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Abstract.

Considerable uncertainties and unknowns remain in the regional mapping of methane sources, especially in the extensive

agricultural areas of Africa. To address this issue, we developed an observing system that estimates methane emission rates by

assimilating drone and flux tower observations into an atmospheric dispersion model. In this study, we apply this approach to

verify and quantify potential methane sources identified through radiance anomalies observed in hyperspectral satellite data.5

We compare different methods to estimate emissions from various ruminant livestock species in sub-Saharan Africa, including

diverse herds of cattle, goats, and sheep, as well as camels, for which methane emission estimates are particularly sparse.

Our estimates, derived from Bayesian inference, align with Tier 2 emission values of the Intergovernmental Panel on Climate

Change. We moreover observe the hypothesized increase in methane emissions following feeding. Our findings suggest that

the Bayesian inference method is more robust under non-stationary wind conditions compared to a mass balance approach10

using drone observations. Furthermore, the Bayesian inference method performs better in quantifying emissions from weaker

sources, estimating methane emission rates as low as 100gh−1. We find a ±50% uncertainty in emission rate estimates for

these weaker sources, such as sheep and goat herds, which reduces to ±12% for stronger sources, like cattle herds emitting

1,000− 1,500gh−1. These promising results demonstrate the potential and efficacy of the Bayesian inference method for

source term estimation. Future applications of drone-based Bayesian inference could extend to estimating methane emissions15

in Africa and other regions from various sources with complex spatiotemporal emission patterns, such as wetlands, landfills,

and wastewater disposal sites. The Bayesian observing system could thereby contribute to the validation and improvement of

climate models and emission inventories.

1 Introduction

While methane (CH4) emissions from so-called super-emitters (> 100kgh−1) can be quantified using satellite data, the current20

spatial resolution and spectral resolution, as well as the precision of satellite observations, are not sufficient to effectively
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quantify weaker sources, such as livestock herds (Sherwin et al., 2023). To address this limitation and complement the regional

mapping of CH4 sources of various strengths, we developed an observing system that uses a Bayesian inference approach to

assimilate drone and flux tower observations in an atmospheric dispersion model to estimate CH4 emission rates. We assess

the efficacy of the Bayesian inference method in quantifying CH4 emissions from nine different ruminant herds in sub-Saharan25

Africa - an important, yet poorly understood, source in the global CH4 emission inventory. By comparing our results to those

obtained using a mass balance method with drone observations and to emission values of the Intergovernmental Panel on

Climate Change (IPCC) (Gavrilova et al., 2019), we demonstrate the effectiveness and robustness of our approach.

Global mean atmospheric CH4 concentrations surpassed 1.90ppm in 2022, marking a 16% increase since 1985 (Lan et al.,

2024). Livestock production is a major contributor to global anthropogenic CH4 emissions, accounting for approximately30

one-third of the total emissions (Saunois et al., 2020). Within this sector, enteric fermentation in ruminants - such as cattle,

sheep, goats, and camels - is the predominant source, generating approximately 80% of these emissions, while the remaining

20% originates from manure (Amon et al., 2001). During the digestive process, CH4 is produced by rumen fermentation, with

about 90− 95% released through burping and 5− 10% as intestinal gas (Broucek, 2014). Because CH4 has a high global

warming potential and a relatively short atmospheric lifetime, reducing its emissions can have quick benefits in mitigating35

climate change (Szopa et al., 2021). Therefore, accurate measurements and understanding of CH4 emissions from ruminants

are important for developing effective mitigation strategies and evaluating their efficacy.

The IPCC provides internationally recognized standardized methodologies for estimating CH4 emissions from ruminants (Gavrilova

et al., 2019). Tier 1 methods use generalized default values for emission factors, which are often continent or region specific.

In contrast, Tier 2 values incorporate more detailed herd-specific or animal-specific data. These data account for local vari-40

ations in livestock breeds, manure management practices, feed quality, and environmental conditions. Recent studies from

sub-Saharan Africa have demonstrated substantial differences between emission estimates from these two tiers (Goopy et al.,

2018; Ndung’u et al., 2019; Gurmu et al., 2024), highlighting the need for precise, locally relevant data. However, there is a

scarcity of studies focusing on CH4 emission rates from ruminants in this region. Many studies use energy balance estimates

based on factors such as animal weight, feed, and activity level, with few studies actually measuring CH4 concentrations (as45

done by e.g., Korir et al., 2022a; Goopy et al., 2020; Mwangi et al., 2023; Wolz et al., 2022). We aim to contribute to help

bridge this knowledge gap.

Specifically, research on CH4 emissions from camels is sparse. Although a few studies have estimated emissions using

direct CH4 measurements from smaller camelids such as alpacas and llamas (e.g., Pinares-Patiño et al., 2003; Nielsen et al.,

2014), research on larger camelids, like dromedaries and Bactrian camels, remains limited. This lack of data is likely due to50

the respiration chambers used for measuring gas exchange being too small to fit these larger animals. Nonetheless, Dittmann

et al. (2014) conducted respiration chamber measurements with Bactrian camels. Our study represents one of the first efforts

to estimate CH4 emissions from camels, specifically dromedaries, thereby contributing to the development of knowledge in a

relatively unstudied field.

Gas exchange methods such as respiration chambers and headboxes are typically used to quantify CH4 emissions from55

individual animals. For estimating emissions from ruminant herds or entire farm facilities, several indirect techniques have been
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applied. Tracer-ratio experiments (Vechi et al., 2022; Daube et al., 2019; Arndt et al., 2018) involve releasing a known quantity

of a tracer gas and comparing its dispersion to that of CH4. The mass balance approach (Vinković et al., 2022; Arndt et al.,

2018; Wratt et al., 2001) calculates emissions based on the difference between incoming and outgoing CH4 flux estimates in a

defined volume. Other studies (Wolz et al., 2022; Bai et al., 2021; Arndt et al., 2018) use open-path Fourier transform infrared60

or laser spectrometry to obtain horizontal path-integrated CH4 concentrations upwind and downwind from the source. These

concentration data are combined with a Lagrangian particle dispersion model to estimate emission rates. Inverse modeling

techniques (Andersen et al., 2021) infer emission rates by fitting an atmospheric dispersion model to measured atmospheric

data, possibly incorporating prior knowledge.

On much larger spatial scales, satellite observations are frequently used to detect and quantify CH4 emissions from super-65

emitters, such as leaks from oil and gas production and large landfills (e.g., Pandey et al., 2019; Dogniaux et al., 2024).

However, the emission rates of livestock herds are much smaller, and therefore more challenging to identify as potential CH4

sources from satellite data. To accurately map the emission plumes from these weaker sources, measurement platforms with a

higher spatial resolution are needed.

The advent of drone technology as a versatile platform for carrying measurement equipment has enabled high-resolution70

spatiotemporal observations of atmospheric gases and thermodynamic variables (Villa et al., 2016; Burgués and Marco, 2020).

This innovation allows for data collection over a larger spatial region than fixed flux towers or monitoring stations and offers

higher spatial resolution compared to satellite-based measurements. Moreover, drones facilitate measurements in locations that

are otherwise inaccessible to crewed aircrafts due to safety reasons, such as areas close to the CH4 source and near the ground.

In our study, we utilize drones to sample and map CH4 emission plumes from African ruminant herds, leveraging this data75

to estimate their CH4 production. Notably, this research is, as far as we know, a pioneering effort to employ drones for CH4

emission quantification from ruminants in sub-Saharan Africa. We apply two distinct methods: a traditional mass balance

method and an innovative Bayesian inference approach that uses a sequential Monte Carlo method to invert an atmospheric

diffusion model. To complement this analysis, we assess the capability of hyperspectral satellite data to pinpoint the location

of CH4 sources, specifically ruminant herds, by identifying spectral anomalies at the landscape level.80

While Bayesian inference has previously been applied with drone observations in homogeneous environments with artificial

gas sources (Hutchinson et al., 2019, 2020; Park et al., 2021), to the best of our knowledge, this research marks the first

application of the method for quantifying ruminant emissions in real-world conditions using drone observations. The Bayesian

framework addresses uncertainties in atmospheric observations, potentially enhancing the precision and reliability of emission

estimates. Furthermore, it allows for the integration of observations from multiple platforms, including drones and flux towers.85

We explore which sensor observations - specifically CH4 concentration measurements and wind measurements, either from

the drone or the flux tower - are most effective for applying the Bayesian inference approach.

We aim to achieve the following objectives: (1) To investigate whether spectral indices related to CH4 emissions from

hyperspectral satellite data can aid in detecting the locations of CH4 sources, specifically ruminant herds. (2) To evaluate

the efficacy of the Bayesian inference method utilizing drone-based observations for estimating CH4 emission rates. (3) To90

determine emission rates for free-grazing cattle, sheep, goats, and camels in a sub-Saharan African country using drone-based
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observations. (4) To compare the results obtained from the Bayesian inference method with estimates from a mass balance

method and IPCC Tier 2 values, to evaluate different methods for estimating CH4 emissions from ruminants in sub-Saharan

Africa and to contribute to the improvement of national greenhouse gas inventories.

2 Materials and methods95

This study was conducted at the Kapiti Research Station in Kenya, approximately 60km south-east from Nairobi. The station

is managed by the International Livestock Research Institute (ILRI). Covering over 13,000 hectares, the station houses various

ruminants, including cattle, sheep, goats, and camels, with a primary focus on studying livestock productivity. Livestock man-

agement at Kapiti follows typical pastoral systems, where herders allow the animals to graze freely during the day and keep

them in enclosures, known in Kenya as bomas, during the night.100

This section outlines the different methodologies used in this study to detect and estimate CH4 sources. We apply four

approaches: (1) CH4 source location detection through hyperspectral satellite observations, and three methods for source term

estimation: (2) CH4 source term estimation through drone observations using a particle-based Bayesian inference method,

(3) CH4 source term estimation through drone observations using a mass balance approach, and (4) calculation of IPCC Tier 2

emission values.105

2.1 Satellite observations for source detection

In an exploratory effort, we investigate the potential for detecting livestock herds as CH4 sources using satellite hyperspectral

imagery. On 6 March 2024, the PRecursore IperSpettrale della Missione Applicativa (PRISMA) satellite (Loizzo et al., 2018)

was commissioned to capture a hyperspectral image of Kapiti, while three cattle herds were present at different sites. The

PRISMA satellite has two hyperspectral sensors that cover a spectral range from 400nm to 2500nm. Methane exhibits strong110

absorption features in the Shortwave Infrared (SWIR) region between 2150nm and 2500nm, with particularly strong absorp-

tion around 2300nm (Moorhead, 1932; Brown et al., 2003; Roger et al., 2024a). Consequently, the Simple Ratio (SR) index

of the wavelengths at 2300nm and 2100nm (SR2300/2100) is commonly used to detect spatial variations in CH4 absorp-

tion (Xiao et al., 2020; Scafutto et al., 2021; Roger et al., 2024b; Pei et al., 2023). A lower SR indicates lower relative radiance

at 2300nm and thus greater absorption, suggesting higher atmospheric CH4 concentrations. However, it is important to note115

that spatial variations in other factors, such as vegetation water content, leaf structure, and soil moisture, can also influence the

SR index.

We process the hyperspectral data of the PRISMA satellite in the infrared region to detect spatial variations in the CH4

absorption feature. Starting from Level-1 top-of-atmosphere radiance narrowbands (Giardino et al., 2020), infrared information

is integrated into single data cubes using the PRISMAread package in the R environment (Busetto and Ranghetti, 2020). This120

produces hyperspectral data cubes consisting of 173 bands, spanning infrared wavelengths from 920nm to 2505nm. Finally,

we calculate the SR index for each data cube using the SWIR wavelengths at 2300nm and 2100nm.
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2.2 Drone-based source term estimation

This section provides details of the drone field campaign, conducted between 29 February and 7 March 2024 at Kapiti. It

outlines both the Bayesian inference method and the mass balance approach used to estimate CH4 emission rates from drone125

observations.

We use a drone equipped with a gas sensor to obtain CH4 concentration observations of the emission plumes of nine different

ruminant herds: cattle (cows, heifers, steers, and slick herd), sheep (lactating ewes), goats (dry does, pregnant does, weaner

kids), and camels. The cows, heifers, and steers are Boran cattle, while the slick herd is a crossbreed between Holstein-Friesian

and Boran heifers. The sheep flock consists of Red Masaai and Dorper, and the goat herds comprise Small East African and130

Galla varieties. The camels are dromedaries. The lactating ewes had lambs, and the pregnant does had kids with them. However,

since the rumen fermentation systems of milk-fed lambs and kids are not yet fully developed (Baldwin et al., 2004), we assume

their CH4 emissions to be negligible and treat these herds as if the lambs and kids were not present. The herd sizes are included

in Table B1.

During the drone flights, the respective herds were confined within a boma at coordinates −1.61365◦N, 37.13234◦E. The135

animals exhibited no signs of distress and appeared at ease throughout the drone operations. Figure 1 shows the heifers inside

the boma during a drone flight that coincided with the satellite overpass, as well as a herd of camels observing a passing drone.

Typically, four flights were conducted for each ruminant herd. In the morning, before grazing, two flights were performed:

one flight for each emission estimation method, namely the Bayesian inference approach and a mass balance approach. The

same set of flights was repeated in the afternoon after the animals had grazed. Feed intake is known to increase enteric CH4140

emissions in ruminants, with peak emissions occurring shortly after feeding (Amon et al., 2001; Hegarty, 2013). Since the

animals had no access to feed during the night, lower emissions are expected in the morning compared to the afternoon,

following grazing. We investigate whether there is a noticeable increase in CH4 emissions between the morning and afternoon

flights, using consistent observations of such increases as indicators of the method’s reliability and accuracy.

During control drone flights, conducted without animals present in the boma or the immediate surroundings, no increase145

in CH4 levels was observed throughout the field campaign. Based on this observation, we assume that CH4 production from

manure is negligible in our study and attribute the elevated CH4 concentrations above the background level solely to enteric

fermentation.

2.2.1 Observing system

Our observing system consists of a DJI M300 RTK drone equipped with an AERIS MIRA Strato LDS CH4 gas sensor, as well150

as a stationary flux tower with an eddy covariance system (Burba, 2013). The tower is located at coordinates −1.61419◦N,

37.13313◦E, approximately 100m south-south-east from the center of the boma, as shown in Fig. 2.

The drone’s position was recorded using Real-Time Kinematic (RTK) positioning. A Digital Elevation Model (DEM) of the

area was obtained using DJI L1 Lidar, processed in DJI Terra. The altitude data of the RTK system was corrected using the
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Figure 1. (a) A drone flight capturing methane concentration observations of a heifer herd coinciding with the satellite overpass on 6 March

2024. (b) Camels inside the boma during a drone flight on 4 March 2024. Of all animals, the camels were the most curious about the drone.

DEM at the drone’s home location. Additionally, the DEM was used to determine the drone’s flight height above the ground155

surface.

The AERIS MIRA Strato LDS gas analyzer detects CH4 using mid-infrared laser spectroscopy, which measures the ab-

sorption of infrared radiation by CH4 molecules. The reported mixing ratio X [ppm; parts per million per volume] at the point

measurement is the fraction of CH4 molecules per million molecules of air. The sensor has a sensitivity of 1ppb and a sampling

rate of 1Hz. The mixing ratio X is converted to mass concentration c [gm−3] using the ideal gas law, where the ambient air160

temperature and pressure are obtained from the flux tower.

Wind data were collected using two sensor platforms: a fixed flux tower and the drone. Wind data was captured by the

3D sonic anemometer mounted on the tower at a height of 5m above the ground. The wind speed and wind direction data

were resampled from 10Hz to 1Hz to match the timestamps of the CH4 sensor. The data from the eddy-covariance sys-

tem was processed at half-hour intervals using EddyPro (Li-Cor) to determine the Obukhov length L [m] and friction veloc-165

ity u∗ [ms−1]. Using Monin Obukhov Similarity Theory (MOST; see Stull, 1989), we estimate the vertical profile of the mean

wind speed V (z) [ms−1] and mean eddy diffusivity K(z) [m2 s−1], where z is the distance above the ground. Appendix A

includes details on the application of MOST.

The drone quantifies wind speed using its onboard sensors to measure resistance during stable hover or flight. This data,

combined with the drone’s GPS and inertial measurement unit (IMU), allows for estimations of wind speed and direction by170

analyzing the accelerations and attitude adjustments needed to counteract the wind’s force (Abichandani et al., 2020). Wind

data from the drone were obtained from the flight logs using the Flight Reader software.

Given concerns that the additional bulk and weight of the CH4 sensor might affect readings, we performed a correction for

wind speed. During the field campaign, the drone hovered for a total of 90 minutes a couple of meters downwind from the

sonic anemometer under various wind speeds and orientations relative to the wind direction. Wind speed data from the drone175

were corrected through linear regression against the sonic anemometer data (Fig. S1 in Supplementary Material). The wind
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Figure 2. Top-down view of the drone flight paths capturing CH4 concentration observations in the afternoon of 6 March 2024. Shown

are CH4 concentration measurements obtained at a height of 2.7m during the mass balance flight around the boma, and at heights of

3.5m, 3.0m, 2.5m during the half-octagon flight for the Bayesian inference method. The blue markers indicate the source location in the

atmospheric dispersion model, representing the heifer herd. The wind direction arrow shows the mean wind direction observed by the flux

tower.

direction is reported by the drone in eight compass directions. The wind direction data did not qualitatively match well with

the sonic anemometer data and were therefore not used in our study (Fig. S2 in Supplementary Material).

2.2.2 Bayesian inference method

The first drone-based method for quantifying CH4 emission rates utilizes an inverse modeling approach, which assimilates at-180

mospheric measurements into an atmospheric transport model to infer emission rates. Two principal approaches are commonly

employed in model inversion: (1) Several studies (Andersen et al., 2021; Shah et al., 2019, 2020) minimize a cost function to

find the best fit between a Gaussian plume model (Sutton, 1947) and observed CH4 concentrations. (2) In the field of robotics,

various studies employ a Bayesian inference approach to model inversion in order to estimate source emission rates and source

locations, among other unknown variables, at local scales (Hutchinson et al., 2017; Francis et al., 2022). Unlike optimization,185

the Bayesian approach is particularly well suited to solving ill-posed inverse problems involving the assimilation of noisy

observations that are ubiquitous in geophysics (Sanz-Alonso, 2023). Beyond robotics, Bayesian frameworks are also utilized
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in estimating carbon emissions on regional or global scales from satellite observations (Cusworth et al., 2021; Western et al.,

2021) and international ground-based atmospheric observation networks (Evangeliou et al., 2018; Thompson et al., 2022).

We adopt a Bayesian approach, providing a probabilistic interpretation of the model parameters and including uncertainty190

quantification of the parameter estimates. Previous research has demonstrated the efficacy of Bayesian inference with synthetic

drone observations for source localization and estimation (Loisy and Eloy, 2022; van Hove et al., 2024b). However, its appli-

cations in real-world environments at a local scale remain relatively limited. Hutchinson et al. (2019) and Park et al. (2021)

successfully deployed Bayesian inference methods in outdoor experiments with flat, homogeneous terrain and time-invariant

controlled-release sources, while Hutchinson et al. (2020) explored emissions from a car crash and oil rig at a test site. In195

real-world conditions, Pirk et al. (2022) assimilated drone observations within a Bayesian framework to infer turbulent fluxes

of sensible and latent heat of a wetland and a palsa mire in Norway.

We use the advection-diffusion model formulated by Vergassola et al. (2007) to simulate CH4 transport under turbulent

atmospheric conditions. This model has been shown by Hutchinson et al. (2019) to more accurately represent small-scale

plume behavior compared to the Gaussian plume model. The mean stationary concentration c [gm−3] at measurement location200

x = [x,y,z] is given by

c(x,xs) =
Q/α

4πD|x−xs|
exp

(−(x−xs)V sin(ϕ)
2D

)
exp

(−(y− ys)V cos(ϕ)
2D

)
exp

(−|x−xs|
λ

)
+ c0 , (1)

where xs = [xs,ys,zs] represents the source location, Q [gh−1] denotes the CH4 emission rate, α = 3600 sh−1 is the time con-

version factor from hours to seconds, V [ms−1] represents the mean wind speed, ϕ [◦] is the mean wind direction, D [m2 s−1]

denotes the effective diffusivity, λ [m] is a characteristic length scale, and c0 [gm−3] is the mean stationary background con-205

centration. We make a distinction between the emission rate of the entire herd, denoted by Q [gh−1], and the emission rate per

individual animal, denoted by q [ghead−1 h−1].

The instantaneous wind fluctuates in amplitude and direction due to effective diffusivity D, which is the sum of turbulent

diffusivity and the typically much smaller molecular diffusivity. Unlike the Gaussian plume model, which uses dispersion

parameters σy and σz , typically determined by the stability classification schemes of Pasquill (1961), effective diffusivity D210

is directly incorporated in the model. Consequently, by making the assumption D ≈K, observational estimates of D can be

obtained via MOST, as detailed in Appendix A.

The length scale λ in Eq. (1) is defined as

λ =

√
Dτ

1 + V 2τ
4D

, (2)

where D denotes the effective diffusivity, V is the mean wind speed, and τ is the finite lifetime of CH4 in the atmosphere,215

approximately 9.1 years (Prather et al., 2012).

To conserve CH4 mass in Eq. (1), the ground is modeled as a perfect reflector of the plume, as is typically done in Gaussian

plume modeling (Hanna et al., 1982). This is achieved by including a mirror image source below the ground surface: xs,mirror =

−xs. Consequently, the total concentration field becomes the sum of the original and mirrored sources: c(x,xs)← c(x,xs) +

c(x,xs,mirror).220
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In our study, emission rate Q, mean wind speed V , mean wind direction ϕ, and effective diffusivity D in Eq. (1) are treated

as unknown parameters to be inferred through model inversion. The parameters that are assumed to be known include the

source location xs, drone locations x, and background concentration c0, which have been determined as follows. On the small

spatial scale of our study, approximating the herd of animals as a single point source would be an over-simplification. Instead,

we model the herd as a set of m sources, resulting in a total concentration field that is the sum of the individual concentrations225

from these sources: c(x,xs)←
∑m

i c(x,xs, i). This source superposition is commonly used in Gaussian plume modeling (e.g.

Calder (1977)). Using aerial photographs taken during the drone flights, we randomly select m = 100 source locations within

the outline of the herd, which together are responsible for emission rate Q. For example, the 100 blue markers within the

boma shown in Fig. 2 represent the source location of a heifer herd. After inferring emission rate Q, we normalize by the

actual number of animals in the herd to obtain the emission rate per individual animal q. The source height zs is estimated by230

averaging the mouth height of 10 animals from each herd, based on direct measurements. The mean background concentration

for each drone flight is empirically determined by calculating the median of the CH4 concentration observations that fall below

the threshold of 1.8ppm.

The drone flew nine legs in a half-octagon pattern downwind of the herd at three different distances: approximately 40m,

30m, and 20m from the center of the boma. The corresponding heights for the outer legs were approximately 3.5m, 5.5m,235

and 9.0m; for the middle legs, 3.0m, 4.5m, and 7.0m; and for the inner legs, 2.5m, 3.5m, and 5.0m above ground level. To

minimize the effects of rotor downwash (visualized with colored smoke in Crazzolara et al. (2019)) and downwind disturbances

to the plume (visualized with colored smoke in Hutchinson et al. (2019)), the flights were performed from the outer to the inner

legs, starting at the lowermost altitude and ascending to higher altitudes. Figure 2 offers a top-down view of the boma and

illustrates the measured CH4 concentrations along the lowest three legs of the half-octagon flight plan during the drone flight240

with a herd of heifers on the same day as the satellite overpass.

In our study, we explore the use of three different observing systems for model inversion:

(a) CH4 concentration data: We assimilate only instantaneous drone-based CH4 concentration data as observations for c.

(b) CH4 concentration data with drone-derived wind speed: We assimilate the same concentration data (observation

case (a)) along with mean wind speed observations Vobs derived from drone data. The average wind speed is calculated245

over the estimated plume depth of 8m. Specifically, wind speed data from the drone flight is averaged over 1m vertical

intervals up to 8m, and the overall average is then obtained over these interval-specific averages.

(c) CH4 concentration data with flux tower data: We assimilate CH4 concentration data (observation case (a)) in combi-

nation with observations for mean wind speed Vobs, mean wind direction ϕobs, and effective diffusivity Dobs derived from

the flux tower data. Hereby, we make the approximation that D ≈K, and assume that the vertical and horizontal diffu-250

sivity are equal, as is done in Eq. (1). We obtain mean wind speed and diffusivity values by averaging their respective

profiles - Eq. (A1) and Eq. (A3) - over the estimated vertical plume extent of 8m.

We employ a probabilistic approach to model inversion, applying Bayesian inference recursively to mini-batches of ob-

servational data to make the problem more computationally tractable (Chopin, 2002). At each new iteration step n + 1, the
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dynamic prior probability distributions of the unknown parameters p(θ|d0:n) are updated to the posterior probability distribu-255

tions p(θ|d0:n+1) given a new mini-batch of observations dn+1 via Bayes’ rule

p(θ|d0:n+1) =
p(dn+1|θ)p(θ|d0:n)

p(dn+1|d0:n)
, (3)

where the conditional model evidence (or marginal likelihood) acts as a normalizing constant

p(dn+1|d0:n) =
∫

p(dn+1|θ)p(θ|d0:n)dθ . (4)

At each new iteration n+1, the dynamic prior distributions p(θ|d0:n) are simply the corresponding dynamic posteriors from the260

previous iteration n. The use of such sequential Bayesian updating makes the inference problem more computationally tractable

and is a key property of the sequential Monte Carlo methods that we employ in practice (Chopin and Papaspiliopoulos, 2020).

Note the slight abuse of notation where d0 is implicitly empty, and thus p(θ|d0) - rather than the usual p(θ) - denotes the initial

prior at n = 0 for notational convenience.

The likelihood term p(dn+1|θ) in Eq. (3) links the observations to the forward model, effectively serving as a measure265

of discrepancy between the observed data and the model predictions. The observational model relating observations d to the

forward model prediction is given by

d = F(θ) + ϵ , (5)

where ϵ represents the discrepancy (or residual) term, explicitly capturing the various sources of error in the measured data (and

implicitly also errors in the model). For the CH4 concentration observations cobs, the forward model F is defined by Eq. (1).270

In the case of the wind and diffusivity observations, F is a more direct noisy mapping; for example, the observed mean wind

speed Vobs is modeled as Vobs = V + ϵV .

As Rao (2005) identifies, discrepancies in atmospheric dispersion modeling can arise due to: (a) noise in the sensor mea-

surements, (b) errors in the model input data, (c) the fact that atmospheric dispersion models are imperfect, and (d) inherent

randomness in unresolved turbulent dispersion processes. Given the limited knowledge of these errors, the Gaussian distribution275

is the most conservative choice for the likelihood function according to the maximum entropy principle (Jaynes, 2003). Thus,

we define the likelihood function as a Gaussian of the form p(dn+1|θ) =N (dn+1|F(θ),R) where the mean vector F(θ) con-

tains the model predictions and R is a diagonal observation error covariance matrix with observation error variances σ2 along

the diagonal. These observation error variances correspond to the respective observation error standard deviations empirically

estimated as σc = 1ppm, σV = 0.30ms−1, σϕ = 10◦, and σD = 0.15m2 s−1 for concentration c, mean wind speed V , wind280

direction ϕ, and effective diffusivity D, respectively.

We recognize a discrepancy between the timescales of our concentration observations and the statistical assumptions of our

dispersion model presented by Eq. (1): while the observations are instantaneous samples of a turbulent boundary layer, our

model represents a time-averaged plume. This discrepancy or representation error (Van Leeuwen, 2015) is expected to be the

largest source of uncertainty in our Bayesian inference approach. Additional sources of uncertainty include the assumption285

of a fixed vertical plume extent, ignoring uncertainties inherent in the (assumed) known variables such as the background
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concentration, among other factors. To account for these approximations and minimize the impact of potential errors, we

incorporate a high level of uncertainty into the likelihood term by inflating the observation error covariance R to match the

aforementioned observation error standard deviations.

The initial prior distributions p(θ|d0) are chosen to be flat non-informative priors in the form of uniform distributions290

across defined ranges to match reasonable prior expectations (Banner et al., 2020): q ∼ U(0.36,36.00) ghead−1 h−1, V ∼
U(0,6) ms−1, ϕ∼ U(−45,135)◦, corresponding to the wind compass half of the prevailing wind direction, and D ∼ U(0.3,3.0) m2 s−1.

We implement the Bayesian inference framework in Python (available from van Hove et al. (2024a)) by a Sequential Monte

Carlo (SMC) framework (Chopin and Papaspiliopoulos, 2020; Särkkä and Svensson, 2023) that generalizes the classic boot-

strap particle filter (Gordon et al., 1993). This method approximates the probability distributions with a set of weighted en-295

semble members, referred to as particles. In each iteration, the weights of these particles are updated based explicitly on their

likelihood, representing their fit to the observed data, and implicitly on the dynamic prior. To address the particle degeneracy

problem, where only a few particles retain significant weights, we apply the resample-move algorithm (Gilks and Berzuini,

2001; Doucet and Johansen, 2009). This algorithm enhances the particle diversity and exploration of the parameter space by

combining resampling with subsequent Markov Chain Monte Carlo (MCMC) moves. Additionally, reflective boundaries are300

used to respect the predefined ranges of the prior uniform distributions. In our algorithm, we use 25,000 particles, a mini-batch

size of 200 observations, and perform five MCMC steps per iteration step.

Due to the inherently stochastic nature of the SMC algorithm, different realizations can yield varying results. This variability

arises from randomness in the prior sampling, the generation of proposals in each MCMC step, the selection of the mini-batches

of observations, and the determination of the m source locations representing the herd. As a result, it is common practice to305

run the SMC algorithm multiple times to (a) assess the variability of its output and (b) obtain more reliable statistical estimates

of the inferred parameters (Chopin and Papaspiliopoulos, 2020; Vergé et al., 2015). Thereby, we perform 22 independent

realizations of the SMC algorithm in an outer loop to derive more robust estimates of the CH4 emission rates.

2.2.3 Mass balance method

The second drone-based method for quantifying CH4 emission rates uses a mass balance approach. Based on the divergence310

theorem, this technique determines the emission rate from a CH4 source by assessing the net horizontal inflow and outflow

of CH4 within an imaginary box enclosing the source. The mass balance approach, or box model, has been widely utilized

with drone observations in various studies. For example, Allen et al. (2019) and Gålfalk et al. (2021) estimated emissions from

landfills, while Andersen et al. (2021) determined emissions from coal mining ventilation shafts, and Vinković et al. (2022)

investigated emissions from a dairy farm. Additionally, Golston et al. (2018) and Yang et al. (2018) applied the mass balance315

method with a laser-based CH4 sensor capturing a column-integrated concentration along a vertical path between the drone

and the ground to investigate natural gas leaks. On larger scales, the method has been applied using aircraft observations. For

example, Cambaliza et al. (2014) assessed emissions of an urban region including multiple sources such as power plants, land-

fills, and wastewater treatments, while Arndt et al. (2018) quantified emissions of dairy farms encompassing animal housing

and liquid manure storage. On regional or global scales, mass balance analysis is used to estimate emission rates from satellite320
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observations (e.g. Pandey et al. (2019); Borchardt et al. (2021)). However, Varon et al. (2018) notes that this method is sus-

ceptible to large errors. This is due to the inability to accurately parameterize turbulence on the small scale of instantaneous

plumes, as well as poor characterization of the vertical wind speed profile between the ground surface and satellite.

The drone collects CH4 point measurements along the vertical planes of an imaginary box encapsulating the source. Data

are then interpolated onto a regular grid to calculate the net emission rate Q [gh−1] by integrating the product of CH4 concen-325

tration c [gm−3] and outward perpendicular wind speed across the vertical sampling planes:

Q =
∑

planes




ki∑

i

kj∑

j

ci,j v⊥ i,j ai,j α


 , (6)

where v⊥ [ms−1] denotes the instantaneous wind speed outward perpendicular to the plane, a [m2] is the area of a grid cell,

α = 3600 sh−1 is the time conversion factor from hours to seconds, ki is the number of horizontal grid cells of a plane, and kj

is the number of vertical grid cells of a plane.330

The vertical sampling planes must be sufficiently high to capture the full extent of the emissions, so that there are only

negligible fluxes through the top horizontal plane of the imaginary box. Our imaginary box around the boma measures approx-

imately 26m by 26m with a height of 10m. To mitigate downwash effects from the rotors, the drone’s flight plan was designed

from the ground up. The drone first performed a manual flight at around 1.0 m above the ground for the lowest leg, followed by

a pre-planned flight mission with ascending legs at approximately 2.0, 2.7, 3.7, 5.2, 7.2, and 9.2m. The drone flew at 1ms−1,335

collecting observations approximately every meter. Figure 2 displays the measured CH4 concentrations at a height of 2.7m

during the flight with the heifer herd on the same day as the satellite overpass.

To evaluate Eq. (6), we used the horizontal instantaneous corrected wind speed data from the drone and wind direction

observations from the sonic anemometer on the flux tower, which we considered more reliable than the drone’s wind direction

estimates. Artificial wind speed data points of 0ms−1 were added at ground level to account for the no-slip lower boundary340

condition. The CH4 concentration and perpendicular wind speeds were interpolated onto north-east (NE), south-east (SE),

south-west (SW), and north-west (NW) facing vertical planes. Following the general approach of Gålfalk et al. (2021), we

resampled the observations using the following sequence of steps: (a) linear interpolation of the data points onto a regular grid

of circa 20cm2, (b) averaging onto a coarser grid of circa 1m2, and (c) filling any remaining empty grid cells, if any, using

nearest-neighbor values.345

The current sampling time of approximately 20min is insufficient to capture the mean state of the plume morphology,

introducing uncertainty into the emission rate estimate. This primarily stems from temporal variability induced by unresolved

atmospheric turbulence affecting wind speed and wind direction (σv, temp and σϕ, temp). This is further complicated by potential

wake effects from the herd that disturb the mean flow field, influencing wind speed observations in the downwind sampling

plane. Additionally, measurement uncertainties in wind speed and wind direction (σv,meas and σϕ,meas) further contribute to350

the overall uncertainty in the mass balance approach. Moreover, the wind direction’s assessment at the flux tower, rather than

at the vertical planes, introduces additional uncertainty. The measurement uncertainty of the CH4 observations is minimal and

considered negligible compared to wind-related uncertainties. Similarly, the relative uncertainty of the interpolation process is
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considered minor and is excluded from the overall uncertainty estimate. Our approach to uncertainty estimation for the mass

balance method aligns with the practices outlined in Andersen et al. (2021).355

We estimate uncertainties due to temporal variation in wind speed and direction (σv, temp and σϕ, temp) based on their standard

deviation from the mean at the altitude of each leg of the drone flight, following the methodology presented in Cambaliza et al.

(2014). Measurement uncertainties for wind speed and wind direction are estimated at σv,meas = 1.7 ms−1 and σϕ,meas = 20◦,

respectively. The wind speed uncertainty estimate is derived from the root mean square error between the corrected wind speed

readings from the drone and wind speed records from the sonic anemometer during hovering flights, see Sect. 2.2. The temporal360

variation and measurement uncertainty are summed in quadrature: σv =
√

σ2
v, temp + σ2

v,meas and σϕ =
√

σ2
ϕ, temp + σ2

ϕ,meas.

Finally, the total uncertainty estimate for the emission rate is determined through error propagation (Gålfalk et al., 2021;

Andersen et al., 2021; Vinković et al., 2022). A Monte Carlo approach with 500 runs is used for error propagation to incorporate

the various uncertainty sources.

2.3 IPCC Tier 2 emission values365

In addition to drone-based methods, we estimate CH4 emissions from enteric fermentation of ruminant herds at Kapiti using

the IPCC Tier 2 approach (Paustian et al., 2006). This method is based on the concept of energy balance, where the CH4

emission factor EF [kghead−1 d−1] of ruminants is calculated by

EF =
Ym GE

E
, (7)

where Ym denotes the fractional methane conversion factor, GE [MJhead−1 d−1] is the gross energy intake, and E = 55.65 MJkg−1370

is the energy content of CH4. The daily gross energy intake per animal GE is determined from information on feed quality and

feed intake, live weight of the animals, weight changes, as well as productivity parameters (as specified in Eq. 10.16 in Paustian

et al. (2006)). This data can be obtained at herd level, individual animal level, or a combination of both. Methane conversion

factor Ym represents the fraction of gross energy intake converted to CH4. The IPCC provides Ym values for different animal

categories based on review and synthesis of available scientific literature and data (cattle values in Table 10.12, and sheep and375

goat values in Table 10.13 of Paustian et al. (2006)). Since specific values are currently unavailable for camels and we do not

have the live weight of the camel herd from our drone flights, we use the IPCC Tier 1 value for camels in our study.

At Kapiti, all livestock herds graze freely during the day, and we assume that their feed intake is entirely from pasture. The

feed quality of the pasture was determined by averaging the nutrient content of 19 samples collected from different locations

across Kapiti on 1 March 2024. These samples were analyzed for dry matter content, nitrogen (converted to crude protein),380

carbon, ash, and fibre-fractions (NDF: Neutral Detergent Fibre; ADF: Acid Detergent Fibre; ADL: Acid Detergent Lignin).

This data was used to compute feed digestibility, representing the portion of gross energy intake in the feed not excreted in

feces. Data on average feed intake is difficult to obtain from grazing animals, and was therefore estimated.

The live weight [kg] and time-average daily live weight change [kgd−1] of individual animals were determined from direct

measurements taken during the first half of March 2024, and then again at the end of April or May 2024. The average weight and385

daily weight change across all animals in a herd were used to compute the EF for the respective animal category. Additional
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data used to estimate gross energy intake for each animal herd includes: proportion of pregnant females (84% of pregnant

does herd, 30% of cow herd, and 30% of slick herd); proportion of lactating females (87% of lactating ewes flock); with

average milk production (1.5Lewe−1 d−1); number of offspring; and an estimate for the animal’s activity, specifically the

daily walking distance on the pasture [kmd−1]. We convert the resulting emission factor EF [kghead−1 d−1] into emission390

rate q [ghead−1 h−1] for each animal category to enable method comparison in our study. With the exception of weight and

weight changes, all parameters were estimated at the herd level without accounting for associated uncertainties. As we did not

perform an explicit uncertainty assessment for the IPCC values, we apply a ±20% uncertainty range for Tier 2 values and a

±30% to ±50% uncertainty range for the Tier 1 value for camels, as reported by the IPCC (Paustian et al., 2006).

3 Results and discussion395

In this section, we evaluate source location detection through satellite observations and assess each of the drone-based emis-

sion estimation methods. We then compare the estimated emission rates from the Bayesian inference method with the results

obtained using the mass balance method and IPCC Tier 2 values. A comprehensive overview of the estimated emission rates

by the different methods is given in Table B1.

3.1 Source detection through satellite observations400

Figure 3 shows a true color image of part of Kapiti, captured by the PRISMA satellite on 6 March 2024. Despite the partly

cloudy conditions, the irregular cloud cover did not occlude the satellite observations of all three cattle herds within our study

area. Maps (c) to (e) show the SR index for a region of 5 by 5 pixels with a spatial resolution of 30m, across three different

sites with (f) five adjacent bomas housing 583 cows, (g) the boma at the drone field site with 206 heifers, and (h) a free-grazing

herd of 148 heifers, respectively.405

We observe a lower SR index at the herd locations compared to the surrounding background. These low SR anomalies, which

indicate relatively low radiance levels in the CH4 absorption feature, may suggest higher atmospheric CH4 concentrations and

therefore point to the presence of a CH4 source. The observed lower SR index precisely at the cattle herd locations illustrates

the feasibility of using PRISMA satellite imagery to detect the location of potential CH4 sources. In addition to CH4, bare soil

exhibits unique features in the SWIR. We detected anomalies with two herds inside a boma against a bare soil background, and410

a free-grazing herd against a green vegetation background. Although the limited dataset prevents a robust assessment, these

preliminary results reinforce our confidence in the effectiveness of our approach for detecting the location of potential CH4

sources. Further dedicated studies are necessary to evaluate the generalizability of these findings.

Super-emitters are characterized by high concentration plumes with large spatial extents, often covering multiple pixels.

In contrast, a low SR anomaly of a single pixel can be observed at the location of the cattle herds, as shown in Fig. 3. The415

absence of a discernible emission plume complicates the estimation of emission rates directly from the satellite data. While

emission rates of super-emitters can be quantified from satellite images (Jacob et al., 2022), the current spatial resolution,

spectral resolution and precision of satellite observations are insufficient for accurately estimating the emission rates of smaller
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sources like livestock herds. The quantification threshold of point sources has been found to be 200kgh−1 for GHGSat and

1,400−4,000kgh−1 for Sentinel-2, Landsat-8, PRISMA, and WorldView-3 in controlled release experiments under favorable420

conditions (Sherwin et al., 2023). In contrast, a herd of 200 cows emits considerably less, roughly 1− 4kgh−1 (Broucek,

2014).

Detecting the location of potential CH4 sources could represent a first step in mapping regional CH4 sources. Such mapping

can lay the groundwork for applying source term estimation methods, as targeted measurement campaigns can then focus on

investigating these identified potential source locations. In our study with ruminant herds, the source locations are already425

known. However, this approach can be particularly useful for regions like thawing permafrost landscapes, where CH4 source

locations are generally unknown. Additional measurements are necessary to verify the location detection of potential CH4

15

Figure 3. (a) Location of the field campaign at the Kapiti Research Station in Kenya. (b) PRISMA true color image of Kapiti from 6 March

2024 08:00 Coordinated Universal Time (UTC) + 3 hours, corresponding to East Africa Time. (c) to (e) The Simple Ratio (SR) radiance

index of 2300/2100nm with 30m resolution for three distinct sites: (f) five adjacent bomas (shaded red) housing 583 cows at the time of

the satellite overpass but empty in this picture, (g) a single boma at the drone field site with 206 heifers, and (h) a free-grazing herd of 148

heifers. (a) and (f) include © Google Satellite Imagery (2021). PRISMA product derived from L1 2024-03-06 ©Italian Space Agency (ASI)

(2024). All rights reserved.
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sources based on low SR anomalies and to quantify their emission rates. High-resolution observational platforms, such as

drones, are needed to obtain the detailed data required to estimate CH4 sources from livestock herds, such as those at Kapiti.

3.2 Source term estimation through drone observations430

3.2.1 Bayesian inference method

In the atmospheric dispersion model given by Eq. (1), each of the meteorological parameters influences different aspects of

the emission plume. Specifically, the wind direction determines the plume’s orientation, while wind speed and diffusivity

influence the plume’s shape, and the emission rate determines how elevated the plume’s concentration level is above the

background. We consider these four parameters - wind direction ϕ, wind speed V , diffusivity D, and emission rate q - as435

unknowns to be inferred. We compare Bayesian inference results across three observation cases: (a) using only concentration

data, (b) combining concentration data with drone-derived wind speed, and (c) incorporating concentration data with mean

wind direction, mean wind speed, and diffusivity obtained from MOST.

Figure 4 presents the Bayesian inference results for the drone flight conducted with the heifer herd on the afternoon of

6 March 2024, on the same day as the satellite overpass. Results for all drone flights are included in Fig. S4 to S24 of the440

Supplementary Material, and are reported in Table B1. In this section, we analyze the inference results, discussing the overall

findings across all drone flights, and examine whether the results presented in Fig. 4 align with these overall findings.

In our study, we frequently observe different patterns when using drone-based methods to estimate CH4 emission rates of

sheep and goat herds at Kapiti compared to cattle herds. Except for camels, the herds consist of approximately 100 to 200

animals (see Table B1). Due to the markedly lower emission rate per individual animal q for sheep and goats, these herds445

have a lower overall emission rate Q. Consequently, we refer to the sheep and goat herds as ‘weak(er) sources’ to denote their

relatively lower emission rates in our study.

In most of the drone flights, the inferred mean wind direction aligns with the fixed source location and areas of elevated

concentration. Overall, the inferred wind direction is both precise and consistent across all three observation cases for cattle

drone flights, occasionally overriding the observed wind direction. In Fig. 4, the mean wind direction estimates across the three450

observation cases coincide, and the inferred direction of 81◦ corresponds to the angle between the source location and the

observation locations with elevation concentration shown in Fig. 2. Specifically, the update in wind direction in observation

case (a) indicates that our framework can often infer the wind direction solely from the shape of the concentration plume and

the known source location. The posterior mean wind direction becomes more uncertain when dealing with highly variable wind

directions without direct observation (observation case (a)), such as during the morning flight with camels (Fig. S14) and the455

morning flight with pregnant does (Fig. S21).

For weak sources, the Bayesian inference algorithm can misinterpret concentration observations as being upwind of a strong

emission source rather than downwind from a weak one if no direct wind direction observation is provided. To address this

equifinality issue, we used an informed prior bounded by the half wind-rose: U(−45,135)◦. During the first two days of field

work, we used a narrower V-shaped flight path instead of the usual half-octagon. Consequently, for the drone flights on these460
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Figure 4. Bayesian inference results in the form of posterior distributions obtained using sequential Monte Carlo for the drone flight in the

afternoon of 6 March 2024 with 208 heifers. Estimates for three different observation cases: (a) using concentration observations, (b) using

concentration observations and mean wind speed data from the drone, (c) using concentration observations and mean wind speed, mean wind

direction and diffusivity data derived from MOST.

days, marked with a bullet (•) in Table B1, we adjusted the prior to U(30,135)◦. When dealing with weak sources, an informed

prior for wind direction was needed in our study to refine the emission rate distribution for observation cases without direct

wind direction observations. Even with an informed prior, the posterior distribution of the wind direction can remain relatively

uninformed for weak sources, such as weaner kids (Fig. S23 and S24). We note that concentration observations obtained in all

locations around the source, such as those from the mass balance flight, can help mitigate this ambiguity.465

Wind speed and diffusivity influence the shape of the emission plume. Higher wind speeds elongate the plume, while

increased diffusivity broadens it. In observation cases (b) and (c), where direct wind speed observations are available, the

posteriors generally align with these observed values. Typically, the wind speed derived from MOST (observation case (c)) is

higher than the wind speed recorded by the drone (observation case (b)), as demonstrated in Fig. 4. Without direct wind speed

observations (observation case (a)), the Bayesian inference algorithm tends to skew the posterior distribution toward higher470

wind speeds for most drone flights, as illustrated in Fig. 4. For all drone flights with weak sources, the wind speed posteriors

for observation case (a) remain largely uninformed but are slightly skewed toward higher values.
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For diffusivity, the posterior distribution in observation case (c) aligns with the direct observation, as shown in Fig. 4. In

the absence of observations (observation cases (a) and (b)), the diffusivity posterior remains largely uninformed but slightly

skewed toward higher values in drone flights with weaker sources as well as for the camel herd. For stronger sources, namely475

the cattle herds, the posterior distribution of diffusivity does often shift toward low values, as shown in Fig. 4.

A relationship was observed between the combination of high posterior wind speeds and high posterior diffusivity, resulting

in higher estimated emission rates. Higher wind speed and diffusivity indicate a larger plume, both in length and width,

suggesting a larger emission rate provided that the concentration observations are the same. The typically higher wind speeds

derived from MOST, compared to drone wind speeds, combined with higher posterior diffusivity in observation case (c)480

compared to observation case (b), generally lead to higher emission rates in observation case (c) compared to observation

case (b). This is demonstrated in Fig. 4. The observed relation highlights the importance of reliable wind measurements.

We consider observation case (a) the least reliable, as the wind speed estimates often skew toward excessively high values.

Observation cases (b) and (c) present an interesting topic for future study: Is it more valuable to have an anemometer on the

drone to capture local and temporal wind variations, or to place an anemometer close to the source at a fixed location and485

use MOST to obtain diffusivity observations? Comparing different observing systems in controlled release experiments with

a constant and known emission rate can provide further insights into the optimal experimental set-up for Bayesian inference

observing systems.

Across all drone flights, the emission rate estimates for observation case (c) have a smaller relative uncertainty range com-

pared to observation cases (a) and (b). Specifically, the range is approximately ±50% for strong sources and ±12% for weak490

sources, in contrast to±65% and±26% for observation case (a), and±55% and±19% for observation case (b), respectively.

We compare our estimates to IPCC Tier 1 values to assess their plausibility. It is important to note that IPCC Tier 1 values are

highly uncertain, and we do not use these values as a definitive benchmark but rather as a sanity check. Overall, the Bayesian

inference emission rate estimates for both strong and weak sources are of the same order of magnitude as the IPCC Tier 1 val-

ues: 5.3ghead−1 h−1 for dairy cattle in Africa, 5.3ghead−1 h−1 for camels in developing countries, and 0.6ghead−1 h−1 for495

sheep and goats in developing countries, with a reported uncertainty range of ±30% to ±50% (Paustian et al., 2006). Despite

large variations in the posterior estimates for wind direction, wind speed, and diffusivity, the emission rate estimates across

all observation cases remain consistent with these reference values. For example, for the drone flight presented in Fig. 4, the

emission rate estimates of 7.2±1.4ghead−1 h−1, 5.4±0.8ghead−1 h−1, and 7.4±0.7ghead−1 h−1 for observation cases (a)

to (c) respectively, are considered feasible when compared to the Tier 1 value for dairy cattle in Africa. This underscores the500

importance of reliable concentration observations, as they alone (observation case (a)) can provide reasonable emission rate

estimates.

Further improvement of the Bayesian inference method could involve extending the sampling duration to more accurately

capture the time-averaged plume. Prolonging the sampling time at each observation location may require modifications to the

likelihood function. For example, Hutchinson et al. (2019) used a sample duration of 5s and applied different likelihoods for505

concentration observations below and above a plume detection threshold. It is important to consider the trade-off between

overall sampling duration and the number of sample locations. Investigating this trade-off, along with the formulation of the
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likelihood function, would be a valuable area for future study to improve the Bayesian inference method for estimating CH4

emission rates. Such optimization could maximize the informational value derived from observations collected with a single

battery set.510

A promising approach to the information maximization strategy involves the use of autonomous drones that can make in-

flight decisions about the optimal sampling path based on real-time observations and previously obtained knowledge. Several

studies explore this possibility using reinforcement learning (Loisy and Eloy, 2022; van Hove et al., 2024b). However, these

studies often rely on synthetic data, while research involving natural CH4 sources under real-world conditions remains limited.

Instead of addressing the information maximization strategy solely on the data collection side, exploring the capabilities of515

Bayesian hierarchical modeling (Berliner, 2003) to enhance the utilization of information in future research is potentially

valuable. The hierarchical Bayesian approach allows information to be shared across drone flights, enabling data to be pooled

across, for example, the two heifer drone flights in this study, or across all drone flights involving cattle.

3.2.2 Mass balance method

Figure 5 presents the mass balance results of the afternoon drone flight with a herd of heifers, on the same day as the satel-520

lite overpass. The panels show the interpolated CH4 concentrations (top), perpendicular wind speed (middle), and resulting

fluxes (bottom) at the four vertical sampling planes in NE, SE, SW, and NW directions. The sum of the fluxes in the bottom

panel equals the final estimated emission rate for the entire herd Q. The results of the other drone flights are included in

Fig. S25 to S45 in the Supplementary Material, and Table B1.

Figure 2 demonstrates the intermittency of the observed instantaneous plume: the concentrations within the plume do not525

follow a smooth, continuous gradient but instead exhibit an irregular distribution of disconnected patches of high concentra-

tion. This intermittency complicates the mass balance approach, particularly for drone flights where the signal-to-noise ratio is

relatively low. Such conditions include: (a) highly variable wind direction or low wind speeds leading to very non-stationary

wind conditions (the noise is particularly high), and (b) drone flights with weaker emission sources resulting in low concen-

tration levels (the signal is particularly low) where the variability in the background concentrations and emission plume can530

considerably affect the accuracy of the emission rate estimate.

The mass balance approach relies on a nonzero horizontal wind to generate a horizontal outflow of CH4 from the imaginary

box. Its accuracy improves when the plume morphology remains relatively stable over time. Yang et al. (2018) defines favorable

wind conditions as a wind speed greater than 2.3ms−1 and a steady wind direction with a standard deviation below 33.1◦.

Measurements collected under wind conditions that do not meet these criteria are marked with a diamond (♦) in Table B1.535

These sub-optimal conditions lead to less reliable estimates, as for example observed by the negative mission rate of the

morning drone flight with camels (Fig. S35). Consequently, these results should be considered unreliable due to unfavorable

wind conditions.

Our observations indicate that the estimates for sheep and goats, marked by a triangle (▲) in Table B1, are very variable

and inconsistent with the IPCC Tier 1 value of 0.6ghead−1 h−1 (Paustian et al., 2006). Emissions from these smaller animals540

produce lower CH4 concentration levels, resulting in a lower signal-to-noise ratio when considering the size of the herd. More-
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Figure 5. Results of the mass balance approach for a drone flight in the afternoon of 6 March 2024 with a herd of 208 heifers. The panels

show (top) the interpolated CH4 concentration observations, (middle) the interpolated perpendicular wind speeds, and (bottom) the CH4

fluxes across the vertical sampling planes. Positive (negative) perpendicular wind speeds and fluxes correspond to flow out of (into) the box.

The black scatter points indicate the original observation locations.

over, for sheep and goats, the emission source and consequently the plume, are close to the ground in a region characterized by

generally lower wind speeds and complex surface effects caused by, for example, variations in elevation and vegetation. This

may increase plume variability, leading to less reliable estimates. Due to these factors, we consider the mass balance estimates

for drone flights with sheep and goats unreliable. The mass balance estimates for cattle are more plausible, as they are of the545

same order of magnitude as the IPCC Tier 1 value of 5.3ghead−1 h−1 for dairy cattle in Africa (Paustian et al., 2006). The

negative emission rate for camels in the morning is unrealistic, but the estimate in the afternoon is within a similar range as the

IPCC Tier 1 value of 5.3ghead−1 h−1 (Paustian et al., 2006).

To mitigate the effect of plume variability over time, several studies have conducted repeated drone flights (Gålfalk et al.,

2021; Andersen et al., 2021). In the absence of systematic bias, this approach can yield a more robust approximation of the550

emission rate by averaging the estimates from multiple drone flights, thereby reducing - though not eliminating - uncertainty due

to temporal variability. In a single drone flight, capturing the time-averaged plume can potentially be improved by increasing

the number of plume observations relative to background observations. Several studies, particularly larger-scale experiments

using airplanes, conduct flights along a single vertical sampling plane downwind from the prevailing wind direction (Allen

et al., 2019; Cambaliza et al., 2014). The term ci,j in Eq. (6) is then replaced by ci,j−c0, where c0 is the estimated background555

concentration. However, this sampling approach introduces uncertainty due to the estimation of the background concentration,

whose variability must be accounted for in the overall uncertainty estimate.

Although onboard wind measurements with a sonic anemometer are considered ideal (Allen et al., 2019), practical con-

straints have necessitated the use of nearby weather stations for wind data in several studies (Allen et al., 2019; Nathan et al.,

2015). Morales et al. (2022) demonstrated through controlled release experiments that using wind data from an anemometer560

close to the source, which captures changing wind conditions during the flight, is more accurate than applying a wind profile

through MOST (Eq. (A1)) that only accounts for wind speed variation with altitude. Given that we did not have an anemome-
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ter available on the drone, using corrected wind speeds from the flight controller was our best available option. An onboard

anemometer could reduce measurement uncertainty of the instantaneous wind field, but it does not reduce uncertainty due to

temporal uncertainty.565

3.3 Method comparison

In this section, we evaluate the CH4 emission rate results obtained using the Bayesian inference method by comparing them to

the results derived from other methods and literature values. Figure 6 presents the Bayesian inference results for observation

case (c) alongside estimates from the mass balance approach, a laser spectrometry study previously conducted at Kapiti by Wolz

et al. (2022), and the IPCC emission values.570

In Sec. 3.2.1 and 3.2.2, we observed that the Bayesian inference results for all herds are of the same order of magnitude as

the IPCC Tier 1 values. Conversely, while our mass balance results for strong sources (cattle herds) are within the same order

of magnitude as the IPCC Tier 1 values, they are substantially higher than the IPCC Tier 1 values for weak sources (sheep and

goat herds) for a majority of drone flights. This finding is further supported by comparison to the herd-specific IPCC Tier 2

values. We observe that both the Bayesian inference and mass balance results are in the same order of magnitude as the IPCC575

Tier 2 values for strong sources of Q≈ 700gh−1 to Q≈ 1,500gh−1 (Table B1). However, a majority of the mass balance

results are substantially higher than the IPCC Tier 2 values for weaker sources of Q≈ 70gh−1 to Q≈ 140gh−1 (Table B1).

This inconsistency indicates that the source term estimation threshold of the Bayesian inference method is considerably lower

than that of the mass balance method as applied in our study, suggesting that Bayesian inference can be used to estimate weaker

sources, where the mass balance method might fail to reliably estimate sources.580

We compare the Bayesian inference estimates to results from previous studies conducted at Kapiti. Our average (pre-

and post-grazing) emission rate estimate for steers was 7.1± 0.7gh−1, which aligns with a respiration chamber experiment

showing emission rates ranging from 6.7− 7.7ghead−1 h−1 depending on diet (Korir et al., 2022b). Our average emission

rate estimate for lactating ewes was 0.8± 0.2ghead−1 h−1, which overlaps with the emission rate for sheep ranging from

0.6− 0.8ghead−1 h−1 found in a respiration chamber experiment (Mwangi et al., 2023). Our estimate is on the higher end,585

which is expected as emissions from lactating animals are generally larger than those from non-lactating animals due to their

increased feed intake to meet the energy demands of milk production (Broucek, 2014). In another respiration chamber experi-

ment, the estimated emission rates from cows ranged from 7.6− 11.3ghead−1 h−1 depending on diet (Korir et al., 2022a). In

contrast, our average estimate was notably higher at 15.2± 1.0ghead−1 h−1.

Wolz et al. (2022) utilized open-path laser spectroscopy with backward Lagrangian stochastic dispersion modeling to esti-590

mate nighttime CH4 emissions from a mixed cattle herd across 14 nights in September and October 2019. The resulting mean

emission rates Q were normalized to the equivalent weight of a cow to obtain q for a hypothetical cow herd, rather than nor-

malizing by the number of animals to obtain q for the observed mixed cattle herd. Figure 6 shows the results obtained at 09:00

East Africa Time (EAT), before grazing, and at 00:30 EAT, after grazing. Note that the latter nocturnal measurements were

obtained later than our drone flights, which were conducted in the afternoon. We observe that our Bayesian inference results595

for cows are higher, both before and after grazing, compared to estimates from Wolz et al. (2022). This discrepancy could be
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Figure 6. Methane emission rate estimates from the Bayesian inference method using concentration observations and mean wind speed,

mean wind direction, and diffusivity data derived from Monin Obukhov Similarity Theory (observation case (c)), the mass balance approach,

a laser spectrometry study by Wolz et al. (2022), and IPCC emission values. Error bars represent one standard deviation uncertainty. The

uncertainty range of IPCC values, depicted by gray shading, is ±20% for Tier 2 values and ±30% to ±50% for Tier 1 values (Paustian

et al., 2006), this figure uses ±50% for the IPCC Tier 1 value. Unreliable mass balance estimates due to a low signal-to-noise ratio are

indicated by hatched lines.

due to an overestimation by the Bayesian inference method, or the emission rate might have been this high at the times of the

drone flights. Wolz et al. (2022) reported a mean emission rate over 14 repeated experiments, whereas the Bayesian inference

result is an estimate based on a single drone flight. Additionally, differences in methodology, differences in the timing of the

measurements, and the herd weight normalization used by Wolz et al. (2022) could contribute to the variance. Both studies600

were conducted at the end of a dry season; however, our field campaign was conducted during a normal dry season, whereas

the dry season studied by Wolz et al. (2022) was extreme. The severity of this dry season likely affected feed intake and feed

quality, potentially reducing CH4 emission rates.

No camel studies have previously been conducted in Kapiti, so we compared our Bayesian inference results for camels

to those of a respiration chamber experiment conducted in Australia by Dittmann et al. (2014). This study estimated a CH4605

emission rate of 4.0ghead−1 h−1 for Bactrian camels fed exclusively on alfalfa. Our average (pre- and post-grazing) estimate

is higher at 6.7±1.3ghead−1 h−1. Note that the studies involve different camel species and diets. Our average estimate aligns

better with the IPCC Tier 1 value of 5.3ghead−1 h−1. We emphasize that the number of experiments conducted with camels
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and the extent of current knowledge are minimal, and that further research is required to gain more insight into the emissions

of CH4 from camels. Based on Bayesian inference, we observe a larger increase in estimated CH4 production after grazing in610

camels compared to cattle. Replication of this result through repeated experiments would be a promising avenue for further

research.

Feeding is known to increase CH4 production in ruminants (Amon et al., 2001; Hegarty, 2013), and we assess whether this

effect is observable in our results for the other herds as well. The Bayesian inference results show the hypothesized effect of

grazing in seven out of ten cases, with considerably higher emission rate estimates in the afternoon compared to the morning.615

In the cases of pregnant does and weaner kids, although there is a general increase in emission estimates before and after

grazing, the considerable overlap in the uncertainty ranges makes the effect less clear. For the final case of lactating ewes, the

difference in emissions before and after grazing is slightly negative; however,the uncertainty ranges overlap, making the effect

inconclusive. In contrast, the mass balance results do not consistently demonstrate an increase in CH4 emissions post-grazing,

with a substantial increase observed in only three out of ten cases - heifers 06/03, slick herd, and lactating ewes. We consider620

this to be a promising indicator for the greater reliability and accuracy of our Bayesian inference results compared to our mass

balance results.

With the exception of the cows and lactating ewes drone flights, the Bayesian inference estimates pre-grazing are lower than

the IPCC Tier 2 value, and the post-grazing estimates are higher than the IPCC Tier 2 value, or the uncertainty ranges of the

different methods overlap. One advantage of using the Bayesian inference method over the IPPC Tier 2 approach is the ability625

to estimate diurnal variations, which allows us to observe the effects of feeding. Additionally, the uncertainty in the Bayesian

inference results can typically be reduced by assimilating a larger dataset, suggesting that repeated drone flights can yield more

reliable results (Pirk et al., 2022). Deriving IPPC Tier 2 values is time-consuming due to the measurement of live weight and

live weight changes of individual animals, and considerable unquantified uncertainty remains in our ability to estimate the feed

intake of animals in pastoral systems like at Kapiti. Furthermore, the accuracy of the method relies partly on the accuracy of the630

methane conversion factor Ym, which is determined based on previous research and may not be representative of the specific

animals being studied.

In comparison to the Bayesian inference method, the mass balance approach is more straightforward to implement. However,

based on this study, Bayesian inference results can be more reliable, as demonstrated by the consistent observation of increased

emissions post-grazing. In both the mass balance method and the Bayesian inference method, we use a sensor - a drone -635

to capture snapshots of a non-stationary emission plume. However, the physical models of both methods - Eq. (1) for our

Bayesian inference approach and Eq. (6) for the mass balance method - are based on the assumption of a statistically stationary

plume. A conceptual difference between the two methods lies in how they handle the discrepancy between the turbulent

(instantaneous) observations acquired by the drone and the mean concentration and mean wind field represented in the model.

The Bayesian inference method explicitly accounts for this discrepancy through observation error R, while the mass balance640

approach does not explicitly address this inconsistency. Instead, we only account for this violation implicitly by including

a temporal variation term within the uncertainty range of the mass balance estimates. We observed that the mass balance

approach estimates are sensitive to low signal-to-noise levels, making the resulting estimates of weaker sources and under
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highly variable wind conditions unreliable. In contrast, the Bayesian inference method proved to be more robust in estimating

weaker sources and under variable wind conditions. This robustness may be attributed to explicitly accounting for discrepancies645

between instantaneous observations and the assumed stationarity of the concentration and wind fields in the physical model.

4 Conclusions

In our study, we leveraged drone and flux tower observations along with a Bayesian inference approach to quantify CH4 emis-

sions of ruminants in sub-Saharan Africa - an important, yet poorly understood, source in the global CH4 emission inventory.

We showed how this method can be applied to verify and estimate potential CH4 sources identified through radiance anomalies650

observed in hyperspectral satellite data.

4.1 Bayesian lessons learned

While Bayesian inference is regularly applied on regional and global scales to detect and estimate carbon emissions using

satellite observations and international sensor networks, its application on smaller spatial scales with weaker sources, such as

the livestock herds in our study, is limited. Our work demonstrates the feasibility and effectiveness of using Bayesian inference655

methods with drone and flux tower observations for source term estimation on local scales. Here, we share our experiences in

quantifying CH4 emissions using this approach, with the aim of advancing research in local source term estimation through

Bayesian inference.

Rather than treating the herd as a single point source, we modeled it as a set of sources with equal strengths, which we found

to be more accurate. Modeling the herd as a single point source led to higher inferred mean diffusivity in most drone flights660

due to the large horizontal spread of instantaneous observed elevated concentrations above background level.

We assumed the set of source locations to be fixed known parameters. When treated as an unknown parameter, the posterior

distribution for source location broadened along the prevailing wind direction and increased the uncertainty in the emission rate

estimates. This can be attributed to equifinality: a stronger source further away can produce a similar concentration observation

as a weaker source nearby. Incorporating concentration data collected around the source enhanced the accuracy of source665

location posteriors. We tested this by incorporating the observations of the mass balance flights.

We observed equifinality across multiple parameter combinations, implying that incorporating observations related to un-

known parameters is beneficial and may even be necessary to adequately constrain their probability distributions. While wind

direction can be effectively constrained using concentration observations alone, wind speed measurements - such as those from

the drone or flux tower - considerably enhanced the inference process. Further research is recommended to identify the most670

reliable observational platform for this purpose. Diffusivity proved difficult to constrain based on instantaneous concentration

observations alone, but we observed that diffusivity observations derived from eddy-covariance data helped to constrain the

diffusivity probability distribution.

We restricted the uniform prior for wind direction to a half wind-rose aligned with the prevailing wind direction. Using the

entire wind-rose introduced ambiguity between upwind observations of strong sources and downwind observations of weak675
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sources, specifically in drone flights with herds of sheep and goats. Incorporating concentration observations around the source

can help mitigate this ambiguity.

Treating the background concentration as a known parameter was necessary in this study because the Bayesian inference

algorithm struggled to infer reliable estimates in several drone flights when this parameter was considered unknown, leading

to unreliable emission rate inferences. The algorithm struggled to distinguish between background and elevated concentrations680

without relying on this assumption. We anticipate that using concentration observations obtained over longer sampling times,

with an adjusted likelihood function, could potentially address this issue.

The biggest challenge in setting up the Bayesian framework in our study was the mismatch between instantaneous concen-

tration observations and the time-averaged dispersion model, which complicated the design of the likelihood function. A broad

Gaussian likelihood proved effective. Still, we recommend further investigation into the likelihood design, in combination with685

extended sampling times to better capture the time-averaged emission plume. However, longer sampling times reduce the num-

ber of locations that can be observed on a single drone battery charge. This limitation makes intelligent sampling path design

a promising topic for further study.

4.2 Insights into CH4 emission detection and estimation from ruminants

By analyzing radiance anomalies in hyperspectral PRISMA satellite data, we detected three cattle herds present at Kapiti690

Research Station in Kenya. Using the ratio between radiance in the 2300nm and 2100nm bands, we showed that it is feasible

to locate herds within a boma and free-grazing herds. In particular, this approach allows us to identify the location of potential

CH4 sources emitting approximately 1,000gh−1 or more. While the detection of the location of potential CH4 sources, such

as cattle herds, is feasible using current satellite data, higher-resolution observations are necessary to accurately estimate their

CH4 emission rates.695

Using drone observations, we estimated the CH4 emission rates of various ruminant herds - including cattle (cows, heifers,

steers, and slick herd), sheep (lactating ewes), goats (dry does, pregnant does, weaner kids), and camels - by applying both

Bayesian inference and mass balance approaches. Due to low signal-to-noise levels, the mass balance method did not consis-

tently provide reliable estimates for weaker sources, such as the sheep and goat herds. However, under favorable wind condi-

tions, we estimated cattle herd emissions ranging between 700− 1,500gh−1 using the mass balance method. The Bayesian700

inference method performed better for weaker sources, estimating sheep and goat herd emissions in the range of 70−140gh−1,

and it was effective for the different cattle and camel herds as well.

We observed the hypothesized increase in CH4 production following feeding in a majority of the Bayesian inference drone

flights, whereas this effect was visible in only a minority of the mass balance flights. Additionally, the Bayesian inference

method results appeared less affected by variable wind conditions than the mass balance method. These observations suggest705

the superior performance of the Bayesian inference method over the mass balance method in this setting.

Overall, the Bayesian inference results aligned with the IPCC Tier 2 emission values. Compared to the IPCC Tier 2 approach,

the Bayesian inference method offers the ability to estimate temporal variations in CH4 production. Furthermore, the method

can assimilate observations from various measurement platforms and incorporate their uncertainties. The strong performance
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of the Bayesian inference approach in this case study, estimating diverse CH4 source strengths under various atmospheric710

conditions, underscores its robustness and potential as a valuable method for estimating CH4 sources in agricultural areas and

other landscapes.

4.3 Future applications

We demonstrated the potential of the Bayesian inference method to estimate a range of source strengths. Specifically, we

showed that potential CH4 sources detected by hyperspectral satellites, but too weak to be confidently quantified, can be715

effectively estimated using drone observations. Future applications of the Bayesian framework for source term estimation could

extend to diverse natural and anthropogenic sources, such as CH4 emissions from wetlands, hotspots in thawing permafrost,

landfills, and wastewater disposal sites.

In areas where observational data are sparse, the Bayesian inference method can be employed using a gas sensor and an

anemometer mounted on the drone or positioned near the source. This approach could eliminate the need for a nearby flux720

tower, making the observing framework suitable for remote sites. Conversely, in observation-rich environments, the Bayesian

inference method can integrate data from multiple observation platforms. For example, data obtained from laser spectrometry

or observations from multiple drones can be assimilated.

Overall, the insights gained in our study demonstrate the potential of Bayesian inference methods, combined with drone

and flux tower observations, for improving our understanding of CH4 emissions at local scales, thereby contributing to the725

improvement of CH4 inventories and mitigation studies.

Code and data availability. The drone and flux tower data set, along with the Digital Elevation Model of Kapiti, can be accessed from van

Hove et al. (2024a). The data processing scripts are available at https://github.com/AlouetteUiO/MIK.

Appendix A: MOST

Obukhov length L [m] is positive in stable atmospheric conditions and negative in unstable atmospheric conditions. During all730

drone flights, the atmosphere was unstable. We use Monin Obukhov Similarity Theory (MOST; see Stull, 1989; Hanna et al.,

1982) to estimate the vertical profile of the mean wind speed V (z) [ms−1] and mean eddy diffusivity K(z) [m2 s−1], where z

is the distance above the ground.

Under unstable atmospheric conditions, the mean wind speed profile is estimated by

V (z) =
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, (A1)735

where u∗ is the friction velocity, κ = 0.4 is the von Kármán constant, and z0 [m] is the aerodynamic roughness length. We use

z0 = 0.05m, which corresponds to terrain with long grass and few trees (Stull, 1989), and a displacement height of d = 0.10m.
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The dimensionless wind shear ΦM is approximated by

ΦM

( z

L

)
=

[
1− 15

z− d

L

]−1/4

. (A2)

The resulting mean wind speed at the height of the sonic anemometer on the flux tower qualitatively matches the mean wind740

speeds measured by the same sonic anemometer (Fig. S3 in Supplementary Material).

The eddy diffusivity for effectively passive tracers such as CH4 is generally assumed to be equal to the eddy diffusivity for

heat. The mean eddy diffusivity profile is given by

K(z) = κu∗
z− d

ΦH
, (A3)

where ΦH is the dimensionless potential temperature gradient. For unstable atmospheric conditions, it is assumed to be given745

by

ΦH

( z

L

)
= 0.74

[
1− 9

z− d

L

]−1/2

. (A4)
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