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Abstract. Given its impact on enhanced melting of the Greenland ice sheet, it is crucial to assess changes in frequency and 

characteristics of summer Greenland blocking. Indeed, the occurrence of such atmospheric pattern has seen a marked increase 15 

in recent decades: however, the observed trend is not captured by any simulation from state-of-the-art global climate models. 

It is therefore paramount to determine whether the lack of trend is caused by a misrepresentation of key physical mechanisms 

in climate models or whether such trend is mainly attributable to decadal variability, or both. Here we investigate Greenland 

blocking characteristics in reanalysis (ERA5) and ECMWF seasonal forecasts (SEAS5.1), showing that about 10% of the 1000 

permutations of SEAS5.1 runs can simulate a 43-year trend equal or larger to the ERA5 one: this suggests that the initialization 20 

and the higher model resolution contribute to a more realistic representation of the blocking dynamics than in freely-evolving 

climate runs. To further investigate these aspects, we apply the Peter and Clark momentary conditional independence (PCMCI) 

algorithm to assess monthly causal pathways. Results show that while the relationship among Arctic temperature, snow cover, 

Atlantic multidecadal variability and Greenland blocking is consistent both in ERA5 and SEAS5.1, the effect of early snow 

melt over North America on Greenland blocking is mostly absent in SEAS5.1. Therefore, while it is possible that the observed 25 

trend is due to internal decadal variability, the misrepresentation of the snow cover processes may explain the difficulty that 

SEAS5.1 has in reproducing the observed trend. This deficit in representing the snow impact on the atmospheric circulation 

might also be the culprit of the missing trend in climate models, raising the question whether long-term projections 

underestimate a future increase in Greenland blocking and ice melt. 
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Text S1 – Snow cover  
Snow cover is calculated following the following Kouki et al. (2023). The instructions can be found on the ECMWF website, 35 

under “Computation of snow cover” (https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation): 

For ERA5, the snow cover (SC) is computed using snow water equivalent (SD, parameter 141.128) as follows: 

𝑆𝐶 = min	(1,
𝑅𝑊 ∗ 𝑆𝐷
𝑅𝑆𝑁

0.1
2 3 

where RW is density of water equal to 1000 and RSN is density of snow (parameter 33.128). 

SEAS5.1 snow cover is calculated in the same way. 40 

 

Text S2 – TIGRAMITE parameters 
The PCMCI algorithm is implemented in the Tigramite package, which can be found on GitHub: 

https://github.com/jakobrunge/tigramite. 

Here, we use version 5.2, and the PCMCIplus, which allows to detect directed lagged links, and directed and undirected 45 

contemporaneous links. The list of parameters used for each dataset and in both discovery and inference mode is shown below. 

The FDR correction is applied in causal discovery mode, unless otherwise stated. 

Tigramite packages: 
from tigramite import data_processing as pp 

from tigramite import plotting as tp 50 
from tigramite.pcmci import PCMCI 

#from tigramite.independence_tests import ParCorr, GPDC, CMIknn, CMIsymb # tig4.1 

from tigramite.independence_tests.parcorr import ParCorr 

from tigramite.models import LinearMediation, Prediction 

from tigramite.toymodels import structural_causal_processes as toys 55 
from tigramite.models import Models 

Function used in discovery mode: 
dataframe = pp.DataFrame(data, datatime = np.arange(len(data)), var_names=var_names,mask=data_mask) 

parcorr = ParCorr(significance='analytic', mask_type='y', verbosity=4) 

pcmci = PCMCI(    dataframe=dataframe,     cond_ind_test=parcorr,    verbosity=4)   60 
results = pcmci.run_pcmciplus(tau_min=tau_min, tau_max=tau_max, pc_alpha=None) 

q_matrix=pcmci.get_corrected_pvalues(p_matrix=results['p_matrix'],tau_max=tau_max,fdr_method='fdr_bh', 

exclude_contemporaneous=False) 

graph=pcmci.get_graph_from_pmatrix(p_matrix=results['p_matrix'],alpha_level=alpha_level_v, 

tau_min=tau_min, tau_max=tau_max) 65 
results['graph'] = graph 

all_parents=pcmci.return_parents_dict(graph,val_matrix=results['val_matrix'],include_lagzero_parents=Tru

e) 

Function used in inference mode: 

https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation
https://github.com/jakobrunge/tigramite
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dataframe = pp.DataFrame(data, datatime = np.arange(len(data)), var_names=var_names,mask=data_mask) 70 
parcorr = ParCorr(significance='analytic', mask_type='y', verbosity=4) 

pcmci = PCMCI(    dataframe=dataframe,     cond_ind_test=parcorr,    verbosity=4)   

med = Models(dataframe=dataframe, model = sklearn.linear_model.LinearRegression(), mask_type = 'y', 

data_transform = None)     

med.fit_full_model(all_parents = all_parents, tau_max=tau_max)   75 
Links = med.get_val_matrix() 

 

ERA5 – Causal discovery (Fig. 6, S9): 
tau_min = 0 

tau_max = 1 80 
alpha_level_v = 0.1 

No FDR correction applied.  

SEAS5.1 – Causal discovery (Fig. 6, S9): 
tau_min = 0 

tau_max = 1 85 
alpha_level_v = 0.05 

ERA5, SEAS5.1 – Causal inference (Fig. 7):               
tau_min = 0 

tau_max = 1 

all_parents = {0: [(0, -1),(1, 0),(2, -1), (3, 0),  (3, -1),(4, 0)], 1: [(0, 0), (1, -1), (2, -1), (4, 90 
0)], 2: [ (2, -1), (3, -1),(1, -1)], 3: [(0, 0), (3, -1), (2, -1)], 4: [(0, 0),(1, 0), (4, -1)]} 

 

 

Text S3 – Atlantic multidecadal variability (AMV) index 
AMV (Atlantic Multidecadal Variability) index: area average of sea surface temperature (SST) anomalies over the North 95 

Atlantic (80°W-0°, 0°-60°N). To calculate SST anomalies and remove the external forced component, we follow the method 

described by Zhang et al. (2019) which allows to "remove the local component regressed on the global mean SST". 

The global mean SST is the area average of SST (0°-360°E,60°S-60°N). The average is stopped at 60°S/N to exclude 

temperatures over the sea ice.  

To calculate the monthly AMV index, the following steps are taken: 100 

1. Remove the climatological mean month by month 

2. Calculate annual average (centered over the season of interest) 

3. Compute the global mean SST anomalies (GMSSTA time series) 

4. For each grid point, regress the SST anomalies on the GMSSA → regCOEF(lon,lat) 

5. Residual SSTA_r = SSTA - regCOEF*GMSSTA 105 

6. Calculate AMV averaging over the North Atlantic box (80°W-0°, 0°-60°N) using the residual SSTA_r. 
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 Figure S1: Greenland blocking index observed trends from 1981-2023. Figure shows JJA Greenland Blocking Index (blue) and 
Greenland Gradient Index (yellow) GHGS(red )and GHGN(green) for ERA5-81. Dashed lines shows the season average, bold lines the 10-
year running mean and the thin solid lines the linear trend. Values for the trend and their p-values (estimated with a Mann-Kendall test) are 
shown in the legend for all for indices. 

 115 
Figure S2: Greenland blocking and Greenland Gradient index trends in SEAS5.1 initialized March till June SEAS5.1-06  and ERA5.  
Panel (a-c) shows the Probability density function of JJA trends in GBI and panel (d-f ) for GGI and  for the 104 different member 
combinations of each  SEAS5.1 with different initialization date: Panel (a,d) for of SEAS5.1-03, Panel (b,e) for of SEAS5.1-05, Panel (c,f) 
for of SEAS5.1-06. Shaded vertical lines show values 5th,10th, 90th and 95th percentiles. Percentile are shown in blue (5th,10th, 50th) and red 
(90th and 95th) and the corresponding trend values in magenta. Percentile of the distribution of a slope of 0 is also given in red and indicated 120 
with the grey vertical line.  Green dashed verticals indicate linear slope of ERA5-40 (light green) and ERA5-81 (solid green). Panel (c) 
shows the the 11-year running trend of ERA5 (red) and the SEAS5.1-03 trend distribution (blue shadings) for the GBI. Panel (d) same as 
for panel (c) but for the GGI index. The dark blue line indicates the median 11-year running mean of the SEAS5.1-03 distribution.  
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 125 
Figure S3: GHGSN and GHGS in  SEAS5.1 initialized March till June SEAS5.1-06  and ERA5.  Same as Figure S2. 
 
 

 
Figure S4. Same as for Fig. 3 but for SEAS5.1 init. 1st of May. 130 
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Figure S5. Same as for Fig. 3 but for GHGS. 
 
 135 
 

 
Figure S6. Same as for Fig. 3 but for GHGN. 
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Figure S7: Monthly drivers and Blocking indices in ERA5 and SEAS5.1-03. Shown are the monthly drivers AMV (a) T2m-Arctic (b), 140 
Snow-NAm(c), MSLP-NAm (d), and Blocking indices GHGN (e), GHGS (f), GGI (g), GBI (h)  for ERA5 (red) and the SEAS5.1-05 
members(blue). For ERA5 the trends over the whole timeseries in 1941-2023,( black dashed)as well as for the timeseries 1940-1980,(cyan 
dashed) and 1981-2023(cyan, solid) are depicted with their slope and p-values  listed in the legend to the right. The light grey line indicates 
the mean values of the whole timeseries.  
 145 
 



8 
 

 
Figure S8: Same as for Fig. 5but with SEAS5.1-03, -05, and -06. Correlation heat maps. -Correlation plot of different variables in and 
SEAS5 initialized in March, May and June for the detrended data.`. Statistically significant values are indicated with an asterix. The 
correlation values of SEAS5 are the median correlation values of the 1e5 random SEAS5 runs and the p-values of the corresponding 150 
timeseries combination. SnowC NAm in SEAS5.1-06 was replaced by the ERA_1981 timeseries to calculate the correlation values.  
 
 

 
Figure S9: Same as for Fig. 8 but for GHGS and GHGN. 155 
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Figure S10. JJA climatology for Z500, T2m, MSLP, SST and snow cover for ERA5 and SEAS5.1-03. 
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Figure S11. JJA climatology for Z500, T2m, MSLP, SST and snow cover for ERA5 and SEAS5.1-05. 


