Author’s response

We sincerely appreciate the reviewer’s thorough evaluation and valuable suggestions,
which have been instrumental in improving the clarity and quality of our manuscript.
Below, we provide detailed responses to each of the reviewer’s comments. All line
numbers mentioned refer to the clean version of the revised manuscript, not the tracked
changes version.



Response to Reviewer — Geoscientific Model Development
Manuscript EGUsphere-2024-4010
Authors: Jinhui Zheng, Le Yu *, Zhenrong Du, Liujun Xiao, and Xiaomeng

Dear Reviewer,

We sincerely thank you for your insightful comments and constructive suggestions, which have
helped us improve the quality of our manuscript. Below, we provide detailed responses to each point.
The line number is based on the clean version of the revised manuscript, not the track change version.
The original reviewer comments are presented in italic, while the authors’ responses are provided

in blue.

I appreciate the revisions and detailed responses provided by the authors, and I find that the
manuscript has improved as a result. Several aspects of the modeling framework are now clearer.
However, despite these improvements, I believe that major concerns remain regarding the
assumptions and implementation of key components. These concerns build on my earlier comments
as well as the clarifications offered in the revision. For clarity and to focus the discussion, |

summarize them below as a set of fresh points.
Response:

We sincerely appreciate your careful review of our manuscript and your valuable feedback. We are
pleased to see that you recognize the improvements we have made in the revised manuscript and
acknowledge the clarifications and enhancements in several parts of our modeling framework.
Regarding the main issues summarized in your current comments, we have carefully analyzed and
considered each point and have made corresponding adjustments and supplementary explanations
in the revised manuscript. Once again, we thank you for your continued attention to our work and
your constructive suggestions, which have played an important role in enhancing the scientific rigor
and readability of the manuscript.

® [t’s unclear how the correction factor F(EW), generated by the LSTM, is trained end-to-end, given
that WOF OST is not a differentiable model. Since WOF OST has many non-differentiable operations
(e.g., thresholding, conditional branching), standard gradient-based backpropagation from the loss
(e.g., vield error) back to the LSTM parameters isn't divectly possible. Could the authors explain

how end-to-end optimization of the LSTM is achieved in practice?
Response:

Thank you for raising this important question. We would like to clarify that the LSTM model in this
study is not directly optimized together with WOFOST via end-to-end gradient backpropagation.
Instead, a two-stage training approach was adopted. Since the WOFOST model contains many non-
differentiable operations, it is not possible to train the LSTM through standard gradient



backpropagation across the entire WOFOST. To address this, we used a stepwise training strategy:

» Independent LSTM training
We first trained the LSTM model using historical extreme weather indices (HDD, LDD,
R95P, R10mm, Rxl1day, PDSI, VPD) and crop observation data to fit the relationship
between the extreme weather adjustment factor F(EW) and crop growth. This process is
completely independent of the WOFOST model. The LSTM parameters were updated via
a standard gradient descent algorithm (Adam optimizer).

» Integration with WOFOST and validation
After training, the predicted F(EW)F(EW) was incorporated as an external adjustment
factor into WOFOST’s DVR calculations for crop growth and yield simulation. Model
performance was then validated by comparing simulated results with actual observations.

This approach avoids computing gradients through WOFOST’s non-differentiable operations. By
using independent LSTM training followed by model integration, F(EW) effectively modulates the
crop simulation. This two-stage strategy preserves the mechanistic framework of WOFOST while
capturing the nonlinear effects of extreme weather through the LSTM, ultimately improving
simulation accuracy. Your comment was crucial for ensuring the clarity of our manuscript, and we
have provided a more explicit explanation of the training strategy in Section 2.3.3, lines 215-217
of the revised manuscript to avoid ambiguity.

® One of the training targets used is yield. However, yield is influenced by many factors beyond
phenology. This raises the risk of the model being right for the wrong reason. For example, consider
a frost event that has no effect on phenological development but causes yield loss due to tissue
damage. In such a case, the model may still adjust F(EW) to compensate for the yield discrepancy
— inadvertently altering phenology, even though phenology was not affected by the frost.

Response:

Thank you for raising this insightful and critical question. Your concern directly addresses the
logical connection between the target variables and the core parameter F(EW) in model training.
We would like to clarify how this issue is addressed in our study:

» The core role of F(EW) is to adjust phenology, not to directly influence yield

F(EW) is designed to capture the nonlinear effects of extreme weather on phenology
(heading and maturity, as shown in Equation 8), with training data focused on the
relationship between extreme weather indices and observed phenological deviations, rather
than directly targeting yield. During calibration, phenology simulation errors (differences
between observed and WOFOST-simulated heading/maturity dates) are used as the primary
loss, while yield errors serve only as an auxiliary constraint. Specifically, the study employs
a weighted multi-objective loss function:

Loss = a X LOSSphenology + B X LOSSyielg



where  LOSSphenology 18 the RMSE between simulated and observed phenology, and
Lossyiciq is the RMSE between simulated and observed yield. After extensive testing and
cross-validation, the weights were set to a = 0.8 and £ = 0.2, giving much higher priority
to phenology.

» Supervised phenology training guides LSTM learning

The LSTM learns the extreme weather adjustment function F(EW) using multiple climate
indices (HDD, LDD, R95P, R10mm, Rxlday, PDSI, VPD). F(EW) modifies the daily
development rate (DVR, Equation 9) but does not directly alter WOFOST’s internal
phenology parameters (e.g., base temperature, photoperiod sensitivity). Therefore, even
when yield is influenced by non-phenological factors, F(EW) only locally adjusts DVR
without violating the physiological logic of phenology. Historical phenology observations
(heading and maturity dates) are used as supervision during training (see Section 2.3.4),
ensuring that phenology predictions remain accurate regardless of yield error. This prevents
over-adjustment of F(EW) in response to yield deviations.

» Validation in extreme weather years confirms consistency
Sections 3.1 and 3.2 show that WOFOST-EW performs well for both phenology and yield:
RMSE of heading decreased from 4.61% to 3.74%, maturity RMSE decreased from 4.74%
to 3.98%, and yield R? increased from 0.67 to 0.76. These results demonstrate that F(EW)
improves yield simulation accuracy while maintaining phenology integrity. Yield
improvements are therefore a “by-product” of correct phenology adjustment, not a
consequence of misdirected intervention by F(EW).

» WOFOST’s original modules independently handle non-phenological yield losses
Non-phenology-related yield processes (e.g., CO: assimilation, respiration, soil water
balance) are handled by WOFOST’s original physiological-ecological modules,
independent of F(EW). Thus, there is no mechanism by which F(EW) would need to
compensate for non-phenological yield loss, avoiding causal misalignment.

In response to the reviewer’s comments, we have added clarifications on the loss function design
and supervision strategy in Section 2.3.4, lines 231-233, and in Supplementary Text S2. We greatly
appreciate your valuable feedback, which has helped enhance the clarity of our manuscript.

® [t is unclear how agromanagement practices are incorporated into the modeling framework. The
manuscript mentions that a standard practice involves applying (more than) 300 mm of irrigation
water and a base fertilizer with topdressing. However, it is not specified how this is implemented
within the WOFOST simulations. Could the authors clarify the timing, quantity, and method of
irrigation and fertilizer application used in the simulations? Specifically, how much water and

fertilizer are applied, and at which phenological stages or time points?

Response:

Thank you for raising this important point. We acknowledge that our original manuscript did not
provide sufficient detail regarding agricultural management practices—particularly irrigation and



fertilization—which may have led to some ambiguity. Here we provide further clarification:

» Model version and applicability

This study employed the Wofost72 WLP_CWB version within the PCSE framework. This
version allows for simulation under water-limited conditions, meaning irrigation strategies
can be specified in the model’s agromanagement files. However, it does not include nutrient
cycling or nitrogen dynamics modules, and thus cannot directly simulate the impact of
different fertilization strategies on crop growth (De Wit et al., 2019; De Wit and Boogaard,
2024; Xu et al., 2022). This was not clearly articulated in the original submission. In the
revised manuscript, we have added specific details on irrigation configuration and
fertilization assumptions in the Methods section (Section 2.2.1, lines 117-121).

Irrigation practices
Based on common irrigation practices for winter wheat in the North China Plain and
supported by existing survey studies (Li et al., 2012; Sun et al., 2011; Xu et al., 2022), we

specified a total irrigation amount of 320 mm across four applications:
1. ~30 days after sowing (mid-November), 80 mm to ensure safe overwintering;
2. Late February—early March, 80 mm to promote tillering;
3. Late March—early April, 80 mm to meet water demand during jointing and booting;
4. Early May, 80 mm to secure water supply during grain filling.

These irrigation events and amounts were explicitly recorded in the Agromanagement
file of the model, with irrigation efficiency set at 70% to reflect actual field conditions

and water use efficiency.

Simplified fertilization treatment

Fertilization was treated under the “potential growth” assumption, reflecting both the
absence of a nutrient dynamics module in WOFOST and the actual agricultural context of
the North China Plain. In this region, winter wheat production is characterized by high
fertilizer application rates, which generally eliminate nutrient limitations (Bai et al., 2020;
Dai et al., 2021; Liu et al., 2022). Consequently, nutrient supply is not considered a key
limiting factor compared to water availability and extreme weather. We therefore did not
explicitly define fertilizer amounts or timing but assumed soil nutrients were always
sufficient to meet crop demand. This approach, commonly adopted in regional-scale crop
modeling (Xue et al., 2024; Zhang et al., 2025), avoids introducing additional uncertainties
and keeps the focus on the study’s primary objective: the interaction between extreme

weather and crop growth.

Rationale and limitations of the simplified treatment

The rationality of this approach lies in the fact that the core objective of this study is to
improve WOFOST’s response to extreme weather conditions, rather than to precisely
describe the fertilization process. At the regional scale, it is common to assume that
nutrients are non-limiting in order to simplify fertilization effects and highlight the roles of
climate and water management (Bai et al., 2020; De Wit et al., 2019). This assumption

reduces sources of uncertainty and emphasizes the dominant role of extreme climate factors



in yield formation.

Of course, we also acknowledge the limitation of this approach: it cannot reflect the
dynamic regulatory effects of fertilization management and may underestimate potential
interactions between nutrient stress and climatic factors. We have discussed this limitation
and provided outlooks in the revised manuscript (Discussion Section 4.4, lines 435-442).

In summary, in the revised manuscript we have added specific details of irrigation practices and
fertilization assumptions in the Methods section (Section 2.2.1, lines 117-121) and further
explanations in the Discussion section (Section 4.4, lines 435-442). We believe these additions will

improve the transparency and rigor of the study.

® [t appears that the correction factor F(EW) is computed as a single scalar for the entire season,
rather than varying over time. As a result the same correction is applied during both vegetative and
reproductive growth, even though weather impacts on phenology may differ substantially between

these phases.

Response:

We sincerely thank the reviewer for this constructive comment. Although the calculation of F(EW)
outputs at the growing season level, the temporal features of the input data and the model design
implicitly account for stage-specific responses (vegetative growth, reproductive growth), rather than
simply applying a single scalar to the whole season. The specific basis is as follows:

» The extreme weather indices used as inputs contain stage-specific dynamic information
The extreme weather indices for calculating F(EW) are separated by key phenological
stages and accumulated dynamically. For example, high temperature degree days (HDD)
and low temperature degree days (LDD) are explicitly distinguished between “sowing to
heading” and “heading to maturity” thresholds (revised manuscript Section 2.3.1, lines
144-149), and accumulated on a daily basis. This means the indices fed into the LSTM
naturally incorporate the intensity differences of extreme weather across different growth
stages.

» Limitations of the study design and directions for improvement
We fully agree with the reviewer that the mechanisms of extreme climate impacts differ
significantly across growth stages. We have discussed this limitation in detail in Section 4.4
(lines 442—-457) of the Discussion. Specifically, due to data limitations, we only considered
heading and maturity stages, while other key phenological stages of winter wheat were not
included. This incomplete stage consideration may affect the model’s ability to fully capture
crop growth dynamics under different conditions. Previous studies have shown that the
impact of extreme weather events on crop production varies across growth stages (Feng et
al., 2019; Porter and Gawith, 1999). Within the wheat growth cycle, different stages
experience different types and intensities of climatic stress, leading to significant
differences in yield impact. In particular, severe droughts during the critical growth months
of April and May may strongly affect winter wheat yield (Xu et al., 2018; Yang et al., 2020).
Moreover, studies on different crops and regions have shown that crop yield is more
sensitive to droughts occurring during critical growth stages (Pefia-Gallardo et al., 2019;
Zipper et al., 2016). These findings highlight important directions for future research and



model improvement. Future studies could improve model accuracy and better capture the
effects of extreme weather on wheat growth by explicitly considering stage-specific types

and intensities of climatic stress.

> Rationale for the chosen method

Despite these limitations, our approach was mainly based on two considerations. First, the
original WOFOST model lacks direct mechanisms to respond to extreme weather.
Therefore, in designing the method, we aimed to incorporate extreme weather impacts in a
simplified way, using an overall adjustment factor, to avoid introducing too many free
parameters that would be difficult to calibrate. Second, from the perspective of regional-
scale winter wheat simulations, introducing overly complex stage-specific adjustments may
reduce model stability when applied at large scales, while our research goal was first to
verify the feasibility of the “extreme weather—-model adjustment” concept.

In summary, while F(EW) appears as a single scalar, its generation process already implicitly
contains temporal response logic that reflects stage differences. At the same time, we fully
acknowledge the reviewer’s comment that future work should further develop stage-specific or
dynamic adjustment mechanisms to better capture climatic stress effects at different growth stages.
We have added this clarification in the revised manuscript (Discussion, Section 4.4, lines 442-457)
and identified it as an important direction for future research.

We thank the reviewer for pointing out this detail, which has helped us present the dynamic response
logic of the model more clearly.

® [t seems that the computation of F(EW) requires access to the full-season weather time series,
including data beyond the current day. In an in-season context — where the aim is to update the
simulation up to today (before harvest) — WOFOST could still be run, but F(EW) would not be
available unless future weather were known. Could the authors clarify how this limitation affects

the applicability of their approach for real-time or in-season use?
Response:

We sincerely thank the reviewer for the insightful concern regarding the limitations of the model for
real-time applications. This comment is very important, as it indeed touches on the key link between
the transition of this approach from academic exploration to practical application. In light of the
study design and the practical needs of agricultural production, we would like to further clarify the
following points:

»  First, regarding the dependence of F(EW) on full-season data
We acknowledge that in this study, the calculation of F(EW) depends on extreme weather
indices across the entire growing season. This design was essentially intended to more
accurately capture the cumulative effects and cross-stage interactions of extreme weather
on crop phenology. As explained in Section 4.2 of the manuscript, the impacts of extreme
weather are often not isolated (for example, drought during the seedling stage can reduce
tolerance to later high temperatures, and low temperatures before heading may alter
sensitivity to rainfall during the grain-filling stage). Using only partial season data could
overlook such cross-stage linkages, leading to bias in the quantification of F(EW), such as
misjudging the differential effects of “short-term heat” versus “prolonged heat” on



phenology. Therefore, this design primarily serves the core research objective: improving
the accuracy of simulating crop growth mechanisms under extreme weather (particularly
for retrospective analyses of historical scenarios and exploring the impact patterns of
extreme weather), rather than aiming at real-time forecasting. This also aligns with the
characteristics of winter wheat in the North China Plain, which has a fixed single-season
growth cycle (October to the following June, as noted in Section 2.1 of the manuscript).
For historical data simulations, full-season weather data are available, allowing the
advantages of F(EW) to be fully utilized.

» Second, regarding the feasibility of within-season real-time application
We fully agree with the reviewer’s point that “the unknown nature of future weather makes
it difficult to calculate F(EW) in real time.” However, this limitation can be partially
addressed. Considering that agricultural management decisions are often based on stage-
specific information, F(EW) can be recalculated in a rolling stage-based manner by
combining observed data with short-term forecasts. The key phenological stages of winter
wheat in the North China Plain (sowing, regreening, jointing, heading, maturity) occur at
well-defined time points (Section 2.2.1 of the manuscript), which makes it possible to

LR INT3

divide the growing season into 3—4 stages (e.g., “sowing—regreening,” “regreening—
jointing,” “jointing—heading,” “heading—maturity”). At the end of each stage, stage-specific
F(EW) can be calculated using complete observed data up to that point (e.g., sowing to
regreening) combined with short-term weather forecasts (e.g., 15-30 day forecasts) for the
next stage. This stage-specific F(EW) can then be used to adjust phenological simulation
of the current stage. For example, at the jointing stage, F(EW) can be generated based on
observed data from “sowing—jointing” and forecast data from “jointing—heading,” which
can then be used to adjust the development rate during the jointing period. As the growing
season progresses, forecast data can be iteratively replaced with newly observed data,
continuously updating F(EW). While this approach cannot fully eliminate the uncertainty
of future weather, it ensures that F(EW) is always based on the “latest available
information,” with accuracy improving as the season progresses. However, we
acknowledge that this study did not further explore the feasibility of such within-season
implementation, and this will be an important focus for future work. We clarified this

limitation and research direction in Section 4.4 (lines 411-415).

In summary, the dependence of F(EW) on full-season data reflects a mechanism-oriented design
that, while presenting challenges for real-time applications, can be mitigated through strategies such
as stage-based rolling calculations and historical similarity corrections. We agree with the reviewer’s
comment and have clarified this limitation and future direction in Section 4.4 (lines 411-415) of the
revised manuscript. We thank the reviewer for this constructive suggestion, which has helped us to
more clearly define the boundaries of the model’s applicability and its potential optimization
pathways.

® Having gained a better understanding of the calibration and evaluation periods, a question
remains regarding the representation of extreme weather events during calibration. Does the
calibration period include instances of extreme weather? If not, how can the algorithm effectively

learn to model their impact if it has not been exposed to such events during training?



Response:

Thank you for raising this important question, which directly concerns whether the model can
effectively learn the mechanisms of extreme weather impacts on crop phenology. Our
training/calibration period was 1980-2000 (see Sections 2.3.2 and 2.3.4), during which significant
droughts, low-temperature events, and short-duration heavy rainfall occurred (Han and Gong, 2003;
Wang et al., 2014; Zheng et al., 2018). More importantly, the extreme weather indices used to train
F(EW) are continuous numerical values and were accumulated by key phenological stages, which
means that during the calibration/training period the model was exposed to extreme weather
scenarios and thus was able to learn the nonlinear relationship between “extreme weather

intensity—phenology deviation.”

To improve the clarity of the manuscript, we have added relevant explanations in Section 2.3.2, lines
178-179 of the revised version, specifying the coverage of extreme weather during the training
period and its effectiveness for learning F(EW). We again thank you for your insightful comment.

® Although the correction factor F(EW) is computed using a non-linear function (i.e. an LSTM), its
integration into the phenology module appears relatively simple — it acts as a multiplicative factor
applied to the development rate. Could the authors elaborate on the rationale for choosing this
specific coupling mechanism? Are other forms of integration (e.g., additive or stage-specific

adjustments) considered or tested?

Response:

Thank you for raising this important question. The core reason we chose the multiplicative coupling
mechanism is that it better aligns with both the physiological logic of phenological development
and the compatibility of the model. The detailed explanation is as follows:

» Consistency with the physiological mechanism of “multi-factor coordinated regulation” in
crop phenological development
The phenological development of wheat is the result of the combined effects of temperature
(F(T)), photoperiod (F(P)), and vernalization (F(V)), which in WOFOST are already
coupled through a multiplicative relationship (Equation 2). This reflects the physiological
principle that “if any single factor is limiting, overall development is constrained” (for
example, if vernalization is insufficient, development will be delayed even under favorable
photoperiods). Studies have shown that crop growth and development are governed by the
combined action of multiple environmental factors rather than by a single factor
independently. For example, research on wheat has found that both temperature and day
length jointly affect the growth cycle, with clear interactions (Porter and Delecolle, 1988).
The impact of extreme weather on phenology (such as high temperatures accelerating
development or drought altering the pace of development) essentially serves as a
“modulation” of this coordinated process. For instance, extreme heat may amplify the
weight of the temperature factor, while extreme drought may reduce the sensitivity of
photoperiod responses. Therefore, introducing F(EW) in a multiplicative form naturally
integrates into this “multi-factor coordination” physiological framework, preserving the

original mechanism while capturing the proportional regulatory effect of extreme weather



on overall development. To improve clarity, we have added supplementary explanations in
Section 2.3.3, lines 219-222 of the revised manuscript.

» Compatibility with the modular design of the WOFOST model, avoiding logical conflicts
One of the core strengths of WOFOST is its mechanistically transparent modular structure
(Section 2.3.3), where phenological development rate (DVR) calculations strictly follow a
“factor product” logic (Equation 2). If an additive form were used instead, it could lead to
results with ambiguous physical meaning.

» Stage-specific adjustment
The “stage-specific adjustment” raised by the reviewer (e.g., applying different correction
forms to vegetative and reproductive phases) is not ignored, but rather addressed through
the input features of F(EW) and the temporal learning capability of the LSTM:
* The input to F(EW) consists of stage-specific extreme weather indices (for example, the
HDD threshold is 25°C for sowing—heading and 30°C for heading—maturity, Section 2.3.1).
During training, the LSTM has already learned that “the correction magnitude of F(EW)
under extreme cold in the vegetative stage differs from that in the reproductive stage.”
Similar stage-based data input strategies have been used in other studies, allowing models
to learn differential responses to environmental factors across growth stages and thereby
improving accuracy.
* However, we acknowledge certain limitations in our study, namely that more precise
phenological stages were not considered. We discuss this limitation in detail in Section 4.4,
lines 442—457. Specifically, due to data constraints, we only considered the heading and
maturity stages, while other key phenological stages of winter wheat were not included.
This incomplete treatment of growth stages may limit the model’s ability to fully capture
crop dynamics under varying conditions. Previous studies have shown that the impacts of
extreme weather events on crop production differ significantly across growth stages (Feng
et al., 2019; Porter and Gawith, 1999). During the wheat growth cycle, different stages
experience different types and intensities of climate stress, leading to marked differences
in yield impacts. Moreover, severe drought occurring in the critical growth months of
April-May can particularly affect winter wheat yields (Xu et al., 2018; Yang et al., 2020).
In addition, a number of studies on different crops and regions have shown that yields are
more vulnerable to drought occurring during critical growth stages (Pefia-Gallardo et al.,
2019; Zipper et al., 2016). These findings point to important directions for future research
and model improvements. Future work could further refine the model to account for climate
stresses of specific types and intensities at different growth stages, thereby improving
predictive accuracy and better capturing the impacts of extreme weather events on wheat
development.

Once again, we sincerely thank the reviewer for this constructive suggestion, which has helped us
more clearly articulate the reasoning behind our model design.

® The loss function includes both phenological stage errors (predicted vs. observed) and yield errors
(predicted vs. observed). The authors should provide a clear rationale for how these components
are balanced during training. Are they weighted equally, or is a specific weighting scheme applied?

As previously noted, including yield as a target may confound the mechanisms, since yield is



influenced by many factors beyond phenology. Clarifying this point is important to assess whether

the model is learning the intended relationships.

Response:

Thank you very much for the detailed suggestion. Regarding the design of the loss function, we did
consider both phenology error and yield error during model training, but not through a simple “equal
weighting.” As noted earlier, the weighting coefficients for phenology and yield losses are 0.8 and
0.2, respectively, meaning the phenology error was assigned a much higher weight than the yield
error. We have added clarifications in the revised manuscript (Section 2.3.4, lines 231-233) as well
as in the Supplementary Material (Text S2) to explain the logic behind the loss function design. The
original purpose of F(EW) was to adjust for the effects of extreme weather on phenological
development (Section 2.3.3 of the manuscript), rather than to directly simulate yield formation.
Therefore, assigning a higher weight to phenological errors ensures that the LSTM prioritizes
learning the relationship between extreme weather and phenological responses (e.g., accelerated
heading under high temperatures or delayed maturity due to frost) during training, preventing the

yield objective from distorting the logic of phenology simulation.
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