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Reviewer #1 

Dear Reviewer Theodoros Mavromatis, 

We sincerely thank you for your insightful comments and constructive suggestions, which have 
helped us improve the quality of our manuscript. Below, we provide detailed responses to each point. 
The original reviewer comments are presented in italic, while the authors’ responses are provided 
in blue. 

The line number is based on the clean version of the revised manuscript, not the track change version. 

This is a significant contribution. Among others issues (noted on the attached manuscript that 
should be taken care of) a major one is related to the selection of the "extreme" years chosen in this 
study. 

Response: 

We sincerely thank the reviewer for the thoughtful and encouraging evaluation of our work, as well 
as for the valuable suggestions regarding the selection of extreme weather years. Your insightful 
comments have been instrumental in guiding us to improve the rigor and clarity of our analysis. In 
response to your recommendation, we have carefully re-evaluated our approach and made 
substantial revisions to the manuscript concerning the selection of representative years for extreme 
weather analysis. Drawing upon comprehensive survey data and official reports, we have now 
selected 2009, 2010, 2012, and 2018 as the representative extreme weather years used in this study. 
We believe these years more accurately and comprehensively reflect the diverse and significant 
impacts of extreme weather events on crop production in the study region. The updated rationale 
and supporting information can be found in lines 283–301 of the revised manuscript. 

To briefly summarize: 

According to the Ministry of Ecology and Environment of the People’s Republic of China 
(www.mee.gov.cn), 2009 was marked by record-breaking high temperatures in the study area, with 
multiple locations exceeding historical maximums. In 2010, the frequency of meteorological 
disasters notably increased, and numerous extreme weather events were documented. In 2012, 
China experienced 38 severe rainfall events, including the devastating “7.21” event. The region also 
endured concurrent droughts and cold waves (Zhang et al., 2018; Zhao et al., 2019). In 2018, 
extreme low temperatures caused widespread frost damage, which had a pronounced impact on 



agricultural productivity (China Meteorological Administration, www.cma.gov.cn).  

We believe that this more cautious and evidence-based selection of extreme weather years provides 
a stronger foundation for evaluating the WOFOST-EW model under diverse and complex extreme 
weather conditions. These revisions have enhanced the scientific robustness, representativeness, and 
overall credibility of our study. Relevant references and background information have been added 
to support these changes. Once again, we sincerely appreciate your constructive feedback, which 
has greatly contributed to the improvement of our manuscript. 

Lines 20-25: Report it as RRMSE as well. 

Response: 

Thank you very much for your careful review of the model performance evaluation metrics. We 
fully agree with your observation that reporting the Relative Root Mean Square Error (RRMSE) 
provides a standardized measure of relative error, which is highly valuable for assessing model 
performance and facilitating comparisons with other studies. Accordingly, we have calculated the 
RRMSE values as per your suggestion and added them to the abstract (lines 20–25). We have also 
included the corresponding explanations in the results section of the manuscript (lines 251–257, 
259–282, and 296–301). We greatly appreciate your constructive feedback, which has helped 
improve the clarity and scientific rigor of our work. 

Lines 20-25: see my comments in the text for these specific years. 

Response: 

Thank you for your valuable suggestion. As mentioned above, we have made substantial revisions 
to the study, including the re-selection of representative years for extreme weather events. Please 
refer to lines 283–301 in the revised manuscript for the updated content. 

Lines 30-35: Which one? There are two in the reference list. 

Response: 

Thank you very much for pointing out this oversight. In response to your suggestion, we have 
revised the reference list to distinguish multiple publications by authors with the same surname 
published in the same year. Specifically, we have added “a,” “b,” etc., after the publication year to 
ensure that each reference is clearly identified and cited appropriately. Please refer to lines 33–34 
in the revised manuscript for the updated citations.  

Lines 35-45: Rephrase or delete. In my opinions, the previous sentences do not result in this one. 

Response: 



Thank you for your suggestion. As recommended, we have removed the sentence accordingly. 
Please refer to lines 45–47 in the revised manuscript. 

Lines 65-70: Define this. What does it include? 

Response: 

Thank you very much for your valuable comment. We agree that the definition of “extreme climate” 
was not clearly articulated in the original manuscript, which may lead to confusion. In the revised 
manuscript, we have clarified this term explicitly (see lines 67–75). 

In this study, “extreme climate” refers to abnormal temperature, precipitation, or drought events that 
occur during the entire growth season of winter wheat (from sowing to maturity). These events are 
characterized by their extremity, sudden onset, and damaging potential, which can significantly 
impact crop growth (Bai et al., 2024; Feng et al., 2019; Yu et al., 2025; Zheng and Zhang, 2025). 
Specifically, we used the following types of extreme climate indices as the basis for identification 
and simulation: 

 Extreme temperature events: These include both heat and cold stress. Heat stress may cause 
premature senescence, poor grain filling, or even direct thermal damage, while cold stress 
can result in frost damage, delayed development, or yield loss. In our model, these impacts 
are quantified using indices such as high-temperature degree days (HDD) and low-
temperature degree days (LDD) (Dong et al., 2023; Osman et al., 2020; Zhang et al., 2016; 
Zhang and Tao, 2019). 

 Extreme precipitation events: These refer to unusually high-intensity rainfall over short 
periods or persistent abnormal precipitation patterns, which may lead to waterlogging, 
nutrient leaching, or increased disease pressure. We used indicators such as R95P (very wet 
days), R10 (number of days with precipitation >10 mm), and Rx1day (maximum 1-day 
precipitation) to characterize these events (Al-Sakkaf et al., 2024; Hong and Ying, 2018). 

 Extreme drought conditions: These refer to prolonged periods of insufficient precipitation 
and/or high evapotranspiration that severely reduce soil moisture, causing water stress for 
crops. This can inhibit crop growth and photosynthesis and, in severe cases, lead to plant 
wilting or death. We used the Palmer Drought Severity Index (PDSI) and vapor pressure 
deficit (VPD) to represent drought conditions (Baydaroğlu et al., 2024; Kumar and 
Mahapatra, 2024; Oubaha et al., 2024; Peethani et al., 2024a; Pei et al., 2024a; SM et al., 
2025; Yang et al., 2024; Zhang et al., 2025). 

These events are defined as “extreme” because their intensity, duration, or frequency significantly 
exceed the normal historical range, with clear evidence of their adverse effects on wheat 
physiological processes and final yield. The WOFOST-EW model introduced in this study is 
designed to better simulate and assess the impact of these specific types of extreme climate 
conditions on wheat production. To eliminate any ambiguity, we have included this definition of 



“extreme climate” in lines 67–75 of the revised manuscript. 

 

Lines 75-85: Elaborate on this. Mention a few dynamic changes in crop growth which are 
overlooked. 

Response: 

Thank you very much for your constructive suggestion. We have incorporated specific revisions in 
lines 80–87 of the revised manuscript to clarify these dynamic processes. 

Specifically, in most previous studies, the outputs of crop models (such as biomass, leaf area index, 
or final yield) were often directly used as input variables for machine learning models. However, 
little attention has been paid to how extreme weather events nonlinearly disturb crop physiological 
and developmental processes at different growth stages. This form of static coupling overlooks the 
temporal sensitivity and continuity of extreme climate impacts. Phenological responses, for example, 
are often not fully considered—extreme heat or drought may lead to earlier heading or maturity in 
wheat (Hou et al., 2024; Liu et al., 2023), which can significantly affect dry matter accumulation. 
These nonlinear dynamics are frequently neglected in conventional machine learning frameworks. 

Recognizing the omission of these critical dynamic responses, our study aims to enhance the 
phenology module of the WOFOST-EW model by integrating extreme weather indices with deep 
learning algorithms. This approach enables the model to more accurately and robustly capture the 
complex, stage-specific effects of extreme weather events on crop growth processes, thereby 
improving yield prediction accuracy under extreme climatic conditions. 

Lines 75-85: Mention a few appropriate references for this statement. 

Response: 

Thank you for your suggestion. We have added relevant references to support this statement. Please 
refer to lines 80–87 in the revised manuscript. 

Table 1: Move this Table in the Supplementary material. Presenting growing season temperature 
and precipitation for each station, would be more relevant. 

Response: 

Thank you for your valuable suggestion. We have moved the table to the Supplementary Materials 
as Table S1 and made the corresponding adjustments in the main text. Additionally, we have 
included information on the temperature and precipitation during the winter wheat growing season 
for each station. Please refer to Table S1 in the Supplementary Materials. 



Lines 105-110: Mention them. 

Response: 

Thank you for your suggestion. We have added details about the main elements included in the 
weather dataset. Please refer to lines 105–109 in the revised manuscript. 

Lines 105-110: How about available water capacity for each layer? 

Response: 

The soil data from the ISRIC global database include Available Water Capacity (mm/m). We have 
explicitly added this important information to the revised manuscript to provide readers with a more 
comprehensive understanding of the soil data details. Please refer to lines 118–121 in the revised 
manuscript.  

Lines 120-125: In years 2008 and 2018. 

Response: 

Thank you for your suggestion. We have made the corresponding additions in the revised manuscript. 
Please refer to lines 130–132. 

Lines 140-145: Why these two indices were preferred over the others included in the CHM_Drought 
database? 

Response: 

Thank you for your valuable question. We selected the Palmer Drought Severity Index (PDSI) and 
Vapor Pressure Deficit (VPD) from the CHM_Drought database for several key reasons: 

First, PDSI is one of the most widely used drought indices (Oubaha et al., 2024; Yang et al., 2024; 
Zhang et al., 2025). It accounts for antecedent precipitation and water supply-demand balance, 
providing clear physical meaning and is particularly suitable for assessing agricultural drought. In 
this study, we focus on the winter wheat growing season, and PDSI effectively captures drought 
processes at this timescale. Numerous studies have demonstrated its significant correlation with 
crop yield (Baydaroğlu et al., 2024; Kumar and Mahapatra, 2024; Peethani et al., 2024a; Pei et al., 
2024a; SM et al., 2025). 

Second, VPD is a key variable measuring atmospheric dryness, directly affecting crop transpiration 
and water stress. Studies have reported a steady global increase in VPD from 2010 to 2019, severely 
hindering agricultural production (Koehler et al., 2023; Nesmith and Ritchie, 1992). Under extreme 
heat and low humidity, elevated VPD exacerbates crop transpiration and water loss, posing a direct 
threat to yields. Thus, VPD can partly reflect the stress intensity of short-term extreme heat and 



drought events (Yu et al., 2024). 

Although the CHM_Drought database provides various indices, our literature review and 
preliminary analyses show that these two indices exhibit stronger applicability and higher historical 
validation reliability for drought monitoring and assessment in the North China Plain (Li et al., 2024; 
Luan et al., 2024; Wu et al., 2024). They better correspond with observed agricultural drought events 
and yield losses in the region. 

We have further elaborated on the rationale for selecting these indices in lines 146–158 of the revised 
manuscript. We appreciate your insightful comment, which helped us clarify the methodological 
choices in our study. 

Lines 190-195: Are these extreme indices are estimated every day and then be used an input to 
LSTM? How about PDSI and VPD? On which temporal basis are estimated? Why not the PDSI 
over the ScPDSI? Why R95P, R10 and Rxwday are estimated on annual and not on growing season 
basis? Elaborate on these. 

Response: 

Thank you very much for your detailed question regarding the processing of extreme weather 
indices. First, we would like to clarify that all extreme indices used in this study—including PDSI, 
VPD, R95P, R10, Rx1day, and others mentioned later—were calculated over the entire growing 
period of winter wheat. This approach ensures that the extreme weather events we analyze are 
closely linked to the actual growth and developmental stages of the crop, allowing for a more 
accurate assessment of their impacts on yield. Below is a detailed explanation based on the 
manuscript content:  

Are these extreme indices are estimated every day and then be used an input to LSTM? How 
about PDSI and VPD? On which temporal basis are estimated? 

Response: 

In our study, high-temperature degree days (HDD) and low-temperature degree days (LDD) are 
cumulative indices based on wheat growth stages. Specifically, the high-temperature thresholds 
were set at 25°C from sowing to heading and 30°C from heading to maturity; the low-temperature 
thresholds were −5.7°C and −2°C for the corresponding periods (Farooq et al., 2011; Liu et al., 2013; 
Porter and Gawith, 1999). These indices are calculated daily by summing temperature deviations 
and directly reflect the sustained impact of extreme temperatures during critical phenological stages. 
Their timing strictly corresponds to the wheat growth cycle, making them suitable as input features 
for the LSTM to characterize stage-specific climate stress intensity. Although extreme precipitation 
indices such as R95P, R10, and Rx1day are often reported on an annual scale in the literature, we 
recalculated them based on the wheat growing season to more accurately capture precipitation 
extremes encountered during crop growth. The Palmer Drought Severity Index (PDSI) reflects long-
term soil moisture conditions by integrating precipitation, temperature, and potential 



evapotranspiration, and is typically calculated on a monthly or seasonal basis (Zhang and Miao, 
2024). In this study, PDSI and vapor pressure deficit (VPD) were averaged or accumulated over the 
growing season to represent the sustained effect of soil moisture deficits. We acknowledge that the 
original manuscript’s descriptions were incomplete; thus, we have revised the definitions in Table 1 
for greater accuracy and supplemented the explanations in lines 135–162 of the revised manuscript 
to improve clarity. 

Why not the PDSI over the ScPDSI? 

Response: 

The Self-Calibrating Palmer Drought Severity Index (ScPDSI) modifies the empirical constants 
used in the original PDSI calculation by dynamically adjusting them to local climate conditions, 
allowing it to automatically calibrate drought behavior at any location (Dai, 2011; Zhang and Miao, 
2024). However, studies have shown that in most regions of China, PDSI exhibits a stronger 
correlation with normalized difference vegetation index (NDVI) anomalies, simulated soil moisture 
anomalies (SMA), and the land water storage deficit index (WSDI) compared to ScPDSI (Zhong et 
al., 2019). This suggests that PDSI is more representative for characterizing agricultural drought 
impacts on crops in the Chinese context. One main reason is that ScPDSI tends to capture 
meteorological droughts as less severe than PDSI, which may be attributed to two factors: 1) 
modifications in ScPDSI reduce sensitivity to different potential evapotranspiration (PET) 
estimation methods, leading to lower responsiveness under wet or dry conditions (van der Schrier 
et al., 2011); 2) adjustments to the self-calibrating persistence factors and climate characteristic 
parameter may increase ScPDSI’s sensitivity to dataset-specific features, sometimes weakening its 
drought detection performance in certain regions. For example, Liu et al. (2016) confirmed this in 
the Yellow River Basin of northern China. Although the self-calibrating procedure improves spatial 
consistency and controls extreme event frequency (Dai, 2011b; Trenberth et al., 2014), considering 
our study’s specific objective to evaluate WOFOST-EW model performance under extreme 
conditions, we argue that PDSI sufficiently and effectively reflects drought conditions impacting 
crop growth within the current data and regional context. Moreover, PDSI has been widely validated 
in numerous crop-related studies (Islam et al.; Peethani et al., 2024b; Pei et al., 2024b; Yan et al., 
2016). To clarify this choice further, we added a detailed explanation in lines 146–162 of the revised 
manuscript. 

Why R95P, R10 and Rxwday are estimated on annual and not on growing season basis? 
Elaborate on these. 

Response: 

Thank you very much for pointing out the potential ambiguity in our description. We would like to 

clarify that R95P, R10, and Rx1day in our study were recalculated specifically for the winter wheat 

growing season to more directly capture the extreme precipitation events encountered during the 

crop growth period. We have revised the definitions in Table 1 as well as the related content in lines 

135–162 to avoid any confusion for readers. Once again, we sincerely appreciate your constructive 



comments and careful review. 

Lines 200-205: between measured and estimated yield? 

Response: 

Thank you for pointing out this issue. The statement refers to the approach where the parameters 

corresponding to the minimum root mean square error (RMSE) between observed and simulated 

yield, as well as between observed and simulated phenological stages, are considered optimal. This 

is a standard method for assessing model fit during calibration and optimization (Chen and Tao, 

2020; Zheng and Zhang, 2023). We have revised this sentence to improve clarity and accuracy. 

Please refer to lines 214–225 in the revised manuscript. 

Lines 200-205: Which parameters of the Table S2 were calibrated and for which target (anthesis, 
maturity and yield)? 

Response: 

We sincerely thank the reviewer for the careful review and valuable comments. We have added 
supplementary explanations and clarifications in the revised manuscript; please refer to lines 214–
225 in the main text as well as Text S1, S2 and Tables S3, S4 in the supplementary materials. 
Specifically, we included the sensitivity analysis results of the WOFOST model (Table S3) and 
identified the parameters to be adjusted based on this analysis (Table S4). We appreciate your 
important questions, which helped us better clarify the rationale and optimization process of the 
model parameter settings. 

Lines 210-215: Estimate and show the respective results for MAE (mean absolute error). How about 
the results for r2? 

Response: 

We fully agree with your viewpoint that Mean Absolute Error (MAE) and the Coefficient of 
Determination (R²) are important metrics for evaluating model prediction accuracy and explanatory 
power. Accordingly, we have calculated MAE and R² as per your suggestion and have detailed these 
evaluation results in lines 230–257 of the revised manuscript.  

Lines 245-250: Express it and in the form or relative RMSE (within parentheses). 

Response:  

Thank you very much for your valuable suggestion. Following your advice, we have calculated the 
RRMSE and included it in parentheses in lines 259–273 of the revised manuscript to more clearly 
demonstrate the model’s performance. 



Figure 5: Which statistic is this? Has this been described in section 2.3.6? 

Response:  

Thank you very much for your question. The statistic shown in Figure 5c is the simulation bias, 
defined as the difference between simulated and observed yields (simulated value minus observed 
value). This metric is used to assess the model’s systematic overestimation or underestimation of 
yield across different years. We have added a clear definition of this statistic in Section 2.3.5 of the 
revised manuscript, along with its corresponding formula (Equation 16).  

Lines 255-260: Is this for the calibration or validation period? 

Response:  

Thank you very much for your question. The statistical results shown in Figure 5c indeed correspond 
to the validation period. To avoid any confusion, we have revised the figure caption in the updated 
manuscript to explicitly indicate the time period represented. Please refer to the updated Figure 5 in 
the revised manuscript.  

Lines 260-265: This statistic should be defined in 2.3.6 section. Express it also in its relative version 
(relative MAD). 

Response:  

Thank you very much for your valuable suggestion. We have explicitly added the definition of the 
MAE statistic in Section 2.3.5 of the revised manuscript. Additionally, following your 
recommendation, we have further calculated and reported the Mean Relative Error (MRE) to more 
intuitively represent the relative proportion of simulation errors to observed values. This metric 
helps to better understand the model performance across different counties and years. The related 
results have been added in lines 270–275 of the revised manuscript.  

Lines 265-270: Which statistic is this? Has this been described in section 2.3.6? 

Response:  

Thank you very much for your valuable suggestion. We have explicitly added the definition of the 

Mean Absolute Error (MAE) in Section 2.3.5 of the revised manuscript. Additionally, following 

your advice, we further calculated and reported the Mean Relative Error (MRE) to provide a more 

intuitive representation of the simulation errors relative to the observed values. This metric helps 

better understand the model’s performance across different counties and years. The related results 

have been added in lines 269–273 of the revised manuscript. 

Figure 7: 2001? 



Response:  

Thank you for pointing this out. The error has been corrected, and the entire manuscript has been 
carefully reviewed. Please refer to Figure 7 in the revised manuscript. 

Lines 275-280: I am not sure that the selected years are the best options. The observed yield of 2018 
(see my red rectangle) is one of the highest in the study period. That means that wheat in reality 
recovered from the extreme weather noted in 2018 (Table S1) at many stations as can be seen from 
Fig. 8c, d. 2008 yield is also one of the highest in the study period. Maybe different years should be 
selected. 

Response: 

We sincerely appreciate the reviewer’s careful evaluation and valuable suggestion regarding the 
selection of extreme weather years. Based on your insightful comments, we have re-examined the 
choice of representative years to better reflect the actual impacts of extreme weather on wheat yields 
in the study region. After a thorough review of official reports and observational data, we have 
revised our selection to include 2009, 2010, 2012, and 2018 as the key years representing extreme 
weather events (see lines 283–301 and Figs. 9 and 10 in the revised manuscript). 

While it is true that the observed yield in 2018 was relatively high, this year was characterized by 
severe frost damage and other extreme low-temperature events documented by official sources 
(China Meteorological Administration). Our analysis also considers the spatial and temporal 
variability of impacts, as shown in Fig. 8, which captures differing regional responses to the extreme 
conditions (Ministry of Ecology and Environment of the People’s Republic of China). The years 
2009, 2010, and 2012 correspond to well-documented episodes of record-breaking heat, increased 
meteorological disasters, and extreme rainfall events, respectively (Zhao et al., 2019; Zheng et al., 
2018). 

We believe that this selection better balances the representation of diverse extreme weather types 
and their influence on crop production across the region. Detailed justification and supporting data 
have been added in lines 283–301 of the revised manuscript. We thank the reviewer again for the 
constructive advice, which has strengthened the rigor and clarity of our study. 

Lines 280-285: No such counties in Table S1. 

Response: 

Thank you very much for your careful observation. The previous wording was indeed inaccurate. 
Shanxi and Hebei refer to provinces rather than county names. We have revised the relevant 
statements (lines 283–301 in the revised manuscript) to ensure clearer and more accurate expression, 
avoiding any potential confusion. We sincerely appreciate your meticulous review and valuable 
comments.  

Figure 8: yield 



Response: 

Thank you for your suggestion. We have revised the figure caption accordingly. Please refer to 
Figure 9 in the revised manuscript. 

Lines 310-315: Maybe estimating R95P, R10 and Rxwday on growing season basis rather on annual 
could help. 

Response: 

Thank you very much for your valuable comment. We fully understand your concern and would 
like to clarify that all extreme climate indices used in this study—including R95P, R10mm, and 
Rx1day—are calculated specifically for the winter wheat growing season (from sowing to maturity), 
rather than on an annual basis. This approach ensures that the identified extreme events are closely 
aligned with the actual crop growth period, allowing for a more accurate assessment of their 
potential impact on yield. We have added detailed explanations in lines 135–162 and updated Table 
1 in the revised manuscript to prevent any possible misunderstanding.  

Lines 320-325: I am not sure I understand this statement. Elaborate and make it more clearly. An 
appropriate reference would help. 

Response: 

Thank you for pointing out this issue. What we intended to convey is that the increasing frequency 

of extreme weather events leads to greater variability and unpredictability in meteorological 

observations such as temperature and precipitation. This variability complicates the derivation of 

stable and representative input parameters for crop models—such as thermal time and stress 

thresholds—thereby introducing uncertainty into model simulations (Gao et al., 2020; Gao et al., 

2021). Such instability may cause deviations in model outputs and ultimately affect the accuracy of 

crop growth predictions. We have revised the original unclear statements and added relevant 

references accordingly. Please refer to lines 370–383 in the revised manuscript. 

Lines 325-330: see my previous comment. 

Response: 

Thank you for raising this point. Here, we intended to express that in the North China Plain, frequent 
extreme high and low temperatures disrupt the consistency of daily weather inputs used in the model 
(Gu et al., 2024). This inconsistency affects the reliability of key model parameters, such as effective 
temperature accumulation and phenological thresholds, ultimately reducing the accuracy of crop 
growth and yield simulations under these extreme conditions (Bai et al., 2024). We have revised the 
previously unclear statements and supplemented relevant references accordingly. Please refer to 
lines 375–380 in the revised manuscript.  

Lines 325-330: Rephrase. 



Response: 

Thank you for your suggestion. This sentence has been appropriately revised. Please refer to line 
385 in the revised manuscript. 

Lines 340-345: This is an overstatement. Only anthesis, maturity and final yield were checked. 
Rephrase. 

Response: 

Thank you for your suggestion. This sentence has been appropriately revised. Please refer to lines 

390–395 in the revised manuscript. 

Lines 340-345: No comparison on long-term trends between WOFOST and WOFOST-EW was made. 
Rephrase. 

Response: 

Thank you for your suggestion. This sentence has been appropriately revised. Please see lines 390–

395 in the revised manuscript. 

Lines 345-350: see a previous comment for these years. 

Response: 

Thank you very much for your valuable suggestion. In response to your comment, we have carefully 
re-examined the criteria for selecting extreme years and made substantial revisions accordingly. The 
related content has been thoroughly updated in lines 284–301 of the revised manuscript, along with 
corresponding updates to the figures and supplementary materials. Please refer to our detailed 
response provided earlier.  

Lines 350-355: Does the LSTM algorithm estimates one F(EW) value for each site? That means 
that this value is site- and study period- specific. 

Response: 

Thank you very much for raising this important point. We would like to provide further clarification 

as follows: 

In this study, the LSTM model is trained separately for each county to fully capture the spatial 

heterogeneity of extreme weather impacts on crop yield. The model inputs include multiple extreme 

climate indices during the winter wheat growing season (e.g., HDD, LDD, R10mm, PDSI, etc.), and 

the output is the extreme weather impact factor, F(EW), calculated for each year and county. This 

factor quantifies the integrated effect of extreme climate conditions on that year’s yield, making 

F(EW) a spatiotemporally dynamic output variable. 



While the WOFOST-EW framework can, in principle, be extended to other crops and regions, there 

are some inherent limitations that we have discussed in lines 399–438 of the revised manuscript. 

First, although WOFOST is a generic crop growth model, its parameters and certain modules are 

more specifically tailored to particular crop types such as cereals. For structurally different crops—

such as root/tuber crops, oilseed crops, or perennials—adjustments to WOFOST’s internal 

parameters would be necessary. Second, crop growth characteristics vary across regions due to 

differences in local climate, soil conditions, and management practices. Even if the WOFOST model 

structure is applicable, detailed parameter localization and calibration would be required when 

applying it to new crop types and target areas. 

Furthermore, crop growth is influenced not only by climatic factors but also strongly affected by 

soil fertility, pest and disease pressures, irrigation, fertilization, and other complex environmental 

and management variables. Currently, the extreme weather functions within WOFOST-EW 

primarily emphasize meteorological factors. Effectively integrating non-meteorological extreme 

stresses—such as sudden pest outbreaks or severe nutrient deficiencies—and their interactions with 

extreme weather remains an important direction for future research. 

We have clarified the model structure and the interpretation of F(EW) in lines 164–178 of the revised 

manuscript, and have emphasized the model’s regional adaptability and limitations accordingly. 

Lines 360-365: Did the LSTM algorithm only aimed at minimizing the error between observed and 

estimated yield? 

Response: 

Thank you for your question. The role of the LSTM algorithm in this study is not simply to directly 
minimize the error between observed and simulated yields. Specifically, the core objective of the 
LSTM is to learn and estimate a spatiotemporally dynamic extreme weather function F(EW). This 
F(EW) variable is designed to capture how various extreme weather indicators—such as extreme 
temperatures, precipitation, and drought—complexly affect crop growth processes. 

The LSTM learns the nonlinear dynamic relationships between extreme weather events and crop 
physiological responses, thereby generating a correction factor that adjusts the internal growth 
processes within the WOFOST model in real time. In other words, the training goal of the LSTM 
can be more accurately described as optimizing the estimation of F(EW), enabling the coupled 
WOFOST-EW model system to simulate crop growth dynamics and final outcomes—including 
phenological stages (e.g., heading, maturity) and final yield—more accurately under extreme 
climate conditions. 

Thus, by learning the modulation effects of extreme weather on crop growth, the LSTM indirectly 
helps minimize the discrepancy between observed and simulated yields, while more finely capturing 
crop responses under extreme conditions. 



We have elaborated on the specific role of the LSTM algorithm, its integration with the WOFOST 
model, and its training objective in the revised manuscript (see lines 164–178 and 209–211). Thank 
you again for your insightful question, which prompted us to clarify the internal logic of our model 
more clearly. 

Lines 390-395: Report it as RRMSE as well. 

Response: 

Thank you for your suggestion. We have added the RRMSE values accordingly. Please refer to lines 

440–447 in the revised manuscript. 
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