
Author’s response 

 

We sincerely appreciate the reviewer’s thorough evaluation and valuable suggestions, 
which have been instrumental in improving the clarity and quality of our manuscript. 
Below, we provide detailed responses to each of the reviewer’s comments. All line 
numbers mentioned refer to the clean version of the revised manuscript, not the tracked 
changes version. 

  



Response to Reviewer – Geoscientific Model Development 
Manuscript EGUsphere-2024-4010 

Authors: Jinhui Zheng, Le Yu *, Zhenrong Du, Liujun Xiao, and Xiaomeng  

 

Dear Reviewer, 

We sincerely thank you for your insightful comments and constructive suggestions, which have 
helped us improve the quality of our manuscript. Below, we provide detailed responses to each point. 
The line number is based on the clean version of the revised manuscript, not the track change version. 
The original reviewer comments are presented in italic, while the authors’ responses are provided 
in blue. 

I appreciate the revisions and detailed responses provided by the authors, and I find that the 
manuscript has improved as a result. Several aspects of the modeling framework are now clearer. 
However, despite these improvements, I believe that major concerns remain regarding the 
assumptions and implementation of key components. These concerns build on my earlier comments 
as well as the clarifications offered in the revision. For clarity and to focus the discussion, I 
summarize them below as a set of fresh points. 

Response: 

We sincerely appreciate your careful review of our manuscript and your valuable feedback. We are 
pleased to see that you recognize the improvements we have made in the revised manuscript and 
acknowledge the clarifications and enhancements in several parts of our modeling framework. 
Regarding the main issues summarized in your current comments, we have carefully analyzed and 
considered each point and have made corresponding adjustments and supplementary explanations 
in the revised manuscript. Once again, we thank you for your continued attention to our work and 
your constructive suggestions, which have played an important role in enhancing the scientific rigor 
and readability of the manuscript. 

● It’s unclear how the correction factor F(EW), generated by the LSTM, is trained end-to-end, given 
that WOFOST is not a differentiable model. Since WOFOST has many non-differentiable operations 
(e.g., thresholding, conditional branching), standard gradient-based backpropagation from the loss 
(e.g., yield error) back to the LSTM parameters isn't directly possible. Could the authors explain 
how end-to-end optimization of the LSTM is achieved in practice? 

Response: 

Thank you for raising this important question. We would like to clarify that the LSTM model in this 
study is not directly optimized together with WOFOST via end-to-end gradient backpropagation. 
Instead, a two-stage training approach was adopted. Since the WOFOST model contains many non-
differentiable operations, it is not possible to train the LSTM through standard gradient 



backpropagation across the entire WOFOST. To address this, we used a stepwise training strategy: 

 Independent LSTM training 
We first trained the LSTM model using historical extreme weather indices (HDD, LDD, 
R95P, R10mm, Rx1day, PDSI, VPD) and crop observation data to fit the relationship 
between the extreme weather adjustment factor F(EW) and crop growth. This process is 
completely independent of the WOFOST model. The LSTM parameters were updated via 
a standard gradient descent algorithm (Adam optimizer). 

 Integration with WOFOST and validation 
After training, the predicted F(EW)F(EW) was incorporated as an external adjustment 
factor into WOFOST’s DVR calculations for crop growth and yield simulation. Model 
performance was then validated by comparing simulated results with actual observations. 

This approach avoids computing gradients through WOFOST’s non-differentiable operations. By 
using independent LSTM training followed by model integration, F(EW) effectively modulates the 
crop simulation. This two-stage strategy preserves the mechanistic framework of WOFOST while 
capturing the nonlinear effects of extreme weather through the LSTM, ultimately improving 
simulation accuracy. Your comment was crucial for ensuring the clarity of our manuscript, and we 
have provided a more explicit explanation of the training strategy in Section 2.3.3, lines 215–217 
of the revised manuscript to avoid ambiguity. 

● One of the training targets used is yield. However, yield is influenced by many factors beyond 
phenology. This raises the risk of the model being right for the wrong reason. For example, consider 
a frost event that has no effect on phenological development but causes yield loss due to tissue 
damage. In such a case, the model may still adjust F(EW) to compensate for the yield discrepancy 
— inadvertently altering phenology, even though phenology was not affected by the frost.  

Response: 

Thank you for raising this insightful and critical question. Your concern directly addresses the 
logical connection between the target variables and the core parameter F(EW) in model training. 
We would like to clarify how this issue is addressed in our study: 

 The core role of F(EW) is to adjust phenology, not to directly influence yield 
F(EW) is designed to capture the nonlinear effects of extreme weather on phenology 
(heading and maturity, as shown in Equation 8), with training data focused on the 
relationship between extreme weather indices and observed phenological deviations, rather 
than directly targeting yield. During calibration, phenology simulation errors (differences 
between observed and WOFOST-simulated heading/maturity dates) are used as the primary 
loss, while yield errors serve only as an auxiliary constraint. Specifically, the study employs 
a weighted multi-objective loss function: 

Loss = α × Lossphenology + β × Lossyield 



where Lossphenology  is the RMSE between simulated and observed phenology, and 
Lossyield is the RMSE between simulated and observed yield. After extensive testing and 
cross-validation, the weights were set to α = 0.8 and β = 0.2, giving much higher priority 
to phenology. 

 Supervised phenology training guides LSTM learning 
The LSTM learns the extreme weather adjustment function F(EW) using multiple climate 
indices (HDD, LDD, R95P, R10mm, Rx1day, PDSI, VPD). F(EW) modifies the daily 
development rate (DVR, Equation 9) but does not directly alter WOFOST’s internal 
phenology parameters (e.g., base temperature, photoperiod sensitivity). Therefore, even 
when yield is influenced by non-phenological factors, F(EW) only locally adjusts DVR 
without violating the physiological logic of phenology. Historical phenology observations 
(heading and maturity dates) are used as supervision during training (see Section 2.3.4), 
ensuring that phenology predictions remain accurate regardless of yield error. This prevents 
over-adjustment of F(EW) in response to yield deviations. 

 Validation in extreme weather years confirms consistency 
Sections 3.1 and 3.2 show that WOFOST-EW performs well for both phenology and yield: 
RMSE of heading decreased from 4.61% to 3.74%, maturity RMSE decreased from 4.74% 
to 3.98%, and yield R² increased from 0.67 to 0.76. These results demonstrate that F(EW) 
improves yield simulation accuracy while maintaining phenology integrity. Yield 
improvements are therefore a “by-product” of correct phenology adjustment, not a 
consequence of misdirected intervention by F(EW). 

 WOFOST’s original modules independently handle non-phenological yield losses 
Non-phenology-related yield processes (e.g., CO₂ assimilation, respiration, soil water 
balance) are handled by WOFOST’s original physiological-ecological modules, 
independent of F(EW). Thus, there is no mechanism by which F(EW) would need to 
compensate for non-phenological yield loss, avoiding causal misalignment. 

In response to the reviewer’s comments, we have added clarifications on the loss function design 
and supervision strategy in Section 2.3.4, lines 231–233, and in Supplementary Text S2. We greatly 
appreciate your valuable feedback, which has helped enhance the clarity of our manuscript. 

● It is unclear how agromanagement practices are incorporated into the modeling framework. The 
manuscript mentions that a standard practice involves applying (more than) 300 mm of irrigation 
water and a base fertilizer with topdressing. However, it is not specified how this is implemented 
within the WOFOST simulations. Could the authors clarify the timing, quantity, and method of 
irrigation and fertilizer application used in the simulations? Specifically, how much water and 
fertilizer are applied, and at which phenological stages or time points?  

Response: 

Thank you for raising this important point. We acknowledge that our original manuscript did not 
provide sufficient detail regarding agricultural management practices—particularly irrigation and 



fertilization—which may have led to some ambiguity. Here we provide further clarification: 

 Model version and applicability 
This study employed the Wofost72_WLP_CWB version within the PCSE framework. This 
version allows for simulation under water-limited conditions, meaning irrigation strategies 
can be specified in the model’s agromanagement files. However, it does not include nutrient 
cycling or nitrogen dynamics modules, and thus cannot directly simulate the impact of 
different fertilization strategies on crop growth (De Wit et al., 2019; De Wit and Boogaard, 
2024; Xu et al., 2022). This was not clearly articulated in the original submission. In the 
revised manuscript, we have added specific details on irrigation configuration and 
fertilization assumptions in the Methods section (Section 2.2.1, lines 117–121). 

 Irrigation practices 
Based on common irrigation practices for winter wheat in the North China Plain and 
supported by existing survey studies (Li et al., 2012; Sun et al., 2011; Xu et al., 2022), we 
specified a total irrigation amount of 320 mm across four applications: 

1. ~30 days after sowing (mid-November), 80 mm to ensure safe overwintering; 

2. Late February–early March, 80 mm to promote tillering; 

3. Late March–early April, 80 mm to meet water demand during jointing and booting; 

4. Early May, 80 mm to secure water supply during grain filling. 

These irrigation events and amounts were explicitly recorded in the Agromanagement 
file of the model, with irrigation efficiency set at 70% to reflect actual field conditions 
and water use efficiency. 

 Simplified fertilization treatment 
Fertilization was treated under the “potential growth” assumption, reflecting both the 
absence of a nutrient dynamics module in WOFOST and the actual agricultural context of 
the North China Plain. In this region, winter wheat production is characterized by high 
fertilizer application rates, which generally eliminate nutrient limitations (Bai et al., 2020; 
Dai et al., 2021; Liu et al., 2022). Consequently, nutrient supply is not considered a key 
limiting factor compared to water availability and extreme weather. We therefore did not 
explicitly define fertilizer amounts or timing but assumed soil nutrients were always 
sufficient to meet crop demand. This approach, commonly adopted in regional-scale crop 
modeling (Xue et al., 2024; Zhang et al., 2025), avoids introducing additional uncertainties 
and keeps the focus on the study’s primary objective: the interaction between extreme 
weather and crop growth. 

 Rationale and limitations of the simplified treatment 
The rationality of this approach lies in the fact that the core objective of this study is to 
improve WOFOST’s response to extreme weather conditions, rather than to precisely 
describe the fertilization process. At the regional scale, it is common to assume that 
nutrients are non-limiting in order to simplify fertilization effects and highlight the roles of 
climate and water management (Bai et al., 2020; De Wit et al., 2019). This assumption 
reduces sources of uncertainty and emphasizes the dominant role of extreme climate factors 



in yield formation. 
Of course, we also acknowledge the limitation of this approach: it cannot reflect the 
dynamic regulatory effects of fertilization management and may underestimate potential 
interactions between nutrient stress and climatic factors. We have discussed this limitation 
and provided outlooks in the revised manuscript (Discussion Section 4.4, lines 435–442). 

In summary, in the revised manuscript we have added specific details of irrigation practices and 
fertilization assumptions in the Methods section (Section 2.2.1, lines 117–121) and further 
explanations in the Discussion section (Section 4.4, lines 435–442). We believe these additions will 
improve the transparency and rigor of the study. 

● It appears that the correction factor F(EW) is computed as a single scalar for the entire season, 
rather than varying over time. As a result the same correction is applied during both vegetative and 
reproductive growth, even though weather impacts on phenology may differ substantially between 
these phases.  

Response: 

We sincerely thank the reviewer for this constructive comment. Although the calculation of F(EW) 
outputs at the growing season level, the temporal features of the input data and the model design 
implicitly account for stage-specific responses (vegetative growth, reproductive growth), rather than 
simply applying a single scalar to the whole season. The specific basis is as follows: 

 The extreme weather indices used as inputs contain stage-specific dynamic information 
The extreme weather indices for calculating F(EW) are separated by key phenological 
stages and accumulated dynamically. For example, high temperature degree days (HDD) 
and low temperature degree days (LDD) are explicitly distinguished between “sowing to 
heading” and “heading to maturity” thresholds (revised manuscript Section 2.3.1, lines 
144–149), and accumulated on a daily basis. This means the indices fed into the LSTM 
naturally incorporate the intensity differences of extreme weather across different growth 
stages. 

 Limitations of the study design and directions for improvement 
We fully agree with the reviewer that the mechanisms of extreme climate impacts differ 
significantly across growth stages. We have discussed this limitation in detail in Section 4.4 
(lines 442–457) of the Discussion. Specifically, due to data limitations, we only considered 
heading and maturity stages, while other key phenological stages of winter wheat were not 
included. This incomplete stage consideration may affect the model’s ability to fully capture 
crop growth dynamics under different conditions. Previous studies have shown that the 
impact of extreme weather events on crop production varies across growth stages (Feng et 
al., 2019; Porter and Gawith, 1999). Within the wheat growth cycle, different stages 
experience different types and intensities of climatic stress, leading to significant 
differences in yield impact. In particular, severe droughts during the critical growth months 
of April and May may strongly affect winter wheat yield (Xu et al., 2018; Yang et al., 2020). 
Moreover, studies on different crops and regions have shown that crop yield is more 
sensitive to droughts occurring during critical growth stages (Peña-Gallardo et al., 2019; 
Zipper et al., 2016). These findings highlight important directions for future research and 



model improvement. Future studies could improve model accuracy and better capture the 
effects of extreme weather on wheat growth by explicitly considering stage-specific types 
and intensities of climatic stress. 

 Rationale for the chosen method 
Despite these limitations, our approach was mainly based on two considerations. First, the 
original WOFOST model lacks direct mechanisms to respond to extreme weather. 
Therefore, in designing the method, we aimed to incorporate extreme weather impacts in a 
simplified way, using an overall adjustment factor, to avoid introducing too many free 
parameters that would be difficult to calibrate. Second, from the perspective of regional-
scale winter wheat simulations, introducing overly complex stage-specific adjustments may 
reduce model stability when applied at large scales, while our research goal was first to 
verify the feasibility of the “extreme weather–model adjustment” concept. 

In summary, while F(EW) appears as a single scalar, its generation process already implicitly 
contains temporal response logic that reflects stage differences. At the same time, we fully 
acknowledge the reviewer’s comment that future work should further develop stage-specific or 
dynamic adjustment mechanisms to better capture climatic stress effects at different growth stages. 
We have added this clarification in the revised manuscript (Discussion, Section 4.4, lines 442–457) 
and identified it as an important direction for future research. 

We thank the reviewer for pointing out this detail, which has helped us present the dynamic response 
logic of the model more clearly. 

● It seems that the computation of F(EW) requires access to the full-season weather time series, 
including data beyond the current day. In an in-season context — where the aim is to update the 
simulation up to today (before harvest) — WOFOST could still be run, but F(EW) would not be 
available unless future weather were known. Could the authors clarify how this limitation affects 
the applicability of their approach for real-time or in-season use? 

Response: 

We sincerely thank the reviewer for the insightful concern regarding the limitations of the model for 
real-time applications. This comment is very important, as it indeed touches on the key link between 
the transition of this approach from academic exploration to practical application. In light of the 
study design and the practical needs of agricultural production, we would like to further clarify the 
following points: 

 First, regarding the dependence of F(EW) on full-season data 
We acknowledge that in this study, the calculation of F(EW) depends on extreme weather 
indices across the entire growing season. This design was essentially intended to more 
accurately capture the cumulative effects and cross-stage interactions of extreme weather 
on crop phenology. As explained in Section 4.2 of the manuscript, the impacts of extreme 
weather are often not isolated (for example, drought during the seedling stage can reduce 
tolerance to later high temperatures, and low temperatures before heading may alter 
sensitivity to rainfall during the grain-filling stage). Using only partial season data could 
overlook such cross-stage linkages, leading to bias in the quantification of F(EW), such as 
misjudging the differential effects of “short-term heat” versus “prolonged heat” on 



phenology. Therefore, this design primarily serves the core research objective: improving 
the accuracy of simulating crop growth mechanisms under extreme weather (particularly 
for retrospective analyses of historical scenarios and exploring the impact patterns of 
extreme weather), rather than aiming at real-time forecasting. This also aligns with the 
characteristics of winter wheat in the North China Plain, which has a fixed single-season 
growth cycle (October to the following June, as noted in Section 2.1 of the manuscript). 
For historical data simulations, full-season weather data are available, allowing the 
advantages of F(EW) to be fully utilized. 

 Second, regarding the feasibility of within-season real-time application 
We fully agree with the reviewer’s point that “the unknown nature of future weather makes 
it difficult to calculate F(EW) in real time.” However, this limitation can be partially 
addressed. Considering that agricultural management decisions are often based on stage-
specific information, F(EW) can be recalculated in a rolling stage-based manner by 
combining observed data with short-term forecasts. The key phenological stages of winter 
wheat in the North China Plain (sowing, regreening, jointing, heading, maturity) occur at 
well-defined time points (Section 2.2.1 of the manuscript), which makes it possible to 
divide the growing season into 3–4 stages (e.g., “sowing–regreening,” “regreening–
jointing,” “jointing–heading,” “heading–maturity”). At the end of each stage, stage-specific 
F(EW) can be calculated using complete observed data up to that point (e.g., sowing to 
regreening) combined with short-term weather forecasts (e.g., 15–30 day forecasts) for the 
next stage. This stage-specific F(EW) can then be used to adjust phenological simulation 
of the current stage. For example, at the jointing stage, F(EW) can be generated based on 
observed data from “sowing–jointing” and forecast data from “jointing–heading,” which 
can then be used to adjust the development rate during the jointing period. As the growing 
season progresses, forecast data can be iteratively replaced with newly observed data, 
continuously updating F(EW). While this approach cannot fully eliminate the uncertainty 
of future weather, it ensures that F(EW) is always based on the “latest available 
information,” with accuracy improving as the season progresses. However, we 
acknowledge that this study did not further explore the feasibility of such within-season 
implementation, and this will be an important focus for future work. We clarified this 
limitation and research direction in Section 4.4 (lines 411–415). 

In summary, the dependence of F(EW) on full-season data reflects a mechanism-oriented design 
that, while presenting challenges for real-time applications, can be mitigated through strategies such 
as stage-based rolling calculations and historical similarity corrections. We agree with the reviewer’s 
comment and have clarified this limitation and future direction in Section 4.4 (lines 411–415) of the 
revised manuscript. We thank the reviewer for this constructive suggestion, which has helped us to 
more clearly define the boundaries of the model’s applicability and its potential optimization 
pathways. 

● Having gained a better understanding of the calibration and evaluation periods, a question 
remains regarding the representation of extreme weather events during calibration. Does the 
calibration period include instances of extreme weather? If not, how can the algorithm effectively 
learn to model their impact if it has not been exposed to such events during training?  



Response: 

Thank you for raising this important question, which directly concerns whether the model can 
effectively learn the mechanisms of extreme weather impacts on crop phenology. Our 
training/calibration period was 1980–2000 (see Sections 2.3.2 and 2.3.4), during which significant 
droughts, low-temperature events, and short-duration heavy rainfall occurred (Han and Gong, 2003; 
Wang et al., 2014; Zheng et al., 2018). More importantly, the extreme weather indices used to train 
F(EW) are continuous numerical values and were accumulated by key phenological stages, which 
means that during the calibration/training period the model was exposed to extreme weather 
scenarios and thus was able to learn the nonlinear relationship between “extreme weather 
intensity—phenology deviation.” 

To improve the clarity of the manuscript, we have added relevant explanations in Section 2.3.2, lines 
178–179 of the revised version, specifying the coverage of extreme weather during the training 
period and its effectiveness for learning F(EW). We again thank you for your insightful comment. 

● Although the correction factor F(EW) is computed using a non-linear function (i.e. an LSTM), its 
integration into the phenology module appears relatively simple — it acts as a multiplicative factor 
applied to the development rate. Could the authors elaborate on the rationale for choosing this 
specific coupling mechanism? Are other forms of integration (e.g., additive or stage-specific 
adjustments) considered or tested?  

Response: 

Thank you for raising this important question. The core reason we chose the multiplicative coupling 
mechanism is that it better aligns with both the physiological logic of phenological development 
and the compatibility of the model. The detailed explanation is as follows: 

 Consistency with the physiological mechanism of “multi-factor coordinated regulation” in 
crop phenological development 
The phenological development of wheat is the result of the combined effects of temperature 
(F(T)), photoperiod (F(P)), and vernalization (F(V)), which in WOFOST are already 
coupled through a multiplicative relationship (Equation 2). This reflects the physiological 
principle that “if any single factor is limiting, overall development is constrained” (for 
example, if vernalization is insufficient, development will be delayed even under favorable 
photoperiods). Studies have shown that crop growth and development are governed by the 
combined action of multiple environmental factors rather than by a single factor 
independently. For example, research on wheat has found that both temperature and day 
length jointly affect the growth cycle, with clear interactions (Porter and Delecolle, 1988). 
The impact of extreme weather on phenology (such as high temperatures accelerating 
development or drought altering the pace of development) essentially serves as a 
“modulation” of this coordinated process. For instance, extreme heat may amplify the 
weight of the temperature factor, while extreme drought may reduce the sensitivity of 
photoperiod responses. Therefore, introducing F(EW) in a multiplicative form naturally 
integrates into this “multi-factor coordination” physiological framework, preserving the 
original mechanism while capturing the proportional regulatory effect of extreme weather 



on overall development. To improve clarity, we have added supplementary explanations in 
Section 2.3.3, lines 219–222 of the revised manuscript. 

 Compatibility with the modular design of the WOFOST model, avoiding logical conflicts 
One of the core strengths of WOFOST is its mechanistically transparent modular structure 
(Section 2.3.3), where phenological development rate (DVR) calculations strictly follow a 
“factor product” logic (Equation 2). If an additive form were used instead, it could lead to 
results with ambiguous physical meaning. 

 Stage-specific adjustment 
The “stage-specific adjustment” raised by the reviewer (e.g., applying different correction 
forms to vegetative and reproductive phases) is not ignored, but rather addressed through 
the input features of F(EW) and the temporal learning capability of the LSTM: 
• The input to F(EW) consists of stage-specific extreme weather indices (for example, the 
HDD threshold is 25°C for sowing–heading and 30°C for heading–maturity, Section 2.3.1). 
During training, the LSTM has already learned that “the correction magnitude of F(EW) 
under extreme cold in the vegetative stage differs from that in the reproductive stage.” 
Similar stage-based data input strategies have been used in other studies, allowing models 
to learn differential responses to environmental factors across growth stages and thereby 
improving accuracy. 
• However, we acknowledge certain limitations in our study, namely that more precise 
phenological stages were not considered. We discuss this limitation in detail in Section 4.4, 
lines 442–457. Specifically, due to data constraints, we only considered the heading and 
maturity stages, while other key phenological stages of winter wheat were not included. 
This incomplete treatment of growth stages may limit the model’s ability to fully capture 
crop dynamics under varying conditions. Previous studies have shown that the impacts of 
extreme weather events on crop production differ significantly across growth stages (Feng 
et al., 2019; Porter and Gawith, 1999). During the wheat growth cycle, different stages 
experience different types and intensities of climate stress, leading to marked differences 
in yield impacts. Moreover, severe drought occurring in the critical growth months of 
April–May can particularly affect winter wheat yields (Xu et al., 2018; Yang et al., 2020). 
In addition, a number of studies on different crops and regions have shown that yields are 
more vulnerable to drought occurring during critical growth stages (Peña-Gallardo et al., 
2019; Zipper et al., 2016). These findings point to important directions for future research 
and model improvements. Future work could further refine the model to account for climate 
stresses of specific types and intensities at different growth stages, thereby improving 
predictive accuracy and better capturing the impacts of extreme weather events on wheat 
development. 

Once again, we sincerely thank the reviewer for this constructive suggestion, which has helped us 
more clearly articulate the reasoning behind our model design. 

● The loss function includes both phenological stage errors (predicted vs. observed) and yield errors 
(predicted vs. observed). The authors should provide a clear rationale for how these components 
are balanced during training. Are they weighted equally, or is a specific weighting scheme applied? 
As previously noted, including yield as a target may confound the mechanisms, since yield is 



influenced by many factors beyond phenology. Clarifying this point is important to assess whether 
the model is learning the intended relationships. 

Response: 

Thank you very much for the detailed suggestion. Regarding the design of the loss function, we did 
consider both phenology error and yield error during model training, but not through a simple “equal 
weighting.” As noted earlier, the weighting coefficients for phenology and yield losses are 0.8 and 
0.2, respectively, meaning the phenology error was assigned a much higher weight than the yield 
error. We have added clarifications in the revised manuscript (Section 2.3.4, lines 231–233) as well 
as in the Supplementary Material (Text S2) to explain the logic behind the loss function design. The 
original purpose of F(EW) was to adjust for the effects of extreme weather on phenological 
development (Section 2.3.3 of the manuscript), rather than to directly simulate yield formation. 
Therefore, assigning a higher weight to phenological errors ensures that the LSTM prioritizes 
learning the relationship between extreme weather and phenological responses (e.g., accelerated 
heading under high temperatures or delayed maturity due to frost) during training, preventing the 
yield objective from distorting the logic of phenology simulation. 
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