990s (left panels) and the 2010s (middle panels)
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as well as their differences (right panels). Note that hypoxia frequency is calculated as
the number of hypoxic days divided by the total number of days in the study period,
yielding a dimensionless ratio (range: 0—1).

Our model revealed distinct shifts in summertime DO patterns and hypoxia
distribution (Fig. 5). The 1990s surface waters generally maintained DO >6 mg/L,
increasing toward shelf regions (Fig. 5a). By the 2010s, surface DO increase by 0.2-0.3
mg/L (Fig. 5b-c), with an oxygen-enriched zone in the lower PRE correlating with high
Chl a (Fig. 3k), though new low-oxygen zones (DO <4 mg/L) emerged near river outlets
due to reduced Pearl River DO influx.

Bottom water simulations captured the hypoxia expansion from localized 1990s
events (Fig. 2b-c) to widespread 2010s occurrences (Fig. 5d-e). Initial hypoxia
clustered along the western PRE (Modaomen sub-estuary; Fig. 5d), with simulated
HA4 (1179.7 km?) and HA3 (211.3 km?) (Table 3) matching observations (802+437
km? and 131£84 km?; 1994-1999 summers; Fig. 2a). By the 2010s, hypoxia intensified
throughout Lingdingyang Bay and Hong Kong waters, with bottom DO declining to
2.8-4.1 mg/L (Table 2). Simulated HA4 expanded 1.5-fold to 2925.5 km? (Table 3),
consistent with observed 2715+1068 km? (2013-2017; Fig. 2a). HA3 doubled to 617.2

km? by the 2010s, comparable to observed 9014+591 km? (2013-2017).

Table 3. Simulated low-oxygen (HA4, DO <4 mg/L) and hypoxic (HA3, DO <3
mg/L) areas in the bottom waters of the PRE and their changes relative to the
1990s.

Percentage of Percentage of
Cases HA4 (km?) HA3 (km?)

change change
1990s 1179.7 / 211.3 /
2010s 2925.5 +148% 617.2 +192%
High-nutrient 1542.6 +31% 282.5 +34%
Low-SSC 1737.0 +47% 4124 +95%
DO-restore 2409.7 +104% 617.2 +192%

Note: The calculation in percentage of change is: (HAx-HA1990s) / HA1900s , Where x represents

each case.

In addition, our model accurately reproduced the two observed hypoxic centers
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399  along the coastal transition zone (Modaomen sub-estuary and Hong Kong waters; Fig.
400  2b-c), revealing distinct spatiotemporal deoxygenation patterns (Fig. 5g-o0). During the
401  1990s, both centers exhibited limited low-oxygen zones, with Hong Kong waters
402  showing <1 m thick DO <4 mg/L layers (Fig. 5g). Low-oxygen (HF4) and hypoxic
403  (HF3) conditions persisted 18-76 days (20.5%-84.5% frequency) and 4-23 days (4.8%-
404  25.2%) respectively during summer months (Fig. 5j, m; Table 2).

405 By the 2010s, hypoxic thickness increased substantially to ~1.5 m at Modaomen
406 and ~5 m (~4 m thicker than 1990s) at Hong Kong waters (Fig. 5h). Event durations
407  prolonged to 55-89 days (61.0%-99.1% HF4) and 19-51 days (21.4%-56.5% HF3)

408  respectively (Fig. 5k, n; Table 2), demonstrating intensified and prolonged hypoxia.
409 3.2.2 Variations in bottom oxygen consumption

410 To further explore the mechanism of long-term deoxygenation off the PRE, we
411  investigated the oxygen consumption rates and their changes during the two periods
412 (the 1990s versus the 2010s). We specifically focused on the oxygen consumption at
413  the bottom layers covering the 20% of the water depth above the sediments, where the
414  majority of hypoxic events in the PRE occurred (Fig. 5).

415 As shown in Table 2, the predominant oxygen sink in the bottom waters of the
416  PRE was sediment oxygen demand (SOD) induced largely by the remineralization of
417  organic matter in sediments, whereas water column respiration (WCR) only accounted
418  for 15.2% of the bottom oxygen consumption on average. Over the past three decades,
419  both the WCR and SOD have generally increased in the PRE, primarily attributed to
420  the growth in local production of organic matter associated with aggravated
421  eutrophication (Fig. 3j-0). Particularly, the SOD in the outer Lingdingyang Bay and
422  Hong Kong waters has remarkably increased from 0.28-0.92 mg O, L! day™! in the
423 1990sto 1.12-1.48 mg O, L' day! in the 2010s (Table 2), which contributed to 80%~95%
424  of the increment in total oxygen consumption. Although the absolute increase of SOD
425  in the Modaomen sub-estuary was comparatively small, the SOD in the 2010s has

426  almost doubled compared to the 1990s, leading to a substantial increase in the
20
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occurrence of hypoxic events in this region (Fig. 5d-o).

3.2.3 Disentangling contributions of riverine oxygen, suspended

sediments, and nutrient changes on deoxygenation

As detailed in Section 2.3, three scenario simulations were performed to quantify
the relative contributions of riverine changes to the decadal low-oxygen expansion in
the PRE (Table 1). In general, the riverine impacts on DO and related biogeochemical
factors varied significantly between subregions (Figs. 6-7). Specifically, increasing the
riverine nutrient levels from the 1990s to the 2010s alone (High-nutrient case) led to a
marked drawdown in the bottom DO around the lower PRE (by over 0.2 mg/L relative
to the 1990s; Fig. 6a). The DO decline, extending from the Modaomen sub-estuary to
the Hong Kong waters, was ascribed to the elevated phytoplankton biomass (Fig. 7b)
facilitated by better nutrient conditions, which subsequently sustained stronger bottom
oxygen depletions compared to the 1990s (Fig. 7c). Among the subregions, the Hong
Kong waters was more susceptible to the changes in riverine nutrients as it was subject
to comparatively severe nutrient limitation (Table 2). Therefore, with the improvement
of nutrient utilization, this region experienced more pronounced deoxygenation in
association with significant alterations in Chl a content and SOD (increased by 14.2
pg/m? and 0.26 mg O2 L' day’!, respectively, equivalent to 47.1% and 46.4% of their
total increments over the past three decades; Fig. 7). While in the inner Lingdingyang
Bay, the increased nutrient inputs only caused a slight change in Chl a content because
the phytoplankton growth in this region was mostly light limited due to high water
turbidity (Table 2). The concomitant changes in SOD and bottom DO were fairly small
as well. Collectively, the high-nutrient scenario alone resulted in a 31% and 34% growth
in the area affected by low oxygen (HA4) and hypoxia (HA3) relative to the 1990s,

respectively (Table 3).
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Fig. 6. Bottom DO changes induced by (a) riverine nutrient increases (the High-nutrient
case minus the 1990s case), (b) riverine SSC declines (the Low-SSC case minus the
1990s case), (c) the combined effects of nutrient increases and SSC declines (the DO-
restore case minus the 1990s case), and (d) riverine DO declines (the DO-restore case
minus the 2010s case), respectively. The blue and white contour lines represent DO =
4 mg/L for the respective cases, and the red contour lines represent DO = 3 mg/L.
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Fig. 7. Changes of (a) bottom DO concentration, (b) vertically-integrated Chl a content,
and (c) SOD in subregions of the PRE for the High-nutrient, the Low-SSC, and the
2010s cases relative to the 1990s case.

Compared with the High-nutrient case, reducing the riverine suspended sediment
loads from the 1990s to the 2010s alone (Low-SSC case) imposed a greater impact on
the DO conditions, causing more extensive and intense deoxygenation through the PRE
(Fig. 6b). Apparent DO decline (exceeding 0.3 mg/L relative to the 1990s) occurred
within the lower PRE, similar to that of the changing riverine nutrients described above.
This is also attributed to the intensified SOD (with an increment of 0.17-0.62 mg O> L~

'day!, accounting for 57.1%-77.3% of the total increment during the two periods; Fig.
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7¢), accompanied by a prominent increase in Chl a content (by 21.9-29.1 ng/m?,
accounting for 72.4%-90.3% of the total increment; Fig. 7b) due to the improved light
condition (the relief of light limitation; Table 2). The SSC-induced changes in these
biogeochemical factors were more pronounced in the outer Lingdingyang Bay and
Modaomen sub-estuary than in other regions including the Hong Kong waters, which
coincided with the alterations in deoxygenation among the subregions (Fig. 7). Overall,
under the low-SSC scenario the low-oxygen area (HA4) and hypoxic area (HA3)
expanded by 47% and 95% compared to the 1990s, respectively (Table 3). As shown in
Figure 7 and Table 3, the combined effect of reducing SSC and increasing nutrient
inputs (DO-restore case) led to a significant expansion of low-oxygen conditions, with
hypoxic areas (HA4) and low-oxygen areas (HA3) reaching 2409.7 km? and 617.2 km?,
respectively. This combined effect exceeded the sum of changes induced by individual
river inputs, highlighting the non-linear interaction between SSC and nutrient loading.
In regions such as Outer Lingdingyang and Hong Kong, the combined effect was
amplified, while in regions such as Inner and Middle Lingdingyang, the combined
effect was less than the sum of individual effects. The growth of phytoplankton is not a
linear process in response to various influencing factors; instead, these factors interact
cumulatively. Therefore, when different factors are combined, their combined effect
can exceed the impact of individual factors acting alone.

With respect to the influence of altered riverine DO influx, it could be deduced
from the difference between the 2010s and the DO-restore cases (Fig. 6d). There was a
considerable DO decrease (by over 0.8 mg/L) in the bottom waters adjacent to the river
outlets (also in the surface waters) owing to the low-oxygen inflows from the upstream
river channels. The impact of these low-oxygen waters was largely restricted within the
upper Lingdingyang Bay under the effects of air-sea reoxygenation and water-column
mixing along with the river plume transport. Collectively, reducing the riverine DO
content from the 1990s to the 2010s alone resulted in an enlargement of low-oxygen

area by nearly 515.8 km? (derived by subtracting the HA4 of the 2010s case from that
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of the DO-restore case; Table 3).

4. Discussion

4.1 Impacts of decadal changes in riverine inputs on

deoxygenation off the PRE

By integrating long-term observations with physical-biogeochemical model
simulations, we revealed significant bottom-water deoxygenation in the Pearl River
Estuary over the past three decades, driven by changes in riverine inputs. From the
1990s to 2010s, summer inflows of DIN and DIP increased by ~100% and ~225%,
while SSC decreased by ~60% due to human activities like dam construction (Liu et al.,
2022) and reforestation (Cao et al., 2023). Concurrently, oxygen depletion from
terrestrial pollutants reduced riverine DO concentrations by 46% (Ma et al., 2024).
These shifts collectively intensified bottom-water low-oxygen conditions in PRE (Fig.
5), with model simulations showing a 148% expansion in summer low-oxygen areas
(DO <4 mg/L) and a 192% increase in hypoxic areas (DO < 3 mg/L). Low-oxygen
events also become more persistent, lasting longer (~15-35 days during June-August)
and expanding vertically by ~1-4 m (Fig 5.g-h).

More interestingly, the PRE has developed three distinct hypoxic centers
(including the inner Lingdingyang Bay, Modaomen sub-estuary, and Hong Kong waters)
controlled by different dominant factors, which renders the deoxygenation problem in
this region as a great reference for estuaries and coastal systems worldwide. Specifically,
the impact of riverine low-oxygen waters was confined within the upper estuary close
to the river outlets, leading to a ~44% increase in the low-oxygen area relative to the
1990s. Such local low-oxygen issue could be mitigated to a large extent if the riverine
DO recovered to a comparatively higher level (e.g., ~6.5 mg/L in the 1990s) according
to the DO-restore scenario (Fig. 6d). Reduced water turbidity downstream facilitates

the upstream transport of nutrients, promoting eutrophication and oxygen depletion in
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the lower reaches, which is highly sensitive to changes in riverine nutrient and sediment
inputs. As indicated in the High-nutrient and the Low-SSC cases, the increased nutrient
inputs and declined suspended sediment loads have separately alleviated the nutrient
and light limitations on algae growth in the region, thereby stimulating phytoplankton
blooms and local production of organic matter to support subsurface oxygen
consumption (dominated by sediment oxygen uptake, SOD; Fig. 7).

While previous studies have primarily examined the impacts of riverine inputs of
freshwater, nutrients and organic matter, this study provides a comprehensive
investigation of how suspended sediment reduction influences estuarine dissolved
oxygen dynamics. In the PRE, the riverine SSC reduction played a more important role
in driving the long-term low-oxygen expansion than nutrient increase. Its synergistic
effect with the riverine nutrient changes could further amplify the exacerbation of
eutrophication and subsequent deoxygenation, resulting in an enlarged growth in the
low-oxygen area (by 104%) and hypoxic area (by 192%) that was notably larger than
the total of their partial contributions (Table 3), and reached 70% of the total impact
from combined SSC, nutrient, and low-oxygen changes (148% low-oxygen expansion).

It is worth mentioning that the relative importance of the riverine nutrient and SSC
changes were different between the two hypoxic centers in the lower PRE, depending
upon their distances and water flow conditions from the river outlets. Closer to the river
outlets, the Modaomen sub-estuary and its surrounding waters (located on the western
side of the coastal transition zone off the PRE) possessed a fairly high SSC level, which
imposed a stronger light limitation on the growth of phytoplankton in the region,
ultimately making the oxygen dynamics more susceptible to the decline in riverine SSC.
This non-additive characteristic underscores the need for integrated management
approaches that simultaneously address both nutrient loads and suspended sediment-
mediated light conditions.

Suspended sediments were confined to the coastal area of Modaomen by water

currents (Fig. 1b), resulting in a significant decrease in sediment deposition in this
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region, which greatly improved light availability, ultimately making the oxygen
dynamics more susceptible to the decline in riverine SSC. On the contrary, the Hong
Kong waters and adjacent coastal areas (located on the eastern side of the coastal
transition zone) far from the river outlets were less affected by the riverine inputs, where
the relatively low nutrient levels promoted more sensitive responses of biogeochemical
processes (e.g. primary production and SOD) and hypoxia occurrences to nutrient
variations. Besides, the complex island topography near Hong Kong (Fig. 1b) creates

hydrodynamic barriers that restrict the offshore transport of suspended sediments.

4.2 Nutrient control and hypoxia mitigation in the context of

sediment declines

Our results highlight the substantial spatial variability in how riverine inputs
influence deoxygenation, emphasizing the need for more targeted strategies to mitigate
hypoxia. While the effects of riverine nutrients on hypoxia have been widely studied,
the role of SSC in modulating eutrophication and hypoxia has received comparatively
less attention. This is particularly relevant in systems like the PRE, which has
experienced a dramatic 60% decline in sediment since the 1980s due to dam
construction and land-use changes.

In the PRE, our model simulations demonstrate that SSC-mediated light limitation
critically influences deoxygenation dynamics. When SSC declines are omitted, model
simulations overestimate nutrient-driven productivity and underestimate hypoxia
expansion. This suggests that for systems experiencing pronounced sediment
reductions, overlooking SSC effects could lead to overly optimistic assessments of
nutrient control efficacy. It is therefore critical to disentangle the relative contributions
of riverine nutrients versus SSC changes to coastal deoxygenation trend. As
demonstrated in the PRE, the current low-SSC environment suggests that more
stringent nutrient reductions might be required to effectively curb deoxygenation

compared to conditions with higher SSC.
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Although dam constructions in the Pearl River Basin, mostly completed before the
2000s, have driven significant declines in SSC, the future trends of riverine SSC remain
uncertain. For instance, recent reforestation efforts have effectively reduced summer
freshwater discharge and sediment load in the Pearl River Basin (Cao et al., 2023). This
evolving situation underscores that changes in SSC will continue to shape future
oxygen dynamics, introducing compounding uncertainties for hypoxia mitigation.

Similar relationship between SSC and eutrophication or hypoxia have been
observed in other systems facing rapid anthropogenic changes. For example, the
Yangtze River Estuary has seen a ~56% decrease in SSC over the past decades, which
has been linked to a 61% increase in Chl a concentration, indicating intensified
eutrophication (Wang et al., 2019). In addition, several modelling studies have shown
that dam constructions in the upper regions of the Guadiana Estuary have led to reduced
water turbidity and exacerbated eutrophication in the lower estuary (Domingues et al.,
2012; Barbosa et al., 2010). A global survey revealed that sediment loads in 414 major
rivers have decreased by approximately 51% since the 2000s due to human activities
(Dethier et al., 2022). This trend highlights the need for further investigation into how
sediment declines impact eutrophication and deoxygenation on a global scale.

It is also important to recognize that human activities can increase sediment loads
in estuaries. For example, land-use changes such as deforestation_(Kasai et al., 2005)
and industrialization (Syvitski and Kettner, 2011) can exacerbate soil erosion and
sediment transport, leading to higher suspended sediment concentrations in the water.
In such cases, light attenuation due to increased turbidity may suppress phytoplankton
growth and reduce primary production, potentially mitigating hypoxia. Therefore, the
effects of SSC are system-specific and depend on the direction and magnitude of
sediment trends.

Some caveats in our work require further investigation. First, our light attenuation
parameterization is based on the empirical formulation of Ditoro (2001), which has

been validated for the PRE through biogeochemical consistency checks (Wang et al.,
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2018). While this approach successfully captured observed oxygen dynamics in our
simulations, it explicitly resolves only the chlorophyll and suspended sediment effects
on light attenuation. Previous studies have shown that colored dissolved organic matter
(CDOM) also plays a significant role in light attenuation within the PRE (Cao et al.,
2003; Wang et al., 2010), particularly during algal bloom periods. The model’s
calibration to observed biogeochemical variables may partially compensate for
CDOM’s influence, but future work should explicitly parameterize CDOM’s optical
properties through both modeling refinements and sustained monitoring to better
quantify its role in oxygen dynamics. In addition to anthropogenic influences, changes
in regional physical conditions due to climate change, such as wind speed and
freshwater discharge, could also affect the long-term deoxygenation trends in coastal
regions (Yu et al., 2015; Chen et al., 2024). The impacts of ocean warming on
deoxygenation (Laurent et al., 2018) remain unclear in the PRE despite evidence of
warming (Cheung et al., 2021). The compounding factors of warming such as sea-level
rise (Hong et al., 2020) may introduce further complexity to hypoxia dynamics through
cascading ecosystem effects. While these factors were not considered in this study,
understanding the interplay between human activities and climate changes is crucial for
future research on oxygen dynamics and hypoxia development in estuaries and coastal

systems.

5. Conclusion

We applied a well-validated physical-biogeochemical model to reconstruct the
summertime oxygen distributions in the PRE during two representative periods (the
1990s and the 2010s) and to disentangle the contribution of alterations in riverine inputs
(i.e., suspended sediments, nutrients, and oxygen concentration) to the long-term
deoxygenation off the PRE based on a suite of model experiments. We found that owing
to the changes of riverine inputs over the past three decades, the low-oxygen and

hypoxic areas in the bottom waters of the PRE have expanded by about 1.5 times and
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two-fold, respectively, with the duration time prolonged by ~15-35 days in summer.
Concurrently, three hypoxic centers dominated by distinct factors were identified.
Single-factor experiments suggested that a 46% decrease in riverine DO alone
expanded low-oxygen areas by ~44% in the upper PRE, a 60% SSC reduction alone
caused a 47% expansion in the lower PRE, and nutrient increases alone (100% DIN,
225% phosphate) drove a 31% expansion. By comparison, the alterations in riverine
nutrients and suspended sediments have separately provided better nutrient and light
conditions to promote higher production of labile organic matter, which jointly
maintained considerable oxygen depletions and exacerbated the low-oxygen conditions
in the lower PRE. The relative importance of the changing riverine nutrients and
suspended sediments to deoxygenation varied between subregions. The suspended
sediment reduction was the predominated factor in the downstream regions close to the
river outlets (e.g. the Modaomen sub-estuary), while the nutrient increase exerted a
more substantial influence in the regions far from the river outlets (e.g. the Hong Kong
waters). Our study demonstrates that declined suspended sediments have significantly
exacerbated low-oxygen conditions off the PRE, with effects that synergistically
intensify when combined with increasing nutrient loads. These findings highlight the
need for dual-control strategies addressing both nutrient inputs and sediment-mediated
light availability in coastal management. Give the global declines in riverine suspended
sediments, we emphasize that effective hypoxia mitigation requires integrated

approaches accounting for these interacting drivers.
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