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Abstract. Accurately measuring greenhouse gas concentrations to identify regional sources and sinks is essential for effectively
monitoring and mitigating their impact on the Earth’s changing climate. In this article we present the scientific data products
of XCO, and XCHy, retrieved with RemoTeC, from the Greenhouse Gases Observing Satellite-2 (GOSAT-2), which span a
time range of five years. GOSAT-2 has the capability to measure total columns of CO5 and CHy4 to the necessary requirements
set by the Global Climate Observing System (GCOS), who define said requirements as accuracy < 10 ppb and < 0.5 ppm for
XCH, and XCO, respectively, and stability of < 3 ppb yr—! and < 0.5 ppm yr—! for XCH, and XCO, respectively.

Central to the quality of the XCO5 and XCH, datasets is the post-retrieval quality flagging step. Previous versions of Re-
moTeC products have relied on threshold filtering, flagging data using boundary conditions from a list of retrieval parameters.
We present a novel quality filtering approach utilising a machine learning technique known as Random Forest Classifier (RFC)
models. This method is developed under the European Space Agency’s (ESA) Climate Change Initiative+ (CCI+) program
and applied to data from GOSAT-2. Data from the Total Carbon Column Observing Network (TCCON) are employed to train
the RFC models, where retrievals are categorized as good or bad quality based on the bias between GOSAT-2 and TCCON
measurements. TCCON is a global network of Fourier transform spectrometers that measure telluric absorption spectra at
infrared wavelengths. It serves as the scientific community’s standard for validating satellite-derived XCO2 and XCH, data.
Our results demonstrate that the machine learning-based quality filtering achieves a significant improvement, with data yield
increasing by up to 85% and RMSE improving by up to 30%, compared to traditional threshold-based filtering. Furthermore,
inter-comparison with the TROPOspheric Monitoring Instrument (TROPOMI) indicates that the quality filtering RFC models

generalise well to the full dataset, as the expected behaviour is reproduced on a global scale.
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Low systematic biases are essential for extracting meaningful fluxes from satellite data products. Through TCCON validation
we find that all data products are within the breakthrough bias requirements set, with RMSE for XCH,4 <15 ppb and XCO, <2
ppm. We derive station-to-station biases of 4.2 ppb and 0.5 ppm for XCH4 and XCO- respectively, and linear drift of 0.6 ppb
yr~! and 0.2 ppm yr—! for XCH4 and XCO, respectively.

For XCH,4, GOSAT-2 and TROPOMI are highly correlated with standard deviations less than 18 ppb and globally averaged
biases close to O ppb. The inter-satellite bias between GOSAT and GOSAT-2 is significant, with an average global bias of
-15 ppb. This is comparable to that seen between GOSAT and TROPOMI, consistent with our findings that GOSAT-2 and
TROPOMI are in close agreement.

1 Introduction

Anthropogenic emissions of greenhouse gases (GHGs) such as carbon dioxide (CO5) and methane (CHy) over the last century
have led to the rapid rise of concentrations of GHGs in the atmosphere (Figure 1.4, IPCC AR6 2021, Tans and Keeling (2020),
Cross-Chapter Box 5.2 IPCC AR6 2021). The effect of such changes in atmospheric composition has a clear correlation
with the change of climate variables - such as global sea surface temperature anomaly or sea level - with CO5 increase over
preindustrial levels directly proportional to global mean surface temperature anomaly, relative to 1850-1900 (Figure 1.6, IPCC
ARG6 2021). Indeed, the emergence of trend in climate variables above the natural year-to-year variability has been firmly
established (Banks and Wood, 2002; Giorgi and Bi, 2009; Lyu et al., 2014; Hawkins and Sutton, 2012; IPCC ARS, 2014;
Tebaldi and Friedlingstein, 2013), on a global scale as well as regional ones (Mahlstein et al., 2011; Hawkins et al., 2020; Rohde
and Hausfather, 2020). The ramifications of a warming climate are serious with significant negative implications affecting the
entire globe.

Satellite retrievals of concentrations of COy and CHy, or rather column-averaged dry air mole fractions, denoted XCH,4 and
XCOg, play an essential role in monitoring the changing climate, as these variables can be used alongside inverse modelling of
surface fluxes to estimate uptake and emission of GHG surface fluxes (Bergamaschi et al., 2009; Chevallier et al., 2007, 2005;
Meirink et al., 2006; Metz et al., 2023). In particular satellite measurements that are sensitive to near-surface variations in GHG
concentrations are essential, and tight requirements are necessary to accurately calculate fluxes and so quantify emissions.
The Global Carbon Observing System (GCOS) has classified measurements of CO, and CHy columns as Essential Climate
Variables (ECVs), and defines requirements as being accurate enough to be able to determine sources and sinks on regional
scales (GCOS, 2016). To this end, ESA’s Climate Change Initiative (CCI) seeks to achieve this with the GHG-CCI+ project in
which ECVs of CO2 and CH4 columns are delivered globally.

Particular emphasis is placed on systematic biases in satellite data, such as the change in bias over time, of which the
requirements on XCOy and XCHy are less than 0.5 ppm yr—! and 3 ppb yr—! respectively (GCOS, 2016). Furthermore, the
station-to-station bias of sites, or accuracy, from the The Total Carbon Column Observing Network (TCCON), defined as the
standard deviation of all station biases, should be less than 0.5 ppm for XCO4 and less than 10 ppb for XCH,4 (GCOS, 2016).
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The Japan Aerospace Exploration Agency (JAXA) operated satellite GOSAT-2 (Greenhouse Gases Observing Satellite-2)
has onboard the TANSO-FTS-2 instrument (Thermal And Near infrared Sensor for carbon Observation-Fourier Transform
Spectrometer-2), which operates in the near-infrared (NIR), short-wave infrared (SWIR) bands, as well as the thermal in-
frared. TANSO-FTS-2 has sufficient sensitivity to measure regional sources and sinks of GHGs, and provides calibrated and
geolocated Earthshine radiance spectra (level-1B data) in the aforementioned wavelength regimes, with 10 km circular ground
pixels covering the globe every 6 days in sun-synchronous orbit (Suto et al., 2021; Imasu et al., 2023). TANSO-FTS-2 has
an intelligent pointing system, allowing better coverage than its predecessor GOSAT. Also onboard is the dedicated cloud
imager TANSO-CAI-2 (Thermal And Near infrared Sensor for carbon Observation-Cloud and Aerosol Imager-2) (Kuze et al.,
2009, 2016; Yoshida et al., 2012).

GOSAT was the first dedicated GHG observing satellite, and has been used in a wide variety of scientific studies relevant
to CO2 and CHy since 2009 (Butz et al., 2011; Schepers et al., 2012; Parker et al., 2020; Taylor et al., 2022). Trace gas
column-averaged dry air mole fractions, also referred to as the level 2 product, can be extracted from the level 1B data through
a retrieval (see section 3). Crucial for the carbon cycle, fluxes of CO4 have been inferred from level 2 data on regional scale
(Chevallier et al., 2009; Basu et al., 2013; Detmers et al., 2015) as well as global scales (Turner et al., 2015; Jiang et al., 2021;
Kou et al., 2023). Also for CHy, global flux estimates and emissions (Maasakkers et al., 2019; Zhang et al., 2021) have been
derived from GOSAT measurements, and also compared to the TROPOspheric Monitoring Instrument (TROPOMI) (Liang
et al., 2023) and airborne in-situ measurements (Tadi¢ et al., 2012).

In addition to the data we present in this article, two other XCO- and XCH4 data products are available from GOSAT-
2 (Noél et al., 2021, 2022; Yoshida et al., 2023). Noél et al. (2022) also present results for XH2O, as well as XCO and
XN30 from GOSAT-2. Zadvornykh et al. (2023) investigated the retrieval of HDO/H5O ratio combining the NIR and thermal
infrared bands, and Malina et al. (2018) presented a proof of concept study on retrieving '>CH, from GOSAT-2. Ohyama et al.
(2024) calculated emissions estimates from enhancement ratios of CO2, CH,4 and CO using inverse modelling and compared
to emission inventories. Janardanan et al. (2025) compared flux inversions of CHy from GOSAT and GOSAT-2 across 2019-
2022, finding regional differences in the emission estimates related to differences in the level 2 products, however assimilated
GOSAT-2 XCH,4 data were not bias-corrected.

TCCON provides the most robust measure of the accuracy of total columns of GHGs measured by satellites (Wunch et al.,
2010, 2011, 2015), and is widely used as the conventional validation for XCH, and XCO,, retrievals (e.g. Dils et al. (2014);
Malina et al. (2022)). It is a global network of Fourier transform spectrometers that observe, among others, XCO5 and XCHy
with a root mean square error (RMSE) on mole fractions of 0.15 % and 0.2 % respectively (Toon et al., 2009), for the
GGG2014 release. Depending on the site, these measurements are scaled to aircraft or balloon-borne measurements for cali-
bration (Washenfelder et al., 2006; Deutscher et al., 2010; Karion et al., 2010; Messerschmidt et al., 2011; Geibel et al., 2012)
and measurements of vertical profiles can vary per site. TCCON measures direct sunlight and can therefore only be performed

under clear-sky conditions hampering coverage of the time-series.
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2 Data products and Input Data

In this article we present the novel level 2 GOSAT-2 scientific data products developed by SRON the Netherlands Institute
for Space Research. XCO- and XCHy4 are retrieved deploying the RemoTeC retrieval algorithm, and are processed within
the GHG-CCI+ project (Dils et al., 2014; Buchwitz et al., 2015). RemoTeC uses two different retrieval approaches which we
discuss further in section 3. From the two configurations available to RemoTeC, three column-averaged dry air mole fractions
products are produced. GOSAT-2 has been operational since February 2019. The data products discussed here cover the time
range of the first observations until the end of 2023. Data products are available from the ESA Climate Office, under version
v2.0.3 in Climate Data Research Package 9 (CDRP9) !. More information about the three SRON GOSAT-2 data products can
be found in the Algorithm Theoretical Basis Documents (ATBDs) (Barr et al., 2024a, b) and Product User Guides (PUGs)
(Barr et al., 2024c, d).

The SRON GOSAT-2 data products are generated from calibrated TANSO-FTS-2 L1B data from v210.210 for 2019 until
June 2023, made available by the National Institute for Environmental Studies (NIES). For the second half of 2023 we used
L1B from v220.220. Instrument line shape (ILS) information is taken from Suto et al. (2021).

A pre-processing step brings meteorological data, surface data and satellite data together before the retrieval is run. Me-
teorological input data are taken from the ECMWF ERAS reanalysis product on 137 altitude layers and a 0.75° x 0.75°
latitude/longitude grid (Hersbach et al., 2020). Surface information was taken from the extended Shuttle Radar Telemetry Mis-
sion (SRTM) digital elevation map. The model used, DEM3, has global coverage at 90 meter spatial resolution?, extending
the original SRTM which is limited to latitudes of 56°S to 60°N. The solar reference spectra used for the retrieval is compiled
from the full resolution spectrum of Kurucz (1994).

Absorption cross sections come from the HITRAN 2008 database for spectroscopic parameters (Rothman et al., 2009).
Apriori column density profiles for CO2 and CH4 we take from TMS5 (Huijnen et al., 2010) and TM4 (Meirink et al., 2006)
model simulations respectively. For the XCH4 Proxy product, XCO- data is used from the CAMS global inversion-optimised
greenhouse gas concentrations of Chevallier (2010). These are surface air-sample instantaneous 3 hourly mean columns on
1.9° x 3.75° grids.

3 Retrieval

RemoTeC is a retrieval algorithm developed for the retrieval of trace gas column-averaged dry air mole fractions from measured
level 1B radiance spectra in the NIR and SWIR bands. It has been used extensively for the retrieval of trace gases from GOSAT
observations to produce the SRON XCH, and XCO,, data products (Butz et al., 2009, 2010), as well as the operational products
of TROPOMI (Hu et al., 2016, 2018; Lorente et al., 2021) and SCHIAMACHY (Frankenberg et al., 2005, 2011; Dils et al.,
2006, 2014) . Below we outline the retrieval approach. The same approach is also used to generate the GOSAT-2 data products.

Thttps://catalogue.ceda.ac.uk/
Zhttp://www.viewfinderpanoramas.org/dem3.html



115

120

125

130

135

An XCH,4 Full Physics product is obtained using the scattering forward model, and an XCO Full Physics product is ex-
tracted from the same retrieval. Furthermore another XCH,4 product (the Proxy product) is obtained with the non-scattering
forward model. For the Full Physics approach, light scattering by cirrus and aerosol particles is accounted for in the forward
model. For the Proxy retrieval, scattering is neglected and hence atmospheric scattering properties do not need to be calculated
(Butz et al., 2009).

An example of a single, typical GOSAT-2 measurement is shown in Figure 1 in which the spectral fits per band are presented
for a high quality, cloud free scene in the Full Physics retrieval setup. The SWIR-1 window is split into two to retrieve total

columns of CO; and CHy separately from band 2a and band 2b, respectively.
3.1 Forward Model

Both the scattering and non-scattering forward models have the same general concept in common which we outline here.
The atmospheric state vector, «, is related to the measurement vector, y, through a forward model, F, which in the following

equation:

y=F(z,b)+¢,+er 6]

where €, and ep are the error contributions from the measurement noise and forward model respectively, and b is the
ancillary vector containing parameters that are not retrieved. In order that the retrieval can be solved iteratively, the forward

model must be linearised. For iteration step n the linearised forward model is approximated by:

F(z,b) = F(xy,,b) + K(x — x,) (2)

where x,, is the state vector for the n-th iteration step and K is the Jacobian matrix at position x,, defined by:

_OF

K=z

3)

The inversion method optimises the state vector « with respect to the measurement y after applying the forward model F'
to x. The inversion method is based on the Tikhonov regularization scheme (Philips, 1962; Tikhonov, 1963; Hasekamp and
Landgraf, 2005). Regularisation is required because the inverse problem is ill-posed (the measurements y typically contains
insufficient information to retrieve all state vector elements independently). The inverse algorithm finds & by minimising the
cost function that is the sum of the least-squares cost function and a side constraint weighted by the regularisation parameter -y

according to

&=z (/8,2 (F(x) = y)|I* +7[W (2 —za)|) @



GOSAT-2 Spectra for Full Physics Retrieval
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Figure 1. left panels: A single GOSAT-2 measurement for the near-infrared (band 1), SWIR-1 (band 2) and SWIR-3 (band 3) spectral
windows (blue), along with the converged model (orange). right panels: The difference between the measurement and model shown on the

left panels. The noise level is indicated by the black dashed lines.
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where S, is the diagonal measurement error covariance matrix, which contains the noise estimate, ,, is an a priori state

vector, and W is a diagonal weighting matrix.
3.2 Proxy Approach

The Proxy approach is based on a non-scattering retrieval, thus the runtime of processing is around a factor of 4 faster than the
Full Physics retrieval. Furthermore, many of the errors in the retrieval, including those due to aerosol, cancel out (Butz et al.,

2009; Schepers et al., 2012) following the equation:

[CH4]
XCHy = —=X
CHy COy) CO2 model (5)

which determines XCH, from the retrieved total columns [CHy4] and [COz]. Here, the assumption is that the light path
modification by scattering particles such as aerosols is the same for CH4 and CO4 (Schepers et al., 2012). [CH4] and [CO-]
are total columns retrieved from SWIR-1 at 1.6 um, and XCOg2 moqer is the total column dry air mixing ratio of CO from an
atmospheric model, on the same grid as GOSAT-2 observations. The main source of uncertainty in this approach is therefore
XCO2 model, thus the accuracy of the XCH4 Proxy product is limited by the accuracy of the XCO2 model.

The state vector of the Proxy retrieval contains CO5 and CH4 sub-columns in 12 vertical layers, H5O total column, Lamber-
tian surface albedo, first order spectral dependence of surface albedo, an intensity offset and first order spectral shifts of Earth

and Sun radiancies (Barr et al., 2024b). We do not retrieve any information about the ILS such as shift or stretch parameters.
3.3 Full Physics Approach

The Full Physics retrieval uses a three-window approach retrieving information from the NIR, SWIR-1 and SWIR-3 bands.
The treatment of aerosol in the Full Physics approach leads to more accurate retrieved total columns of trace gases, however
the radiative transfer calculations are computationally expensive. The state vector of the Full Physics retrieval is the same as
for the Proxy retrieval with additional parameters related to aerosol properties. For a full description of the state vector and the
priors see Section 3.3 of Barr et al. (2024a).

Aerosols are characterised by three parameters which relate to the aerosol column and size distribution of particles. The

height distribution is approximated as a Gaussian function of centre height, z,.,- and width wy:

An(zg — 2aer)?

h(zi) = N -exp| — (2w0)?

(6)

Here, NV is the total amount of particles and zj, is the layer height. The size distribution is parameterised by a power law

function following:
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where 71 = 0.1 um, o = 10 ym and the constant A is determined from normalisation of the size distribution. N, v and 2,

are included in the Full Physics state vector.
3.4 Bias Correction

A bias correction is applied post-retrieval to XCO, and XCH, using TCCON as a truth, for which we use the GGG2020 release
(Laughner et al., 2023). For land retrievals, the bias correction of RemoTeC is a simple empirical relation between XCH, and

the retrieved albedo at 1600 nm, defined by:

Xeorr = Xret(a + ba) (8)

where X;; and X, are the bias corrected and retrieved concentrations respectively, « is the retrieved albedo at 1600 nm
and a and b are determined such that the difference with TCCON is minimised.

For the retrieval with the Proxy approach, the bias correction is all contained in the a variable of the fit (equation 8), therefore
it is purely a constant bias correction, whereas the Full Physics approach has more contribution from the linear part of the fit,
captured by the b parameter. This can be understood as confusion between albedo and aerosol effects in the retrieval, both of

which lead to large scale wavelength features in the spectrum.

4 Quality Filtering

A key step in the retrieval process is the post-processing quality flagging. Data from GOSAT are flagged using a selection of
retrieval parameters, such as signal-to-noise ratio or chi-squared, and any data that do not lie within a specified range of these
parameters are flagged as bad quality. This method offers a binary quality flag and is described further in section 4.1.

Given the rapidly growing capabilities of machine learning techniques, algorithms such as random forest classifiers (RFCs)
provide a much more promising way of filtering satellite global data products. We have applied such a flagging technique to
the GOSAT-2 data (see section 4.2). The quality flag of GOSAT-2 takes the form of a quality assurance (QA) value that ranges
between 0 and 1, with O corresponding to the best quality data. Therefore, users should quality filter their data by taking QA

values less than, or equal to, the desired value.
4.1 Threshold Criteria Approach

Extensive investigations have been conducted to identify effective retrieval parameters, or combinations of parameters, that are

correlated with the quality of XCH, or XCO, and that can be used to flag bad data, while at the same time maximising the
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Table 1. List of threshold conditions to quality filter GOSAT-2 data. The filters marked with an asterisk do not apply to the Proxy product.

Filter ~ Description criteria

1 x? of spectral fit x?<12.0

2 number of iterations Niter Niger < 31

3 signal-to-noise ratio (SNR) at band continuum  SNR > 50

4 variance ogyr¢ Of surface elevation Osurf < 100 m

5 solar zenith angle (SZA) SZA< 75°

6" aerosol optical thickness (Taer) in NIR window — Taer < 1.0

7" aerosol size parameter reg 3<rer <6

8" aerosol layer height zaer 0 < Zaer < 10,000 m
9* aerosol parameter w 0<w<3ed

10 blended albedo Apiq 0<Apa<l4

11 cirrus radiance signal Icir 0< I <2.0-107° W cm/(m2 s str]
12 CO> column ratio rco, 0.99 < Rco, <1.018
13 H20 column ratio rua,0 0.95 < Ru,0 < 1.08
14 Oz column ratio ro, 0.96 < Ro, < 1.04

amount of good quality retrievals (Butz et al., 2010; Schepers et al., 2012). Such a set of criteria have been established also for
GOSAT-2 and are listed in Table 1.

Criteria 6 to 9 are excluded for the Proxy product, since these are not in the state vector of the retrieval. Butz et al. (2010)
defined the aerosol parameter as w = Taer X 1/Tefr X Zaer (Schepers et al., 2012). The blended albedo in criterion 10 is defined as
Apia =2.4-A(0.76um) — 1.13 - A(2.0p4m) with the retrieved albedos A(0.76m) and A(2.0pm) at the indicated wavelengths
(Wunch et al., 2011). Guerlet et al. (2013) investigated the use of the cirrus radiance for data filtering, which is defined as the
mean radiance in the spectral range 5154.8-5157.8 cm ! (1.9388-1.9399 um). The use of the column ratios for data filtering
was first proposed by Taylor et al. (2016) based on the difference in the non-scattering retrieved column from a weak and strong
absorption band. For this purpose, in criteria 12 and 13, we use the CO2 and H5O ratios inferred from the 1.6 um and 2.0 ym
spectral range. Finally, O, ratio is the retrieved Oz column divided by the prior derived from the ECMWEF surface pressure

estimate.
4.2 Machine Learning Approach

An alternative approach to quality flagging with threshold criteria, as applied on GOSAT, is to use machine learning in the
form of a random forest classifier (RFC). To this purpose, we use the RandomForestClassifier tool within Python’s SciKit
Learn package (Pedregosa et al., 2011).

A random forest model utilises an ensemble of N decision trees, which take a random subset of the available features and

each make a decision on the target classification (Breiman, 2001). The final result of the model is taken as the majority chosen
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class. This is ultimately applied to each ground pixel of GOSAT-2 data using a set of features consisting of RemoTeC retrieval
parameters, to predict the quality of the retrieval. We use separately trained models for each of the three data products, which

will be described in more detail in section 4.2.1.
4.2.1 RFC training using TCCON data

For the quality classification of our data product, we use a trained RFC. The supervised form of learning requires a labeled
training dataset. To this end, we need knowledge of a "ground truth" and the best estimate of the true value of XCH,4 and XCO
comes from TCCON. Therefore, in order to determine the true label for the quality flag, we use GOSAT-2 level 2 data from

measurements that are colocated in space and time with TCCON sites, and classify the training sample via the bias:

|AX| < X7 : label Lx, =0 (good) )
IAX|> Xp: label Ly, =1 (bad) (10)

with the biases AXCHy = XCHy gosar2 - XCHy,tccon, and AXCOg = XCOs gosar-2 - XCO2 tccon. X7 we name the training
threshold and takes the form of e.g. £ 18 ppb for AXCHj4. A label L of O corresponds to a good-quality retrieval, and a label of
1 means a bad-quality retrieval. For all training and validation, we use the TCCON GGG2020 release (Laughner et al., 2023).

A consequence of training the random forest model on GOSAT-2 colocations with TCCON is that retrievals with surface
albedo 2 0.4 were underrepresented in the training sample, due to the lack of TCCON stations in high albedo areas. This
would lead to albedo-related biases when using such models to filter the global dataset. To avoid this, we defined a subsample
of retrievals with albedo > 0.4 to include in the training set, using the threshold filtering criteria in Table 1.

Example ranges of albedo, along with several other geophysical parameters, covered in the combined training set are illus-
trated in Figure 2 for Lx., = 0. A pre-flagging step is also applied which labels training data based on nonphysical values of
albedo. The presence of retrievals with negative aerosol central height, or high optical depth (Fig 2), in the training set for high
quality retrievals suggests that the training process may be improved by an stricter pre-flagging which includes aerosol related
properties.

In this study, we limit the quality filtering of GOSAT-2 data using the machine learning approach to retrievals over land
only, due to the lack of available training data over ocean. We note that this limiting factor would not apply to satellite data
from push-broom spectrometers that have better spatial coverage, such as TROPOMI (Hu et al., 2016, 2018). Instead, we filter
retrievals performed in glint mode over the ocean also following Table 1. Retrievals over ocean are discussed further in section
A in the Appendix.

TCCON XCH,4 and XCO; data are also used to validate the final product (see section 5.1). Due to the supervised learning
approach, utilising TCCON data in training the filtering models means that these data can no longer be quality filtered with-
out receiving what was defined during training. Since the training data also comprise the validation data, this would lead to
artificially choosing validation results, therefore compromising any independent validation with TCCON using the assigned
quality flags. To avoid this, we train different filtering models, one year at a time, where the data from the year to be predicted

are excluded from training. This results in one filtering model per year of data. Here we assume that the relationship between

10
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retrieval quality and features is temporally independent. The robustness of this assumption is reflected in Figure 2 which shows
a feature importance analysis of the different models for the XCH,4 Full Physics product. We see that there is, in general, little
variation in the order of features over the different years, with the top four features always being the most important, showing

that the models are all very similar.
4.2.2 RFC Prediction Performance

To evaluate our classification for the three products, we consider the performance of the RFCs by comparing its predicted
labels to the true labels given by the elements of the confusion matrix (Liang, 2022): the False-Positive (FP), the False-Negative
(FN), the True-Positive (TP), and True-Negative (TN). Here the terms ’true’ and *false’ refer to a correct or wrong prediction,
“positive’ and ’negative’ to the bad and good label of the predicted data. From these, we evaluate the classification using the

following metrics:

1. The true-positive-rate TPR is defined as

TP
TPR= —— . 11
TP +FN (i
and measures the number of correctly identified positive instances out of all true positive instances.
2. The False-Positive rate (FPR) is the corresponding rate of False Positive with respect to all true negative instances,
FP
FPR= ——. 12
FP+TN (12)

A binary classification model predicts the probability of an instance belonging to one of the two classes depending on the
classification threshold, which we name p;. Varying p;, leads to the Receiver-Operating Characteristic curve (ROC) (Bradley,
1997), which is a parametric curve of FPR(p;) versus TPR(p;). For a large threshold (p; — 1), TPR goes to one, but so does
the FPR. In the other extreme for p; — 0, both TPR and FPR go to zero. Therefore, the more the ROC curve goes through the
top-left quadrant of the diagram, the better the classifier. This is characterized by the area under the ROC curve (AUC). We
assume a value of 0.5 for p; for all classification models.

Figure 2 compares the ROC curves of the XCH4 Full Physics classification models to the XCH, Proxy ones. There is no
clear differentiation between the ROC curves of each product, implying that the models for each year perform comparably to
each other. Average metrics over all models per product are given in Table 2. From this we see that the performance of the
RFC models for the two Full Physics products are similar - which is intuitive given that these come from the same retrieval -
whereas the diagnostics for the Proxy product are slightly worse.

Such an effect can be understood by the nature of the Proxy approach and as a consequence of equation 5, where most
of the systematic error is divided out by dividing the two columns of CH, and COs. Consequently, the distinction between
high quality and low quality retrievals is much more obvious in the Full Physics case. Quantitatively, the ratio of good to bad
retrievals in the training data is about 0.3 for the Full Physics products, whereas for the Proxy it is 1.6. It is therefore easier to

accurately label the training sample in the Full Physics RFC models, leading to better performance metrics.
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Figure 2. (a) Histograms from the XCH4 Full Physics filtering model for 2019, showing the ranges covered for various geophysical param-

eters in the training dataset, for good quality examples. Cirrus signal is given in units of mol. m~2 s™* nm~" sr~"'. Note that the albedo at
1629 nm is not used as a feature for training. (b) ROC curves for the different filtering models of the Full Physics XCH4 product and Proxy
XCHy4 product, in solid and dotted lines respectively. The solid grey line indicates the performance of a randomly guessed prediction, with a
50 % chance of being correct. (c) Feature importance of the XCH4 Full Physics quality filtering models. The window numbers 1, 2, 3 and 4

correspond to the spectral bands 1, 2a, 2b and 3 of Figure 1, respectively. For the definitions of other features see section 4.1

4.2.3 The QA value

In the random forest models, the strictness of the training threshold, X7, defined when labelling the training dataset (equations

275 9 & 10) has a directly proportional effect to the number of retrievals ultimately classed as good quality, as well as the scatter
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Table 2. Summary of classification metrics averaged over all years for p;=0.5.

Product TPR FPR AUC

XCO; Full Physics 090 042 0.89
XCHy Full Physics  0.89 0.44  0.89
XCHy Proxy 0.64 0.14 0.83

of the total column mixing ratio with respect to TCCON. Figure 3 shows the number of good retrievals as a function of the
RMSE with TCCON derived for different training thresholds X7 and the depicted positive trend is intuitively expected. This
allows us to define a non-binary quality flag that is grounded in TCCON validation. X7 is chosen to probe the steepest part of
the curves in Figure 3, thus maximising the improvement that can be extracted from the machine learning filtering approach.
Starting with a set of n threshold values X ,--- X7, we can assign the label vector L = (Lq,--- L,,) with L; = L X, @S
defined in Eq. 9. We define the QA value of a data point by the mean value of the components of the corresponding label vector

L,
QA=(L) 13)

QA can have n + 1 discrete values in the range [0, 1] depending on the number n of used threshold values X7. For GOSAT-2,
weusen =5 with QA € [0,1/5,2/5,--- ,1].

For reference, Figure 3 also shows the results of filtering GOSAT-2 data using the thresholding defined in Table 1. For
the Full Physics products, the new filtering can achieve an increase in data yield of ~ 48 % and 85 % for XCH,4 and XCO.
respectively, for equivalent RMSE. Alternatively, an improvement in RMSE of 2.2 ppb and 0.7 ppm for XCHy and XCO,
respectively can be achieved for equivalent data yield. The larger improvement for XCH, compared to XCOs is a reflection of
the less optimal choice of the arbitrary threshold criteria for XCO (Table 1). For the Proxy product this can be 1.6 ppb for the
same amount of data, or conversely, an increase of 29 % in data yield for the same RMSE. Thus user can therefore choose the
option of more data, which may be advantageous to plume detection where better coverage is desirable, or better quality data,
where as small as possible systematic biases are required by atmospheric modellers. Furthermore, with Figure 3, the user may

choose the QA value which corresponds to their acceptable RMSE with TCCON.

5 Validation and Satellite Inter-comparison
5.1 TCCON Validation

TCCON is central to the work presented here as it provides both the ground truth in labeling training data, as well as one of
the main validation sources. In this article, all references to TCCON are for the GGG2020 TCCON release (Laughner et al.,
2023). The TCCON stations used in the analysis are summarised in the Appendix in Table B1.
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Figure 3. Number of retrievals flagged as good for five different thresholds, as a function of the RMSE derived by the TCCON validation.
The mean QA value per data ensemble is given by the color code. Results for XCH4 are shown on the top panel, where the RFC filtering
models for the Proxy and Full Physics product are represented by the dashed and solid lines respectively. On the bottom panel are the results
for the XCOs, filtering models. The red squares and triangles mark the parameter space for the statistics of filtering the data product according

to Table 1.

In this section, we present the validation of our GOSAT-2 data products with respect to TCCON. TCCON sites are considered
only if there are more than 50 spatio-temporal colocations with GOSAT-2 over the whole time-series, defined as overlying
within a radius of 300 km and time range of £ 2.5 hrs. We evaluate the data products for the QA value of 0 (strictest filtering
with RFC models; see section 4.2.3).

Figure 4 shows the correlation between colocated GOSAT-2 and TCCON data for XCO- and both XCH, products. These
are single soundings of GOSAT-2 over land compared to an average of the TCCON measurements that coincide spatially and
temporally. For XCH,4 we derive a RMSE of 15.2 ppb and 15.7 ppb for the Full Physics and Proxy products respectively, and
Pearson’s correlation coefficient of 0.89 and 0.88 for the Full Physics and Proxy products respectively. For XCO; these are 2.1

ppm and 0.88 respectively. For some stations, lines of data points in the x-axis direction are observed in Figure 4, which arise
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from comparing daily averaged TCCON measurements to single soundings from GOSAT-2, indicative of bias with geolocation
around a given site.
Time-series of GOSAT-2 colocations with TCCON for each product are shown in the Appendix section B. Following Noél

et al. (2022), we further parameterise the bias over time as:

AX =ag+art+ assin(2nt +as) +¢€ (14)

where equation 14 is fit to the time-series of the bias with each station individually. aq is a constant bias term, a; represents
a linear term, ao measures the amplitude of the seasonal variation of the bias, a3 measures the temporal shift of the seasonal
term, and € is an error term.

The parameters in Table 3 are extracted from fits of equation 14 to the time-series of the bias for all TCCON stations. We
illustrate an overview of the per station statistics in terms of site and seasonal bias, as well as linear drift in the bias, in Figures
5to 7. Agje is the site bias and defined as the mean of AX from equation 14 and A, is the seasonal bias and defined as
the standard deviation of the seasonal (sine) term in equation 14. Finally, Ag;.; is the linear drift and is calculated as a; from
equation 14.

For the Full Physics products, we derive average values of the site bias of -0.1 ppb and -0.2 ppm for XCH,4 and XCO,
respectively, after bias correction. The seasonal bias term is higher for both products with 4.0 ppb and 0.6 ppm for XCH,
and XCO,, respectively. For the Proxy product, the average site bias and seasonal bias are 0.2 ppb and 3.1 ppb respectively.
We exclude the station-averaged Ag;:. from Table 3 as it is by definition close to zero due to the bias correction. Before bias
correction, the mean bias over all stations is 7.2 ppb and 13.3 ppb for the XCH,4 Full Physics and Proxy products, respectively.
Thus, averagely speaking, the Full Physics retrieval approach is closer to the truth than the Proxy apporoach, before bias
correction.

From Table 3 we also report a linear drift of 0.6 ppb yr—! and 0.2 ppm yr—! for XCH, and XCO, respectively, for the Full
Physics products. For the Proxy product the average linear drift is 1.2 ppb yr—!. Another important metric of the systematic
error is the station-to-station bias. This is defined as the standard deviation of the individual site biases, in contrast to the RMSE
which is the standard deviation of all the differences together. We report station-to-station bias of 0.5 ppm, 4.2 ppb and 3.7
ppb for XCO,, XCH,4 Full Physics and XCH4 Proxy, respectively. The site-to-site biases and linear drift terms are low, and
below the breakthrough systematic error threshold requirements (GCOS, 2016), which is an essential characteristic of the data
product for determining regional scale sources and sinks through flux inversion modelling.

We find that the difference between the average station RMSE and that calculated from the sample of GOSAT-2/TCCON
differences as a whole can be significant. The RMSE for XCH, Full Physics taking all data as one sample is 15.2 ppb, however
the average of the individual station RMSE is 13.1 ppb. From Figure 5, Caltech and Edwards have RMSE over 15 ppb,
however the disproportionately high number of collocations (together constituting 40 % of the data points) skew significantly
the statistics towards these stations. The location of these two stations in the Californian desert means more clear sky conditions,

therefore a better coverage in the TCCON timeseries. Furthermore, the mid-latitude in the Northern hemisphere is favourable
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Figure 4. GOSAT-2 XCO; (top), XCH4 Full Physics (middle) and XCH4 Proxy (bottom) plotted against TCCON, for retrievals over land.
Data are compared only if they are fully colocated in space and time. The standard deviation of the population, Pearson’s correlation
coefficient and number of retrievals are given in the inset. The legend plots the different TCCON stations where markers are as follows.
Stations that are along the coast and also sensitive to glint mode (ocean) measurements are indicated as circles. Those that have high latitudes
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Table 3. Summary of the main statistics of GOSAT-2 product validation with TCCON. RMSE is the root mean square error, Agy,; is the

linear drift and Ag.qs is the seasonal bias, averaged over all stations. os;¢. is the station-to-station bias.

XCHy Full Physics XCOz Full Physics XCHy4 Proxy
RMSE  Ajeas Adri osite  RMSE  Ajeqs Adri osite  RMSE  Ajeqs Adri Osite
(ppb)  (ppb)  (ppbyr™") (ppb) (ppm) (ppm) (ppmyr”') (ppm)  (ppb)  (ppb) (ppbyr~')  (ppb)
13.1 4.0 0.6 4.2 2.0 0.6 0.2 0.5 14.7 3.1 1.2 3.7

to our GOSAT-2 products from RemoTeC. The combination of these two factors leads to much higher colocations than other
stations, however they are know to be difficult for measuring GHG concentrations (Hedelius et al., 2017; Schneising et al.,
2019). Taking this into consideration, we consider the values for XCH, in Figure 4 an upper limit. For the Proxy product the
effect on RMSE is less although still notable, with 15.7 ppb compared to 14.7 ppb when taking the station-averaged RMSE.

Despite the lower performance of filtering models for the Proxy product compared to the Full Physics ones (section 4.2.2),
the level 2 quality of the Proxy XCHy product presented in Table 3 is effectively as good as the Full Physics XCH, product,
with the advantage of better data coverage. This can be understood by the ratio of FP/FN, for which in the case of Full Physics
is 1:1, is 2:1 for the Proxy. The higher number of FPs lead to a poorer ROC curve, however in terms of the problem of quality
filtering, FNs are more detrimental to the level 2 quality, since they correspond to ground truth bad data flagged as good.

For the operational GOSAT-2 products, Yoshida et al. (2023) report RMSE with respect to TCCON of 1.8 ppm and 8.9 ppb
for XCO2 and XCHj, respectively, across a time range of March 2019 to Dec 2020. Also, they derive station-to-station bias of
0.71 ppm and 2 ppb for XCO, and XCH, respectively. We note the short time-series these values are derived from. No€l et al.
(2021) find RMSE and station-to-station bias of 1.86 ppm and 1.14 ppm respectively, for XCO,. For XCHy, station-to-station
biases of 4 to 6 ppb and RMSE of around 12 ppb are reported, for the and Full Physics and Proxy products Noél et al. (2022).
The authors note that, due to the short time-series, these results are drawn from only seven TCCON stations, some of which

span only a few months.
5.2 GOSAT Inter-comparison

The similarity in the setup of GOSAT and GOSAT-2, along with the wide use of GOSAT in the scientific literature, make
them ideal candidates for satellite inter-comparison. We compare our GOSAT-2 Full Physics products with the corresponding
GOSAT products from RemoTeC, version 2.3.8, over time frame of 2019 to 2023. For the Proxy product comparison, we
compare our GOSAT-2 XCH, Proxy product to that of GOSAT version 2.3.9.

The data from the two satellites are matched by re-gridding XCH, to 2° x 2° lat/lon boxes, per day. A colocation is considered
when there are data from each satellite in the same grid cell for a given day. GOSAT data are quality filtered using the filters
listed in Table 1 with slightly different values, thus RFC filtering is applied only to GOSAT-2. We present comparisons only
for the GOSAT-2 QA value of 0.

17



TCCON validation: GOSAT-2 vs GOSAT
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Figure 5. Overview of the bias parametrisation for the Full Physics XCH4 product, per station. Shown in blue is the RMSE, red the site bias
Agite, green the linear drift Ag,;, yellow the seasonal bias Aseqs and in purple the number of retrievals. Values for GOSAT-2 are shown in
bold bars, and those of GOSAT are in light bars. Stations are listed in order of decreasing latitude. Missing bars correspond to less than 50

colocations for that station, therefore we do not calculate the values there. We note that the site bias for GOSAT-2 at Bremen is close to zero.
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Figure 6. Overview of the bias parametrisation for the Full Physics XCO> product, per station. Shown in blue is the RMSE, red the site bias

Agite, green the linear drift Ag,;, yellow the seasonal bias Aseqs and in purple the number of retrievals. Values for GOSAT-2 are shown in

bold bars, and those of GOSAT are in light bars. Stations are listed in order of decreasing latitude. Missing bars correspond to less than 50

colocations for that station, therefore we do not calculate the values there.
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Figure 7. Overview of the bias parametrisation for the Proxy XCH4 product, per station. Shown in blue is the RMSE, red the site bias
Agite, green the linear drift Ag,;, yellow the seasonal bias Aseqs and in purple the number of retrievals. Values for GOSAT-2 are shown in
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Figure 8. GOSAT-GOSAT-2 comparison for the GOSAT-2 XCH4 Full Physics product. Maps are shown of XCHy over the year 2020
averaged onto 2° x 2° boxes for GOSAT and GOSAT-2 on the left and right respectively.

From the global maps of the XCH, Full Physics product in Figure 8, the superior coverage of GOSAT-2 is striking; a
consequence of the intelligent pointing system to avoid cloudy scenes. Maps for the other two products are shown in Figure
C1 in the Appendix. We further analyse how the GHG concentrations compare, illustrated as kernel density estimation (KDE)
plots, analysing data over land only. The scatter of satellite differences is 14.5 ppb, similar to the RMSE of the bias with
TCCON (13.1 ppb; see section 5.1). We find a large average global bias of -15.2 ppb, which we discuss further in section 5.3.

For the Proxy XCH,4 product, the comparison between GOSAT and GOSAT-2 is better than the Full Physics product. The
average global bias is only -5.3 ppb, and the standard deviation and correlation coefficients are 13.5 ppb and 0.9 respectively.

For XCOao, the correlation between GOSAT and GOSAT-2 is weaker, with a coefficient of 0.64 compared to 0.88 for XCHy,.
This difference is expected, as CO5’s longer atmospheric lifetime leads to greater large-scale diffusion, reducing correlation
strength. The scatter of the differences is 2.9 ppm, slightly higher than the GOSAT-2 RMSE with respect to TCCON of 2.0
ppm, and we find a bias of 0.9 ppm.

Furthermore, we plot time-series of GOSAT and GOSAT-2 globally, and for the three latitude bands of Northern/Southern
Hemispheres (NH & SH) and the Tropics in Figure 10. These are defined as 0° to 60°N for NH, —25°N to 25°N for the
Tropics, and —60°N to 0° for SH.

The globally averaged seasonal cycles of XCH, Full Physics follow each other well between April and August, but from
September to March, the GOSAT one peaks at higher values. This characteristic is representative of the Tropics and SH time-
series, however for the NH time-series, the GOSAT time-series is consistently higher by approximately 15 ppb.

For the time-series of the Proxy products, we find that the satellite time-series correlate well with each other. The seasonal
cycles follow each other closely in all latitude bands, however the bias begins positive but then switches around the halfway
point of the time-series.

For XCO,, the time-series in the NH follow each other closely until mid-2020 after which the GOSAT time-series in con-
sistently higher than GOSAT-2. The SH time-series agree well over the whole time-series, but that of the Tropics is less
pronounced in GOSAT-2 with larger seasonal fluctuations exhibited for GOSAT.
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Figure 9. Correlation between GOSAT and GOSAT-2 shown as a kernel density estimation (KDE) plots for each data product. Plots for
XCH4 Full Physics, XCO2 Full Physics and XCH4 Proxy are shown from left to right, respectively. The mean bias, standard deviation,
number of points and correlation coefficient of the population are also quoted. Histograms of the number of counts are shown around the

margin, along with the linear regression and the 1-to-1 lines in black and grey respectively. Results are for soundings over land.

Comparing the TCCON validation for the GOSAT-2 data products to those of GOSAT (Figs 5 to 7), we find that generally
the RMSE is lower for GOSAT-2 than GOSAT across all stations, while the number of retrievals is higher for GOSAT-2. We
observe that the site bias is smaller for GOSAT-2, with GOSAT showing some significant biases with respect to TCCON,
whereas the linear drift is more variable between the two satellites. We note here that we compare data products from GOSAT
and GOSAT-2. We do not comment on the performance of one satellite over another as the data products use different quality
filtering methods. A more concrete comparison could be made by applying RFC quality filtering to GOSAT, however this is

out of the scope of this paper.
5.3 TROPOMI Intercomparision

The fact that the RFC quality filtering models are trained on the spatially limited dataset of TCCON implies that understanding
how well the models - and thus also the filtering - generalise to the global GOSAT-2 dataset, is of high priority. This is reinforced
when considering that the validation data and the training data constitute essentially the same representation of data, which
may lead to biases that would not be picked up by validation with TCCON only. Central to the performance of the models is
the behaviour exhibited in Figure 3. Therefore if such behaviour is exhibited also on global scales, this is good confirmation
that the quality filtering performs equivalently on the global dataset as it does on data colocated with TCCON.

Here we inter-compare our GOSAT-2 product against the TROPOMI operational product, version 2.4.0, and evaluate the
performance of the quality filtering on global scales. The TROPOMI product was pre-filtered with VIIRS cloud product using
the strictest filter of cloud fraction < 0.001, and quality filtered using nominal quality flags. The same colocation criteria are
used as for the GOSAT inter-comparison. We note that since no XCO4 product exists for TROPOMI, the inter-comparison here
is limited to the XCH,4 products.
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Figure 10. Time-series of the GOSAT and GOSAT-2 RemoTeC products. The XCH,4 Full Physics, XCO2 Full Physics and XCH,4 Proxy
products are shown from left to right. GOSAT-2 data are shown as solid lines, whereas GOSAT data are shown as dashed lines. The upper
panels give the globally averaged monthly time-series. The lower panels give the same but split into the different latitude bands of NH, SH
and Tropics. For XCHy, the time-series of the Tropics are shifted up by a constant factor of +50 ppb for better visualisation. For XCO2, the
time-series of the Tropics is shifted by +20 ppm and the SH by -10 ppm.

Figures 11 and 12 illustrate results for the whole of the year 2020, taking GOSAT-2 QA value equal to 0, for the Full Physics
and Proxy XCH, products respectively. To evaluate the generalisation of the RFC quality filtering to global scales, we give
results for the other QA values of the GOSAT-2 product in Table 4. Furthermore, because the RFC filtering in GOSAT-2 is only
applied to soundings over land, we restrict the analysis to satellite data over land.

We find that, when considering GOSAT-2 data with QA value of 0, the global systematic bias between GOSAT-2 and
TROPOMI, which we define as XCHy gosar-2-XCHy tropomr, 18 very low. We derive a global average of the bias of -4.6 ppb
and 1.7 ppb for the Full Physics and Proxy products respectively. The satellite products are highly correlated with correlation
coefficients above 0.88 and 0.87, and standard deviations of 15.0 and 16.6 ppb of XCH,4 Full-Physics and Proxy data. Here
we note that the TROPOMI operational product uses a different bias correction to GOSAT-2. The TROPOMI bias correction
is based on the small area approximation (Lorente et al., 2021; O’Dell et al., 2018) taking a uniform XCH, distribution as a
function of albedo in multiple regions, whereas the GOSAT-2 bias correction is based on TCCON data (equation 8).

A key result shown in Table 4 is that the QA value increases proportional to the scatter of the GOSAT2-TROPOMI differ-
ences and number of data points. This is a good reflection of the behaviour represented in Figure 3, meaning that, despite the
fact that the quality filtering models are trained on the spatially limited dataset of TCCON, they generalise well to the global
ensemble. For reference, the statistics of the TCCON validation of every GOSAT-2/TCCON colocation are also given in Table
4, for each QA value. orccon is calculated as the average RMSE over all stations. The bias for the GOSAT-2 Full Physics
product systematically increases with QA value. That of the Proxy product looks to decrease, however the change of 0.7 ppb
can be treated as negligible.

From the global maps, significant differences between TROPOMI and GOSAT-2 are obvious over Northern/Central Africa,

and we speculate that these differences may be attributed to dust and burning events that lead to high aerosol load, thus making
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the retrieval more difficult. This conclusion would be consistent with the fact that the biases are larger for the Proxy GOSAT-2
product than the Full Physics product, in which aerosols are better characterised. The reason for low coverage and high bias
over the Amazon can be a result of low surface albedo and observations that are contaminated by high water vapour.

To ascertain whether the different labelling of training data in the RFC filtering models introduces a differently biased data
product depending on the albedo, we also looked at soundings with albedo greater than 0.4 only. Here we exclude North
Africa due to the large apparent biases. We find average differences of -2.6 ppb and -2.1 ppb for the Full Physics and Proxy
and products, respectively. These results are very similar to those in Table 4, implying that the quality filtering is consistent
throughout the entire albedo range.

The aggregate global difference between TROPOMI and GOSAT-2 is close to zero, in contrast to what we observe for
GOSAT. Systematic biases of -13 ppb are found between TROPOMI and GOSAT for a global average (Hu et al., 2018;
Lorente et al., 2021). A similar bias is found, in both sign and magnitude, between GOSAT and GOSAT-2 (section 5.2). We
propose therefore that the bias observed between GOSAT and GOSAT-2 comes from systematic biases in the GOSAT XCH,

products, consistent with the results of TCCON validation presented in Figures 5 and 7.

Table 4. Overview of inter-comparison of XCH4 between GOSAT-2 and TROPOMI. Information for all QA values available to GOSAT-2 are
given. AXCHy is the mean bias with TROPOMI, oropomi and Ntropomr are the scatter and number of TROPOMI-GOSAT-2 colocations
respectively, and Ntccon is the number of TCCON-GOSAT-2 colocations, with orccon the RMSE of the bias between GOSAT-2 and
TCCON.

XCH4 Full Physics

QA value AXCHy (ppb)  oTropomi (ppb)  Ntroromi  Ntccon — orccon (ppb)
0 -4.6 15.0 22,863 17,250 13.1
0.2 -4.8 154 29,539 22,635 13.7
0.4 -5.3 16.5 38,049 28,943 15.3
0.6 -5.7 17.4 43,059 32,309 16.6
0.8 -6.3 18.5 47,896 34,578 17.7
XCH4 Proxy
QA value AXCH4 (ppb)  orroromt (ppb)  Ntroromi  NTccon  orccon (ppb)
0 1.7 16.6 76,353 55,915 14.7
0.2 1.8 17.3 77,540 63,248 15.3
0.4 1.5 18.2 88,983 67,607 15.8
0.6 1.2 19.0 93,385 70,198 16.1
0.8 1.0 19.7 97,451 71,884 16.4
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Figure 11. GOSAT2-TROPOMI comparison with QA value equal to O for the GOSAT-2 Full Physics product. upper left: Map of TROPOMI
XCHy daily averages colocated with GOSAT-2, over the year 2020, sampled on 2° x 2° boxes. upper right: Map of GOSAT-2 XCHj daily
averages colocated with TROPOMI, over the year 2020, sampled on 2° x 2° boxes. lower left: Map of the difference between satellite data
defined as XCHy cosar-2-XCHa,tropomi. lower right: Correlation between all colocated XCH4 measurements over 2020, shown as a kernel
density estimation (KDE) plot. The mean bias, standard deviation, number of points and correlation coefficient of the population are also
quoted. Histograms of the number of counts are shown around the margins, along with the linear regression and the 1-to-1 lines in black and

grey respectively.

6 Conclusions

In this article, we have presented total column mixing ratio data products from GOSAT-2, retrieved with the RemoTeC algo-
rithm. From the two retrieval approaches of RemoTeC, three products are extracted; XCH, and XCOs from the Full Physics
retrieval and XCH4 from the Proxy retrieval. The time-series of these products span five years, from 2019 to 2023. All three
products are validated with TCCON and inter-compared to GOSAT and TROPOMI and the long time-series ensures robust

results from each.
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Figure 12. The same as Figure 11 but for the GOSAT-2 Proxy product.

The RMSE between GOSAT-2 and TCCON of both the XCH,4 products is below 15 ppb, with the Proxy product having
more data by a factor of 3, and the RMSE of XCOs, is 2 ppm. We derive station-to-station biases of 4.2 ppb and 0.5 ppm for
the XCH, and XCO- Full Physics products respectively, and 3.7 ppb for the Proxy product. Finally we quantify the linear drift
as 0.6 ppb yr—', 0.2 ppm yr~! and 1.2 ppb yr~! for the XCH, Full Physics, XCO, Full Physics and XCH, Proxy products
respectively.

In comparison to GOSAT, the GOSAT-2 XCH,4 Full Physics product shows large differences, with a global average bias of
-15 ppb. This is less so for the Proxy product and on the order of -5 ppb. Compared to TROPOMI, GOSAT-2 is in excellent
agreement, with average global biases of -4.6 ppb and 1.7 ppb for the Full Physics and Proxy GOSAT-2 products respectively.
High correlation coefficients above 0.85, and standard deviations less than 17 ppb are derived for GOSAT-2 compared to
TROPOMI.

Finally, we present a new quality filtering based on a machine learning approach. Training data for the random forest

classifier models are taken from TCCON colocations with GOSAT-2, where we classify good/bad quality retrievals through
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the bias with TCCON. Since TCCON data are also used to validate the products, we train separate models to quality filter each
year of data, to avoid compromising any independent validation.

Multiple QA values are implemented by training models with different training thresholds. Increasing the QA value leads to
more data at the cost of worsening the RMSE with TCCON. In this way, users can choose between higher data yield or better

quality data, which may have different advantages depending on the use of the data product.

Appendix A: GOSAT-2 data over Ocean

Despite the low surface albedo, satellite measurements over ocean are possible when operating the satellite in sunglint mode.
Sunglint observations take advantage of specific viewing angles where the radiance of back-scattered sunlight is higher due to
reflection from waves. This amplifies the albedo, allowing retrievals over ocean to be carried out, where the albedo is generally
too low to retrieve accurate concentrations.

Figure A1 shows XCH,4 single soundings over land and ocean spatially averaged in latitude/longitude to 2° x 2°. Data are for
6 consecutive days, which is the GOSAT-2 revisit time, thus no temporal averaging occurs. We apply a different bias correction
to retrievals over ocean, although it is very similar to the correction for land retrievals (sec 3.4). Again we use a simple empirical

relation:

Xeorr :Xret(a+b9) (A1)

where X,..; and X, are the bias corrected and retrieved concentrations respectively, 6 is the ratio of the retrieved Oz
column to the prior, and a and b are determined such that the difference with TCCON is minimised. Visually, from Figure A1,
there are no obvious differences between land and ocean with the latitudinal gradient captured in both.

TCCON stations are located only on land, therefore validation of sunglint observations are only possible using stations that
are close to shorelines, or on islands. In this section, the results of the TCCON validation for sunglint mode, for all three

RemoTeC GOSAT-2 products, are presented and shown in Figures A2 to AS.
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Figure A1. Map of XCH, from the Proxy retrieval for 6 consecutive days (GOSAT-2 revisit time) in Spring on a 2° x 2° coordinate grid.
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Table A1. TCCON validation of GOSAT-2 data products for stations with measurements over both land and ocean. Stations marked with an

asterisk have fewer than 5 colocations in glint mode, so should be treated with caution.

XCHy Full Physics XCHy4 Proxy XCOz Full Physics

Station Ocean Bias (ppb) Land Bias (ppb)  Ocean Bias (ppb) Land Bias (ppb)  Ocean Bias (ppm) Land Bias (ppm)

Burgos 24 0.1 -5.7 3.1 1.0 -0.3

Darwin -10.1 -1.6 -33 -1.8 -1.5 -1.3

Lauder -0.8 1.4 -4.6 35 -0.1 0.3
Rikubetsu™ -7.1 3.8 -10.6 9.8 33 0.1

Saga™* -6.9 04 -1.8 35 2.9 04
Wollongong -4.1 -3.1 -10.7 1.7 0.9 -0.3

The RMSE for ocean measurements is higher than over land, although correlation coefficients are comparable. For XCHy,
this is more obvious for the Full Physics product, compared to the Proxy product, with 3 ppb difference in RMSE between
ocean and land. We note that such statistics are drawn only from a handful of TCCON stations due to the limited availability of
TCCON data close to the ocean. As mentioned in section 4.2.1, GOSAT-2 measurements in sunglint mode are quality filtered
using the threshold criteria described in section 4.1.

In Table A1 we show the bias per product for TCCON stations that have measurements over both land and ocean. We note
that, due to the limited number of colocations in glint mode, we calculate bias as the median of all colocations per station,
unlike Figures 5 - 7 which fit equation 14 to the bias timeseries. The Full Physics XCH4 product shows the best agreement
between land and ocean with maximum differences of around 3 ppb, excluding Rikubetsu and Saga which have 1 data point
each over ocean. The XCO- Full Physics product also has good agreement between land and ocean with differences of at most
0.35 % of CO4. The Proxy XCH, product however shows large differences between land and ocean, with even the sign of the
bias changing for most stations, and differences on average to 0.5 % of CHy, pointing to land/ocean biases potentially caused

by the different quality filtering applied over land and ocean.

Appendix B: Supplementary Material of TCCON Validation

Here we provide additional information on the validation of GOSAT-2 products with TCCON. Table B1 lists all the TCCON
stations used in the analysis. Data from all stations are also used as input to train the RFC quality filtering networks. Figures
B1 to B3 present time-series of GOSAT-2 compared to TCCON for all stations for the XCHy4 Full Physics, XCOq Full Physics
and XCH, Proxy products respectively. When enough TCCON data is available, time-series span the full 5 year period from
2019 to 2023.
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Figure A2. GOSAT-2 plotted against TCCON for the Full Physics XCH4, Full Physics XCO» and Proxy XCH4 products from left to right

respectively. Data are compared only if they are fully colocated in space and time. The standard deviation of the population, Pearson’s

correlation coefficient and number of retrievals are given in the inset. The legend plots the different TCCON stations.
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Figure AS. Same as Figure A3 but for the XCH4 Proxy product.

Table B1. List of TCCON stations used in training the quality filtering model and/or validation.

Site (Country) Coordinates (lat, lon®) Temporal Extent Reference

Bremen (Germany)
Burgos (Phillipines)
Caltech (USA)
Darwin (Australia)
East Trout Lake (Canada)
Edwards (USA)
Eureka (Canada)
Garmisch (Germany)
Harwell (UK)
Hefei (China)
Izana (Spain)
Karlsruhe (Germany)
Lamont (USA)
Lauder (New Zealand)
Nicosia (Cyprus)
Ny Alesund (Norway)
Orleans (France)
Paris (France)
Park Falls (USA)
Reunion Island (France)
Rikubetsu (Japan)
Saga (Japan)
Sodankyla (Finland)
Tsukuba (Japan)
Wollongong (Australia)
Xianghe (China)

[53, 8.85]
[18.53, 120.65]
[34.14, -118.13]
[-12.42, 130.89]
[54.35, -104.99]
[34.96, -117.88]
[80.05, -86.42]

[47.48, 11.06]
[51.57,-1.32]
[31.9, 119.17]
[28.30, 16.50]
[49.10, 8.44]
[36.60, -97.49]
[-45.04, 169.68]
[35.14, 33.38]
[78.92,11.92]
[47.97,2.11]
[48.49, 2.36]
[45.95, -90.27]
[-20.9, 55.48]
[43.46, 143.77]
[33.24, 130.29]
[67.37, 26.63]
[36.05, 140.12]
[-34.41, 150.88]
[39.80, 116.96]

Jan 2009 - May 2021
Feb 2017 - Nov 2022
Aug 2012 - Aug 2023
Jan 2013 - Dec 2022
Sep 2016 - Sep 2023
Jun 2013 - Aug 2023
Jun 2010 - Jun 2020
Jun 2007 - Apr 2023
Apr 2021 - Aug 2023
Oct 2015 - Nov 2022
Jan 2014 - Jul 2023
Jan 2014 - May 2023
Mar 2011 - Jul 2023
Sep 2018 - Feb 2023
Aug 2019 - May 2021
Feb 2005 - Aug 2022
Aug 2009 - Nov 2022
Aug 2014 - May 2023
May 2004 - Jul 2023
Feb 2015 - Jun 2020
May 2014 - May 2021
Jun 2011 - Sep 2022
Apr 2009 - Apr 2023
Feb 2014 - Feb 2021
Jan 2013 - Feb 2023
May 2018 - Apr 2022

(Notholt et al., 2022)
(Morino et al., 2022c¢)
(Wennberg et al., 2022a)
(Deutscher et al., 2023b)
(Wunch et al., 2022)
(Iraci et al., 2022)
(Strong et al., 2022)
(Sussmann and Rettinger, 2023)
(Weidmann et al., 2023)
(Liu et al., 2023)
(Garcia et al., 2022)
(Hase et al., 2023)
(Wennberg et al., 2022c)
(Pollard et al., 2022)
(Petri et al., 2024)
(Buschmann et al., 2022)
(Warneke et al., 2022)
(Té et al., 2022)
(Wennberg et al., 2022b)
(De Maziere et al., 2022)
(Morino et al., 2022a)
(Shiomi et al., 2022)
(Kivi et al., 2022)
(Morino et al., 2022b)
(Deutscher et al., 2023a)
(Zhou et al., 2022)

30



©® GOSAT-2 single soundings
A Daily averaged GOSAT-2
Daily averaged TCCON

2000 Bremen 2000 Burgos 2000 - Caltech -
Z1900 Z1900 : i : * R 1000 i www
S pered o wney BP0 e, S0 g gl ¥ :
T 1800 : T 1800 T 1800 H )
x x <
1700 Jul Jan Jul Jan Jul YO0 an Jul jan Jul Jan Jul 1700 2020 2021 2022 2023
2020 2021 2020 2021 2022 Time
Time Time
2000 Darwin 2000 East_Trout_Lake 2000 - Edwards .
3 ] 4 . i
o B e b B e
Zigoot b BileEE Rt ' Z 1800 W F Z1s00 *° ’ )
x x <
005 jan  Jul Jan  Jul  Jan Jjul Jan 1700 2020 2021 2022 2023 1700 2020 2021 2022 2023
2020 2021 2022 2023 Time Time
Time
2000 Harwell 2000 Hefei . — 2000 Karlsruhe
3 . 3 I i oasiguin 8,3 .
a | . 8 i |2 : L it # 1 c LG . i Ee
&1900 i i "ﬂ ] ,. 1 g1900 i oy ! D . “IE' §1900 it i ",‘ § '.
< < < }ﬁnﬂl,.. &
T 1800 T 1800 T 1800 : i
x x <
1700 Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct 1700 Jub Jan Jul Jan  Jul Jan  Jul Jan 1700 2020 2021 2022 2023
2022 2023 2020 2021 2022 2023 Time
Time Time
2000 Lamont 2000 Lauder3 2000 Nicosia
35 . o a ) =
: . [
190 i o gt e s § 1000 Mg =t g e SWAR St
T 1800 Z 1800 it Aianl iyt TE i JFPTY :
< X _ - B3
1700 2020 2021 2022 2023 1700 2020 2021 2022 2023 Y7900t jan Apr Jul Oct  Jan  Apr  Jul
Time Time 2020 2021
Time
2000 Orleans 2000 Paris 2000 Park_Falls
) o = . e
21900 4 % 21000 % -l‘ & £1900 : R CURET T
= ¢ 3 £ #e . 3 T TALI ] & ' © T
S bl WS e 0w 1000 . g e
T 1800 Z 1800 T 1800| ** ks
x x <
700 Jii fan Jul Jan Jul  jan Jul 1700 2020 2021 2022 2023 1700 2020 2021 2022 2023
2020 2021 2022 Time Time
Time
2000 Rikubetsu 2000 Saga 2000 Sodankyla
3 . 3 ;. g &3
21900 i i o i §1900 . i J'M'n Hm’",qh 21900 .
C . ¢ a . % ' ] .
2 " s abdh w2 g b SR > e & & b ¢
T 1800 T 1800 T 1800 " #7+ i
x x <
1700 Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul 1700 Jul Jan Jul Jan  Jul Jan Jul 1700 2020 2021 2022 2023
2020 2021 2020 2021 2022 Time
Time Time
2000 Tsukuba 2000 Wollongong 2000 X|ar:ghe
3 3 2 . e it
81900 :, + 81900 21900 o4 R AR IT TRt TS
E: 9 W A8 g fifgd g ) L cﬂﬁrﬂ%g _'ﬁqp 504 Milpam{:gﬁ. !laﬁt
T 1800 : 3 1800 g i - ‘“‘-"Mﬂ @G ST T 1800
x x N <
1700 45r Jul Oct Jan Apr Jul Oct Jan Apr 1790 2020 2021 2022 203 YOO ol Jan Jul Jan
2020 2021 Time 2020 2021 2022
Time Time

Figure B1. Time-series of GOSAT-2 colocated measurements with TCCON stations for the XCH4 Full Physics retrievals. Pink squares

correspond to the daily average of TCCON soundings that are spatio-temporally colocated with GOSAT-2. All individual GOSAT-2 sounding

coloated with TCCON are plotted as blue circles, and the daily average of these are given as black triangles.
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Figure B2. Same as Figure B1 but for the XCO» Full Physics product.
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Figure B3. Same as Figure B1 but for the XCH4 Proxy product.
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500 Appendix C: Supplementary Material GOSAT Intercomparison

Figure C1 shows the comparison between global maps of GOSAT and GOSAT-2, for the XCH4 Proxy and XCOq products,
highlighting the much improved spatial coverage of the GOSAT-2 products. Visually, the distribution of XCO5 and XCH, are
very similar between GOSAT and GOSAT-2, with hot-spots, at least for XCHy, in all the same places.
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Figure C1. GOSAT-GOSAT-2 comparison for the GOSAT-2 XCO, Full Physics (top) and XCH,4 Proxy (bottom) products. Maps are shown
over the year 2020 averaged onto 2° X 2° boxes for GOSAT and GOSAT-2 on the left and right respectively.

34



505

510

515

Author contributions. AB ran the retrievals to obtain level 2 data from GOSAT-2, conducted the analysis on all three products and wrote the
paper. MM provided the TROPOMI operational prodcut data. TB and JL gave guidance in writing the paper and significant input into the

configuration and architecture of the retrieval. All other co-authors provided data from the TCCON network.

Competing interests. Three of the co-authors are members of the editorial board for Atmospheric Measurement Techniques in the subject

area of Gases.

Acknowledgements. The research in this manuscript was supported by funding from the European Space Agency (ESA) via the project
GHG-CCI+ (ESA contract no. 4000126450/19/1-NB). We thank the European Center for Medium Range Weather Forecasts (ECMWF) for
providing the ERAS reanalysis data. We also thank ESA and JAXA/NIES for providing us with the GOSAT-2 level 1b data. MV acknowledges
Horizon 2020 (grant no. EMME-CARE - Eastern Mediterranean and Middle East — Climate and Atmosphere Research Centre (856612)).

Data availability. All three GOSAT-2 products are operationally provided as part of the Copernicus Climate Change Service (C3S) and
can be downloaded from https://zenodo.org/records/12180512 under version 2.1.0 (DOI:10.5281/zenodo.12180512). Alternatively all three
products will be made available on the CEDA Data Archive, https://catalogue.ceda.ac.uk/, as part of Climate Change Initiative plus (CCI+)

under version v2.0.3.

35



520

525

530

535

540

545

550

References

Banks, H. and Wood, R.: Where to Look for Anthropogenic Climate Change in the Ocean., Journal of Climate, 15 (8), 879-891, 2002.

Barr, A. G., Borsdorff, T., and Landgraf, J.: Algorithm Theoretical Basis Document (ATBD) Version 1.5 — For the RemoTeC XCO2 and
XCH4 GOSAT-2 SRON Full Physics Products (CO2_GO2_SRFP and CH4_GO2_SRFP) Version 2.0.3 for the Essential Climate Variable
(ECV) Greenhouse Gases (GHG), ESA GHG CCI+., https://climate.esa.int/media/documents/ATBD_XCO2_XCH4_GOSAT2_SRFP_
v1.5.pdf, 2024a.

Barr, A. G., Borsdorff, T., and Landgraf, J.: Algorithm Theoretical Basis Document (ATBD) Version 1.5 For the RemoTeC XCH4 GOSAT-2
SRON Proxy Product (CH4_GO2_SRPR) Version 2.0.3 for the Essential Climate Variable (ECV) Greenhouse Gases (GHG), ESA GHG
CCI+., https://climate.esa.int/media/documents/ATBD_XCH4_GOSAT2_SRPR_v1.5.pdf, 2024b.

Barr, A. G., Borsdorff, T., and Landgraf, J.: ESA Climate Change Initiative “Plus” (CCI+) Product User Guide (PUG) Version 5.0 - For
the RemoTeC GOSAT-2 SRON Full-Physics Products: XCO2 (CO2_GO2_SRFP) and XCH4 (CH4_GO2_SRFP) Version 2.0.3 for the
Essential Climate Variable (ECV) Greenhouse Gases (GHG), ESA GHG CCI+., https://climate.esa.int/media/documents/PUG_CRDP9_
v2_GHG-CCI_CO2_CH4_GO2_SRFP_v2.0.3.pdf, 2024c.

Barr, A. G., Borsdorff, T., and Landgraf, J.: ESA Climate Change Initiative “Plus” (CCI+) Product User Guide (PUG) Version 5.0 - for the
RemoTeC XCH4 GOSAT-2 Proxy Product (CH4_GO2_SRPR) version 2.0.3 for the Essential Climate Variable (ECV) Greenhouse Gases
(GHG), ESA GHG CCI+., https://climate.esa.int/media/documents/PUG_CRDP9_v2_GHG-CCI_CH4_GO2_SRPR_v2.0.3.pdf, 2024d.

Basu, S., Guerlet, S., Butz, A., Houweling, S., Hasekamp, O., Aben, 1., Krummel, P., Steele, P., Langenfelds, R., Torn, M., Biraud, S.,
Stephens, B., Andrews, A., and Worthy, D.: Global CO fluxes estimated from GOSAT retrievals of total column CO2, Atmospheric
Chemistry and Physics, 13, 8695-8717, https://doi.org/10.5194/acp-13-8695-2013, 2013.

Bergamaschi, P., Frankenberg, C., Meirink, J. F., Krol, M., Villani, M. G., Houweling, S., Dentener, F., Dlugokencky, E. J., Miller, J. B.,
Gatti, L. V., Engel, A., and Levin, L.: Inverse modeling of global and regional CH4 emissions using SCIAMACHY satellite retrievals,
Journal of Geophysical Research: Atmospheres, 114, https://doi.org/https://doi.org/10.1029/2009JD012287, 2009.

Bradley, A. P.: The use of the area under the ROC curve in the evaluation of machine learning algorithms, Pattern Recognition, 30, 1145—
1159, https://doi.org/https://doi.org/10.1016/S0031-3203(96)00142-2, 1997.

Breiman, L.: Random Forests, Machine Learning, 45, 5-32, https://doi.org/10.1023/A:1010933404324, 2001.

Buchwitz, M., Reuter, M., Schneising, O., Boesch, H., Guerlet, S., Dils, B., Aben, 1., Armante, R., Bergamaschi, P., Blumenstock, T.,
Bovensmann, H., Brunner, D., Buchmann, B., Burrows, J., Butz, A., Chédin, A., Chevallier, F., Crevoisier, C., Deutscher, N., Frankenberg,
C., Hase, F., Hasekamp, O., Heymann, J., Kaminski, T., Laeng, A., Lichtenberg, G., De Maziere, M., Noél, S., Notholt, J., Orphal, J.,
Popp, C., Parker, R., Scholze, M., Sussmann, R., Stiller, G., Warneke, T., Zehner, C., Bril, A., Crisp, D., Griffith, D., Kuze, A., O’Dell,
C., Oshchepkov, S., Sherlock, V., Suto, H., Wennberg, P., Wunch, D., Yokota, T., and Yoshida, Y.: The Greenhouse Gas Climate Change
Initiative (GHG-CCI): Comparison and quality assessment of near-surface-sensitive satellite-derived CO2 and CH4 global data sets,
Remote Sensing of Environment, 162, 344362, https://doi.org/https://doi.org/10.1016/j.rse.2013.04.024, 2015.

Buschmann, M., Petri, C., Palm, M., Warneke, T., and Notholt, J.: TCCON data from Ny-Alesund, Svalbard (NO), Release GGG2020.RO,
https://doi.org/10.14291/tccon.ggg2020.nyalesund01.RO, 2022.

Butz, A., Hasekamp, O. P., Frankenberg, C., and Aben, I.: Retrievals of atmospheric CO2 from simulated space-borne measurements of
backscattered near-infrared sunlight: accounting for aerosol effects, Appl. Opt., 48, 3322-3336, https://doi.org/10.1364/A0.48.003322,
2009.

36


https://climate.esa.int/media/documents/ATBD_XCO2_XCH4_GOSAT2_SRFP_v1.5.pdf
https://climate.esa.int/media/documents/ATBD_XCO2_XCH4_GOSAT2_SRFP_v1.5.pdf
https://climate.esa.int/media/documents/ATBD_XCO2_XCH4_GOSAT2_SRFP_v1.5.pdf
https://climate.esa.int/media/documents/ATBD_XCH4_GOSAT2_SRPR_v1.5.pdf
https://climate.esa.int/media/documents/PUG_CRDP9_v2_GHG-CCI_CO2_CH4_GO2_SRFP_v2.0.3.pdf
https://climate.esa.int/media/documents/PUG_CRDP9_v2_GHG-CCI_CO2_CH4_GO2_SRFP_v2.0.3.pdf
https://climate.esa.int/media/documents/PUG_CRDP9_v2_GHG-CCI_CO2_CH4_GO2_SRFP_v2.0.3.pdf
https://climate.esa.int/media/documents/PUG_CRDP9_v2_GHG-CCI_CH4_GO2_SRPR_v2.0.3.pdf
https://doi.org/10.5194/acp-13-8695-2013
https://doi.org/https://doi.org/10.1029/2009JD012287
https://doi.org/https://doi.org/10.1016/S0031-3203(96)00142-2
https://doi.org/10.1023/A:1010933404324
https://doi.org/https://doi.org/10.1016/j.rse.2013.04.024
https://doi.org/10.14291/tccon.ggg2020.nyalesund01.R0
https://doi.org/10.1364/AO.48.003322

5565

560

565

570

575

580

585

590

Butz, A., Hasekamp, O. P., Frankenberg, C., Vidot, J., and Aben, I.: CH4 retrievals from space-based solar backscatter measurements:
Performance evaluation against simulated aerosol and cirrus loaded scenes, Journal of Geophysical Research: Atmospheres, 115,
https://doi.org/https://doi.org/10.1029/2010JD014514, 2010.

Butz, A., Guerlet, S., Hasekamp, O., Schepers, D., Galli, A., Aben, I., Frankenberg, C., Hartmann, J.-M., Tran, H., Kuze,
A., Keppel-Aleks, G., Toon, G., Wunch, D., Wennberg, P., Deutscher, N., Griffith, D., Macatangay, R., Messerschmidt, J.,
Notholt, J., and Warneke, T.: Toward accurate CO2 and CH4 observations from GOSAT, Geophysical Research Letters, 38,
https://doi.org/https://doi.org/10.1029/2011GL047888, 2011.

Chevallier, F.: CO2 surface fluxes at grid point scale estimated from a global 21 year reanalysis of atmospheric measurements, J. Geophys.
Res, 15, https://doi.org/doi:10.1029/2010JD013887, 2010.

Chevallier, F., Engelen, R. J., and Peylin, P.: The contribution of AIRS data to the estimation of CO2 sources and sinks, Geophysical Research
Letters, 32, https://doi.org/https://doi.org/10.1029/2005GL024229, 2005.

Chevallier, F., Bréon, F.-M., and Rayner, P. J.: Contribution of the Orbiting Carbon Observatory to the estimation of CO2 sources
and sinks: Theoretical study in a variational data assimilation framework, Journal of Geophysical Research: Atmospheres, 112,
https://doi.org/https://doi.org/10.1029/2006JD007375, 2007.

Chevallier, F.,, Maksyutov, S., Bousquet, P., Bréon, F.-M., Saito, R., Yoshida, Y., and Yokota, T.: On the accuracy of the CO2 surface fluxes
to be estimated from the GOSAT observations, Geophysical Research Letters, 36, https://doi.org/https://doi.org/10.1029/2009GL040108,
2009.

De Maziere, M., Sha, M. K., Desmet, F., Hermans, C., Scolas, F., Kumps, N., Zhou, M., Metzger, J.-M., Duflot, V., and Cammas, J.-
P.: TCCON data from Réunion Island (RE), Release GGG2020.R0, https://doi.org/10.14291/tccon.ggg2020.reunion01.R0, funding by
Belgian Federal Science Policy Office GRID grid.425119.a., 2022.

Detmers, R. G., Hasekamp, O., Aben, 1., Houweling, S., van Leeuwen, T. T., Butz, A., Landgraf, J., Kohler, P, Guanter, L.,
and Poulter, B.: Anomalous carbon uptake in Australia as seen by GOSAT, Geophysical Research Letters, 42, 8177-8184,
https://doi.org/https://doi.org/10.1002/2015GL065161, 2015.

Deutscher, N. M., Griffith, D. W. T., Bryant, G. W., Wennberg, P. O., Toon, G. C., Washenfelder, R. A., Keppel-Aleks, G., Wunch, D., Yavin,
Y., Allen, N. T., Blavier, J.-F., Jiménez, R., Daube, B. C., Bright, A. V., Matross, D. M., Wofsy, S. C., and Park, S.: Total column CO2
measurements at Darwin, Australia; site description and calibration against in situ aircraft profiles, Atmospheric Measurement Techniques,
3, 947-958, https://doi.org/10.5194/amt-3-947-2010, 2010.

Deutscher, N. M., Griffith, D. W., Paton-Walsh, C., Jones, N. B., Velazco, V. A., Wilson, S. R., Macatangay, R. C., Ket-
tlewell, G. C., Buchholz, R. R., Riggenbach, M. O., and et al.. TCCON data from Wollongong (AU), Release GGG2020.RO,
https://doi.org/10.14291/tccon.ggg2020.wollongong01.RO, funding by Australian Research Council GRID grid.413452.5., 2023a.

Deutscher, N. M., Griffith, D. W, Paton-Walsh, C., Velazco, V. A., Wennberg, P. O., Blavier, J.-F., Washenfelder,
R. A., Yavin, Y., Keppel-Aleks, G., Toon, G. C., and et al.: TCCON data from Darwin (AU), Release GGG2020.R0,
https://doi.org/10.14291/tccon.ggg2020.darwin01.R0, funding by Australian Research Council GRID grid.413452.5., 2023b.

Dils, B., De Maziere, M., Miiller, J. F., Blumenstock, T., Buchwitz, M., de Beek, R., Demoulin, P., Duchatelet, P., Fast, H., Frankenberg, C.,
Gloudemans, A., Griffith, D., Jones, N., Kerzenmacher, T., Kramer, I., Mahieu, E., Mellqvist, J., Mittermeier, R. L., Notholt, J., Rinsland,
C. P, Schrijver, H., Smale, D., Strandberg, A., Straume, A. G., Stremme, W., Strong, K., Sussmann, R., Taylor, J., van den Broek, M.,
Velazco, V., Wagner, T., Warneke, T., Wiacek, A., and Wood, S.: Comparisons between SCTAMACHY and ground-based FTIR data for

37


https://doi.org/https://doi.org/10.1029/2010JD014514
https://doi.org/https://doi.org/10.1029/2011GL047888
https://doi.org/doi:10.1029/2010JD013887
https://doi.org/https://doi.org/10.1029/2005GL024229
https://doi.org/https://doi.org/10.1029/2006JD007375
https://doi.org/https://doi.org/10.1029/2009GL040108
https://doi.org/10.14291/tccon.ggg2020.reunion01.R0
https://doi.org/https://doi.org/10.1002/2015GL065161
https://doi.org/10.5194/amt-3-947-2010
https://doi.org/10.14291/tccon.ggg2020.wollongong01.R0
https://doi.org/10.14291/tccon.ggg2020.darwin01.R0

595

600

605

610

615

620

625

total columns of CO, CH4, CO2 and N2O, Atmospheric Chemistry and Physics, 6, 1953—-1976, https://doi.org/10.5194/acp-6-1953-2006,
2006.

Dils, B., Buchwitz, M., Reuter, M., Schneising, O., Boesch, H., Parker, R., Guerlet, S., Aben, 1., Blumenstock, T., Burrows, J. P., Butz,
A., Deutscher, N. M., Frankenberg, C., Hase, F., Hasekamp, O. P., Heymann, J., De Mazi¢re, M., Notholt, J., Sussmann, R., Warneke,
T., Griffith, D., Sherlock, V., and Wunch, D.: The Greenhouse Gas Climate Change Initiative (GHG-CCI): comparative validation of
GHG-CCI SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT CO2 and CHy4 retrieval algorithm products with measurements from the
TCCON, Atmospheric Measurement Techniques, 7, 1723—-1744, https://doi.org/10.5194/amt-7-1723-2014, 2014.

Frankenberg, C., Platt, U., and Wagner, T.: Iterative maximum a posteriori (IMAP)-DOAS for retrieval of strongly absorbing trace gases:
Model studies for CH4 and CO; retrieval from near infrared spectra of SCTAMACHY onboard ENVISAT, Atmospheric Chemistry and
Physics, 5, 9-22, https://doi.org/10.5194/acp-5-9-2005, 2005.

Frankenberg, C., Aben, 1., Bergamaschi, P., Dlugokencky, E. J., van Hees, R., Houweling, S., van der Meer, P., Snel, R., and Tol, P.: Global
column-averaged methane mixing ratios from 2003 to 2009 as derived from SCIAMACHY: Trends and variability, Journal of Geophysical
Research: Atmospheres, 116, https://doi.org/https://doi.org/10.1029/2010JD014849, 2011.

Garcfa, O. E., Schneider, M., Herkommer, B., Gross, J., Hase, F., Blumenstock, T., and Sepiilveda, E.: TCCON data from Izana (ES), Release
GGG2020.R1, https://doi.org/10.14291/tccon.ggg2020.izana01.R1, 2022.

GCOS: The global observing system for climate: implementation needs., World Meteo- rological Organization (WMO), 2016.

Geibel, M. C., Messerschmidt, J., Gerbig, C., Blumenstock, T., Chen, H., Hase, F,, Kolle, O., Lavri¢, J. V., Notholt, J., Palm, M., Rettinger,
M., Schmidt, M., Sussmann, R., Warneke, T., and Feist, D. G.: Calibration of column-averaged CH,4 over European TCCON FTS sites with
airborne in-situ measurements, Atmospheric Chemistry and Physics, 12, 8763—-8775, https://doi.org/10.5194/acp-12-8763-2012, 2012.

Giorgi, F. and Bi, X.: Time of emergence (TOE) of GHG-forced precipitation change hot-spots, Geophysical Research Letters, 36,
https://doi.org/https://doi.org/10.1029/2009GL037593, 2009.

Guerlet, S., Butz, A., Schepers, D., Basu, S., Hasekamp, O. P., Kuze, A., Yokota, T., Blavier, J.-F., Deutscher, N. M., Griffith, D. W.,
Hase, F., Kyro, E., Morino, 1., Sherlock, V., Sussmann, R., Galli, A., and Aben, L.: Impact of aerosol and thin cirrus on retrieving and
validating XCO2 from GOSAT shortwave infrared measurements, Journal of Geophysical Research: Atmospheres, 118, 4887-4905,
https://doi.org/https://doi.org/10.1002/jgrd.50332, 2013.

Hase, F., Herkommer, B., GroB, J., Blumenstock, T., Kiel, M., and Dohe, S.: TCCON data from Karlsruhe (DE), Release GGG2020.R1,
https://doi.org/10.14291/tccon.ggg2020.karlsruhe01.R1, 2023.

Hasekamp, O. P. and Landgraf, J.: Linearization of vector radiative transfer with respect to aerosol properties and its use in satellite remote
sensing, Journal of Geophysical Research: Atmospheres, 110, https://doi.org/https://doi.org/10.1029/2004JD005260, 2005.

Hawkins, E. and Sutton, R.: Time of emergence of climate signals, Geophysical Research Letters, 39,
https://doi.org/https://doi.org/10.1029/2011GL050087, 2012.

Hawkins, E., Frame, D., Harrington, L., Joshi, M., King, A., Rojas, M., and Sutton, R.: Observed Emergence of the
Climate Change Signal: From the Familiar to the Unknown, Geophysical Research Letters, 47, 2019GL086 259,
https://doi.org/https://doi.org/10.1029/2019GL086259, e2019GL086259 2019GL086259, 2020.

Hedelius, J. K., Feng, S., Roehl, C. M., Wunch, D., Hillyard, P. W., Podolske, J. R., Iraci, L. T., Patarasuk, R., Rao, P., O’Keeffe, D., Gurney,
K.R., Lauvaux, T., and Wennberg, P. O.: Emissions and topographic effects on column CO2 () variations, with a focus on the Southern Cal-
ifornia Megacity, Journal of Geophysical Research: Atmospheres, 122, 72007215, https://doi.org/https://doi.org/10.1002/2017JD026455,
2017.

38


https://doi.org/10.5194/acp-6-1953-2006
https://doi.org/10.5194/amt-7-1723-2014
https://doi.org/10.5194/acp-5-9-2005
https://doi.org/https://doi.org/10.1029/2010JD014849
https://doi.org/10.14291/tccon.ggg2020.izana01.R1
https://doi.org/10.5194/acp-12-8763-2012
https://doi.org/https://doi.org/10.1029/2009GL037593
https://doi.org/https://doi.org/10.1002/jgrd.50332
https://doi.org/10.14291/tccon.ggg2020.karlsruhe01.R1
https://doi.org/https://doi.org/10.1029/2004JD005260
https://doi.org/https://doi.org/10.1029/2011GL050087
https://doi.org/https://doi.org/10.1029/2019GL086259
https://doi.org/https://doi.org/10.1002/2017JD026455

630

635

640

645

650

655

660

665

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Hordnyi, A., Mufloz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Sim-
mons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren,
P, Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J.,
Hélm, E., Janiskovd, M., Keeley, S., Laloyaux, P., Lopez, P, Lupu, C., Radnoti, G., de Rosnay, P., Rozum, 1., Vamborg, F., Vil-
laume, S., and Thépaut, J.-N.: The ERAS global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146, 1999-2049,
https://doi.org/https://doi.org/10.1002/qj.3803, 2020.

Hu, H., Hasekamp, O., Butz, A., Galli, A., Landgraf, J., Aan de Brugh, J., Borsdorff, T., Scheepmaker, R., and Aben, I.: The operational
methane retrieval algorithm for TROPOMI, Atmospheric Measurement Techniques, 9, 5423-5440, https://doi.org/10.5194/amt-9-5423-
2016, 2016.

Hu, H., Landgraf, J., Detmers, R., Borsdorff, T., Aan de Brugh, J., Aben, 1., Butz, A., and Hasekamp, O.: Toward Global Mapping
of Methane With TROPOMI: First Results and Intersatellite Comparison to GOSAT, Geophysical Research Letters, 45, 3682-3689,
https://doi.org/https://doi.org/10.1002/2018 GL077259, 2018.

Huijnen, V., Williams, J., van Weele, M., van Noije, T., Krol, M., Dentener, F., Segers, A., Houweling, S., and Peters, W.: The global
chemistry transport model TMS5: description and evaluation of the tropospheric chemistry version 3.0, Geoscientific Model Development,
3, 445-473, https://doi.org/10.5194/gmd-3-445-2010, 2010.

Imasu, R., Matsunaga, T., Nakajima, M., Yoshida, Y., Shiomi, K., Morino, L., Saitoh, N., Niwa, Y., Someya, Y., Oishi, Y., Hashimoto, M.,
Noda, H., Hikosaka, K., Uchino, O., Maksyutov, S., Takagi, H., Ishida, H., Nakajima, T. Y., Nakajima, T., and Shi, C.: Greenhouse gases
Observing SATellite 2 (GOSAT-2): mission overview, Progress in Earth and Planetary Science, 10, 33, https://doi.org/10.1186/s40645-
023-00562-2, 2023.

IPCC ARS5: Near-term Climate Change: Projections and Predictability, pp. 953-1028, Cambridge University Press,
https://doi.org/10.1017/CB0O9781107415324.023, 2014.

IPCC ARG6 2021: Framing, Context, and Methods, pp. 147-286, Cambridge University Press, https://doi.org/10.1017/9781009157896.003,
2023a.

IPCC AR6 2021: Global Carbon and Other Biogeochemical Cycles and Feedbacks, pp. 673-816, Cambridge University Press,
https://doi.org/10.1017/9781009157896.007, 2023b.

Iraci, L. T., Podolske, J. R., Roehl, C., Wennberg, P. O., Blavier, J.-F., Allen, N., Wunch, D., and Osterman, G. B.: TCCON data from
Edwards (US), Release GGG2020.RO0, https://doi.org/10.14291/tccon.ggg2020.edwards01.R0, funding by National Aeronautics and Space
Administration GRID grid.238252.c., 2022.

Janardanan, R., Maksyutov, S., Wang, F., Nayagam, L., Yoshida, Y., Lan, X., and Matsunaga, T.: High-Resolution Inversion of GOSAT-2
Retrievals for Sectoral Methane Emission Estimates During 2019-2022: A Consistency Analysis with GOSAT Inversion., Remote Sens.,
17, https://www.preprints.org/manuscript/202507.0977/v1, 2025.

Jiang, F., Wang, H., Chen, J. M., Ju, W., Tian, X., Feng, S., Li, G., Chen, Z., Zhang, S., Lu, X., Liu, J., Wang, H., Wang, J., He, W., and Wu,
M.: Regional CO> fluxes from 2010 to 2015 inferred from GOSAT XCOx, retrievals using a new version of the Global Carbon Assimilation
System, Atmospheric Chemistry and Physics, 21, 1963-1985, https://doi.org/10.5194/acp-21-1963-2021, 2021.

Karion, A., Sweeney, C., Tans, P., and Newberger, T.: AirCore: An Innovative Atmospheric Sampling System, Journal of Atmospheric and
Oceanic Technology, https://doi.org/10.1175/2010JTECHA1448.1, 2010.

Kivi, R., Heikkinen, P, and Kyro, E. TCCON data from  Sodankyld (FI), Release GGG2020.R0,
https://doi.org/10.14291/tccon.ggg2020.sodankyla01.R0, funding by Finnish Meteorological Institute, 2022.

39


https://doi.org/https://doi.org/10.1002/qj.3803
https://doi.org/10.5194/amt-9-5423-2016
https://doi.org/10.5194/amt-9-5423-2016
https://doi.org/10.5194/amt-9-5423-2016
https://doi.org/https://doi.org/10.1002/2018GL077259
https://doi.org/10.5194/gmd-3-445-2010
https://doi.org/10.1186/s40645-023-00562-2
https://doi.org/10.1186/s40645-023-00562-2
https://doi.org/10.1186/s40645-023-00562-2
https://doi.org/10.1017/CBO9781107415324.023
https://doi.org/10.1017/9781009157896.003
https://doi.org/10.1017/9781009157896.007
https://doi.org/10.14291/tccon.ggg2020.edwards01.R0
https://www.preprints.org/manuscript/202507.0977/v1
https://doi.org/10.5194/acp-21-1963-2021
https://doi.org/10.1175/2010JTECHA1448.1
https://doi.org/10.14291/tccon.ggg2020.sodankyla01.R0

670

675

680

685

690

695

700

Kou, X., Peng, Z., Zhang, M., Hu, F, Han, X., Li, Z., and Lei, L.: The carbon sink in China as seen from GOSAT with a regional inversion
system based on the Community Multi-scale Air Quality (CMAQ) and ensemble Kalman smoother (EnKS), Atmospheric Chemistry and
Physics, 23, 6719-6741, https://doi.org/10.5194/acp-23-6719-2023, 2023.

Kurucz, R. L.: Synthetic Infrared Spectra, in: Infrared Solar Physics, edited by Rabin, D. M., Jefferies, J. T., and Lindsey, C., pp. 523-531,
Springer Netherlands, Dordrecht, 1994.

Kuze, A., Suto, H., Nakajima, M., and Hamazaki, T.: Thermal and near infrared sensor for carbon observation Fourier-transform
spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring, Appl. Opt., 48, 67166733,
https://doi.org/10.1364/A0.48.006716, 2009.

Kuze, A., Suto, H., Shiomi, K., Kawakami, S., Tanaka, M., Ueda, Y., Deguchi, A., Yoshida, J., Yamamoto, Y., Kataoka, F., Taylor, T. E., and
Buijs, H. L.: Update on GOSAT TANSO-FTS performance, operations, and data products after more than 6 years in space, Atmospheric
Measurement Techniques, 9, 2445-2461, https://doi.org/10.5194/amt-9-2445-2016, 2016.

Laughner, J. L., Roche, S., Kiel, M., Toon, G. C., Wunch, D., Baier, B. C., Biraud, S., Chen, H., Kivi, R., Laemmel, T., McKain, K., Quéhé,
P-Y., Rousogenous, C., Stephens, B. B., Walker, K., and Wennberg, P. O.: A new algorithm to generate a priori trace gas profiles for the
GGG2020 retrieval algorithm, Atmospheric Measurement Techniques, 16, 1121-1146, https://doi.org/10.5194/amt-16-1121-2023, 2023.

Liang, J.: Confusion Matrix: Machine Learning, POGIL Activity Clearinghouse, 3, https://pac.pogil.org/index.php/pac/article/view/304,
2022.

Liang, R., Zhang, Y., Chen, W., Zhang, P., Liu, J., Chen, C., Mao, H., Shen, G., Qu, Z., Chen, Z., Zhou, M., Wang, P., Parker, R. J,,
Boesch, H., Lorente, A., Maasakkers, J. D., and Aben, L.: East Asian methane emissions inferred from high-resolution inversions of
GOSAT and TROPOMI observations: a comparative and evaluative analysis, Atmospheric Chemistry and Physics, 23, 8039-8057,
https://doi.org/10.5194/acp-23-8039-2023, 2023.

Liu, C., Wang, W, Sun, Y, and Shan, C.. TCCON data from Hefei (PRC), Release GGG2020.RI,
https://doi.org/10.14291/tccon.ggg2020.hefei01.R1, 2023.

Lorente, A., Borsdorff, T., Butz, A., Hasekamp, O., aan de Brugh, J., Schneider, A., Wu, L., Hase, F., Kivi, R., Wunch, D., Pollard, D. F,,
Shiomi, K., Deutscher, N. M., Velazco, V. A., Roehl, C. M., Wennberg, P. O., Warneke, T., and Landgraf, J.: Methane retrieved from
TROPOMI: improvement of the data product and validation of the first 2 years of measurements, Atmospheric Measurement Techniques,
14, 665684, https://doi.org/10.5194/amt-14-665-2021, 2021.

Lyu, K., Zhang, X., Church, J. A., Slangen, A. B. A., and Hu, J.: Time of emergence for regional sea-level change, Nature Climate Change,
4, 1006-1010, https://doi.org/10.1038/nclimate2397, 2014.

Maasakkers, J. D., Jacob, D. J., Sulprizio, M. P., Scarpelli, T. R., Nesser, H., Sheng, J.-X., Zhang, Y., Hersher, M., Bloom, A. A., Bowman,
K. W., Worden, J. R., Janssens-Maenhout, G., and Parker, R. J.: Global distribution of methane emissions, emission trends, and OH
concentrations and trends inferred from an inversion of GOSAT satellite data for 2010-2015, Atmospheric Chemistry and Physics, 19,
7859-7881, https://doi.org/10.5194/acp-19-7859-2019, 2019.

Mabhlstein, 1., Knutti, R., Solomon, S., and Portmann, R.: Early onset of significant local warming in low latitude countries., Environmental
Research Letter., 6(3), 2011.

Malina, E., Yoshida, Y., Matsunaga, T., and Muller, J.-P.: Information content analysis: the potential for methane isotopologue retrieval from

GOSAT-2, Atmospheric Measurement Techniques, 11, 1159-1179, https://doi.org/10.5194/amt-11-1159-2018, 2018.

40


https://doi.org/10.5194/acp-23-6719-2023
https://doi.org/10.1364/AO.48.006716
https://doi.org/10.5194/amt-9-2445-2016
https://doi.org/10.5194/amt-16-1121-2023
https://pac.pogil.org/index.php/pac/article/view/304
https://doi.org/10.5194/acp-23-8039-2023
https://doi.org/10.14291/tccon.ggg2020.hefei01.R1
https://doi.org/10.5194/amt-14-665-2021
https://doi.org/10.1038/nclimate2397
https://doi.org/10.5194/acp-19-7859-2019
https://doi.org/10.5194/amt-11-1159-2018

705

710

715

720

725

730

735

740

Malina, E., Veihelmann, B., Buschmann, M., Deutscher, N. M., Feist, D. G., and Morino, I.: On the consistency of methane retrievals using
the Total Carbon Column Observing Network (TCCON) and multiple spectroscopic databases, Atmospheric Measurement Techniques,
15, 2377-2406, https://doi.org/10.5194/amt-15-2377-2022, 2022.

Meirink, J. F., Eskes, H. J., and Goede, A. P. H.: Sensitivity analysis of methane emissions derived from SCIAMACHY observations through
inverse modelling, Atmospheric Chemistry and Physics, 6, 1275-1292, https://doi.org/10.5194/acp-6-1275-2006, 2006.

Messerschmidt, J., Geibel, M. C., Blumenstock, T., Chen, H., Deutscher, N. M., Engel, A., Feist, D. G., Gerbig, C., Gisi, M., Hase, F.,
Katrynski, K., Kolle, O., Lavri¢, J. V., Notholt, J., Palm, M., Ramonet, M., Rettinger, M., Schmidt, M., Sussmann, R., Toon, G. C.,
Truong, F., Warneke, T., Wennberg, P. O., Wunch, D., and Xueref-Remy, L.: Calibration of TCCON column-averaged CO>: the first
aircraft campaign over European TCCON sites, Atmospheric Chemistry and Physics, 11, 10765-10777, https://doi.org/10.5194/acp-11-
10765-2011, 2011.

Metz, E.-M., Vardag, S. N., Basu, S., Jung, M., Ahrens, B., El-Madany, T., Sitch, S., Arora, V. K., Briggs, P. R., Friedlingstein, P., Goll, D. S.,
Jain, A. K., Kato, E., Lombardozzi, D., Nabel, J. E. M. S., Poulter, B., Séférian, R., Tian, H., Wiltshire, A., Yuan, W., Yue, X., Zaehle, S.,
Deutscher, N. M., Griffith, D. W. T., and Butz, A.: Soil respiration&#x2013;driven CO<sub>2</sub> pulses dominate Australia&#x2019;s
flux variability, Science, 379, 1332—-1335, https://doi.org/10.1126/science.add7833, 2023.

Morino, I, Ohyama, H., Hori, A., and Ikegami, H.. TCCON data from Rikubetsu (JP), Release GGG2020.RO,
https://doi.org/10.14291/tccon.ggg2020.rikubetsu01.R0, funding by National Institute for Environmental Studies GRID grid.140139.e.,
2022a.

Morino, I, Ohyama, H., Hori, A., and lkegami, H.: TCCON data from Tsukuba (JP), 125HR, Release GGG2020.RO,
https://doi.org/10.14291/tccon.ggg2020.tsukuba02.R0, funding by National Institute for Environmental Studies GRID grid.140139.e.,
2022b.

Morino, 1., Velazco, V. A., Hori, A., Uchino, O., and Griffith, D. W.: TCCON data from Burgos, Ilocos Norte (PH), Release GGG2020.R0,
https://doi.org/10.14291/tccon.ggg2020.burgos01.R0O, funding by National Institute for Environmental Studies GRID grid.140139.e.,
2022c.

Noél, S., Reuter, M., Buchwitz, M., Borchardt, J., Hilker, M., Bovensmann, H., Burrows, J. P., Di Noia, A., Suto, H., Yoshida, Y., Buschmann,
M., Deutscher, N. M., Feist, D. G., Griffith, D. W. T., Hase, F., Kivi, R., Morino, 1., Notholt, J., Ohyama, H., Petri, C., Podolske, J. R.,
Pollard, D. F., Sha, M. K., Shiomi, K., Sussmann, R., Té, Y., Velazco, V. A., and Warneke, T.: XCOxs retrieval for GOSAT and GOSAT-
2 based on the FOCAL algorithm, Atmospheric Measurement Techniques, 14, 3837-3869, https://doi.org/10.5194/amt-14-3837-2021,
2021.

Noél, S., Reuter, M., Buchwitz, M., Borchardt, J., Hilker, M., Schneising, O., Bovensmann, H., Burrows, J. P, Di Noia, A., Parker, R. J.,
Suto, H., Yoshida, Y., Buschmann, M., Deutscher, N. M., Feist, D. G., Griffith, D. W. T., Hase, F., Kivi, R., Liu, C., Morino, 1., Notholt, J.,
Oh, Y.-S., Ohyama, H., Petri, C., Pollard, D. F., Rettinger, M., Roehl, C., Rousogenous, C., Sha, M. K., Shiomi, K., Strong, K., Sussmann,
R., Té, Y., Velazco, V. A., Vrekoussis, M., and Warneke, T.: Retrieval of greenhouse gases from GOSAT and GOSAT-2 using the FOCAL
algorithm, Atmospheric Measurement Techniques, 15, 3401-3437, https://doi.org/10.5194/amt-15-3401-2022, 2022.

Notholt, J., Petri, C., Warneke, T., and Buschmann, M.: TCCON data from Bremen (DE), Release GGG2020.R0,
https://doi.org/10.14291/tccon.ggg2020.bremen01.R0, 2022.

O’Dell, C. W., Eldering, A., Wennberg, P. O., Crisp, D., Gunson, M. R., Fisher, B., Frankenberg, C., Kiel, M., Lindqvist, H., Mandrake, L.,
Merrelli, A., Natraj, V., Nelson, R. R., Osterman, G. B., Payne, V. H., Taylor, T. E., Wunch, D., Drouin, B. J., Oyafuso, F., Chang, A.,
McDuffie, J., Smyth, M., Baker, D. E,, Basu, S., Chevallier, F., Crowell, S. M. R., Feng, L., Palmer, P. L., Dubey, M., Garcia, O. E., Griffith,

41


https://doi.org/10.5194/amt-15-2377-2022
https://doi.org/10.5194/acp-6-1275-2006
https://doi.org/10.5194/acp-11-10765-2011
https://doi.org/10.5194/acp-11-10765-2011
https://doi.org/10.5194/acp-11-10765-2011
https://doi.org/10.1126/science.add7833
https://doi.org/10.14291/tccon.ggg2020.rikubetsu01.R0
https://doi.org/10.14291/tccon.ggg2020.tsukuba02.R0
https://doi.org/10.14291/tccon.ggg2020.burgos01.R0
https://doi.org/10.5194/amt-14-3837-2021
https://doi.org/10.5194/amt-15-3401-2022
https://doi.org/10.14291/tccon.ggg2020.bremen01.R0

745

750

755

760

765

770

775

D. W. T, Hase, F,, Iraci, L. T., Kivi, R., Morino, 1., Notholt, J., Ohyama, H., Petri, C., Roehl, C. M., Sha, M. K., Strong, K., Sussmann,
R., Te, Y., Uchino, O., and Velazco, V. A.: Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8
ACOS algorithm, Atmospheric Measurement Techniques, 11, 6539-6576, https://doi.org/10.5194/amt-11-6539-2018, 2018.

Ohyama, H., Yoshida, Y., and Matsunaga, T.: CH4 and CO emission estimates for megacities: deriving enhancement ratios of CO2, CH4,
and CO from GOSAT-2 observations., Environ. Res. Lett., 19, https://doi.org/10.1088/1748-9326/ad89¢0, 2024.

Parker, R. J., Webb, A., Boesch, H., Somkuti, P.,, Barrio Guillo, R., Di Noia, A., Kalaitzi, N., Anand, J. S., Bergamaschi, P., Chevallier,
F., Palmer, P. I, Feng, L., Deutscher, N. M., Feist, D. G., Griffith, D. W. T., Hase, F., Kivi, R., Morino, L., Notholt, J., Oh, Y.-S.,
Ohyama, H., Petri, C., Pollard, D. F.,, Roehl, C., Sha, M. K., Shiomi, K., Strong, K., Sussmann, R., Té, Y., Velazco, V. A., Warneke,
T., Wennberg, P. O., and Wunch, D.: A decade of GOSAT Proxy satellite CH4 observations, Earth System Science Data, 12, 3383-3412,
https://doi.org/10.5194/essd-12-3383-2020, 2020.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,
Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.: Scikit-learn: Machine Learning in Python, Journal
of Machine Learning Research, 12, 2825-2830, 2011.

Petri, C., Vrekoussis, M., Rousogenous, C., Warneke, T., Sciare, J., and Notholt, J.: TCCON data from Nicosia (CY), Release GGG2020.R1,
https://doi.org/10.14291/tccon.ggg2020.nicosia01.R1, 2024.

Philips, D. L.: A technique for the numerical solution of certain integral equations of the first kind., J. Assoc. Comput. Mach., 9, 84-97,
1962.

Pollard, D. F, Robinson, J.,, and Shiona, H.. TCCON data from Lauder (NZ), Release GGG2020.R0,
https://doi.org/10.14291/tccon.ggg2020.1auder03.R0, 2022.

Rohde, R. A. and Hausfather, Z.: The Berkeley Earth Land/Ocean Temperature Record, Earth System Science Data, 12, 3469-3479,
https://doi.org/10.5194/essd-12-3469-2020, 2020.

Rothman, L., Gordon, 1., Barbe, A., Benner, D., Bernath, P., Birk, M., Boudon, V., Brown, L., Campargue, A., Champion, J.-P., Chance, K.,
Coudert, L., Dana, V., Devi, V., Fally, S., Flaud, J.-M., Gamache, R., Goldman, A., Jacquemart, D., Kleiner, 1., Lacome, N., Lafferty, W.,
Mandin, J.-Y., Massie, S., Mikhailenko, S., Miller, C., Moazzen-Ahmadi, N., Naumenko, O., Nikitin, A., Orphal, J., Perevalov, V., Perrin,
A., Predoi-Cross, A., Rinsland, C., Rotger, M., Simetkovd, M., Smith, M., Sung, K., Tashkun, S., Tennyson, J., Toth, R., Vandaele, A., and
Vander Auwera, J.: The HITRAN 2008 molecular spectroscopic database, Journal of Quantitative Spectroscopy and Radiative Transfer,
110, 533-572, https://doi.org/https://doi.org/10.1016/j.jqsrt.2009.02.013, hITRAN, 2009.

Schepers, D., Guerlet, S., Butz, A., Landgraf, J., Frankenberg, C., Hasekamp, O., Blavier, J.-F., Deutscher, N. M., Griffith, D. W. T., Hase, F.,
Kyro, E., Morino, 1., Sherlock, V., Sussmann, R., and Aben, I.: Methane retrievals from Greenhouse Gases Observing Satellite (GOSAT)
shortwave infrared measurements: Performance comparison of proxy and physics retrieval algorithms, Journal of Geophysical Research:
Atmospheres, 117, https://doi.org/https://doi.org/10.1029/2012JD017549, 2012.

Schneising, O., Buchwitz, M., Reuter, M., Bovensmann, H., Burrows, J. P, Borsdorff, T., Deutscher, N. M., Feist, D. G., Griffith, D. W. T,,
Hase, F., Hermans, C., Iraci, L. T., Kivi, R., Landgraf, J., Morino, I., Notholt, J., Petri, C., Pollard, D. F.,, Roche, S., Shiomi, K., Strong, K.,
Sussmann, R., Velazco, V. A., Warneke, T., and Wunch, D.: A scientific algorithm to simultaneously retrieve carbon monoxide and methane
from TROPOMI onboard Sentinel-5 Precursor, Atmospheric Measurement Techniques, 12, 6771-6802, https://doi.org/10.5194/amt-12-
6771-2019, 2019.

Shiomi, K., Kawakami, S., Ohyama, H., Arai, K., Okumura, H., Ikegami, H., and Usami, M.: TCCON data from Saga (JP), Release
GGG2020.RO, https://doi.org/10.14291/tccon.ggg2020.saga01.R0O, 2022.

42


https://doi.org/10.5194/amt-11-6539-2018
https://doi.org/10.1088/1748-9326/ad89e0
https://doi.org/10.5194/essd-12-3383-2020
https://doi.org/10.14291/tccon.ggg2020.nicosia01.R1
https://doi.org/10.14291/tccon.ggg2020.lauder03.R0
https://doi.org/10.5194/essd-12-3469-2020
https://doi.org/https://doi.org/10.1016/j.jqsrt.2009.02.013
https://doi.org/https://doi.org/10.1029/2012JD017549
https://doi.org/10.5194/amt-12-6771-2019
https://doi.org/10.5194/amt-12-6771-2019
https://doi.org/10.5194/amt-12-6771-2019
https://doi.org/10.14291/tccon.ggg2020.saga01.R0

780

785

790

795

800

805

810

815

Strong, K., Roche, S., Franklin, J. E., Mendonca, J., Lutsch, E., Weaver, D., Fogal, P. F., Drummond, J. R., Batchelor, R., Lindenmaier,
R., and et al.: TCCON data from Eureka (CA), Release GGG2020.R0, https://doi.org/10.14291/tccon.ggg2020.eureka01.R0, funding by
Atlantic Innovation Fund, 2022.

Sussmann, R. and Rettinger, M.: TCCON data from Garmisch (DE), Release GGG2020.RO,
https://doi.org/10.14291/tccon.ggg2020.garmisch01.R0, 2023.

Suto, H., Kataoka, F., Kikuchi, N., Knuteson, R. O., Butz, A., Haun, M., Buijs, H., Shiomi, K., Imai, H., and Kuze, A.: Thermal and near-
infrared sensor for carbon observation Fourier transform spectrometer-2 (TANSO-FTS-2) on the Greenhouse gases Observing SATellite-2
(GOSAT-2) during its first year in orbit, Atmospheric Measurement Techniques, 14, 2013-2039, https://doi.org/10.5194/amt-14-2013-
2021, 2021.

Tadié, J. M., Loewenstein, M., Frankenberg, C., Iraci, L. T., Yates, E. L., Gore, W., and Kuze, A.: A comparison of in-situ aircraft mea-
surements of carbon dioxide to GOSAT data measured over Railroad Valley playa, Nevada, USA, Atmospheric Measurement Techniques
Discussions, 5, 5641-5664, https://doi.org/10.5194/amtd-5-5641-2012, 2012.

Tans, P. and Keeling, R.: Trends in Atmospheric Carbon Dioxide. Global Monitoring Laboratory, National Oceanic & Atmospheric Admin-
istration Earth System Research Laboratories, (NOAA/ESRL), 2020.

Taylor, T. E., O’Dell, C. W., Frankenberg, C., Partain, P. T., Cronk, H. Q., Savtchenko, A., Nelson, R. R., Rosenthal, E. J., Chang, A. Y.,
Fisher, B., Osterman, G. B., Pollock, R. H., Crisp, D., Eldering, A., and Gunson, M. R.: Orbiting Carbon Observatory-2 (OCO-2)
cloud screening algorithms: validation against collocated MODIS and CALIOP data, Atmospheric Measurement Techniques, 9, 973—
989, https://doi.org/10.5194/amt-9-973-2016, 2016.

Taylor, T. E., O’Dell, C. W., Crisp, D., Kuze, A., Lindqvist, H., Wennberg, P. O., Chatterjee, A., Gunson, M., Eldering, A., Fisher, B., Kiel,
M., Nelson, R. R., Merrelli, A., Osterman, G., Chevallier, F., Palmer, P. I., Feng, L., Deutscher, N. M., Dubey, M. K., Feist, D. G., Garcia,
0. E., Griffith, D. W. T., Hase, F., Iraci, L. T., Kivi, R., Liu, C., De Maziére, M., Morino, 1., Notholt, J., Oh, Y.-S., Ohyama, H., Pollard,
D. F, Rettinger, M., Schneider, M., Roehl, C. M., Sha, M. K., Shiomi, K., Strong, K., Sussmann, R., Té¢, Y., Velazco, V. A., Vrekoussis,
M., Warneke, T., and Wunch, D.: An 11-year record of XCO; estimates derived from GOSAT measurements using the NASA ACOS
version 9 retrieval algorithm, Earth System Science Data, 14, 325-360, https://doi.org/10.5194/essd-14-325-2022, 2022.

Té, Y., Jeseck, P., and Janssen, C.: TCCON data from Paris (FR), Release GGG2020.R0, https://doi.org/10.14291/tccon.ggg2020.paris01.RO,
2022.

Tebaldi, C. and Friedlingstein, P.: Delayed detection of climate mitigation benefits due to climate inertia and variability., Proceedings of the
National Academy of Sciences, 110(43), 2013.

Tikhonov, A. N.: Solution of incorrectly formulated problems and the regularization method., Soviet Math., 4, 1035-1038, 1963.

Toon, G., Blavier, J.-F., Washenfelder, R., Wunch, D., Keppel-Aleks, G., Wennberg, P., Connor, B., Sherlock, V., Griffith, D., Deutscher,
N., and Notholt, J.: Total Column Carbon Observing Network (TCCON), in: Advances in Imaging, p. JMA3, Optica Publishing Group,
https://doi.org/10.1364/FTS.2009.JMA3, 2009.

Turner, A. J., Jacob, D. J., Wecht, K. J., Maasakkers, J. D., Lundgren, E., Andrews, A. E., Biraud, S. C., Boesch, H., Bowman, K. W.,
Deutscher, N. M., Dubey, M. K., Griffith, D. W. T., Hase, F., Kuze, A., Notholt, J., Ohyama, H., Parker, R., Payne, V. H., Sussmann, R.,
Sweeney, C., Velazco, V. A., Warneke, T., Wennberg, P. O., and Wunch, D.: Estimating global and North American methane emissions
with high spatial resolution using GOSAT satellite data, Atmospheric Chemistry and Physics, 15, 7049-7069, https://doi.org/10.5194/acp-
15-7049-2015, 2015.

43


https://doi.org/10.14291/tccon.ggg2020.eureka01.R0
https://doi.org/10.14291/tccon.ggg2020.garmisch01.R0
https://doi.org/10.5194/amt-14-2013-2021
https://doi.org/10.5194/amt-14-2013-2021
https://doi.org/10.5194/amt-14-2013-2021
https://doi.org/10.5194/amtd-5-5641-2012
https://doi.org/10.5194/amt-9-973-2016
https://doi.org/10.5194/essd-14-325-2022
https://doi.org/10.14291/tccon.ggg2020.paris01.R0
https://doi.org/10.1364/FTS.2009.JMA3
https://doi.org/10.5194/acp-15-7049-2015
https://doi.org/10.5194/acp-15-7049-2015
https://doi.org/10.5194/acp-15-7049-2015

820

825

830

835

840

845

850

Warneke, T., Petri, C., Notholt, J., and Buschmann, M.: TCCON data from Orléans (FR), Release GGG2020.R0,
https://doi.org/10.14291/tccon.ggg2020.orleans01.R0, 2022.

Washenfelder, R. A., Toon, G. C., Blavier, J.-F.,, Yang, Z., Allen, N. T., Wennberg, P. O., Vay, S. A., Matross, D. M., and Daube., B. C.:
Carbon Dioxide Column Abundances at the Wisconsin Tall Tower Site., Journal of Geophysical Research, D 111 (D22), 2006.

Weidmann, D., Brownsword, R., and Doniki, S.: TCCON data from Harwell, Oxfordshire (UK), Release GGG2020.R0,
https://doi.org/10.14291/tccon.ggg2020.harwell01.R0, funding by Science and Technology Facilities Council GRID grid.14467.30., 2023.

Wennberg, P. O., Roehl, C., Wunch, D., Blavier, J.-F., Toon, G. C., Allen, N. T., Treffers, R., and Laughner, J.: TCCON data from Caltech
(US), Release GGG2020.R0, https://doi.org/10.14291/tccon.ggg2020.pasadena01.R0, funding by NASA, 2022a.

Wennberg, P. O., Roehl, C. M., Wunch, D., Toon, G. C., Blavier, J.-F., Washenfelder, R., Keppel-Aleks, G., and Allen, N. T.: TCCON data
from Park Falls (US), Release GGG2020.R1, https://doi.org/10.14291/tccon.ggg2020.parkfallsO1.R1, funding by NASA, 2022b.

Wennberg, P. O., Wunch, D., Roehl, C. M., Blavier, J.-F.,, Toon, G. C., and Allen, N. T..: TCCON data from Lamont (US), Release
GGG2020.RO, https://doi.org/10.14291/tccon.ggg2020.lamont01.RO, funding by NASA, 2022c.

Wunch, D., Toon, G. C., Wennberg, P. O., Wofsy, S. C., Stephens, B. B., Fischer, M. L., Uchino, O., Abshire, J. B., Bernath, P., Biraud, S. C.,
Blavier, J.-F. L., Boone, C., Bowman, K. P., Browell, E. V., Campos, T., Connor, B. J., Daube, B. C., Deutscher, N. M., Diao, M., Elkins,
J. W, Gerbig, C., Gottlieb, E., Griffith, D. W. T., Hurst, D. F,, Jiménez, R., Keppel-Aleks, G., Kort, E. A., Macatangay, R., Machida, T.,
Matsueda, H., Moore, F., Morino, 1., Park, S., Robinson, J., Roehl, C. M., Sawa, Y., Sherlock, V., Sweeney, C., Tanaka, T., and Zondlo,
M. A.: Calibration of the Total Carbon Column Observing Network using aircraft profile data, Atmospheric Measurement Techniques, 3,
1351-1362, https://doi.org/10.5194/amt-3-1351-2010, 2010.

Wunch, D., Wennberg, P. O., Toon, G. C., Connor, B. J., Fisher, B., Osterman, G. B., Frankenberg, C., Mandrake, L., O’Dell, C., Ahonen, P.,
Biraud, S. C., Castano, R., Cressie, N., Crisp, D., Deutscher, N. M., Eldering, A., Fisher, M. L., Griffith, D. W. T., Gunson, M., Heikkinen,
P., Keppel-Aleks, G., Kyro, E., Lindenmaier, R., Macatangay, R., Mendonca, J., Messerschmidt, J., Miller, C. E., Morino, I., Notholt, J.,
Oyafuso, F. A., Rettinger, M., Robinson, J., Roehl, C. M., Salawitch, R. J., Sherlock, V., Strong, K., Sussmann, R., Tanaka, T., Thompson,
D. R., Uchino, O., Warneke, T., and Wofsy, S. C.: A method for evaluating bias in global measurements of CO2 total columns from space,
Atmospheric Chemistry and Physics, 11, 12317-12 337, https://doi.org/10.5194/acp-11-12317-2011, 2011.

Wunch, D., Toon, G. C., Sherlock, V., Deutscher, N. M., Liu, C., Feist, D. G., and Wennberg, P. O.: Documentation for the 2014 TCCON
Data Release (GGG2014.R0)., CaltechDATA., 2015.

Wunch, D., Mendonca, J., Colebatch, O., Allen, N. T., Blavier, J.-F., Kunz, K., Roche, S., Hedelius, J., Neufeld, G., Springett, S., and et al.:
TCCON data from East Trout Lake, SK (CA), Release GGG2020.R0, https://doi.org/10.14291/tccon.ggg2020.easttroutlake01.R0, funding
by Canada Foundation for Innovation GRID grid.439998.6., 2022.

Yoshida, Y., Kikuchi, N., and Yokota, T.: On-orbit radiometric calibration of SWIR bands of TANSO-FTS onboard GOSAT, Atmospheric
Measurement Techniques, 5, 2515-2523, https://doi.org/10.5194/amt-5-2515-2012, 2012.

Yoshida, Y., Someya, Y., Ohyama, H., Morino, I., Matsunaga, T., Deutscher, N. M., Griffith, D. W. T., Hase, F., Iraci, L. T., Kivi, R., Notholt,
J., Pollard, D. F,, Té, Y., Velazco, V. A., and Wunch, D.: Quality evaluation of the column-averaged dry air mole fractions of carbon
dioxide and methane observed by GOSAT and GOSAT-2, SOLA, advpub, 2023-023, https://doi.org/10.2151/s0la.2023-023, 2023.

Zadvornykh, 1., Gribanov, K., Zakharov, V., and Imasu, R.: Retrieval of HDO Relative Content in the Atmo-
sphere from Simultaneous GOSAT-2 Measurements in the Thermal and Near-IR., Atmos Ocean Opt, 36, 127-131,
https://doi.org/https://doi.org/10.1134/51024856023030120, 2023.

44


https://doi.org/10.14291/tccon.ggg2020.orleans01.R0
https://doi.org/10.14291/tccon.ggg2020.harwell01.R0
https://doi.org/10.14291/tccon.ggg2020.pasadena01.R0
https://doi.org/10.14291/tccon.ggg2020.parkfalls01.R1
https://doi.org/10.14291/tccon.ggg2020.lamont01.R0
https://doi.org/10.5194/amt-3-1351-2010
https://doi.org/10.5194/acp-11-12317-2011
https://doi.org/10.14291/tccon.ggg2020.easttroutlake01.R0
https://doi.org/10.5194/amt-5-2515-2012
https://doi.org/10.2151/sola.2023-023
https://doi.org/https://doi.org/10.1134/S1024856023030120

Zhang, Y., Jacob, D. J., Lu, X., Maasakkers, J. D., Scarpelli, T. R., Sheng, J.-X., Shen, L., Qu, Z., Sulprizio, M. P., Chang, J., Bloom, A. A.,
Ma, S., Worden, J., Parker, R. J., and Boesch, H.: Attribution of the accelerating increase in atmospheric methane during 2010-2018 by
855 inverse analysis of GOSAT observations, Atmospheric Chemistry and Physics, 21, 3643-3666, https://doi.org/10.5194/acp-21-3643-2021,
2021.
Zhou, M., Wang, P, Kumps, N., Hermans, C., and Nan, W.. TCCON data from Xianghe, China, Release GGG2020.RO,
https://doi.org/10.14291/tccon.ggg2020.xianghe01.R0, 2022.

45


https://doi.org/10.5194/acp-21-3643-2021
https://doi.org/10.14291/tccon.ggg2020.xianghe01.R0

