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We sincerely thank the reviewer for their careful evaluation and insightful suggestions, 
which have greatly contributed to enhancing the clarity and quality of our manuscript. 
Detailed responses to each of the reviewer’s comments are provided below. All line 
numbers cited refer to the clean version of the revised manuscript rather than the tracked 
changes version. 
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Dear Reviewer, 

We sincerely thank you for your insightful comments and constructive suggestions, which have 
helped us improve the quality of our manuscript. Below, we provide detailed responses to each point. 
The line number is based on the clean version of the revised manuscript, not the track change version. 
The original reviewer comments are presented in italic, while the authors’ responses are provided 
in blue. 

Thank you for the detailed responses and the clarifications you added to the manuscript; they were 
very helpful. I also appreciate that you expanded the discussion of limitations, which adds important 
context. I have two remaining comments: 

1) Thank you for providing Figure S1 and the additional details in the supplement; I had overlooked 
this figure in the first revision. If I understand correctly, during the training phase, SCE-UA 
calibration is used both to adjust WOFOST parameters (to fit phenology and yield) and to derive 
the “extreme weather factor” F(EW), which then serves as the target for the LSTM. In other words, 
F(EW) is treated as an optimizable factor during calibration, and the calibrated values are 
subsequently mapped back to extreme weather indices using the LSTM. Could you confirm whether 
this is indeed the procedure? Figure S1 clarifies the workflow well, but it is not immediately 
apparent from the main text. I suggest briefly summarizing this in the manuscript, as understanding 
how F(EW) is derived and how calibration is involved seems central to the approach. 

Response: 

We sincerely thank you for your careful review and insightful comments. We greatly appreciate your 
recognition of the supplementary materials (including Fig. S1) and your valuable suggestion to 
clarify the derivation of the extreme weather factor F(EW), which indeed strengthens both the clarity 
and rigor of the manuscript. We fully agree with your understanding of the technical workflow, and 
we have added key details in the main text (lines 215–220) to address the information gap you noted. 
Below, we provide a detailed response: 

Confirmation of the derivation and calibration process of F(EW) 
First, we would like to confirm that your understanding of our research workflow is fully consistent 
with our study design. The Shuffled Complex Evolution-University of Arizona (SCE-UA) algorithm 
plays a dual role in model development, and the derivation of the F(EW) factor follows a three-step 
route: calibration, target value generation, and Long Short-Term Memory (LSTM) mapping. The 
key steps are as follows: 



Step 1. Dual-objective optimization via SCE-UA calibration (1980–2000 period) 
During the calibration phase, the SCE-UA algorithm was used to simultaneously optimize two 
components: 

• Optimization of baseline WOFOST parameters: The objective function was defined as 
minimizing errors in both phenology (heading and maturity dates) and yield, with priority 
given to ensuring phenology accuracy for biological consistency. In this process, core 
WOFOST parameters were calibrated. These parameters established the baseline 
framework for crop growth simulation, providing a foundation for subsequent integration 
of F(EW). 

• Derivation of calibrated F(EW) values: In the same calibration process, F(EW) was 
treated as an optimizable adjustment factor. By iteratively tuning F(EW), we obtained site- 
and year-specific values for each agro-meteorological station. These calibrated values 
essentially quantify the correction strength required to offset the impacts of extreme 
weather. These values were subsequently used as the target output variables for LSTM 
training. 

Step 2. LSTM training 
Seven extreme weather indices (HDD: high temperature days, LDD: low temperature days, R95P: 
precipitation on very wet days, R10mm: number of heavy rainfall days, Rx1day: maximum 1-day 
precipitation, PDSI: Palmer Drought Severity Index, VPD: vapor pressure deficit) were used as 
input features, with the SCE-UA–derived F(EW) values serving as targets for training the LSTM 
network. The LSTM was designed to capture the nonlinear and spatiotemporally dynamic 
relationship between extreme weather conditions and F(EW). This process effectively transformed 
the “empirically calibrated F(EW)” into a “data-driven generator of F(EW),” enabling application 
to unseen extreme weather scenarios. 

Step 3. Integration into the WOFOST-EW model 
After training, the LSTM network was embedded into WOFOST. During simulation, the model first 
inputs real-time extreme weather indices into the LSTM, which dynamically generates F(EW). This 
factor is then multiplied with the original development rate (DVR) to produce the corrected rate: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐸𝐸𝐸𝐸 =
𝐹𝐹(𝑇𝑇)
∑𝑇𝑇𝑖𝑖

× 𝐹𝐹(𝑉𝑉) × 𝐹𝐹(𝑃𝑃) × 𝐹𝐹(𝐸𝐸𝐸𝐸)  

(Equation 9). This integration ensures that the model can dynamically respond to extreme weather 
impacts without requiring repeated manual recalibration. 

Once again, we are sincerely grateful for your constructive suggestions, which have greatly helped 
us to improve the clarity and rigor of the manuscript. 

2) I appreciate the clarification that stage-specific extreme weather indices are included as inputs 
to the LSTM. However, since the model outputs a single season-level F(EW), I am concerned that 
extreme events occurring during the reproductive phase could still influence simulated development 



in earlier vegetative stages, because the correction is applied uniformly. Could the authors confirm 
whether this is the case? 

Response: 

We thank the reviewer for raising this critical point. Your understanding of the model design is 
entirely correct: in the current study, the Long Short-Term Memory (LSTM) network is indeed 
trained with the seasonal F(EW) values as the target output. In other words, the model ultimately 
generates F(EW) as a season-scale scalar correction factor, which is applied to the calculation of 
crop development rates throughout the entire growing period. This design inevitably implies the 
concern you raised: extreme events occurring during the reproductive stage may influence the 
season-long F(EW), thereby affecting the developmental process across the entire growth period. 
This is a limitation of the model, which we have acknowledged in the revised manuscript (Section 
4.4, lines 444–450). 

However, in the practical construction of the model, we do not entirely ignore stage-specific 
differences. Different threshold conditions are set to reflect the varying sensitivity of distinct growth 
stages to extreme weather. Although F(EW) is formally uniform, its derivation process implicitly 
incorporates these stage-specific sensitivity thresholds. Therefore, the mapping learned by the 
LSTM has already partially captured the differences among growth stages. In other words, while 
F(EW) is a season-level metric, its formation process integrates the response characteristics of 
extreme weather across different stages. This approach can, to some extent, mitigate the concern 
you raised. 

The primary reason for using a season-level F(EW) is to ensure model stability under large-scale, 
multi-year, and multi-site conditions during training and validation with historical data (1980–2020). 
Dividing F(EW) into multiple stage-specific parameters would not only substantially increase the 
number of parameters to estimate but also introduce a “sample insufficiency—overfitting” risk. 
Considering the sparse temporal and spatial occurrence of extreme weather events, directly 
modeling stage-level F(EW) would be difficult to achieve robust training under the current data 
conditions. 

During the independent validation period (2001–2020), we found that even when F(EW) is used as 
a single season-level factor, the model still significantly improves the simulation accuracy of 
phenology and yield. This indicates that, although F(EW) is mathematically “uniform across the 
season,” its practical effect can still capture, to some extent, the cumulative and integrated impact 
of extreme events across different stages. Nevertheless, we acknowledge that this remains a 
limitation of the study, and stage-specific modeling could potentially improve model accuracy. 

We fully agree with the reviewer that a season-level F(EW) cannot finely reflect the differentiated 
impacts of extreme weather across phenological stages. This is an important limitation of our 
research. In the revised Discussion section (Section 4.4, lines 444–450), we have explicitly 
addressed this shortcoming. While the current F(EW) is indeed a season-scale scalar correction, this 
design still captures some degree of extreme weather effects. In future work, we aim to develop a 



more refined stage-specific correction mechanism to overcome this limitation. 


