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Abstract. Accurately measuring greenhouse gas concentrations to identify regional sources and sinks is essential for effectively

monitoring and mitigating their impact on the Earth’s changing climate. In this article we present the scientific data products

of XCO2 and XCH4, retrieved with RemoTeC, from the Greenhouse Gases Observing Satellite-2 (GOSAT-2), which span a

time range of five years. GOSAT-2 has the capability to measure total columns of CO2 and CH4 to the necessary requirements

set by the Global Climate Observing System (GCOS), who define said requirements as accuracy < 10 ppb and < 0.5 ppm for5

XCH4 and XCO2 respectively, and stability of < 3 ppb yr−1 and < 0.5 ppm yr−1 for XCH4 and XCO2 respectively.

Central to the quality of the XCO2 and XCH4 datasets is the post-retrieval quality flagging step. Previous versions of Re-

moTeC products have relied on threshold filtering, flagging data using boundary conditions from a list of retrieval parameters.

We present a novel quality filtering approach utilising a machine learning technique known as Random Forest Classifier (RFC)

models. This method is developed under the European Space Agency’s (ESA) Climate Change Initiative+ (CCI+) program10

and applied to data from GOSAT-2. Data from the Total Carbon Column Observing Network (TCCON) are employed to train

the RFC models, where retrievals are categorized as good or bad quality based on the bias between GOSAT-2 and TCCON

measurements. TCCON is a global network of Fourier transform spectrometers that measure telluric absorption spectra at

infrared wavelengths. It serves as the scientific community’s standard for validating satellite-derived XCO2 and XCH4 data.

Our results demonstrate that the machine learning-based quality filtering achieves a significant improvement, with data yield15

increasing by up to 85% and RMSE improving by up to 30%, compared to traditional threshold-based filtering. Furthermore,

inter-comparison with the TROPOspheric Monitoring Instrument (TROPOMI) indicates that the quality filtering RFC models

generalise well to the full dataset, as the expected behaviour is reproduced on a global scale.
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Low systematic biases are essential for extracting meaningful fluxes from satellite data products. Through TCCON validation

we find that all data products are within the breakthrough bias requirements set, with RMSE for XCH4 <15 ppb and XCO2 <220

ppm. We derive station-to-station biases of 4.2 ppb and 0.5 ppm for XCH4 and XCO2 respectively, and linear drift of 0.6 ppb

yr−1 and 0.2 ppm yr−1 for XCH4 and XCO2 respectively.

For XCH4, GOSAT-2 and TROPOMI are highly correlated with standard deviations less than 18 ppb and globally averaged

biases close to 0 ppb. The inter-satellite bias between GOSAT and GOSAT-2 is significant, with an average global bias of

-15 ppb. This is comparable to that seen between GOSAT and TROPOMI, consistent with our findings that GOSAT-2 and25

TROPOMI are in close agreement.

1 Introduction

Anthropogenic emissions of greenhouse gases (GHGs) such as carbon dioxide (CO2) and methane (CH4) over the last century

have led to the rapid rise of concentrations of GHGs in the atmosphere (Figure 1.4, IPCC AR6 2021, Tans and Keeling (2020),

Cross-Chapter Box 5.2 IPCC AR6 2021). The effect of such changes in atmospheric composition has a clear correlation30

with the change of climate variables - such as global sea surface temperature anomaly or sea level - with CO2 increase over

preindustrial levels directly proportional to global mean surface temperature anomaly, relative to 1850-1900 (Figure 1.6, IPCC

AR6 2021). Indeed, the emergence of trend in climate variables above the natural year-to-year variability has been firmly

established (Banks and Wood, 2002; Giorgi and Bi, 2009; Lyu et al., 2014; Hawkins and Sutton, 2012; IPCC AR5, 2014;

Tebaldi and Friedlingstein, 2013), on a global scale as well as regional ones (Mahlstein et al., 2011; Hawkins et al., 2020; Rohde35

and Hausfather, 2020). The ramifications of a warming climate are serious with significant negative implications affecting the

entire globe.

Satellite retrievals of concentrations of CO2 and CH4, or rather column-averaged dry air mole fractions, denoted XCH4 and

XCO2, play an essential role in monitoring the changing climate, as these variables can be used alongside inverse modelling of

surface fluxes to estimate uptake and emission of GHG surface fluxes (Bergamaschi et al., 2009; Chevallier et al., 2007, 2005;40

Meirink et al., 2006; Metz et al., 2023). In particular satellite measurements that are sensitive to near-surface variations in GHG

concentrations are essential, and tight requirements are necessary to accurately calculate fluxes and so quantify emissions.

The Global Carbon Observing System (GCOS) has classified measurements of CO2 and CH4 columns as Essential Climate

Variables (ECVs), and defines requirements as being accurate enough to be able to determine sources and sinks on regional

scales (GCOS, 2016). To this end, ESA’s Climate Change Initiative (CCI) seeks to achieve this with the GHG-CCI+ project in45

which ECVs of CO2 and CH4 columns are delivered globally.

Particular emphasis is placed on systematic biases in satellite data, such as the change in bias over time, of which the

requirements on XCO2 and XCH4 are less than 0.5 ppm yr−1 and 3 ppb yr−1 respectively (GCOS, 2016). Furthermore, the

station-to-station bias of sites, or accuracy, from the The Total Carbon Column Observing Network (TCCON), defined as the

standard deviation of all station biases, should be less than 0.5 ppm for XCO2 and less than 10 ppb for XCH4 (GCOS, 2016).50
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The Japan Aerospace Exploration Agency (JAXA) operated satellite GOSAT-2 (Greenhouse Gases Observing Satellite-2)

has onboard the TANSO-FTS-2 instrument (Thermal And Near infrared Sensor for carbon Observation-Fourier Transform

Spectrometer-2), which operates in the near-infrared (NIR), short-wave infrared (SWIR) bands, as well as the thermal in-

frared. TANSO-FTS-2 has sufficient sensitivity to measure regional sources and sinks of GHGs, and provides calibrated and

geolocated Earthshine radiance spectra (level-1B data) in the aforementioned wavelength regimes, with 10 km circular ground55

pixels covering the globe every 6 days in sun-synchronous orbit (Suto et al., 2021; Imasu et al., 2023). TANSO-FTS-2 has

an intelligent pointing system, allowing better coverage than its predecessor GOSAT. Also onboard is the dedicated cloud

imager TANSO-CAI-2 (Thermal And Near infrared Sensor for carbon Observation-Cloud and Aerosol Imager-2) (Kuze et al.,

2009, 2016; Yoshida et al., 2012).

GOSAT was the first dedicated GHG observing satellite, and has been used in a wide variety of scientific studies relevant60

to CO2 and CH4 since 2009 (Butz et al., 2011; Schepers et al., 2012; Parker et al., 2020; Taylor et al., 2022). Trace gas

column-averaged dry air mole fractions, also referred to as the level 2 product, can be extracted from the level 1B data through

a retrieval (see section 3). Crucial for the carbon cycle, fluxes of CO2 have been inferred from level 2 data on regional scale

(Chevallier et al., 2009; Basu et al., 2013; Detmers et al., 2015) as well as global scales (Turner et al., 2015; Jiang et al., 2021;

Kou et al., 2023). Also for CH4, global flux estimates and emissions (Maasakkers et al., 2019; Zhang et al., 2021) have been65

derived from GOSAT measurements, and also compared to the TROPOspheric Monitoring Instrument (TROPOMI) (Liang

et al., 2023) and airborne in-situ measurements (Tadić et al., 2012).

In addition to the data we present in this article, two other XCO2 and XCH4 data products are available from GOSAT-

2 (Noël et al., 2021, 2022; Yoshida et al., 2023). Noël et al. (2022) also present results for XH2O, as well as XCO and

XN2O from GOSAT-2. Zadvornykh et al. (2023) investigated the retrieval of HDO/H2O ratio combining the NIR and thermal70

infrared bands, and Malina et al. (2018) presented a proof of concept study on retrieving 13CH4 from GOSAT-2. Ohyama et al.

(2024) calculated emissions estimates from enhancement ratios of CO2, CH4 and CO using inverse modelling and compared

to emission inventories. Janardanan et al. (2025) compared flux inversions of CH4 from GOSAT and GOSAT-2 across 2019-

2022, finding regional differences in the emission estimates related to differences in the level 2 products, however assimilated

GOSAT-2 XCH4 data were not bias-corrected.75

TCCON provides the most robust measure of the accuracy of total columns of GHGs measured by satellites (Wunch et al.,

2010, 2011, 2015), and is widely used as the conventional validation for XCH4 and XCO2 retrievals (e.g. Dils et al. (2014);

Malina et al. (2022)). It is a global network of Fourier transform spectrometers that observe, among others, XCO2 and XCH4

with a root mean square error (RMSE) on mole fractions of 0.15 % and 0.2 % respectively (Toon et al., 2009), for the

GGG2014 release. Depending on the site, these measurements are scaled to aircraft or balloon-borne measurements for cali-80

bration (Washenfelder et al., 2006; Deutscher et al., 2010; Karion et al., 2010; Messerschmidt et al., 2011; Geibel et al., 2012)

and measurements of vertical profiles can vary per site. TCCON measures direct sunlight and can therefore only be performed

under clear-sky conditions hampering coverage of the time-series.
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2 Data products and Input Data

In this article we present the novel level 2 GOSAT-2 scientific data products developed by SRON the Netherlands Institute85

for Space Research. XCO2 and XCH4 are retrieved deploying the RemoTeC retrieval algorithm, and are processed within

the GHG-CCI+ project (Dils et al., 2014; Buchwitz et al., 2015). RemoTeC uses two different retrieval approaches which we

discuss further in section 3. From the two configurations available to RemoTeC, three column-averaged dry air mole fractions

products are produced. GOSAT-2 has been operational since February 2019. The data products discussed here cover the time

range of the first observations until the end of 2023. Data products are available from the ESA Climate Office, under version90

v2.0.3 in Climate Data Research Package 9 (CDRP9) 1. More information about the three SRON GOSAT-2 data products can

be found in the Algorithm Theoretical Basis Documents (ATBDs) (Barr et al., 2024a, b) and Product User Guides (PUGs)

(Barr et al., 2024c, d).

The SRON GOSAT-2 data products are generated from calibrated TANSO-FTS-2 L1B data from v210.210 for 2019 until

June 2023, made available by the National Institute for Environmental Studies (NIES). For the second half of 2023 we used95

L1B from v220.220. Instrument line shape (ILS) information is taken from Suto et al. (2021).

A pre-processing step brings meteorological data, surface data and satellite data together before the retrieval is run. Me-

teorological input data are taken from the ECMWF ERA5 reanalysis product on 137 altitude layers and a 0.75◦ × 0.75◦

latitude/longitude grid (Hersbach et al., 2020). Surface information was taken from the extended Shuttle Radar Telemetry Mis-

sion (SRTM) digital elevation map. The model used, DEM3, has global coverage at 90 meter spatial resolution2, extending100

the original SRTM which is limited to latitudes of 56◦S to 60◦N. The solar reference spectra used for the retrieval is compiled

from the full resolution spectrum of Kurucz (1994).

Absorption cross sections come from the HITRAN 2008 database for spectroscopic parameters (Rothman et al., 2009).

Apriori column density profiles for CO2 and CH4 we take from TM5 (Huijnen et al., 2010) and TM4 (Meirink et al., 2006)

model simulations respectively. For the XCH4 Proxy product, XCO2 data is used from the CAMS global inversion-optimised105

greenhouse gas concentrations of Chevallier (2010). These are surface air-sample instantaneous 3 hourly mean columns on

1.9◦ × 3.75◦ grids.

3 Retrieval

RemoTeC is a retrieval algorithm developed for the retrieval of trace gas column-averaged dry air mole fractions from measured

level 1B radiance spectra in the NIR and SWIR bands. It has been used extensively for the retrieval of trace gases from GOSAT110

observations to produce the SRON XCH4 and XCO2 data products (Butz et al., 2009, 2010), as well as the operational products

of TROPOMI (Hu et al., 2016, 2018; Lorente et al., 2021) and SCHIAMACHY (Frankenberg et al., 2005, 2011; Dils et al.,

2006, 2014) . Below we outline the retrieval approach. The same approach is also used to generate the GOSAT-2 data products.

1https://catalogue.ceda.ac.uk/
2http://www.viewfinderpanoramas.org/dem3.html
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An XCH4 Full Physics product is obtained using the scattering forward model, and an XCO2 Full Physics product is ex-

tracted from the same retrieval. Furthermore another XCH4 product (the Proxy product) is obtained with the non-scattering115

forward model. For the Full Physics approach, light scattering by cirrus and aerosol particles is accounted for in the forward

model. For the Proxy retrieval, scattering is neglected and hence atmospheric scattering properties do not need to be calculated

(Butz et al., 2009).

An example of a single, typical GOSAT-2 measurement is shown in Figure 1 in which the spectral fits per band are presented

for a high quality, cloud free scene in the Full Physics retrieval setup. The SWIR-1 window is split into two to retrieve total120

columns of CO2 and CH4 separately from band 2a and band 2b, respectively.

3.1 Forward Model

Both the scattering and non-scattering forward models have the same general concept in common which we outline here.

The atmospheric state vector, x, is related to the measurement vector, y, through a forward model, F, which in the following

equation:125

y = F (x,b)+ ϵy + ϵF (1)

where ϵy and ϵF are the error contributions from the measurement noise and forward model respectively, and b is the

ancillary vector containing parameters that are not retrieved. In order that the retrieval can be solved iteratively, the forward

model must be linearised. For iteration step n the linearised forward model is approximated by:

F (x,b) = F (xn,b)+K(x−xn) (2)130

where xn is the state vector for the n-th iteration step and K is the Jacobian matrix at position xn defined by:

K =
∂F

∂x
(3)

The inversion method optimises the state vector x with respect to the measurement y after applying the forward model F

to x. The inversion method is based on the Tikhonov regularization scheme (Philips, 1962; Tikhonov, 1963; Hasekamp and

Landgraf, 2005). Regularisation is required because the inverse problem is ill-posed (the measurements y typically contains135

insufficient information to retrieve all state vector elements independently). The inverse algorithm finds x by minimising the

cost function that is the sum of the least-squares cost function and a side constraint weighted by the regularisation parameter γ

according to

x̂= x
min

(||S1/2
y (F (x)−y)||2 + γ||W (x−xa)||2) (4)
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Figure 1. left panels: A single GOSAT-2 measurement for the near-infrared (band 1), SWIR-1 (band 2) and SWIR-3 (band 3) spectral

windows (blue), along with the converged model (orange). right panels: The difference between the measurement and model shown on the

left panels. The noise level is indicated by the black dashed lines.
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where Sy is the diagonal measurement error covariance matrix, which contains the noise estimate, xa is an a priori state140

vector, and W is a diagonal weighting matrix.

3.2 Proxy Approach

The Proxy approach is based on a non-scattering retrieval, thus the runtime of processing is around a factor of 4 faster than the

Full Physics retrieval. Furthermore, many of the errors in the retrieval, including those due to aerosol, cancel out (Butz et al.,

2009; Schepers et al., 2012) following the equation:145

XCH4 =
[CH4]

[CO2]
XCO2,model (5)

which determines XCH4 from the retrieved total columns [CH4] and [CO2]. Here, the assumption is that the light path

modification by scattering particles such as aerosols is the same for CH4 and CO2 (Schepers et al., 2012). [CH4] and [CO2]

are total columns retrieved from SWIR-1 at 1.6 µm, and XCO2,model is the total column dry air mixing ratio of CO2 from an

atmospheric model, on the same grid as GOSAT-2 observations. The main source of uncertainty in this approach is therefore150

XCO2,model, thus the accuracy of the XCH4 Proxy product is limited by the accuracy of the XCO2 model.

The state vector of the Proxy retrieval contains CO2 and CH4 sub-columns in 12 vertical layers, H2O total column, Lamber-

tian surface albedo, first order spectral dependence of surface albedo, an intensity offset and first order spectral shifts of Earth

and Sun radiancies (Barr et al., 2024b). We do not retrieve any information about the ILS such as shift or stretch parameters.

3.3 Full Physics Approach155

The Full Physics retrieval uses a three-window approach retrieving information from the NIR, SWIR-1 and SWIR-3 bands.

The treatment of aerosol in the Full Physics approach leads to more accurate retrieved total columns of trace gases, however

the radiative transfer calculations are computationally expensive. The state vector of the Full Physics retrieval is the same as

for the Proxy retrieval with additional parameters related to aerosol properties. For a full description of the state vector and the

priors see Section 3.3 of Barr et al. (2024a).160

Aerosols are characterised by three parameters which relate to the aerosol column and size distribution of particles. The

height distribution is approximated as a Gaussian function of centre height, zaer and width ω0:

h(zk) =N · exp
[
− 4ln(zk − zaer)

2

(2ω0)2

]
(6)

Here, N is the total amount of particles and zk is the layer height. The size distribution is parameterised by a power law

function following:165
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n(r) =


A for r ≤ r1

A(r/r1)
−α forr1 < r ≤ r2

0 for r > r2

(7)

where r1 = 0.1 µm, r2 = 10 µm and the constant A is determined from normalisation of the size distribution. N , α and zaer

are included in the Full Physics state vector.

3.4 Bias Correction

A bias correction is applied post-retrieval to XCO2 and XCH4 using TCCON as a truth, for which we use the GGG2020 release170

(Laughner et al., 2023). For land retrievals, the bias correction of RemoTeC is a simple empirical relation between XCH4 and

the retrieved albedo at 1600 nm, defined by:

Xcorr = Xret(a+ bα) (8)

where Xret and Xcorr are the bias corrected and retrieved concentrations respectively, α is the retrieved albedo at 1600 nm

and a and b are determined such that the difference with TCCON is minimised.175

For the retrieval with the Proxy approach, the bias correction is all contained in the a variable of the fit (equation 8), therefore

it is purely a constant bias correction, whereas the Full Physics approach has more contribution from the linear part of the fit,

captured by the b parameter. This can be understood as confusion between albedo and aerosol effects in the retrieval, both of

which lead to large scale wavelength features in the spectrum.

4 Quality Filtering180

A key step in the retrieval process is the post-processing quality flagging. Data from GOSAT are flagged using a selection of

retrieval parameters, such as signal-to-noise ratio or chi-squared, and any data that do not lie within a specified range of these

parameters are flagged as bad quality. This method offers a binary quality flag and is described further in section 4.1.

Given the rapidly growing capabilities of machine learning techniques, algorithms such as random forest classifiers (RFCs)

provide a much more promising way of filtering satellite global data products. We have applied such a flagging technique to185

the GOSAT-2 data (see section 4.2). The quality flag of GOSAT-2 takes the form of a quality assurance (QA) value that ranges

between 0 and 1, with 0 corresponding to the best quality data. Therefore, users should quality filter their data by taking QA

values less than, or equal to, the desired value.

4.1 Threshold Criteria Approach

Extensive investigations have been conducted to identify effective retrieval parameters, or combinations of parameters, that are190

correlated with the quality of XCH4 or XCO2 and that can be used to flag bad data, while at the same time maximising the
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Table 1. List of threshold conditions to quality filter GOSAT-2 data. The filters marked with an asterisk do not apply to the Proxy product.

Filter Description criteria

1 χ2 of spectral fit χ2 < 12.0

2 number of iterations Niter Niter < 31

3 signal-to-noise ratio (SNR) at band continuum SNR > 50

4 variance σsurf of surface elevation σsurf < 100 m

5 solar zenith angle (SZA) SZA< 75◦

6∗ aerosol optical thickness (τaer) in NIR window τaer < 1.0

7∗ aerosol size parameter reff 3 < reff < 6

8∗ aerosol layer height zaer 0 < zaer < 10,000 m

9∗ aerosol parameter ω 0 < ω < 3e4

10 blended albedo Abld 0 < Abld < 1.4

11 cirrus radiance signal Icir 0< Icir < 2.0 · 10−9 [W cm/(m2 s str]

12 CO2 column ratio rCO2 0.99 < RCO2 < 1.018

13 H2O column ratio rH2O 0.95 < RH2O < 1.08

14 O2 column ratio rO2 0.96 < RO2 < 1.04

amount of good quality retrievals (Butz et al., 2010; Schepers et al., 2012). Such a set of criteria have been established also for

GOSAT-2 and are listed in Table 1.

Criteria 6 to 9 are excluded for the Proxy product, since these are not in the state vector of the retrieval. Butz et al. (2010)

defined the aerosol parameter as ω = τaer×1/reff×zaer (Schepers et al., 2012). The blended albedo in criterion 10 is defined as195

Abld = 2.4 ·A(0.76µm)−1.13 ·A(2.0µm) with the retrieved albedos A(0.76µm) and A(2.0µm) at the indicated wavelengths

(Wunch et al., 2011). Guerlet et al. (2013) investigated the use of the cirrus radiance for data filtering, which is defined as the

mean radiance in the spectral range 5154.8–5157.8 cm˘1 (1.9388-1.9399 µm). The use of the column ratios for data filtering

was first proposed by Taylor et al. (2016) based on the difference in the non-scattering retrieved column from a weak and strong

absorption band. For this purpose, in criteria 12 and 13, we use the CO2 and H2O ratios inferred from the 1.6 µm and 2.0 µm200

spectral range. Finally, O2 ratio is the retrieved O2 column divided by the prior derived from the ECMWF surface pressure

estimate.

4.2 Machine Learning Approach

An alternative approach to quality flagging with threshold criteria, as applied on GOSAT, is to use machine learning in the

form of a random forest classifier (RFC). To this purpose, we use the RandomForestClassifier tool within Python’s SciKit205

Learn package (Pedregosa et al., 2011).

A random forest model utilises an ensemble of N decision trees, which take a random subset of the available features and

each make a decision on the target classification (Breiman, 2001). The final result of the model is taken as the majority chosen
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class. This is ultimately applied to each ground pixel of GOSAT-2 data using a set of features consisting of RemoTeC retrieval

parameters, to predict the quality of the retrieval. We use separately trained models for each of the three data products, which210

will be described in more detail in section 4.2.1.

4.2.1 RFC training using TCCON data

For the quality classification of our data product, we use a trained RFC. The supervised form of learning requires a labeled

training dataset. To this end, we need knowledge of a "ground truth" and the best estimate of the true value of XCH4 and XCO2

comes from TCCON. Therefore, in order to determine the true label for the quality flag, we use GOSAT-2 level 2 data from215

measurements that are colocated in space and time with TCCON sites, and classify the training sample via the bias:

|∆X|<XT : label LXT
= 0 (good) (9)

|∆X|>XT : label LXT
= 1 (bad) (10)

with the biases ∆XCH4 = XCH4,GOSAT-2 - XCH4,TCCON, and ∆XCO2 = XCO2,GOSAT-2 - XCO2,TCCON. XT we name the training

threshold and takes the form of e.g. ± 18 ppb for ∆XCH4. A label L of 0 corresponds to a good-quality retrieval, and a label of220

1 means a bad-quality retrieval. For all training and validation, we use the TCCON GGG2020 release (Laughner et al., 2023).

A consequence of training the random forest model on GOSAT-2 colocations with TCCON is that retrievals with surface

albedo ⪆ 0.4 were underrepresented in the training sample, due to the lack of TCCON stations in high albedo areas. This

would lead to albedo-related biases when using such models to filter the global dataset. To avoid this, we defined a subsample

of retrievals with albedo > 0.4 to include in the training set, using the threshold filtering criteria in Table 1.225

Example ranges of albedo, along with several other geophysical parameters, covered in the combined training set are illus-

trated in Figure 2 for LXT = 0. A pre-flagging step is also applied which labels training data based on nonphysical values of

albedo. The presence of retrievals with negative aerosol central height, or high optical depth (Fig 2), in the training set for high

quality retrievals suggests that the training process may be improved by an stricter pre-flagging which includes aerosol related

properties.230

In this study, we limit the quality filtering of GOSAT-2 data using the machine learning approach to retrievals over land

only, due to the lack of available training data over ocean. We note that this limiting factor would not apply to satellite data

from push-broom spectrometers that have better spatial coverage, such as TROPOMI (Hu et al., 2016, 2018). Instead, we filter

retrievals performed in glint mode over the ocean also following Table 1. Retrievals over ocean are discussed further in section

A in the Appendix.235

TCCON XCH4 and XCO2 data are also used to validate the final product (see section 5.1). Due to the supervised learning

approach, utilising TCCON data in training the filtering models means that these data can no longer be quality filtered with-

out receiving what was defined during training. Since the training data also comprise the validation data, this would lead to

artificially choosing validation results, therefore compromising any independent validation with TCCON using the assigned

quality flags. To avoid this, we train different filtering models, one year at a time, where the data from the year to be predicted240

are excluded from training. This results in one filtering model per year of data. Here we assume that the relationship between
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retrieval quality and features is temporally independent. The robustness of this assumption is reflected in Figure 2 which shows

a feature importance analysis of the different models for the XCH4 Full Physics product. We see that there is, in general, little

variation in the order of features over the different years, with the top four features always being the most important, showing

that the models are all very similar.245

4.2.2 RFC Prediction Performance

To evaluate our classification for the three products, we consider the performance of the RFCs by comparing its predicted

labels to the true labels given by the elements of the confusion matrix (Liang, 2022): the False-Positive (FP), the False-Negative

(FN), the True-Positive (TP), and True-Negative (TN). Here the terms ’true’ and ’false’ refer to a correct or wrong prediction,

’positive’ and ’negative’ to the bad and good label of the predicted data. From these, we evaluate the classification using the250

following metrics:

1. The true-positive-rate TPR is defined as

TPR =
TP

TP+FN
. (11)

and measures the number of correctly identified positive instances out of all true positive instances.

2. The False-Positive rate (FPR) is the corresponding rate of False Positive with respect to all true negative instances,255

FPR =
FP

FP+TN
. (12)

A binary classification model predicts the probability of an instance belonging to one of the two classes depending on the

classification threshold, which we name pt. Varying pt, leads to the Receiver-Operating Characteristic curve (ROC) (Bradley,

1997), which is a parametric curve of FPR(pt) versus TPR(pt). For a large threshold (pt → 1), TPR goes to one, but so does

the FPR. In the other extreme for pt → 0, both TPR and FPR go to zero. Therefore, the more the ROC curve goes through the260

top-left quadrant of the diagram, the better the classifier. This is characterized by the area under the ROC curve (AUC). We

assume a value of 0.5 for pt for all classification models.

Figure 2 compares the ROC curves of the XCH4 Full Physics classification models to the XCH4 Proxy ones. There is no

clear differentiation between the ROC curves of each product, implying that the models for each year perform comparably to

each other. Average metrics over all models per product are given in Table 2. From this we see that the performance of the265

RFC models for the two Full Physics products are similar - which is intuitive given that these come from the same retrieval -

whereas the diagnostics for the Proxy product are slightly worse.

Such an effect can be understood by the nature of the Proxy approach and as a consequence of equation 5, where most

of the systematic error is divided out by dividing the two columns of CH4 and CO2. Consequently, the distinction between

high quality and low quality retrievals is much more obvious in the Full Physics case. Quantitatively, the ratio of good to bad270

retrievals in the training data is about 0.3 for the Full Physics products, whereas for the Proxy it is 1.6. It is therefore easier to

accurately label the training sample in the Full Physics RFC models, leading to better performance metrics.
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Figure 2. (a) Histograms from the XCH4 Full Physics filtering model for 2019, showing the ranges covered for various geophysical param-

eters in the training dataset, for good quality examples. Cirrus signal is given in units of mol. m−2 s−1 nm−1 sr−1. Note that the albedo at

1629 nm is not used as a feature for training. (b) ROC curves for the different filtering models of the Full Physics XCH4 product and Proxy

XCH4 product, in solid and dotted lines respectively. The solid grey line indicates the performance of a randomly guessed prediction, with a

50 % chance of being correct. (c) Feature importance of the XCH4 Full Physics quality filtering models. The window numbers 1, 2, 3 and 4

correspond to the spectral bands 1, 2a, 2b and 3 of Figure 1, respectively. For the definitions of other features see section 4.1

4.2.3 The QA value

In the random forest models, the strictness of the training threshold, XT , defined when labelling the training dataset (equations

9 & 10) has a directly proportional effect to the number of retrievals ultimately classed as good quality, as well as the scatter275
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Table 2. Summary of classification metrics averaged over all years for pt=0.5.

Product TPR FPR AUC

XCO2 Full Physics 0.90 0.42 0.89

XCH4 Full Physics 0.89 0.44 0.89

XCH4 Proxy 0.64 0.14 0.83

of the total column mixing ratio with respect to TCCON. Figure 3 shows the number of good retrievals as a function of the

RMSE with TCCON derived for different training thresholds XT and the depicted positive trend is intuitively expected. This

allows us to define a non-binary quality flag that is grounded in TCCON validation. XT is chosen to probe the steepest part of

the curves in Figure 3, thus maximising the improvement that can be extracted from the machine learning filtering approach.

Starting with a set of n threshold values XT1 , · · ·XTn we can assign the label vector L= (L1, · · ·Ln) with Li = LXTi
as280

defined in Eq. 9. We define the QA value of a data point by the mean value of the components of the corresponding label vector

L,

QA= ⟨L⟩ (13)

QA can have n+1 discrete values in the range [0,1] depending on the number n of used threshold values XT . For GOSAT-2,

we use n= 5 with QA ∈ [0,1/5,2/5, · · · ,1].285

For reference, Figure 3 also shows the results of filtering GOSAT-2 data using the thresholding defined in Table 1. For

the Full Physics products, the new filtering can achieve an increase in data yield of ∼ 48 % and 85 % for XCH4 and XCO2

respectively, for equivalent RMSE. Alternatively, an improvement in RMSE of 2.2 ppb and 0.7 ppm for XCH4 and XCO2

respectively can be achieved for equivalent data yield. The larger improvement for XCH4 compared to XCO2 is a reflection of

the less optimal choice of the arbitrary threshold criteria for XCO2 (Table 1). For the Proxy product this can be 1.6 ppb for the290

same amount of data, or conversely, an increase of 29 % in data yield for the same RMSE. Thus user can therefore choose the

option of more data, which may be advantageous to plume detection where better coverage is desirable, or better quality data,

where as small as possible systematic biases are required by atmospheric modellers. Furthermore, with Figure 3, the user may

choose the QA value which corresponds to their acceptable RMSE with TCCON.

5 Validation and Satellite Inter-comparison295

5.1 TCCON Validation

TCCON is central to the work presented here as it provides both the ground truth in labeling training data, as well as one of

the main validation sources. In this article, all references to TCCON are for the GGG2020 TCCON release (Laughner et al.,

2023). The TCCON stations used in the analysis are summarised in the Appendix in Table B1.

13



Figure 3. Number of retrievals flagged as good for five different thresholds, as a function of the RMSE derived by the TCCON validation.

The mean QA value per data ensemble is given by the color code. Results for XCH4 are shown on the top panel, where the RFC filtering

models for the Proxy and Full Physics product are represented by the dashed and solid lines respectively. On the bottom panel are the results

for the XCO2 filtering models. The red squares and triangles mark the parameter space for the statistics of filtering the data product according

to Table 1.

In this section, we present the validation of our GOSAT-2 data products with respect to TCCON. TCCON sites are considered300

only if there are more than 50 spatio-temporal colocations with GOSAT-2 over the whole time-series, defined as overlying

within a radius of 300 km and time range of ± 2.5 hrs. We evaluate the data products for the QA value of 0 (strictest filtering

with RFC models; see section 4.2.3).

Figure 4 shows the correlation between colocated GOSAT-2 and TCCON data for XCO2 and both XCH4 products. These

are single soundings of GOSAT-2 over land compared to an average of the TCCON measurements that coincide spatially and305

temporally. For XCH4 we derive a RMSE of 15.2 ppb and 15.7 ppb for the Full Physics and Proxy products respectively, and

Pearson’s correlation coefficient of 0.89 and 0.88 for the Full Physics and Proxy products respectively. For XCO2 these are 2.1

ppm and 0.88 respectively. For some stations, lines of data points in the x-axis direction are observed in Figure 4, which arise
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from comparing daily averaged TCCON measurements to single soundings from GOSAT-2, indicative of bias with geolocation

around a given site.310

Time-series of GOSAT-2 colocations with TCCON for each product are shown in the Appendix section B. Following Noël

et al. (2022), we further parameterise the bias over time as:

∆X = a0 + a1t+ a2sin(2πt+ a3)+ ϵ (14)

where equation 14 is fit to the time-series of the bias with each station individually. a0 is a constant bias term, a1 represents

a linear term, a2 measures the amplitude of the seasonal variation of the bias, a3 measures the temporal shift of the seasonal315

term, and ϵ is an error term.

The parameters in Table 3 are extracted from fits of equation 14 to the time-series of the bias for all TCCON stations. We

illustrate an overview of the per station statistics in terms of site and seasonal bias, as well as linear drift in the bias, in Figures

5 to 7. ∆site is the site bias and defined as the mean of ∆X from equation 14 and ∆seas is the seasonal bias and defined as

the standard deviation of the seasonal (sine) term in equation 14. Finally, ∆dri is the linear drift and is calculated as a1 from320

equation 14.

For the Full Physics products, we derive average values of the site bias of -0.1 ppb and -0.2 ppm for XCH4 and XCO2

respectively, after bias correction. The seasonal bias term is higher for both products with 4.0 ppb and 0.6 ppm for XCH4

and XCO2 respectively. For the Proxy product, the average site bias and seasonal bias are 0.2 ppb and 3.1 ppb respectively.

We exclude the station-averaged ∆site from Table 3 as it is by definition close to zero due to the bias correction. Before bias325

correction, the mean bias over all stations is 7.2 ppb and 13.3 ppb for the XCH4 Full Physics and Proxy products, respectively.

Thus, averagely speaking, the Full Physics retrieval approach is closer to the truth than the Proxy apporoach, before bias

correction.

From Table 3 we also report a linear drift of 0.6 ppb yr−1 and 0.2 ppm yr−1 for XCH4 and XCO2 respectively, for the Full

Physics products. For the Proxy product the average linear drift is 1.2 ppb yr−1. Another important metric of the systematic330

error is the station-to-station bias. This is defined as the standard deviation of the individual site biases, in contrast to the RMSE

which is the standard deviation of all the differences together. We report station-to-station bias of 0.5 ppm, 4.2 ppb and 3.7

ppb for XCO2, XCH4 Full Physics and XCH4 Proxy, respectively. The site-to-site biases and linear drift terms are low, and

below the breakthrough systematic error threshold requirements (GCOS, 2016), which is an essential characteristic of the data

product for determining regional scale sources and sinks through flux inversion modelling.335

We find that the difference between the average station RMSE and that calculated from the sample of GOSAT-2/TCCON

differences as a whole can be significant. The RMSE for XCH4 Full Physics taking all data as one sample is 15.2 ppb, however

the average of the individual station RMSE is 13.1 ppb. From Figure 5, Caltech and Edwards have RMSE over 15 ppb,

however the disproportionately high number of collocations (together constituting 40 % of the data points) skew significantly

the statistics towards these stations. The location of these two stations in the Californian desert means more clear sky conditions,340

therefore a better coverage in the TCCON timeseries. Furthermore, the mid-latitude in the Northern hemisphere is favourable
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Figure 4. GOSAT-2 XCO2 (top), XCH4 Full Physics (middle) and XCH4 Proxy (bottom) plotted against TCCON, for retrievals over land.

Data are compared only if they are fully colocated in space and time. The standard deviation of the population, Pearson’s correlation

coefficient and number of retrievals are given in the inset. The legend plots the different TCCON stations where markers are as follows.

Stations that are along the coast and also sensitive to glint mode (ocean) measurements are indicated as circles. Those that have high latitudes

in the northern and southern hemispheres are upward triangles and crosses, respectively. Stations in Asia, North America and Europe are

indicated by squares, pluses and downward triangles respectively.

16



Table 3. Summary of the main statistics of GOSAT-2 product validation with TCCON. RMSE is the root mean square error, ∆dri is the

linear drift and ∆seas is the seasonal bias, averaged over all stations. σsite is the station-to-station bias.

XCH4 Full Physics XCO2 Full Physics XCH4 Proxy

RMSE ∆seas ∆dri σsite RMSE ∆seas ∆dri σsite RMSE ∆seas ∆dri σsite

(ppb) (ppb) (ppb yr−1) (ppb) (ppm) (ppm) (ppm yr−1) (ppm) (ppb) (ppb) (ppb yr−1) (ppb)

13.1 4.0 0.6 4.2 2.0 0.6 0.2 0.5 14.7 3.1 1.2 3.7

to our GOSAT-2 products from RemoTeC. The combination of these two factors leads to much higher colocations than other

stations, however they are know to be difficult for measuring GHG concentrations (Hedelius et al., 2017; Schneising et al.,

2019). Taking this into consideration, we consider the values for XCH4 in Figure 4 an upper limit. For the Proxy product the

effect on RMSE is less although still notable, with 15.7 ppb compared to 14.7 ppb when taking the station-averaged RMSE.345

Despite the lower performance of filtering models for the Proxy product compared to the Full Physics ones (section 4.2.2),

the level 2 quality of the Proxy XCH4 product presented in Table 3 is effectively as good as the Full Physics XCH4 product,

with the advantage of better data coverage. This can be understood by the ratio of FP/FN, for which in the case of Full Physics

is 1:1, is 2:1 for the Proxy. The higher number of FPs lead to a poorer ROC curve, however in terms of the problem of quality

filtering, FNs are more detrimental to the level 2 quality, since they correspond to ground truth bad data flagged as good.350

For the operational GOSAT-2 products, Yoshida et al. (2023) report RMSE with respect to TCCON of 1.8 ppm and 8.9 ppb

for XCO2 and XCH4 respectively, across a time range of March 2019 to Dec 2020. Also, they derive station-to-station bias of

0.71 ppm and 2 ppb for XCO2 and XCH4 respectively. We note the short time-series these values are derived from. Noël et al.

(2021) find RMSE and station-to-station bias of 1.86 ppm and 1.14 ppm respectively, for XCO2. For XCH4, station-to-station

biases of 4 to 6 ppb and RMSE of around 12 ppb are reported, for the and Full Physics and Proxy products Noël et al. (2022).355

The authors note that, due to the short time-series, these results are drawn from only seven TCCON stations, some of which

span only a few months.

5.2 GOSAT Inter-comparison

The similarity in the setup of GOSAT and GOSAT-2, along with the wide use of GOSAT in the scientific literature, make

them ideal candidates for satellite inter-comparison. We compare our GOSAT-2 Full Physics products with the corresponding360

GOSAT products from RemoTeC, version 2.3.8, over time frame of 2019 to 2023. For the Proxy product comparison, we

compare our GOSAT-2 XCH4 Proxy product to that of GOSAT version 2.3.9.

The data from the two satellites are matched by re-gridding XCH4 to 2◦×2◦ lat/lon boxes, per day. A colocation is considered

when there are data from each satellite in the same grid cell for a given day. GOSAT data are quality filtered using the filters

listed in Table 1 with slightly different values, thus RFC filtering is applied only to GOSAT-2. We present comparisons only365

for the GOSAT-2 QA value of 0.
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Figure 5. Overview of the bias parametrisation for the Full Physics XCH4 product, per station. Shown in blue is the RMSE, red the site bias

∆site, green the linear drift ∆dri, yellow the seasonal bias ∆seas and in purple the number of retrievals. Values for GOSAT-2 are shown in

bold bars, and those of GOSAT are in light bars. Stations are listed in order of decreasing latitude. Missing bars correspond to less than 50

colocations for that station, therefore we do not calculate the values there. We note that the site bias for GOSAT-2 at Bremen is close to zero.
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Figure 6. Overview of the bias parametrisation for the Full Physics XCO2 product, per station. Shown in blue is the RMSE, red the site bias

∆site, green the linear drift ∆dri, yellow the seasonal bias ∆seas and in purple the number of retrievals. Values for GOSAT-2 are shown in

bold bars, and those of GOSAT are in light bars. Stations are listed in order of decreasing latitude. Missing bars correspond to less than 50

colocations for that station, therefore we do not calculate the values there.
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Figure 7. Overview of the bias parametrisation for the Proxy XCH4 product, per station. Shown in blue is the RMSE, red the site bias

∆site, green the linear drift ∆dri, yellow the seasonal bias ∆seas and in purple the number of retrievals. Values for GOSAT-2 are shown in

bold bars, and those of GOSAT are in light bars. Stations are listed in order of decreasing latitude. Missing bars correspond to less than 50

colocations for that station, therefore we do not calculate the values there.
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Figure 8. GOSAT-GOSAT-2 comparison for the GOSAT-2 XCH4 Full Physics product. Maps are shown of XCH4 over the year 2020

averaged onto 2◦ × 2◦ boxes for GOSAT and GOSAT-2 on the left and right respectively.

From the global maps of the XCH4 Full Physics product in Figure 8, the superior coverage of GOSAT-2 is striking; a

consequence of the intelligent pointing system to avoid cloudy scenes. Maps for the other two products are shown in Figure

C1 in the Appendix. We further analyse how the GHG concentrations compare, illustrated as kernel density estimation (KDE)

plots, analysing data over land only. The scatter of satellite differences is 14.5 ppb, similar to the RMSE of the bias with370

TCCON (13.1 ppb; see section 5.1). We find a large average global bias of -15.2 ppb, which we discuss further in section 5.3.

For the Proxy XCH4 product, the comparison between GOSAT and GOSAT-2 is better than the Full Physics product. The

average global bias is only -5.3 ppb, and the standard deviation and correlation coefficients are 13.5 ppb and 0.9 respectively.

For XCO2, the correlation between GOSAT and GOSAT-2 is weaker, with a coefficient of 0.64 compared to 0.88 for XCH4.

This difference is expected, as CO2’s longer atmospheric lifetime leads to greater large-scale diffusion, reducing correlation375

strength. The scatter of the differences is 2.9 ppm, slightly higher than the GOSAT-2 RMSE with respect to TCCON of 2.0

ppm, and we find a bias of 0.9 ppm.

Furthermore, we plot time-series of GOSAT and GOSAT-2 globally, and for the three latitude bands of Northern/Southern

Hemispheres (NH & SH) and the Tropics in Figure 10. These are defined as 0◦ to 60◦N for NH, −25◦N to 25◦N for the

Tropics, and −60◦N to 0◦ for SH.380

The globally averaged seasonal cycles of XCH4 Full Physics follow each other well between April and August, but from

September to March, the GOSAT one peaks at higher values. This characteristic is representative of the Tropics and SH time-

series, however for the NH time-series, the GOSAT time-series is consistently higher by approximately 15 ppb.

For the time-series of the Proxy products, we find that the satellite time-series correlate well with each other. The seasonal

cycles follow each other closely in all latitude bands, however the bias begins positive but then switches around the halfway385

point of the time-series.

For XCO2, the time-series in the NH follow each other closely until mid-2020 after which the GOSAT time-series in con-

sistently higher than GOSAT-2. The SH time-series agree well over the whole time-series, but that of the Tropics is less

pronounced in GOSAT-2 with larger seasonal fluctuations exhibited for GOSAT.
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Figure 9. Correlation between GOSAT and GOSAT-2 shown as a kernel density estimation (KDE) plots for each data product. Plots for

XCH4 Full Physics, XCO2 Full Physics and XCH4 Proxy are shown from left to right, respectively. The mean bias, standard deviation,

number of points and correlation coefficient of the population are also quoted. Histograms of the number of counts are shown around the

margin, along with the linear regression and the 1-to-1 lines in black and grey respectively. Results are for soundings over land.

Comparing the TCCON validation for the GOSAT-2 data products to those of GOSAT (Figs 5 to 7), we find that generally390

the RMSE is lower for GOSAT-2 than GOSAT across all stations, while the number of retrievals is higher for GOSAT-2. We

observe that the site bias is smaller for GOSAT-2, with GOSAT showing some significant biases with respect to TCCON,

whereas the linear drift is more variable between the two satellites. We note here that we compare data products from GOSAT

and GOSAT-2. We do not comment on the performance of one satellite over another as the data products use different quality

filtering methods. A more concrete comparison could be made by applying RFC quality filtering to GOSAT, however this is395

out of the scope of this paper.

5.3 TROPOMI Intercomparision

The fact that the RFC quality filtering models are trained on the spatially limited dataset of TCCON implies that understanding

how well the models - and thus also the filtering - generalise to the global GOSAT-2 dataset, is of high priority. This is reinforced

when considering that the validation data and the training data constitute essentially the same representation of data, which400

may lead to biases that would not be picked up by validation with TCCON only. Central to the performance of the models is

the behaviour exhibited in Figure 3. Therefore if such behaviour is exhibited also on global scales, this is good confirmation

that the quality filtering performs equivalently on the global dataset as it does on data colocated with TCCON.

Here we inter-compare our GOSAT-2 product against the TROPOMI operational product, version 2.4.0, and evaluate the

performance of the quality filtering on global scales. The TROPOMI product was pre-filtered with VIIRS cloud product using405

the strictest filter of cloud fraction < 0.001, and quality filtered using nominal quality flags. The same colocation criteria are

used as for the GOSAT inter-comparison. We note that since no XCO2 product exists for TROPOMI, the inter-comparison here

is limited to the XCH4 products.
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Figure 10. Time-series of the GOSAT and GOSAT-2 RemoTeC products. The XCH4 Full Physics, XCO2 Full Physics and XCH4 Proxy

products are shown from left to right. GOSAT-2 data are shown as solid lines, whereas GOSAT data are shown as dashed lines. The upper

panels give the globally averaged monthly time-series. The lower panels give the same but split into the different latitude bands of NH, SH

and Tropics. For XCH4, the time-series of the Tropics are shifted up by a constant factor of +50 ppb for better visualisation. For XCO2, the

time-series of the Tropics is shifted by +20 ppm and the SH by -10 ppm.

Figures 11 and 12 illustrate results for the whole of the year 2020, taking GOSAT-2 QA value equal to 0, for the Full Physics

and Proxy XCH4 products respectively. To evaluate the generalisation of the RFC quality filtering to global scales, we give410

results for the other QA values of the GOSAT-2 product in Table 4. Furthermore, because the RFC filtering in GOSAT-2 is only

applied to soundings over land, we restrict the analysis to satellite data over land.

We find that, when considering GOSAT-2 data with QA value of 0, the global systematic bias between GOSAT-2 and

TROPOMI, which we define as XCH4,GOSAT-2-XCH4,TROPOMI, is very low. We derive a global average of the bias of -4.6 ppb

and 1.7 ppb for the Full Physics and Proxy products respectively. The satellite products are highly correlated with correlation415

coefficients above 0.88 and 0.87, and standard deviations of 15.0 and 16.6 ppb of XCH4 Full-Physics and Proxy data. Here

we note that the TROPOMI operational product uses a different bias correction to GOSAT-2. The TROPOMI bias correction

is based on the small area approximation (Lorente et al., 2021; O’Dell et al., 2018) taking a uniform XCH4 distribution as a

function of albedo in multiple regions, whereas the GOSAT-2 bias correction is based on TCCON data (equation 8).

A key result shown in Table 4 is that the QA value increases proportional to the scatter of the GOSAT2-TROPOMI differ-420

ences and number of data points. This is a good reflection of the behaviour represented in Figure 3, meaning that, despite the

fact that the quality filtering models are trained on the spatially limited dataset of TCCON, they generalise well to the global

ensemble. For reference, the statistics of the TCCON validation of every GOSAT-2/TCCON colocation are also given in Table

4, for each QA value. σTCCON is calculated as the average RMSE over all stations. The bias for the GOSAT-2 Full Physics

product systematically increases with QA value. That of the Proxy product looks to decrease, however the change of 0.7 ppb425

can be treated as negligible.

From the global maps, significant differences between TROPOMI and GOSAT-2 are obvious over Northern/Central Africa,

and we speculate that these differences may be attributed to dust and burning events that lead to high aerosol load, thus making
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the retrieval more difficult. This conclusion would be consistent with the fact that the biases are larger for the Proxy GOSAT-2

product than the Full Physics product, in which aerosols are better characterised. The reason for low coverage and high bias430

over the Amazon can be a result of low surface albedo and observations that are contaminated by high water vapour.

To ascertain whether the different labelling of training data in the RFC filtering models introduces a differently biased data

product depending on the albedo, we also looked at soundings with albedo greater than 0.4 only. Here we exclude North

Africa due to the large apparent biases. We find average differences of -2.6 ppb and -2.1 ppb for the Full Physics and Proxy

and products, respectively. These results are very similar to those in Table 4, implying that the quality filtering is consistent435

throughout the entire albedo range.

The aggregate global difference between TROPOMI and GOSAT-2 is close to zero, in contrast to what we observe for

GOSAT. Systematic biases of -13 ppb are found between TROPOMI and GOSAT for a global average (Hu et al., 2018;

Lorente et al., 2021). A similar bias is found, in both sign and magnitude, between GOSAT and GOSAT-2 (section 5.2). We

propose therefore that the bias observed between GOSAT and GOSAT-2 comes from systematic biases in the GOSAT XCH4440

products, consistent with the results of TCCON validation presented in Figures 5 and 7.

Table 4. Overview of inter-comparison of XCH4 between GOSAT-2 and TROPOMI. Information for all QA values available to GOSAT-2 are

given. ∆XCH4 is the mean bias with TROPOMI, σTROPOMI and NTROPOMI are the scatter and number of TROPOMI-GOSAT-2 colocations

respectively, and NTCCON is the number of TCCON-GOSAT-2 colocations, with σTCCON the RMSE of the bias between GOSAT-2 and

TCCON.

XCH4 Full Physics

QA value ∆XCH4 (ppb) σTROPOMI (ppb) NTROPOMI NTCCON σTCCON (ppb)

0 -4.6 15.0 22,863 17,250 13.1

0.2 -4.8 15.4 29,539 22,635 13.7

0.4 -5.3 16.5 38,049 28,943 15.3

0.6 -5.7 17.4 43,059 32,309 16.6

0.8 -6.3 18.5 47,896 34,578 17.7

XCH4 Proxy

QA value ∆XCH4 (ppb) σTROPOMI (ppb) NTROPOMI NTCCON σTCCON (ppb)

0 1.7 16.6 76,353 55,915 14.7

0.2 1.8 17.3 77,540 63,248 15.3

0.4 1.5 18.2 88,983 67,607 15.8

0.6 1.2 19.0 93,385 70,198 16.1

0.8 1.0 19.7 97,451 71,884 16.4
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Figure 11. GOSAT2-TROPOMI comparison with QA value equal to 0 for the GOSAT-2 Full Physics product. upper left: Map of TROPOMI

XCH4 daily averages colocated with GOSAT-2, over the year 2020, sampled on 2◦ × 2◦ boxes. upper right: Map of GOSAT-2 XCH4 daily

averages colocated with TROPOMI, over the year 2020, sampled on 2◦ × 2◦ boxes. lower left: Map of the difference between satellite data

defined as XCH4,GOSAT-2-XCH4,TROPOMI. lower right: Correlation between all colocated XCH4 measurements over 2020, shown as a kernel

density estimation (KDE) plot. The mean bias, standard deviation, number of points and correlation coefficient of the population are also

quoted. Histograms of the number of counts are shown around the margins, along with the linear regression and the 1-to-1 lines in black and

grey respectively.

6 Conclusions

In this article, we have presented total column mixing ratio data products from GOSAT-2, retrieved with the RemoTeC algo-

rithm. From the two retrieval approaches of RemoTeC, three products are extracted; XCH4 and XCO2 from the Full Physics

retrieval and XCH4 from the Proxy retrieval. The time-series of these products span five years, from 2019 to 2023. All three445

products are validated with TCCON and inter-compared to GOSAT and TROPOMI and the long time-series ensures robust

results from each.
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Figure 12. The same as Figure 11 but for the GOSAT-2 Proxy product.

The RMSE between GOSAT-2 and TCCON of both the XCH4 products is below 15 ppb, with the Proxy product having

more data by a factor of 3, and the RMSE of XCO2 is 2 ppm. We derive station-to-station biases of 4.2 ppb and 0.5 ppm for

the XCH4 and XCO2 Full Physics products respectively, and 3.7 ppb for the Proxy product. Finally we quantify the linear drift450

as 0.6 ppb yr−1, 0.2 ppm yr−1 and 1.2 ppb yr−1 for the XCH4 Full Physics, XCO2 Full Physics and XCH4 Proxy products

respectively.

In comparison to GOSAT, the GOSAT-2 XCH4 Full Physics product shows large differences, with a global average bias of

-15 ppb. This is less so for the Proxy product and on the order of -5 ppb. Compared to TROPOMI, GOSAT-2 is in excellent

agreement, with average global biases of -4.6 ppb and 1.7 ppb for the Full Physics and Proxy GOSAT-2 products respectively.455

High correlation coefficients above 0.85, and standard deviations less than 17 ppb are derived for GOSAT-2 compared to

TROPOMI.

Finally, we present a new quality filtering based on a machine learning approach. Training data for the random forest

classifier models are taken from TCCON colocations with GOSAT-2, where we classify good/bad quality retrievals through
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the bias with TCCON. Since TCCON data are also used to validate the products, we train separate models to quality filter each460

year of data, to avoid compromising any independent validation.

Multiple QA values are implemented by training models with different training thresholds. Increasing the QA value leads to

more data at the cost of worsening the RMSE with TCCON. In this way, users can choose between higher data yield or better

quality data, which may have different advantages depending on the use of the data product.

Appendix A: GOSAT-2 data over Ocean465

Despite the low surface albedo, satellite measurements over ocean are possible when operating the satellite in sunglint mode.

Sunglint observations take advantage of specific viewing angles where the radiance of back-scattered sunlight is higher due to

reflection from waves. This amplifies the albedo, allowing retrievals over ocean to be carried out, where the albedo is generally

too low to retrieve accurate concentrations.

Figure A1 shows XCH4 single soundings over land and ocean spatially averaged in latitude/longitude to 2◦×2◦. Data are for470

6 consecutive days, which is the GOSAT-2 revisit time, thus no temporal averaging occurs. We apply a different bias correction

to retrievals over ocean, although it is very similar to the correction for land retrievals (sec 3.4). Again we use a simple empirical

relation:

Xcorr =Xret(a+ bθ) (A1)

where Xret and Xcorr are the bias corrected and retrieved concentrations respectively, θ is the ratio of the retrieved O2475

column to the prior, and a and b are determined such that the difference with TCCON is minimised. Visually, from Figure A1,

there are no obvious differences between land and ocean with the latitudinal gradient captured in both.

TCCON stations are located only on land, therefore validation of sunglint observations are only possible using stations that

are close to shorelines, or on islands. In this section, the results of the TCCON validation for sunglint mode, for all three

RemoTeC GOSAT-2 products, are presented and shown in Figures A2 to A5.480

Figure A1. Map of XCH4 from the Proxy retrieval for 6 consecutive days (GOSAT-2 revisit time) in Spring on a 2◦ × 2◦ coordinate grid.
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Table A1. TCCON validation of GOSAT-2 data products for stations with measurements over both land and ocean. Stations marked with an

asterisk have fewer than 5 colocations in glint mode, so should be treated with caution.

XCH4 Full Physics XCH4 Proxy XCO2 Full Physics

Station Ocean Bias (ppb) Land Bias (ppb) Ocean Bias (ppb) Land Bias (ppb) Ocean Bias (ppm) Land Bias (ppm)

Burgos -2.4 0.1 -5.7 3.1 1.0 -0.3

Darwin -10.1 -7.6 -3.3 -1.8 -1.5 -1.3

Lauder -0.8 1.4 -4.6 3.5 -0.1 0.3

Rikubetsu∗ -7.1 3.8 -10.6 9.8 3.3 0.1

Saga∗ -6.9 0.4 -1.8 3.5 2.9 0.4

Wollongong -4.1 -3.1 -10.7 1.7 0.9 -0.3

The RMSE for ocean measurements is higher than over land, although correlation coefficients are comparable. For XCH4,

this is more obvious for the Full Physics product, compared to the Proxy product, with 3 ppb difference in RMSE between

ocean and land. We note that such statistics are drawn only from a handful of TCCON stations due to the limited availability of

TCCON data close to the ocean. As mentioned in section 4.2.1, GOSAT-2 measurements in sunglint mode are quality filtered

using the threshold criteria described in section 4.1.485

In Table A1 we show the bias per product for TCCON stations that have measurements over both land and ocean. We note

that, due to the limited number of colocations in glint mode, we calculate bias as the median of all colocations per station,

unlike Figures 5 - 7 which fit equation 14 to the bias timeseries. The Full Physics XCH4 product shows the best agreement

between land and ocean with maximum differences of around 3 ppb, excluding Rikubetsu and Saga which have 1 data point

each over ocean. The XCO2 Full Physics product also has good agreement between land and ocean with differences of at most490

0.35 % of CO2. The Proxy XCH4 product however shows large differences between land and ocean, with even the sign of the

bias changing for most stations, and differences on average to 0.5 % of CH4, pointing to land/ocean biases potentially caused

by the different quality filtering applied over land and ocean.

Appendix B: Supplementary Material of TCCON Validation

Here we provide additional information on the validation of GOSAT-2 products with TCCON. Table B1 lists all the TCCON495

stations used in the analysis. Data from all stations are also used as input to train the RFC quality filtering networks. Figures

B1 to B3 present time-series of GOSAT-2 compared to TCCON for all stations for the XCH4 Full Physics, XCO2 Full Physics

and XCH4 Proxy products respectively. When enough TCCON data is available, time-series span the full 5 year period from

2019 to 2023.
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Figure A2. GOSAT-2 plotted against TCCON for the Full Physics XCH4, Full Physics XCO2 and Proxy XCH4 products from left to right

respectively. Data are compared only if they are fully colocated in space and time. The standard deviation of the population, Pearson’s

correlation coefficient and number of retrievals are given in the inset. The legend plots the different TCCON stations.

Figure A3. Time-series of GOSAT-2 colocated measurements over ocean with TCCON stations for the XCH4 Full Physics retrievals. All

GOSAT-2 observations are taken in sunglint mode. Pink circles correspond to the daily average of TCCON soundings that are spatio-

temporally colocated with GOSAT-2. All individual GOSAT-2 sounding coloated with TCCON are plotted as blue circles, and the daily

average of these are given as black triangles.

Figure A4. Same as Figure A3 but for the XCO2 Full Physics product.
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Figure A5. Same as Figure A3 but for the XCH4 Proxy product.

Table B1. List of TCCON stations used in training the quality filtering model and/or validation.

Site (Country) Coordinates (lat, lon◦) Temporal Extent Reference

Bremen (Germany) [53, 8.85] Jan 2009 - May 2021 (Notholt et al., 2022)

Burgos (Phillipines) [18.53, 120.65] Feb 2017 - Nov 2022 (Morino et al., 2022c)

Caltech (USA) [34.14, -118.13] Aug 2012 - Aug 2023 (Wennberg et al., 2022a)

Darwin (Australia) [-12.42, 130.89] Jan 2013 - Dec 2022 (Deutscher et al., 2023b)

East Trout Lake (Canada) [54.35, -104.99] Sep 2016 - Sep 2023 (Wunch et al., 2022)

Edwards (USA) [34.96, -117.88] Jun 2013 - Aug 2023 (Iraci et al., 2022)

Eureka (Canada) [80.05, -86.42] Jun 2010 - Jun 2020 (Strong et al., 2022)

Garmisch (Germany) [47.48, 11.06] Jun 2007 - Apr 2023 (Sussmann and Rettinger, 2023)

Harwell (UK) [51.57, -1.32] Apr 2021 - Aug 2023 (Weidmann et al., 2023)

Hefei (China) [31.9, 119.17] Oct 2015 - Nov 2022 (Liu et al., 2023)

Izana (Spain) [28.30, 16.50] Jan 2014 - Jul 2023 (García et al., 2022)

Karlsruhe (Germany) [49.10, 8.44] Jan 2014 - May 2023 (Hase et al., 2023)

Lamont (USA) [36.60, -97.49] Mar 2011 - Jul 2023 (Wennberg et al., 2022c)

Lauder (New Zealand) [-45.04, 169.68] Sep 2018 - Feb 2023 (Pollard et al., 2022)

Nicosia (Cyprus) [35.14, 33.38] Aug 2019 - May 2021 (Petri et al., 2024)

Ny Ålesund (Norway) [78.92,11.92] Feb 2005 - Aug 2022 (Buschmann et al., 2022)

Orleans (France) [47.97, 2.11] Aug 2009 - Nov 2022 (Warneke et al., 2022)

Paris (France) [48.49, 2.36] Aug 2014 - May 2023 (Té et al., 2022)

Park Falls (USA) [45.95, -90.27] May 2004 - Jul 2023 (Wennberg et al., 2022b)

Reunion Island (France) [-20.9, 55.48] Feb 2015 - Jun 2020 (De Mazière et al., 2022)

Rikubetsu (Japan) [43.46, 143.77] May 2014 - May 2021 (Morino et al., 2022a)

Saga (Japan) [33.24, 130.29] Jun 2011 - Sep 2022 (Shiomi et al., 2022)

Sodankylå (Finland) [67.37, 26.63] Apr 2009 - Apr 2023 (Kivi et al., 2022)

Tsukuba (Japan) [36.05, 140.12] Feb 2014 - Feb 2021 (Morino et al., 2022b)

Wollongong (Australia) [-34.41, 150.88] Jan 2013 - Feb 2023 (Deutscher et al., 2023a)

Xianghe (China) [39.80, 116.96] May 2018 - Apr 2022 (Zhou et al., 2022)
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Figure B1. Time-series of GOSAT-2 colocated measurements with TCCON stations for the XCH4 Full Physics retrievals. Pink squares

correspond to the daily average of TCCON soundings that are spatio-temporally colocated with GOSAT-2. All individual GOSAT-2 sounding

coloated with TCCON are plotted as blue circles, and the daily average of these are given as black triangles.
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Figure B2. Same as Figure B1 but for the XCO2 Full Physics product.
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Figure B3. Same as Figure B1 but for the XCH4 Proxy product.
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Appendix C: Supplementary Material GOSAT Intercomparison500

Figure C1 shows the comparison between global maps of GOSAT and GOSAT-2, for the XCH4 Proxy and XCO2 products,

highlighting the much improved spatial coverage of the GOSAT-2 products. Visually, the distribution of XCO2 and XCH4 are

very similar between GOSAT and GOSAT-2, with hot-spots, at least for XCH4, in all the same places.

Figure C1. GOSAT-GOSAT-2 comparison for the GOSAT-2 XCO2 Full Physics (top) and XCH4 Proxy (bottom) products. Maps are shown

over the year 2020 averaged onto 2◦ × 2◦ boxes for GOSAT and GOSAT-2 on the left and right respectively.
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