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Figure S1: CLAP filter spots for all the different measured samples: JOR, MOR, USA, ICE and soot.
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Uncertainty analysis for PTAAM-2)\ version P02

PTAAM-2\ prototype version P01 was described in Drinovec et al. (2022). PTAAM-2\ version P02 has
the same geometry of the interferometer and measurement chamber and different pump lasers: 450 and
808 nm laser diodes (instead of 532 and 1064 nm solid state lasers used in P01).

Similar to Drinovec et al. (2022) the 450 nm channel is calibrated using NO2. The calibration
is transferred to 808 nm channel using polydisperse nigrosin particles and using the absorption ratio
babs,808nm /babs,450nm Which was calculated using the Mie theory. In the uncertainty budget (Table S1)
we included the uncertainty of the NO2 absorption spectrum (Vandaele et al., 2002; Orphal and Chance,
2003), which affects the uncertainties of the absorption coefficient both at 450 and 808 nm but not the
uncertainty of AAE. Other sources of uncertainty are described in Drinovec et al. (2022).

Table S1: The sources of uncertainty for PTAAM-2)\ PO2 measurements and combined standard un-
certainties (k=1) for obtaining absorption coefficients and absorption Angstrém exponent (AAE).

Sources of uncertainty Uncertainty Components
A NOy amount fraction 2.0%
B Absorption cross-section of NOq 2.0%
C Mie calculation & Nigrosin refractive index 2.0%
D Mie calculation & Particle size distribution 4.0%
E Scattering & absorbing gases 1.0%
F  Stability of instrument response 3.0%

Combined uncertainties

babs,450nm 4.2% A, B, E, F
babs,808nm 6.2% A B, C,D,E, F
AAE 10.4% C,D,E, F, In
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Particle size distribution

UGR ambient campaign

10°

- r by
L 101 E background L |t e =
[ sfPie 3 p—

& 0t L P ole — T 4 dust [ 4 L

£ £ . 3 °1 ki 101 L

E) El. .3 q° £ E ‘

= o fodos” = E

48 lede S C £

=) N o o

o 10?7 & . S 100 E ¢

2 E =) E i

= E . 2

= 5 5 F

. ° S 8

g " . T 10 E |

e 10 3 E 4
L. e Quatz e Dust .
L 10 E

10 A i A i . 11 1 1in 1 i 1 1in 1
02 03 05 10 20 30 50 100 200 30.0 0.01 003005 010 030050 1.00 3.00 500 10.00
Dp-ops (HM) Dp (um)

Figure S2: Left panel: Normalized mass particle size distribution for all the dust and Quartz samples
resuspended in the chamber during the laboratory experiments. Right panel: Normalized volume particle
size distribution during the summer 2023 AGORA campaign in Granada for both the background and
Saharan dust outbreak scenarios.
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Scattering artefact
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Figure S3: The filter photometer scattering artefact during the summer 2023 AGORA campaign in
Granada shown as: a) the fit of the ratio of the AE33 attenuation coefficient to the MAAP absorption
coefficient as a pseudo-reference measurements vs. SSA at 637 nm - parameters from fit as in Yus-Diez et
al., 2021. And b), as the slope with the 95% confidence interval of the slope and the R? of the corrected
attenuation coefficient from the AE33 using the m, from panel (a) and the MAAP absorption coefficient

as a reference absorption.
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Absorption by Quartz samples vs Scattering
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Figure S4: The filter photometer scattering artefact shown as the dependence of attenuation on the
scattering coefficient in AE33 (a) and CLAP (b) during the laboratory campaign using resuspended non-

absorbing Quartz samples.
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Figure S5: The filter photometer scattering artefact during the summer 2023 AGORA campaign in
Granada shown as as the fit of the ratio of the AE33 attenuation coefficient to PTAAM-2X absorption
coefficient vs. SSA at AE33 wavelengths (370, 470, 520, 590, 660, 880, 950 nm) - parameters from fit as

in Yus-Diez et al., 2021.
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Figure S6: a) Evolution for the Morocco 31 dust sample with the wavelength of the relative contribution
of the scattering artefact to the total attenuation measured by the AE33 and the CLAP (and extrapolated
to the PTI wavelengths). Temporal evolution during a Saharan dust event the 10 and 11 July in Granada
of the absorption coefficients measured with the PTAAM-2\ and the relative contribution of the scattering
artefact to the total attenuation measured by the AE33.
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Figure S7: Relative contribution of the scattering artefact for each of the mineral samples studies at
the laboratory campaign at 450 and 808 nm for the AE33 and CLAP.
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Regression fits
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Figure S8: AE33 attenuation corrected for the scattering artefact vs the PTAAM-2) absorption coef-
ficient at 450 (left panels) and 808 nm (right panels) for the soot-like generated particles. In particular,
each panel is for the regions: a) diesel soot as generated by an EURO 3 diesel engine, with a mean volume
particle diameter of 177 nm and b) propane generated soot with a mean volume particle diameter of 341
nm. The slope represents the multiple scattering parameter C.
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Figure S11: AE33 attenuation corrected for the scattering artefact vs the
coefficient at 450 (left panels) and 808 nm (right panels) for the mineral dust samples analyzed during
the laboratory experiments. In particular, each panel is for the regions: a) Saharan mineral from Morocco,
b) dust from Wadi Rum, c) Mojave desert (USA) and d) Icelandic dust. The slope represents the multiple
scattering parameter C.
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Figure S16: CLAP attenuation corrected for the scattering artefact vs the PTAAM-2)\ absorption
coefficient at 450 (left panels) and 808 nm (right panels) for the soot-like generated particles. In particular,
each panel is for the regions: a) diesel soot as generated by an EURO 3 diesel engine, b) propane generated
soot. The slope represents the multiple scattering parameter C.
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Figure S17: CLAP attenuation corrected for the scattering artefact vs the PTAAM-2)\ absorption
coefficient at the CLAP wavelengths (470, 529 and 653 nm) for the soot-like generated particles. In
particular, each panel is for the regions: a) diesel soot as generated by an EURO 3 diesel engine, b)
propane generated soot. The slope represents the multiple scattering parameter C.
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Figure S18: CLAP attenuation corrected for the scattering artefact vs the PTAAM-2\ absorption
coefficient at 450 (left panels) and 808 nm (right panels) for the mineral dust samples analysed during
the laboratory experiments. In particular, each panel is for the regions: a) Saharan mineral from Morocco,
b) dust from Wadi Rum, c) Mojave desert (USA) and d) Icelandic dust. The slope represents the multiple

scattering parameter C.
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Figure S19: CLAP attenuation corrected for the scattering artefact vs the PTAAM-2X absorption
coefficient at the CLAP wavelengths (470, 529 and 653 nm) for the mineral dust samples analysed during
the laboratory experiments. In particular, each panel is for the regions: a) Saharan mineral from Morocco,
b) dust from Wadi Rum, ¢) Mojave desert (USA) and d) Icelandic dust. The slope represents the multiple
scattering parameter C.
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Table S2: Upper and a lower 95% confidence interval of the multiple-scattering parameter C for the
Aethalometer AE33 (laboratory and ambient campaign) obtained as the orthogonal fit. of their attenu-
ation coefficients corrected for cross-sensitivity to scattering vs. the PTAAM-2\ absorption coefficients
(Figs. S8-S15 and S20-S24). In parenthesis, it is shown the R? between these two compared variables.
Values have been reported at the reporting wavelengths of each FP (by inter- and extrapolation) and the
wavelengths of the PTAAM-2\ at which they were measured.

AE33: C

Sample 370 nm 450 nm 470 nm 520 nm 590 nm 660 nm 808 nm 880 nm 950 nm

Icelandic dust 2.95-3.06 (0.96) 2.90-3.03(0.947) 2.51-2.61 (0.94) 2.15-2.27 (0.89) 2.10-2.22 (0.80) 2.13-2.32 (0.75) 3.39-3.72 (0.80) 3.06-3.38 (0.80) 3.67-3.94 (0.85)
Wadi Rum (Jordan) 1.99-2.10 (0.89) 2.98-3.08(0.775) 2.85-2.96 (0.72) 2.23-2.42 (0.37) 1.46-1.66 (0.57) 1.55-1.83 (0.44) 6.61-8.38 (0.60) 5.33-6.84 (0.53) 7.03-9.02 (0.57)
Sahara (Morocco) 1.79-1.88 (0.89) 3.03-3.22(0.884) 3.05-3.15 (0.88) 2.84-2.95 (0.84) 1.86-1.98 (0.60) 1.85-2.01 (0.57) 4.88-5.90 (0.66) 3.96-4.61 (0.65) 4.97-5.95 (0.65)
Mojave (USA) 2.27-2.46 (0.97) 2.66-2.81(0.976) 2.55-2.66 (0.97) 2.15-2.26 (0.95) 1.74-1.88 (0.90) 1.92-2.12 (0.86) 3.85-4.68 (0.85) 3.65-4.33 (0.82) 4.33-5.17 (0.81)
Propane Soot 3.47-3.63 (0.98) 3.98-4.18(0.982) 3.95-4.13 (0.98) 3.83-4.01 (0.98) 3.92-4.14 (0.98) 3.61-3.88 (0.97) 3.80-4.09 (0.97) 3.69-3.97 (0.97) 3.62-3.91 (0.97)
Diesel soot 5.54-5.92 (0.98) 6.08-6.43(0.980) 5.90-6.13 (0.98) 5.52-5.70 (0.98) 5.41-5.55 (0.98) 5.18-5.32 (0.98) 5.19-5.36 (0.98) 5.11-5.28 (0.98) 5.14-5.33 (0.98)
UGR - average 4.47-4.64 (0.83)  4.51-4.93 (0.88)  4.35-4.56 (0.90) 3.85-4.10 (0.87) 3.71-4.00 (0.87) 3.54-3.87 (0.87) 3.83-3.96 (0.89) 3.24-3.71 (0.86) 3.85-4.50 (0.83)
UGR - urban 4.80-4.86 (0.85) 4.52-5.06 (0.88) 4.71-4.78 (0.88) 4.26-4.33 (0.83) 4.17-4.24 (0.83) 4.04-4.12 (0.84) 3.88-4.06 (0.84) 3.84-3.94 (0.83) 4.31-4.48 (0.78)
UGR - urban + dust 4.87-5.00 (0.75) 4.35-4.84 (0.87) 4.63-4.74 (0.89) 4.09-4.21 (0.91) 3.83-3.97 (0.91) 3.69-3.83 (0.91) 3.60-3.88 (0.92) 3.51-3.68 (0.90) 3.99-4.25 (0.90)
UGR - urban + wildfires 4.47-4.64 (0.98) 4.03-4.22 (0.98) 4.35-4.56 (0.97) 3.85-4.10 (0.96) 3.71-4.00 (0.95) 3.54-3.87 (0.93) 3.33-3.67 (0.90) 3.24-3.71 (0.88) 3.85-4.50 (0.86)

Table S3: Upper and a lower 95% confidence interval of the multiple-scattering parameter C for the
CLAP (laboratory campaign) obtained as the orthogonal fit of their attenuation coefficients corrected for
cross-sensitivity to scattering vs. the PTAAM-2) absorption coefficients (Figs. S16-S19).In parenthesis,
it is shown the R? between these two compared variables. Values have been reported at the reporting
wavelengths of each FP (by inter- and extrapolation) and the wavelengths of the PTAAM-2\ at which
they were measured.

CLAP: C

Sample 450 nm 470 nm 529 nm 653 nm 808 nm

Icelandic dust 2.99-3.12 (0.92) 2.73-2.87 (0.94) 2.53-2.69 (0.92) 2.42-2.72 (0.92) 2.94-3.17 (0.90)
Wadi Rum (Jordan) 2.57-2.84 (0.80) 2.38-2.63 (0.83) 3.05-3.59 (0.74) 1.88-2.92 (0.58) 3.93-6.24 (0.26)
Sahara (Morocco) 2.45-2.53 (0.90) 2.51-2.57 (0.90) 2.71-2.85 (0.89) 1.88-2.12 (0.82) 1.75-2.08 (0.31)
Mojave (USA) 2.45-2.53 (0.95) 2.55-2.62 (0.95) 2.50-2.64 (0.93) 2.25-2.48 (0.90) 2.97-3.60 (0.79)
Propane Soot 5.15-5.29 (0.99) 5.03-5.17 (0.99) 5.12-5.27 (0.99) 4.61-4.75 (0.99) 4.21-4.32 (0.99)
Diesel soot 7.55-7.80 (0.99) 6.30-7.28 (0.99) 5.90-6.70 (0.98) 5.38-6.27 (0.98) 5.71-5.89 (0.97)
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Size dependence
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Figure S25: Multiple scattering parameter C, for AE33 and CLAP FPs vs the volume particle diameter
for each of the sample groups analyzed during the laboratory measurements. It was obtained as the ratio

of the FP’s attenuation corrected for the scattering artefact and the PTAAM-2) absorption coefficient
at 450 and 808 nm.
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MAAP absorption offset - size dependence
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Figure S26: Evolution with size of the MAAP absorption coefficient to PTAAM-2) absorption ratio.
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Figure S27: H* factor computed following ACTRIS guidelines as the slope of the orthogonal fit of the
AE33 eBC multiplied by its MAC (without the multiple scattering correction) and the MAAP absorption
coefficients. The 95 % confidence interval is shown within the parenthesis.
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