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Reviewer #2 

Dear Reviewer, 

We sincerely thank you for your insightful comments and constructive suggestions, which have 
helped us improve the quality of our manuscript. Below, we provide detailed responses to each point. 
The original reviewer comments are presented in italic, while the authors’ responses are provided 
in blue. 

The line number is based on the clean version of the revised manuscript, not the track change version. 

The paper presents WOFOST-EW, an enhanced version of the WOFOST crop model that employs 

an LSTM to integrate extreme weather indices, aiming to improve the phenology component of 

WOFOST. The model is validated using data from the North China Plain, focusing on the prediction 

of two phenological stages (heading and maturity) and yield, particularly during extreme weather 

years. While the approach of integrating machine learning into a process-based crop growth model 

is interesting, the implementation and evaluation raise several significant concerns, outlined below. 

Response: 

Thank you very much for your valuable overall evaluation of our work. We are glad to know that 
you recognize our efforts. At the same time, your comments are extremely important to us. We have 
carefully addressed each of the issues you raised to ensure the quality of the manuscript and the 
rigor of the research. 

Use of Extreme Weather Indices in phenology prediction  

● The authors propose that extreme weather events, such as excessive rainfall or temperature 

anomalies, can improve the prediction of phenological stages. However, it is commonly understood 

that phenological development in cereal crops is primarily driven by temperature (thermal time), 

photoperiod, and vernalization. To strengthen their argument, the authors should provide a clear 

rationale explaining why and how extreme weather events would directly affect phenological stages.  

Response: 

Thank you very much for your insightful and important question regarding how extreme weather 

indices influence phenology prediction in this study. You accurately pointed out the widely accepted 



understanding that the phenological development of cereal crops is primarily driven by temperature 

(thermal time), photoperiod, and vernalization. We fully agree with your view, which reflects the 

commonly adopted physiological mechanisms in current crop models. In response to the approach 

we proposed in the manuscript—introducing extreme weather indices for phenology prediction—

we would like to provide a more detailed explanation and clarification here. 

In actual agricultural production, although thermal time is the main factor controlling phenological 

changes, an increasing number of empirical studies have shown that extreme weather events (such 

as extreme heat, cold, drought, and heavy rainfall) can significantly disturb the physiological 

processes of crops, resulting in either advancement or delay in phenology (Chachar et al., 2016; 

Chowdhury et al., 2021; Harrison, 2021; Ihsan et al., 2016; Li et al., 2020; Liu et al., 2023; 

McMaster and Wilhelm, 2003; Porter and Gawith, 1999; Xiao et al., 2021). Below are the reasons 

and mechanisms through which extreme weather events directly or indirectly affect phenological 

stages: 

 Effects of Extreme Temperature on Wheat Phenology 

Numerous crop modeling studies and empirical analyses have shown that high temperatures 

during the growing season generally shorten the duration of crop development (Asseng et al., 

2015; Sadras and Monzon, 2006; Tao and Zhang, 2013; Zahra et al., 2021). However, the 

effects of warming vary across phenological stages. For example, the study by Li et al. (2020) 

found that warming significantly shortened the period from sowing to flowering, while the 

period from flowering to maturity was relatively less affected. Generally, the pre-flowering 

stage is more influenced by minimum temperatures, while the post-flowering stage is more 

affected by maximum temperatures (Porter and Gawith, 1999). Moreover, wheat development 

is more sensitive to temperature changes during the pre-flowering phase, which coincides with 

the period when temperature increases are most pronounced (Tao et al., 2017a; Tao et al., 

2017b). During this stage, moderate warming can accelerate thermal accumulation, promote 

earlier heading and flowering, and change the rhythm of the entire phenological process. Some 

studies also suggest that moderate warming can enhance enzyme activities related to 

photosynthesis and promote leaf area expansion (Chen et al., 2014), thereby increasing 

photosynthetic capacity and stimulating LAI growth and chlorophyll accumulation, which 

could lead to earlier flowering (Li et al., 2020). However, after flowering, high temperatures 

tend to accelerate leaf senescence, reduce chlorophyll content and photosynthesis rates, and 

ultimately shorten the grain-filling period, resulting in earlier maturity. Notably, recent extreme 

high-temperature events have caused significant disruptions to wheat growth. For instance, Liu 

et al. (2023) pointed out that the extreme heat in the summer of 2023 in China exceeded the 

upper threshold for optimal crop growth (Harrison, 2021), directly causing early maturity of 

wheat. These nonlinear and stage-specific temperature response mechanisms suggest that 

under extreme weather conditions, relying solely on thermal time to simulate wheat phenology 



may be insufficient. 

 Effects of Extreme Cold on Wheat Phenology 

Extreme low temperatures, particularly frost events below crop tolerance thresholds, can 

significantly disrupt wheat phenological development. Frost may directly damage critical 

growth organs, such as young spikes and reproductive tissues, interrupting development or 

causing notable delays (Fuller et al., 2007). During early vegetative growth, frost can 

dramatically reduce seedling survival and lead to leaf burn and necrosis, commonly manifested 

as leaf tip scorching (Shroyer et al., 1995). More importantly, rapid temperature drops often 

have more damaging effects than gradual declines, as crops lack sufficient time to acclimate 

to sudden cold conditions (Al Issawi et al., 2013; Li et al., 2014) In such cases, even if the 

temperature does not reach lethal levels, latent damage to organ formation may occur, 

hindering subsequent development. Studies have shown that low-temperature stress is one of 

the major limiting factors for global wheat production. Persistent low temperatures suppress 

metabolic activity and slow tissue division and elongation, thereby significantly prolonging 

phenological stages—particularly from jointing to heading (Xiao et al., 2021). Moreover, if 

frost or cold waves occur during stem elongation or spikelet initiation stages, they may lead to 

developmental disorders, delayed heading, or even partial sterility, severely affecting final 

yield. 

 Effects of Drought/Water Stress on Wheat Phenology 

Although temperature is the dominant environmental driver of wheat development, drought or 

water stress can also significantly affect wheat phenology, especially in drought-prone regions 

(McMaster and Wilhelm, 2003). In recent years, increasing attention has been paid to the 

potential disruptions caused by drought stress on crop developmental rhythms, and drought is 

increasingly regarded as a crucial environmental variable affecting crop phenolog y (McMaster 

and Smika, 1988). The effects of drought stress on crop development depend on the timing, 

developmental stage, and severity of the stress. When wheat encounters moderate to severe 

water stress during critical developmental phases, it triggers a series of morphological, 

physiological, biochemical, and molecular stress responses, which can alter its normal growth 

rhythm (Chachar et al., 2016; Ihsan et al., 2016). These responses include decreased 

photosynthesis, stomatal closure, abnormal hormone secretion, and impaired reproductive 

development, which may ultimately accelerate or disrupt developmental progress. To adapt to 

water stress, wheat has evolved various drought-resistance strategies, including drought escape 

(accelerating the life cycle to avoid drought), drought avoidance (e.g., regulating stomatal 

behavior to reduce water loss), and drought tolerance (maintaining cellular function under 

stress) (Nyaupane et al., 2024). Although these strategies help ensure survival and a degree of 

yield stability, they often result in shortened developmental cycles and lead to earlier 

phenology (Chachar et al., 2016; Chowdhury et al., 2021; Ihsan et al., 2016; McMaster and 

Wilhelm, 2003). 



 Effects of Extreme Rainfall/Flooding on Wheat Phenology 

Extreme rainfall events often cause field flooding or waterlogging, which can significantly 

hinder normal crop development (Liu et al., 2020). Waterlogging leads to hypoxia in the soil, 

thereby reducing oxygen supply to plant roots (Colmer and Greenway, 2011; Kotula et al., 

2015), inhibiting root elongation and function, and limiting nutrient uptake and transport to 

aboveground organs (Colmer and Voesenek, 2009). In severe cases, it may even result in partial 

root death (Herzog et al., 2016). Additionally, excessive rainfall can reduce root elongation 

rates (Ebrahimi-Mollabashi et al., 2019) and leach essential nutrients from the soil (Kaur et al., 

2020), causing nutrient stress. Even in the absence of visible nutrient deficiencies, 

waterlogging affects the roots' ability to absorb and transport water, leading to stomatal closure, 

decreased internal leaf CO₂ concentration, and reduced photosynthesis and crop growth 

(Jitsuyama, 2017). Furthermore, water accumulation increases the risk of pathogen 

proliferation, potentially triggering root rot, leaf diseases, and increasing lodging risk (Nguyen 

et al., 2016). Although most existing studies focus on the effects of waterlogging on crop 

growth and yield, some scholars have called for greater attention to its impact on crop 

phenological development (Nóia Júnior et al., 2023). Empirical studies have shown that 

flooding during tillering and jointing stages of wheat can significantly inhibit chlorophyll 

synthesis and photosynthesis, obstructing early growth and potentially delaying subsequent 

phenological stages such as jointing and heading (Dickin and Wright, 2008; Wu et al., 2015). 

Our WOFOST-EW model introduces an LSTM algorithm and uses multiple extreme weather 

indices (such as HDD, LDD, PDSI, VPD, and R95P) as inputs to learn the dynamic modulation 

effects of these extreme events on crop phenological processes. The LSTM can capture the nonlinear 

relationships between extreme events and phenological phase changes, generating a temporally 

dynamic variable F(EW). This F(EW) acts as a correction factor for the phenology module within 

the WOFOST model, allowing the model to further refine its simulation of acceleration, delay, or 

interruption of phenological phases induced by extreme weather, on top of the standard thermal time, 

photoperiod, and vernalization mechanisms. This enhancement improves the robustness and 

accuracy of phenology predictions under extreme climate conditions. 

We have clarified and elaborated on this theoretical foundation in lines 320–368 of the revised 

manuscript, supported by relevant literature. Once again, thank you for your profound question, 

which has prompted a more complete explanation of the scientific principles underlying our model. 

● It appears that these extreme weather indicators are not incorporated into other model 

components (e.g., growth, biomass accumulation, or stress responses), but are instead used solely 

to modulate phenology. This approach attributes all extreme weather effects to phenology alone, 

which risks conflating physiological processes and may compromise the model’s interpretability. 

Response: 



Thank you very much for your thoughtful review and constructive suggestions. In response to your 

concerns, we would like to provide the following detailed explanation.  

It appears that these extreme weather indicators are not incorporated into other model 
components (e.g., growth, biomass accumulation, or stress responses), but are instead used 
solely to modulate phenology. 

Response: 

Thank you very much for your thorough review and valuable comments. We acknowledge that, at 

the current stage of this study, the core improvement of the WOFOST-EW model is indeed focused 

on enhancing the accuracy of phenology simulation by introducing the extreme weather function 

F(EW). We would like to emphasize that even though the current enhancement is limited to the 

phenological module, this strategy plays a critical role in improving the accuracy of crop yield 

simulation under extreme climate conditions. The rationale is as follows: 

(1) Phenology is a key determinant of crop yield formation, and it serves as a major pathway through 

which extreme weather affects crop production. During the growth period from sowing to maturity, 

crops undergo several critical stages such as heading, flowering, and grain filling. The timing of 

these stages directly affects grain number and quality. Extreme weather events occurring within 

these sensitive phenological windows can cause irreversible damage. For example, extreme heat or 

drought during the grain filling stage may shorten the period, leading to insufficient filling and 

reduced grain weight, ultimately lowering the final yield (Chachar et al., 2016; Chowdhury et al., 

2021; Ihsan et al., 2016; McMaster and Wilhelm, 2003). Frost events during heading or flowering 

can damage reproductive organs, significantly reducing the number of grains (Xiao et al., 2021). 

Similarly, prolonged waterlogging may delay phenological development or cause growth 

disruptions, making crops miss optimal development windows (Dickin and Wright, 2008; Wu et al., 

2015). 

(2) Existing crop models commonly face challenges in simulating phenology under extreme 

conditions. Although process-based crop models can simulate biomass accumulation and stress 

responses, their phenology modules are usually based on thermal time and photoperiod. Under 

extreme weather conditions, such formulations often fail to capture abnormal accelerations, delays, 

or interruptions in phenological development (Nóia Júnior et al., 2023). If phenology simulation is 

inaccurate, even a theoretically sound model of physiological processes will execute those processes 

at incorrect timings, introducing cumulative errors in biomass accumulation and yield prediction. 

Therefore, improving phenology prediction under extreme conditions is a critical step toward 

addressing the fundamental challenge of inaccurate crop modeling under climate extremes (Pei et 

al., 2025). 

In summary, although the current version of the WOFOST-EW model does not extend modifications 



to other physiological modules, the targeted enhancement of phenology alone has already 

significantly improved the model’s robustness and yield prediction performance in extreme years. 

It also lays a solid foundation for future expansions to incorporate broader extreme weather response 

mechanisms. By integrating F(EW) via an LSTM framework, the model can learn and represent the 

nonlinear and dynamic influence of extreme weather on phenological development. This allows for 

a flexible and accurate correction of WOFOST’s phenology predictions under extreme conditions, 

thus enabling the model to realistically capture the “developmental trajectory shift” experienced by 

crops under stress. We have elaborated on the rationale for focusing on phenology improvement in 

the revised manuscript’s discussion section (see lines 320–368). 

This approach attributes all extreme weather effects to phenology alone, which risks conflating 

physiological processes and may compromise the model’s interpretability. 

Response: 

Thank you for your thoughtful and constructive comments. We fully understand the reviewer’s 

concern that attributing all extreme climate effects to phenological processes may potentially lead 

to confusion regarding physiological mechanisms and reduced model interpretability. Below, we 

provide a detailed response to these concerns: 

(1) Regarding the concern about “conflating physiological processes”: 

We would like to clarify that we do not simply attribute all the effects of extreme climate to 

phenology. Rather, we explicitly identify and model one of the most direct, prominent, and yield-

critical pathways—the phenological response of crops to extreme weather events. Numerous studies 

have shown that extreme heat, drought, or waterlogging events often first manifest in phenological 

disturbances, such as delayed heading, shortened grain filling duration, or premature maturity 

(Asseng et al., 2015; Chachar et al., 2016; Chen et al., 2014; Chowdhury et al., 2021; Ihsan et al., 

2016; McMaster and Wilhelm, 2003; Sadras and Monzon, 2006; Tao and Zhang, 2013; Zahra et al., 

2021). These disruptions significantly alter the sequence and duration of organ development, which 

in turn affects the biomass accumulation window and yield potential. 

From a physiological perspective, extreme weather indeed directly affects fundamental processes 

such as photosynthesis, respiration, and water use. However, phenological changes are often a 

systemic reflection of the combined effects of these stresses. For example, high temperatures 

accelerate heat accumulation and enzyme activity related to photosynthesis, which promotes leaf 

area and chlorophyll growth and ultimately leads to earlier crop maturity and a shortened grain-

filling period (Chen et al., 2014). When extreme heat induces premature senescence, or severe 

drought shortens the grain-filling phase, these are not isolated physiological responses but rather 

integrated expressions of the crop's response to environmental stress. These physiological responses 

are reflected at the phenological scale as a “shift in the developmental trajectory.” Therefore, by 



improving phenology simulation, the WOFOST-EW model indirectly captures the aggregated 

physiological stress responses at a macro scale. This is an integrative modeling approach that 

enhances model responsiveness under extreme conditions. Although WOFOST-EW does not 

explicitly modify parameters related to photosynthesis, it ensures that physiological processes such 

as biomass accumulation and yield formation are simulated within the correct phenological 

windows, which inherently account for the impact of extreme stress. In this way, physiological 

mechanisms are respected and indirectly represented through improved phenological timing. 

To avoid confusion among physiological processes, we adopted a modular and isolated design 

strategy: extreme weather indicators are used only to drive the phenological module, while all other 

physiological processes follow the original WOFOST mechanisms and are not directly affected by 

the extreme weather variables. This preserves the structural independence of different physiological 

components and maintains clarity when interpreting the pathways through which various stresses 

operate. In fact, by improving phenological prediction, the model’s “temporal alignment capability” 

is enhanced, which in turn improves the accuracy of simulating other physiological processes within 

the appropriate developmental stages. 

(2) Regarding the concern about “compromise the model’s interpretability”: 

We acknowledge that LSTM, as a deep learning method, lacks the mechanistic transparency of 

traditional physiological models. However, in terms of the model’s overall behavioral 

interpretability, WOFOST-EW has not been weakened—on the contrary, its interpretive capacity 

has been enhanced in several key aspects: 

 Enhanced interpretability under extreme weather conditions: 

The original WOFOST model may struggle with yield prediction under extreme 

conditions due to inaccuracies in phenology simulation. By adjusting phenological stages 

(e.g., simulating a shorter grain-filling period in hot years), WOFOST-EW aligns more 

closely with observed outcomes and provides better explanatory power regarding the 

causes of yield fluctuations. 

 Improved user trust and applicability: 

Accurate simulation of phenological changes under extreme conditions increases the 

credibility of subsequent physiological processes, making the model more applicable in 

decision support and risk assessment contexts. 

Since phenological accuracy is the foundation for reliable simulation of downstream processes such 

as biomass accumulation and yield formation, WOFOST-EW’s improvements at the phenology 

level have substantially enhanced the model’s predictive capability under extreme climate scenarios. 

This establishes a robust basis for more precise assessment of climate impacts and the development 

of adaptation strategies. Of course, we fully agree with the reviewer that future work should explore 

extending the influence of extreme weather to other physiological components of the WOFOST 



model—such as direct effects on photosynthesis rate or water use efficiency—to achieve a more 

comprehensive representation of extreme stress mechanisms. This is a key direction for future 

development of the WOFOST-EW model. 

We have added a detailed discussion of these points in the revised manuscript (see lines 320–368 

and 422–438). Once again, we sincerely thank the reviewer for these constructive comments, which 

prompted us to further clarify the model’s logic and scope of applicability. 

LSTM training  

● The description of the LSTM network implementation lacks detail regarding the input sequence. 

Given that LSTM networks are designed for time series data and the extreme weather indices appear 

to be annual scalar values rather than time series over a growing season, it is unclear what sequence 

is fed into the LSTM. Is it a sequence of these annual scalars across the training period? This 

approach for LSTMs seems questionable, particularly when a held out test year falls within the 

training period and the output of the final timestep is taken as the prediction.  

Response: 

We sincerely thank you for your critical and insightful comments regarding the implementation of 

the LSTM model. Your feedback is highly professional and extremely valuable to us. In response, 

we have provided a more detailed explanation of the LSTM modeling process in the Methods 

section (lines 164–178 of the revised manuscript), and would like to offer the following 

clarifications: 

First, we clarify that the extreme weather indices fed into the LSTM network are not annual scalar 

values, but sequential time-series data calculated over the wheat growing season. The LSTM 

network processes these temporally dynamic sequences to capture the effects of extreme weather 

events on crop development, and uses them to estimate the time-varying function F(EW). 

Furthermore, we acknowledge that our previous description of the LSTM methodology lacked 

clarity and may have led to confusion. Your concerns are completely valid and point to a critical 

issue of methodological rigor. Our specific training and testing strategies are as follows: 

 WOFOST model calibration and validation: 

The WOFOST model was calibrated using historical data from 1980–2000, and 

subsequently validated using data from 2001–2020 to assess model performance across 

years. 

 WOFOST-EW model training and testing: 

 Training and hyperparameter tuning (1980–2000): 

We used data from 1980 to 2000 as the training and internal validation set for the 

LSTM model. During this stage, we applied a leave-one-year-out cross-validation 



(LOOCV) strategy and combined it with GridSearchCV for hyperparameter 

optimization and model training. 

 Independent testing (2001–2020): 

After the LSTM model was trained and tuned using 1980–2000 data, we 

evaluated the final performance of the WOFOST-EW model using an entirely 

independent test dataset from 2001–2020. 

In summary, all comparisons between the WOFOST and WOFOST-EW models in this study are 

based on performance over the independent test period (2001–2020). This ensures both fairness and 

the assessment of true predictive ability. We believe that these detailed clarifications regarding the 

input structure and validation strategy of the LSTM model will contribute to a better understanding 

of the methodological rigor of our manuscript. 

● It is also unclear what the training target of the LSTM is—does it aim to predict final yield, 

phenological stages, or something else? Furthermore, are the parameters of WOFOST kept fixed 

during the LSTM optimization? If the LSTM (and thus WOFOST-EW) is trained using phenological 

stage data while the original WOFOST model is not, then the comparison between the two models 

may not be fair or meaningful.  

Response: 

We sincerely thank you for raising this critical question. Regarding the training objective of the 

LSTM model, parameter settings in WOFOST, and the fairness of model comparisons, we have 

provided further clarifications and revisions in the updated manuscript (see lines 164–178, 214–225, 

and Figure S1). Below is a detailed clarification: 

First, the training objective of the LSTM model is not to directly predict yield or specific 

phenological dates. Rather, it is designed to estimate a data-driven extreme weather correction factor, 

F(EW), to better capture the nonlinear regulatory effects of extreme climate events on crop 

phenology. It is important to note that, in the baseline WOFOST, we used observational data on 

yield and phenology from 1980–2000 to calibrate the model. The parameter set that minimized the 

RMSE between simulated and observed yield and phenology was considered optimal. In WOFOST-

EW, the same set of observational data was used to determine the extreme weather correction factor. 

Therefore, the comparison between the two models is fair. 

Specifically, the LSTM takes as input multi-year sequences of extreme climate indices during the 

winter wheat growing season, and outputs the extreme weather correction factor. The LSTM does 

not replace the physiological modules of WOFOST; instead, it serves as an auxiliary model to 

correct the biases in phenology and yield predictions of the traditional WOFOST under extreme 

weather conditions. Thus, the optimization objective of LSTM is to ensure that when its output F 

(EW) variable is applied to the WOFOST model, the entire WOFOST-EW coupled model can 



minimize the error between observed phenology and yield. We have made this clearer in lines 164–

178 and 214–225 of the revised methods section. 

Second, the process parameters in WOFOST were kept fixed throughout the entire experiment. That 

is, WOFOST-EW does not modify any physiological or process parameters of the WOFOST model 

during LSTM training. We ensured that WOFOST and WOFOST-EW shared identical inputs and 

configurations across all modules, including meteorological data, soil conditions, management 

practices, and crop-type parameters. The only difference is that WOFOST-EW applies the LSTM-

derived F(EW) to correct the phenology module. This is explained in lines 214–225 of the revised 

manuscript. 

Third, regarding your concern about the fairness of comparing the original WOFOST with 

WOFOST-EW, we believe our comparison approach is both fair and meaningful, for the following 

reasons: 

 Calibration of the original WOFOST model: During the calibration stage (1980–2000), the 

original WOFOST model was optimized using both observed phenology (heading and 

maturity dates) and observed yield. This has been clearly stated in the methodology section 

(see lines 214–225). Therefore, the baseline WOFOST model represents a well-calibrated 

reference under typical climatic conditions. 

 Enhancement in WOFOST-EW: The WOFOST-EW model is built upon this already-

calibrated WOFOST baseline. The LSTM does not re-learn basic crop growth mechanisms 

from scratch; instead, it learns how to adjust the baseline model’s biases in phenology and 

yield simulation under extreme weather conditions. The LSTM acts as a correction 

mechanism, not a standalone predictor. 

 Evaluation on an independent test set: Most importantly, both models—WOFOST and 

WOFOST-EW—were evaluated on the same, fully independent test dataset (2001–2020). 

This ensures that neither model had prior exposure to the evaluation years during training 

or calibration. If WOFOST-EW shows significantly better performance on this test set—

especially in extreme years—this serves as robust evidence that the incorporation of F(EW) 

via LSTM meaningfully improves predictive accuracy, lending strong scientific credibility 

and fairness to the comparison. 

We have addressed these key points more thoroughly in Sections 2.3.2 to 2.3.4 of the methods, 

clarifying the LSTM training goal, the fixed nature of WOFOST parameters, and the fairness of the 

model comparisons. We hope this addresses your concerns and strengthens your confidence in the 

scientific rigor of our approach. Once again, we sincerely thank you for your thoughtful and 

constructive comments. 

● While WOFOST is calibrated using data from the years 1990–2000, the LSTM (and therefore 



WOFOST-EW) appears to be trained on a broader range of years through cross-validation. This 

introduces an unfair advantage in the evaluation. 

Response: 

We sincerely thank you for raising this critical question. Regarding the training objective of the 

LSTM model, the parameterization of WOFOST, and the fairness of comparisons between models, 

we have provided additional explanations in the revised manuscript (lines 164–178 and 214–225, 

as well as Fig. S1), and offer the following detailed clarifications: 

First, the training objective of the LSTM model is not to directly predict crop yield or specific 

phenological dates, but to construct a data-driven extreme weather correction factor F(EW) that 

reflects the nonlinear regulatory effects of extreme climate events on crop phenology. Importantly, 

in the baseline WOFOST model, we used observational data from 1980–2000 on yield and 

phenology to calibrate the model. The optimal parameter set was determined when the root mean 

square errors (RMSE) between observed and simulated yield and phenological dates were 

minimized. In WOFOST-EW, the same observational data were used to estimate the correction 

factor F(EW). Therefore, the comparison between the two models is fair. 

Specifically, the input to the LSTM consists of multiple years of extreme climate indices during the 

winter wheat growing season, and the output is the extreme weather correction factor. LSTM does 

not replace any physiological modules of WOFOST; instead, it serves as an auxiliary correction 

module to adjust the biases of the original WOFOST model under extreme weather conditions. Thus, 

the optimization objective of the LSTM is to ensure that, when the estimated F(EW) is applied to 

the WOFOST model, the coupled WOFOST-EW system minimizes the discrepancies between 

simulated and observed phenology and yield. We have provided more detailed improvements in the 

Methods section (lines 164–178). 

Second, the physiological parameters of WOFOST remain unchanged throughout the entire 

experiment. During the LSTM training process, no crop physiological or process parameters were 

modified. We ensured that WOFOST and WOFOST-EW used identical input settings for all modules, 

including meteorological data, soil conditions, management practices, and crop parameter files. The 

only difference is that WOFOST-EW employs the LSTM-derived F(EW) factor to adjust the 

phenology module under extreme weather conditions. 

Third, regarding your important concern about the fairness of comparing the original WOFOST and 

WOFOST-EW models, we emphasize that our comparison method is both fair and scientifically 

meaningful, for the following reasons: 

 Calibration of the original WOFOST model: 

The baseline WOFOST model was calibrated using 1980–2000 data, including observed 

phenological dates (e.g., heading and maturity) and yield. This has been clearly stated in 



the Methods section (see lines 214–225). Therefore, the WOFOST model was already 

optimized using actual observations to ensure its best possible performance under standard 

conditions. 

 Enhancement in WOFOST-EW: 

The WOFOST-EW model builds upon this already calibrated baseline WOFOST. The 

LSTM model does not re-learn basic crop growth patterns from scratch, but instead learns 

how to adjust the original WOFOST predictions in the presence of extreme weather 

conditions. It serves as a corrective mechanism, not a standalone predictor. 

 Independent testing dataset: 

Most importantly, both models were evaluated using the same independent test dataset 

(2001–2020), which was completely unseen during the training and calibration phases. This 

ensures that both models were assessed under the same conditions. If WOFOST-EW 

demonstrates significant improvements, particularly in extreme years, it provides strong 

evidence that the LSTM-derived F(EW) function offers a real enhancement in predictive 

capability, thus making the comparison both fair and scientifically valid. 

We have elaborated on the LSTM training objective, the fixed WOFOST parameters, and the 

fairness of model comparisons in Sections 2.3.2–2.3.4 of the revised manuscript to address your 

concerns and reinforce the methodological rigor of the study. Once again, we sincerely appreciate 

your valuable suggestions. 

● It would be interesting to see a plot of only the intermediate LSTM output in the different years 

and if any patterns can be noticed w.r.t. the presence of extreme weather events. 

Response: 

We sincerely appreciate your insightful suggestion. We have gladly adopted your valuable advice 

and have added a new figure in the revised manuscript to illustrate the interannual variation of the 

extreme weather function F(EW) learned by the LSTM model. This figure is intended to visually 

demonstrate how F(EW) responds to and quantifies the impact of extreme climate events. 

The relevant content has been described in detail in lines 274–282 of the revised manuscript and is 

clearly presented in Figure 8. 

Specifically, we plotted the annual distributions of extreme weather indices and the F(EW) values 

predicted by the LSTM model from 1980 to 2020. To more intuitively represent the magnitude of 

the negative impacts of extreme weather on crop growth, we used the metric 1 – F(EW): higher 

values of this indicator suggest a more pronounced effect of extreme weather on crop development 

in a given year. 

Reproducibility  



● The provided codebase does not include any means to reproduce the results. For instance, the 

“LSTM” repository appears to be merely a clone of the Keras library. 

Response: 

Thank you for your valuable comment regarding the issue of reproducibility. In response to your 

feedback, we have uploaded the core code used in this study during the revision process, including 

key function modules related to model construction, training, and prediction. We have also updated 

the manuscript to include information on how to access the code and details of its implementation. 

Please refer to lines 456–458 of the revised manuscript for further information.  

● Section 2.2.2 states that yield data is used from the Agricultural Yearbook of the respective 

provinces, and is supplemented with data not disclosed by survey bureaus. Where does this 

supplemented data come from 

Response: 

Thank you for your concern regarding the accuracy of data sources. We would like to clarify the 

issue you raised about the non-public data: all crop yield data used for model training and validation 

in this study were obtained from officially published statistics in the Agricultural Yearbooks of the 

respective provinces. We acknowledge that our previous wording was not sufficiently rigorous. We 

have corrected and clarified the relevant statements in the revised manuscript. Please refer to lines 

122–124 for details.  

Calibration WOFOST  

● It is unclear which parameters are selected during the WOFOST calibration process. How many? 

How many iterations? Which (if any) parameter value ranges were used? 

Response: 

We sincerely thank the reviewer for your attention to the parameter calibration process of the 

WOFOST model. We have revised and improved this section in the manuscript to enhance the 

transparency and reproducibility of the methods. Specifically, we first conducted a sensitivity 

analysis to identify the key parameters, during which both first-order and total sensitivity indices 

were calculated. Based on these results, the 10 parameters with the highest global sensitivity were 

selected for calibration. 

For parameter optimization, we adopted the widely used Shuffled Complex Evolution-University 

of Arizona (SCE-UA) algorithm, which has been extensively applied in crop model inversion. We 

set 200 iterations to ensure the stability and convergence of the results. The value ranges of each 

parameter were determined based on relevant literature and the physiological characteristics of the 

crop. The detailed parameter ranges are listed in Tables S3 and S4 of the supplementary material. 



The above details have been added in lines 214–225 of the revised manuscript and further elaborated 

in Texts S1 and S2 of the supplementary material. Once again, we thank you for your valuable 

comments, which have helped improve the completeness and clarity of our methodological 

description.  

Agricultural management data  

● No details are provided regarding farm management. The authors should clarify whether the 

winter wheat was irrigated and specify the fertilization applied. Phenological stages  

Response: 

Thank you very much for your valuable suggestion. We have added detailed information on field 

management practices in the revised manuscript, including irrigation and fertilization for winter 

wheat. Please refer to lines 110–121 of the revised manuscript for the updated content. 

● The authors evaluate two phenological stages, namely heading and maturity. In WOFOST, 

phenology is represented by the Development Stage (DVS), which ranges from 0 (emergence) to 2 

(maturity), with 1 corresponding to flowering. What DVS value corresponds to the heading stage? 

Response: 

Thank you for raising this important question. In the original WOFOST model, the phenological 

development stage (DVS) is defined with 0 representing emergence, 1 for flowering, and 2 for 

maturity. However, in this study, the observed phenological data used for evaluation primarily 

include heading and maturity stages. Given that heading and flowering occur nearly simultaneously 

in the major winter wheat production regions of China, we made an appropriate adjustment to the 

representation of phenological stages in our model. 

Specifically, to better reflect the phenological characteristics of winter wheat in our study area and 

meet simulation needs, we redefined the thermal time 𝑇𝑇𝑖𝑖  as the sum of effective temperatures 

between emergence and heading, or between heading and maturity. Accordingly, the DVI 

(development stage index) was reset such that DVI = 1 corresponds to heading, and DVI = 2 to 

maturity. 

This clarification has been added to the revised manuscript at lines 194–197.  

Other  

● Abstract: There is no mention of why deep learning models should be expected to help improve 

winter wheat simulations in this setting.  

Response: 

Thank you for your valuable suggestion. We have revised the abstract to explicitly state the 



motivation and advantages of incorporating a deep learning model. The relevant content has been 

updated in the revised manuscript at lines 18–20 of the abstract. 

● Section 2.3.2: LDD and HDD terms are used without introduction  

Response: 

Thank you for your valuable suggestion. We have added the definitions of the indices in the revised 
manuscript at lines 135–137. 

● Section 2.3.3: LSTM is a recurrent neural network architecture that mitigates the inherent 

weakness in rnns in dealing with long temporal dependencies. It is not inherently stable and high 

performing in long term prediction tasks.  

Response: 

Thank you for your valuable suggestion. We have revised the definition of LSTM accordingly. 

Please refer to lines 164–168 in the revised manuscript. 

● Section: 2.3.4: What are the parameter values used for t_base and t_max in the WOFOST 

temperature response functions? (F(T) in the paper). Discussion on the behavior and possible 

limitations could be beneficial.  

Response: 

Thank you for your valuable suggestion—this issue is indeed critical to the model’s accuracy and 
adaptability. We have addressed it by explicitly stating the parameter settings for the temperature 
response function F(T) in lines 198–200 of the revised manuscript. Specifically, the base 
temperature (𝑇𝑇𝑏𝑏) and the upper temperature threshold (𝑇𝑇𝑚𝑚) are set to 0 °C and 30 °C, respectively. 

Additionally, we have included a new discussion on the limitations of the F(T) function in lines 
304–319. In particular: 

 F(T)’s inability to capture the suppressive effects of extreme heat: Under the current 
formulation, when the temperature exceeds 𝑇𝑇𝑚𝑚, the value of F(T) remains constant. This 
means the model no longer responds to further increases in temperature, and therefore fails 
to account for physiological stress responses such as reduced photosynthetic efficiency, 
accelerated respiration, or reproductive organ damage. As a result, the model may 
systematically overestimate growth potential under extreme heat conditions. 

 Simplified representation of cold stress: F(T) is set to zero when the temperature drops 
below 𝑇𝑇𝑏𝑏. While this reflects the concept of “growth cessation,” it does not differentiate 
between varying levels of cold stress, such as mild chilling versus severe frost damage, 
which may lead to underrepresentation of the biological consequences of low temperatures. 

To address these limitations, we introduced the extreme weather response function F(EW) in this 



study, as a complement to the traditional F(T). F(EW) enables a more comprehensive representation 
of phenological disturbances caused by extreme weather conditions. Once again, thank you for your 
thoughtful suggestion—it has contributed to improving the conceptual soundness and direction of 
model development. 

● Tables S3 and S4: Would it be possible to include error bars/confidence intervals?  

Response: 

Thank you very much for your suggestion. The 95% confidence intervals have now been added to 
both tables. Please refer to the revised Table S5 and Table S6 in the revised manuscript. 

● The separate evaluation in years with extreme weather events is very interesting. Maybe 
including a statistical significance test could help in giving insight to whether two years of data is 
sufficient to claim an improvement. 
Response: 

Thank you very much for your valuable suggestion. To further enhance the rigor of our findings, we 
have incorporated your recommendation and added statistical significance tests. For detailed results, 
please refer to lines 251–257, 274–282, and 296–301 in the revised manuscript. 
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