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Short summary 
Ocean primary production helps regulate climate through carbon cycling. The magnitude of this process is 
governed by the availability of nutrients, such as nitrogen, phosphorus, iron and zinc. Here, we analyse zonal 
gradients in microbial nutrient acquisition strategies and potential nutrient limitation in the surface subtropical 25 
Atlantic Ocean to determine how changes in nutrient resources impact marine primary productivity. Nutrient and 
trace metal availability, biological activity, and protein biomarker abundance are determined to infer phosphorus, 
nitrogen and trace metal acquisition and metabolism in two dominant picocyanobacteria, Prochlorococcus and 
Synechococcus. We find phosphorus stress prevails for both Prochlorococcus and Synechococcus in the western 
Atlantic, but that Prochlorococcus becomes increasingly nitrogen, iron, zinc and cobalamin stressed in the east 30 
with coincidently lower phosphorus biomarker proteins, indicating a switch in nutrient status  across the transect. 
Our findings provide species and ecotype level insights into nutrient acquisition and metabolism in the ocean, 
combining biogeochemical and biological rate measurements with discovery and targeted proteomics to   
understand how microbial metabolism will respond to a changing climate.  
 35 
 
Abstract 
Ocean productivity is maintained by key nutrients, including nitrogen, phosphorus and trace metals. The 
magnitude and stoichiometry of nutrient fluxes to the ocean is changing. Here, we investigate how natural 
assemblages of marine microbes in the subtropical North Atlantic respond to variation in nutrient availability 40 
along a natural zonal gradient. We measure dissolved nutrient concentrations, biological rates, and characterize 
the microbial proteomes of the dominant picocyanobacteria, Prochlorococcus and Synechococcus. Moving west 
to east, dissolved organic phosphorus (DOP) and phosphate concentrations increased, and dissolved iron 
decreased. Prochlorococcus abundance increased eastwards, whereas Synechococcus abundance was highest in 
the west. Zonal distributions of protein biomarkers representing phosphorus (PstS, PhoA, PhoX), nitrogen (P-II, 45 
UrtA, AmtB) and trace metal metabolism (related to iron, zinc and cobalt) from metaproteomes, together with 
rates of alkaline phosphatase activity, indicate greater phosphorus stress the west than the east for both 
picocyanobacteria. In the east, elevated levels of protein biomarkers for nitrogen, iron, zinc and cobalamin in 
Prochlorococcus indicate a transition to nitrogen stress and greater influence of trace metal resources. Measured 
responses of Prochlorococcus ecotypes and Synechococcus clades to DOP, iron and zinc additions in incubation 50 
experiments further indicate divergent regulation of uptake and acquisition of phosphorus in these of 
picocyanobacteria across transect, albeit with caveat on potential for differences in regulation within a genus and 
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between strains. Together our findings suggest a basin-scale transition from phosphorus stress in 
picocyanobacteria in the west to nitrogen stress in the east.  
 

1. Introduction 95 

Marine phytoplankton have an important role in biogeochemical cycles, supporting ecosystems and regulating 

climate. Global net primary productivity (NPP) is underpinned by availability of key nutrient resources, such as 

nitrogen (N), phosphorus (P), iron (Fe) and zinc (Zn) and others. In the subtropical open ocean, surface nutrient 

concentrations are chronically low and often limit NPP. Enhanced stratification, induced by ocean warming, 

alongside changes to natural and anthropogenic supply of fixed N (Chien et al., 2016; Kim et al., 2014; 100 
Wrightson and Tagliabue, 2020), P (Barkley et al., 2019) or Fe (Liu et al., 2022) to the global ocean are likely to 

perturb the magnitude and ratio at which nutrients are supplied to phytoplankton (Peñuelas et al., 2013), 

potentially expanding or intensifying nutrient limited ocean regions (Bopp et al., 2013; Chien et al., 2016; 

Lapointe et al., 2021). Detecting and understanding how nutrients regulate phytoplankton distribution, growth 

and activity is key to estimating the magnitude and direction of contemporary and future NPP, reducing 105 
uncertainty and assessing risks to ecosystem services (Tagliabue et al., 2021).  

 

The nutrient that limits phytoplankton growth can be identified by adding single or multiple nutrients to seawater 

and measuring phytoplankton growth or other properties over time (Browning and Moore, 2023; Mahaffey et al., 

2014; Mills et al., 2004; Moore et al., 2008). In addition, advances in ‘omics’ have enabled identification of 110 
protein biomarkers related to nutrient acquisition of stress in marine phytoplankton (Chappell et al., 2012; Hawco 

et al., 2020; Held et al., 2020, 2025; Rouco et al., 2018; Saito et al., 2014, 2015; Ustick et al., 2021). Identifying 

regions of N and/or Fe stress is straightforward (Browning and Moore, 2023) but detecting P stress can be more 

challenging. Systems-level interpretation of incubation results and biomarker abundances is needed to 

disentangle the effects of nutrient biogeochemistry and biological plasticity/activity. For instance, on low-115 
phosphate regions dominated by the ecologically important picocyanobacteria, Prochlorococcus, phosphate 

addition experiments imply a lack of P stress, whereas genomic data identifies large areas of P stress for 

Prochlorococcus (Browning and Moore, 2023). This mismatch may be due to the flexibility in P acquisition 

strategies demonstrated by key marine phytoplankton (Duhamel et al., 2021; Martínez et al., 2012; Martiny et al., 

2006, 2009; Moore et al., 2005; Ostrowski et al., 2010; Scanlan et al., 1993; Tetu et al., 2009). In addition, 120 
phosphate limited phytoplankton can deploy an array of strategies to acquire alternative sources of P from 

dissolved organic phosphorus (DOP) including esters (Sebastian and Ammerman, 2009; Tetu et al., 2009), 

polyphosphate (Moore et al., 2005), phosphite (Martínez et al., 2012) and phosphonate (Ilikchyan et al., 2010) or 

substituting P-rich lipids with P-free alternatives (Van Mooy et al., 2009). A hydrolytic metalloenzyme group, 

alkaline phosphatases, are responsible for cleaving P from esters (Hoppe, 2003). Enhanced activity of alkaline 125 
phosphatase (AP) has been used an indicator of P limitation (Mahaffey et al., 2014; Su et al., 2023) although the 

substrate specificity (Srivastava et al., 2021), cellular localisation (Luo et al., 2009), AP allocation between 

ecotypes (Moore et al., 2005), uncertainty in the contribution of different phytoplankton groups to total enzyme 

activity (Held et al., 2025; companion study to this manuscript))  and lack of knowledge on the efficiency of 
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different AP enzymes raises uncertainties. Collectively, the flexibility in P acquisition strategies, as well as the 255 
perceived ability of Prochlorococcus to readily satisfy their P demands at ultra-low concentrations of phosphate 

(Lomas et al., 2014) has led to the idea that Prochlorococcus evade nutrient stress, particularly by remodelling 

their proteomes.  

 
Comparing the physiological response of two ecologically important picocyanobacteria, Prochlorococcus and 260 
Synechococcus, to P stress demonstrates the complexity of deciphering resource limitation in mixed populations, 

between species, or even between strains of the same species. Synechococcus possess genes encoding a high 

affinity periplasmic phosphate binding protein (pstS) and transport system (pstABC), as well as genes encoding 

proteins essential for accessing organic P via alkaline phosphatase (phoA) and phosphonatase (phnC, D, E,  

(Moore et al., 2005; Scanlan et al., 1993; Tetu et al., 2009). When phosphate is scarce, Synechococcus has been 265 
shown to upregulate pstS, pstABC and phoA (Moore et al., 2005; Tetu et al., 2009), the regulator gene ptrA 

(Ostrowski et al., 2010) and the recent described high affinity AP gene psip1 (in clade III only, Torcello-Requena 

et al., 2024), with a measurable increase in AP activity (Moore et al., 2005, Torcello-Requena et al., 2024), 

implying that expression of these genes is indicative of P stress (Moore et al., 2005, Torcello-Requena et al. 

2024). However, clade specific variations in response to phosphate limitation have been observed in situ (Sohm 270 
et al., 2016, Torcello-Requena et al. 2024) and in culture (Moore et al., 2005). While Prochlorococcus also 

possesses pstS and pstABC and has been shown to upregulate these genes alongside phoA under phosphate 

deplete conditions (Martiny et al., 2006), strain specific variations in its ability to access organic P also exist. For 

example, while the two most prevalent high light (HL) clades, MED4 (HL1) and MIT9312 (HLII) can grow 

solely on phosphate, MED4 grows on a wider range of organic P compounds, possess a high affinity AP (psip1, 275 
Torcello-Requena et al., 2024) and dramatically increases AP activity when P starved compared to MIT9312 

(Moore et al., 2005).  

In addition to species and clade specific responses across the microbial realm, AP enzymes are dependent 

on a metal co-factor, with Zn and/or cobalt (Co) required for the protein PhoA (Coleman, 1992) and Fe and 

calcium for the proteins PhoX and PhoD (Rodriguez et al., 2014; Yong et al., 2014) and Psip1 (Torcello-Requena 280 
et al., 2024). Although 130 the active sites of PhoA and PhoX in marine microbes have yet to be biochemically 

characterised, their metal requirements have been estimated assuming they are like the model organism, 

Escherichia coli and based on supporting evidence that the enzymes respond to the metals that they are expected 

to contain (Cox and Saito, 2013; Mikhaylina et al., 2022; Ostrowski et al., 2010). However, homology-based 

annotation of enzymes is challenging and therefore the annotations herein should be considered putative. The 285 
trace-metal content of these proteins creates the potential for trace metals to control P acquisition via regulation 

of AP activity leading to Fe-P or Zn-P co-limitation (Browning et al., 2017; Duhamel et al., 2021; Held et al., 

2025; Mahaffey et al., 2014). Observations of an accelerating stoichiometry of Co in the western North Atlantic 

has led to hypotheses for the potential for Co use in oceanic alkaline phosphatases too (Held et al., 2025; Jakuba 

et al., 2008; Saito et al., 2017). In culture studies, Prochlorococcus and Synechococcus have been shown to have 290 
absolute requirements for Co but not Zn under replete P conditions (Hawco et al., 2020; Saito et al., 2002; Sunda 

and Huntsman, 1995) but Synechococcus benefits from available Zn to produce AP under P scarcity (Cox and 
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Saito, 2013). Thus, knowledge of the phytoplankton community structure, alongside their nutritional preferences 

and enzyme characteristics is key in deciphering nutrient limitation in the ocean.  310 
This study measures the biological response to nutrient transitions in the North 

Atlantic Gyre. Here, the Western basin is heavily influenced by Saharan aeolian dust (Jickells, 1999), while the 

eastern basin borders the upwelling system off northwest Africa (Menna et al., 2015). Both upwelling and dust 

deliver scarce resources to the region, creating strong gradients in nutrients and trace metals (Gross et al., 2015; 

Kunde et al., 2019; Reynolds et al., 2014; Sebastián et al., 2004) influencing productivity (Moore et al., 2008), 315 
DOP dynamics (Liang et al., 2022) and marine dinitrogen (N2) fixation (Moore et al., 2009). Here, we exploit 

these strong natural gradients in nutrient and trace metal resources and biological activity to investigate nutrient 

acquisition strategies of natural assemblages of Prochlorococcus and Synechococcus.  

Alongside measurements of biogeochemical states, specifically nutrients, dissolved iron, zinc, cobalt and 

DOP and biological rates, including AP activity and N2 fixation, we investigated biological activity with non-320 
targeted metaproteomics and quantitative targeted proteomics of the high affinity phosphate binding protein, 

PstS, and two alkaline phosphatases, PhoA and PhoX in Prochlorococcus and Synechococcus (Table 1). From 

the non-targeted metaproteomics analyses we specifically focus on proteins indicative of N acquisition (P-II, 

UrtA, AmtB) and proteins involved in iron (ferredoxin), zinc (zinc peptidase and transporter) and B12 (cobalamin 

synthetase) metabolism (Table 1). This allowed us to firstly investigate the potential for Prochlorococcus and 325 
Synechococcus to be phosphorus-stressed in the subtropical Atlantic, challenging the view that avoidance of P 

limitation and hypothesised zonal gradients in proteins would reflect nutrient stress. We also assessed the 

potential for N, Fe and Zn to control the zonal distribution of Prochlorococcus and Synechococcus. Secondly, we 

assessed the potential for P acquisition to be regulated by the availability of DOP, Fe and Zn or Co. We 

hypothesised that the distribution of PhoA and PhoX would be reflected in rates of AP and alongside Fe and Zn, 330 
the limiting trace metal. We augmented in-situ sampling with nutrient bioassays, complimentary to those reported 

by Held et al., 2025 (companion manuscript), to further assess the potential for DOP substrate, alongside metals 

Fe and Zn to regulate AP activity and applied a quantitative proteomic approach targeting PstS, PhoA and PhoX 

only. Finally, we critically assessed our different approaches to delineate nutrient controls of the distribution and 

physiological strategies of Prochlorococcus and Synechococcus, highlighting the nuanced insights gained when 335 
bringing together biogeochemical measurements alongside ‘omics (Saito et al., 2024).  

 

Table 1. Summary of the proteins targeted by metaproteome (all) and quantitative (*) protein analysis including 
their function and known characteristics.  
 340 

Protein name or 
family 

Function and reported characteristics 

PstS* Periplasmic phosphate-binding protein. Induced under P-limiting conditions 
PhoA* Alkaline phosphatase: cleaves phosphorus from organic compounds. Zinc 

metalloenzyme Induced under P-limiting conditions 
PhoX* Alkaline phosphatase: cleaves phosphorus from organic compounds. Iron 

metalloenzyme. Regulation unknown 
P-II Nitrogen regulatory protein. Indirectly controls the transcription of glutamine 

synthetase gene glnA.  
AmtB Ammonium transporter channel. Transmembrane 
UrtA An ABC-type, high-affinity urea permease. Substrate binding protein  
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Ferredoxin Iron metalloenzyme. Regulated by iron, more abundant under high iron 
conditions. 

Zinc peptidase Zinc metalloenzyme. Involved in proteolysis at the plasma membrane  
Zinc transporter Zinc metalloenzyme. ABC transporter, ATP-binding protein 
Cobalamin synthetase Cobalt metalloenzyme. Synthesis of cobalamin (vitamin B12) 

 

2 Materials and methods 355 

2.1 Sample collection from surface waters 

Samples were collected on a zonal transect between Guadeloupe and Tenerife at approx. ~22°N between 26th 

June and 12th August 2017 onboard the RRS James Cook (JC150, Fig. 1a). Sea surface temperature (SST) was 

measured via the underway seawater system using Seabird sensors. Using a trace-metal clean towed FISH and a 

Teflon diaphragm pump (Almatec A-15), seawater samples were collected every 2 h, at a resolution of ~ 25 km, 360 
from ~ 3 m below the surface (Fig. 1a), with seawater flow terminating into a class-100 clean air-laboratory.  

 

2.2 Biogeochemical states and rates  

Using unfiltered seawater samples from the towed FISH, concentrations of nitrate plus nitrite  (Brewer and Riley, 

1965), phosphate (Kirkwood 1989) and ammonium (Jones, 1991) were analysed onboard according to GO-SHIP 365 
nutrient protocols (Becker et al., 2020). Using filtered seawater from the towed FISH (Sartobran, Sartorius, 

0.8/0.2 µm polyethersulfone membrane), concentrations of dissolved iron (Kunde et al., 2019) were measured 

onboard while concentrations of dissolved zinc (Nowicki et al., 1994) were determined at the University of 

Southampton. Concentrations of DOP were determined at the University of Liverpool using a modified version 

of (Lomas et al., 2010) as described by (Davis et al., 2019). Using unfiltered seawater from the towed FISH, rates 370 
of alkaline phosphatase were determined onboard every 4 h or ~ 50 km; Davis et al., 2019). Prochlorococcus, 

Synechococcus (or Parasynechococcus, (Coutinho et al., 2016) and high and low nucleic acid bacteria (HNA and 

LNA, respectively) were enumerated every 2h at Plymouth Marine Laboratory using flow cytometry (Tarran et 

al., 2006). Surface ocean concentrations of chlorophyll a (on GF/F) were determined on every sample 

(Welschmeyer, 1994). Concentrations of dissolved cobalt were measured in separate samples collected from 40m 375 
from 4 stations only using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS), 

preceded by UV-digestion and off-line preconcentration into a chelating resin (WAKO) at the University of 

Southampton (Lough et al., 2019; Rapp et al., 2017). 

 
2.3 Global metaproteomic analysis 380 
At 7 stations, McLane pumps were deployed to 15 m (see Table S1 for deployment details). Data from station 1 

was omitted from this study due to significant riverine influence (Kunde et al., 2019). Pumps were fitted with a 

trace metal clean mini-MULVS filter head. Between 17 and 359 L of seawater was filtered through a 51 µm 

(Nitex), 3 µm (Versapor) and 0.2 µm (Supor) filter stack. Filters were immediately frozen at -80°C, with 

subsequent transportation and storage at -80°C. Protein biomarker analysis was conducted on the 0.2 µm filter, 385 

representing the 0.2 to 3 µm particle fraction. Briefly, upon return to the laboratory, the total microbial protein 

was extracted using a detergent based method. The filter was unfolded and placed in an ethanol rinsed tube, then 
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covered in 1 % SDS extraction buffer (1 % SDS, 0.1M Tris HCl pH 7.5, 10 mM EDTA), incubated at room 

temperature for 10 mins, then at 95 °C for 10 mins, and then shaken at room temperature for 1 h. The extract was 

decanted and clarified by centrifugation before being concentrated by 5 kD membrane centrifugation to a small 395 
volume, washed in extraction buffer, and concentrated again. The total protein concentration was determined by 

BCA assay (kit) at this time. The proteins were precipitated in cold 50 % methanol 50 % acetone 0.5 mM HCl at 

20 °C for one week, collected by centrifugation at 4 °C, and dried by vacuum. Purified protein pellets were 

resuspended in 1% SDS extraction buffer and redissolved for 1 h at room temperature. Total protein was again 

quantified by BCA assay to assess recovery of the purification. 400 
Extracted proteins were immobilized in a small volume polyacrylamide tube gel using a previously 

published method (Lu and Zhu, 2005; Saito et al., 2014). LC-MS/MS grade reagents were used and all tubes 

were ethanol rinsed. The gels were fixed in 50 % ethanol, 10 % acetic acid, then cut into 1mm cubes and washed 

in 50:50 acetonitrile: 25 mM ammonium bicarbonate for 1 h at room temperature, then washed again in the same 

solution overnight. Next, the gels were dehydrated by acetonitrile treatment before protein reduction by 10 mM 405 
dithiothreitol treatment at 56 °C for 1 h with shaking. Gel pieces were rinsed in 50:50 acetonitrile: ammonium 

bicarbonate solution, then proteins were alkylated by treatment with 55 mM iodacetamide at room temperature 

for 1 h with shaking. Gels were again dehydrated by acetonitrile treatment and dried by vacuum. Finally, proteins 

were digested by treatment with trypsin gold (Promega) prepared in 25 mM ammonium bicarbonate at the ratio 

of 1:20 µg trypsin: ug total protein overnight at 37 °C with shaking. The next morning, any supernatant was 410 

decanted into a clean microfuge tube, and 50 µL protein extraction buffer (50 % acetonitrile, 5 % formic acid in 

water) was added to the gels, incubated for 20 mins, centrifuged and collected. The extraction was repeated and 

combined with the original supernatant. Peptides were concentrated to approximately 1 µg total protein per µL 

solution by vacuum at room temperature. 10 µL or 10 µg were injected per analysis.  

Global metaproteome analysis, which is conducted with no prior determined targets, was performed in 415 
Data-Dependent-Acquisition (DDA) mode using Reverse Phase Liquid Chromatography – active modulation – 

Reverse Phase Liquid Chromatography Mass Spectrometry (RPLC-am-RPLC-MS) (McIlvin and Saito, 2021). 

RPLC-am-RPLC-MS involves two orthogonal chromatography steps, which are performed in-line on a Thermo 

Dionex Ultimate 3000 LC system equipped with two pumps. The first separation was on a PLRP-S column 

(200 µm × 150 mm, 3 µm bead size, 300 Å pore size, NanoLCMS Solutions) using an 8 h pH 10 gradient (10 mM 420 
ammonium formate and 10 mM ammonium formate in 90% acetonitrile), with trapping and elution every 30 

mins onto the second column. The second separation occurred in 30 min intervals on a C18 column 

(100 m × 150 mm, 3 µm particle size, 120 Å pore size, C18 Reprosil-God, Maisch, packed in a New Objective 

PicoFrit column) using 0.1% formic acid and a 0.1% formic acid in 99.9% acetonitrile. The eluent was analyzed 

on a Thermo Orbitrap Fusion mass spectrometer with a Thermo Flex ion source. MS1 scans were monitored 425 
between m/z 380 and 1,580, with an m/z 1.6 MS2 isolation window (CID mode), 50 ms maximum injection time 

and 5 s dynamic exclusion time. 

Resulting spectra were searched in Proteome Discoverer 2.2 with SequestHT using a custom DNA 

sequence database consisting of over 30 genomes from cyanobacteria isolates and metagenomic data from the 

Pacific and Atlantic oceans (including metagenomes from Metzyme and Geotraces cruise GA03). Annotations 430 
were derived using BLASTp against the NCBI non-redundant protein database. The corresponding protein 
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FASTA file is available with the raw mass spectra files (see Supplement A).  SequestHT parameters were set to 

+/1 10ppm for the parent ion, 0.6 Da for the fragment, with cysteine modification (+57.022) and variable 

methionine (+16.0) and cysteine oxidation allowed. Protein identifications were made using Protein Prophet in 435 
Scaffold (Proteome Software) at the 95 % peptide confidence level, resulting in <1 % protein and peptide FDRs. 

Details of the peptides identified relative to protein name and organism can be found in Table S2 and the protein 

report and analytical details can be found in Supplement B.  

Global metaproteome protein abundances are reported in normalized spectral counts.  The normalization 

is performed by summing the total number of spectra in each sample, calculating the average number of spectra 440 
across all the samples, and then multiplying each spectrum count by the average count over the sample’s total 

spectral count. This is done to control for small differences in the amount of sample injected into the mass 

spectrometer. 

 

2.4 Quantitative proteomics analysis 445 
A small number of tryptic peptides were selected for absolute quantitative analysis in the samples from nutrient 

addition experiments (see section 2.5 for details) and were analysed as described in detail by Held et al., 2025 

(companion manuscript). The amino acid sequence for the protein biomarkers quantified in this study (PstS, 

PhoA, PhoX) for Prochlorococcus and Synechococcus are summarised in Table S3 and peptide report and 

analytical details are found in Supplement C.   450 
 
2.5 Nutrient bioassay experiments 

Trace-metal clean sampling and incubation protocols used to setup onboard bioassays are described in detail in 

the Supplement D.  Aliquots of Fe, Zn and Co solutions were added to unfiltered seawater to investigate metal 

limitation of alkaline phosphatase and results are reported in Held et al., (submitted). Alongside these 455 
experiments, we added DOP alone or with Fe and Zn to investigate the potential for organic P availability to 

influence AP activity at stations 2 and 3 only, where concentrations of DOP were low (< 80 nM, Fig. 1a and e, 

Table S4), and the results are reported here. Trace-metal clean 20L carboys were triple rinsed with unfiltered 

seawater collected from 40m (to avoid contamination from the ship) via the FISH and filled and amended 

accordingly (Table S4). At the start and end of 48 hours, we measured phytoplankton biomass (chlorophyll a, 460 
abundance of Prochlorococcus, Synechococcus) and AP activity. After 48 hours, we collected samples to 

quantify protein concentration (PstS, PhoA and PhoX) as described in section 2.4 (Table S3). Incubations were 

conducted in triplicate. However, due to the biomass (therefore volume) required for protein analysis, we were 

unable to collect samples from three incubation bottles for further analyses. Instead, all measurements were 

collected from two incubation bottles, except aliquots for determination of AP, which was collected from three 465 
incubation bottles. To compare the change in states or rates in treatments relative to the control, we considered a 

significant change in a property to occur when the mean of the property in the amended incubation was 2-times 

higher (or lower) than the mean control incubation. Incubations were conducted in a temperature controlled 

container set to a temperature measured at 40m (between 25 and 27°C) and with 12:12h light:dark cycle 

simulated by LED light panels (Part no: LED-PANEL-300-1200-DW and LED-PANEL-200-6-DW, Daylight 470 
White, supplier Power Pax UK Limited).  
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 480 
 

 

3. Results and Discussion  

3.1. Zonal trends in nutrients, cell abundance and biological rates:  

Strong zonal gradients were evident in surface temperature and phosphorus concentrations. From west to east, 485 

SST decreased by ~ 3 °C (Fig. 1b), phosphate increased by ~ 15 nM (Fig. 1c) and DOP increased 3-fold (from ~ 

50 nM to ~ 150 nM, Fig. 1d). By comparison, there were no clear zonal trends in fixed nitrogen, with 

concentrations of nitrate plus nitrate (N+N, herein nitrate) ranging from < 10 nM to ~ 40 nM (Fig. 1e) and 

ammonium, which ranged from 3 to 21 nM, being highest at stations 5 and 6 (Fig. 1f).  

 490 

 
 
Figure 1. (a) Locations sampled during JC150 from the trace metal clean towed FISH (black circles) and stations 
(coloured squares) and surface ocean properties including (b) sea surface temperature (ºC), (c) phosphate (nM), 
(d) dissolved organic phosphorus (DOP, nM), (e) nitrate+nitrite (N+N, nM), (f) ammonium (nM). Note that data 495 
from JC150 Station 1 (test station) has not been included in this manuscript due to the strong riverine influence 
(Kunde et al., 2019). Map produced using Ocean Data View (ODV).  
 
There was a clear zonal trend in dissolved Fe concentrations, which decreased west to east by ~ 1.0 nM (Fig. 2a) 

owing to enhanced Saharan dust deposition in the western Atlantic Ocean (Kunde et al., 2019). In contrast, Zn 500 
concentrations were variable throughout the transect (ranging from 0.04 to 0.8 nM, Fig. 2b) and cobalt was 

constant (~ 11 pM to 14 pM, data not shown).  

 

Microbial biomass, picocyanobacteria abundance and biological rates exhibited strong zonal gradients. From 

west to east, there were increases in chlorophyll a concentration (Fig. 3a) and Prochlorococcus cell abundance 505 
(Fig. 3b) whereas Synechococcus cell abundance decreased (Fig. 3c). HNA and LNA bacterial abundance (Fig. 
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3d and e, respectively) also increased from east to west. There was also a 4-fold decrease in chlorophyll corrected 

APA (from > 2000 nmol P µg chl a d-1 to < 500 nmol P µg chl a d-1, Fig. 3f), likely in response to the observed 

gradient in P/DOP availability (Mahaffey et al., 2014 , Fig. S1a, S1b). 

 

In addition, the abundance of key diazotrophs Trichodesmium and UCYN-A increased from west to east (Cerdan-540 
Garcia et al., 2022). Although rates of N2 fixation in the east exceeded those in the west (3 to 10 nM d-1 and < 3 

nM d-1, respectively), the highest rates were in the central transect between stations 4 and 5 (12 to 18 nM d-1, Fig. 

3g).  

 

 545 
 
Figure 2. Zonal gradients in (a) dissolved iron concentrations (nM, from Kunde et al., 2019) and (b) dissolved 
zinc concentrations (nM). Samples captured from the towed FISH at ~ 7m. Coloured square represent stations 
sampled during JC150 (see Fig. 1 for station names).  
 550 
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Figure 3. Zonal gradients in (a) chlorophyll a concentrations (µg chl L-1) and the abundance of (b) 565 
Prochlorococcus (cells mL-1), (c) Synechococcus (cells mL-1), (d) high nucleic acid bacteria (HNA, cells mL-1) 
and (e) low nucleic acid bacteria (LNA, cells mL-1), (f) chlorophyll a – corrected rates of alkaline phosphatase 
(nmol P mg chl d-1) and (g) mean rates of dinitrogen (N2) fixation (nM N d-1) with error bars as standard 
deviation of triplicate incubations. Samples captured from the towed FISH at ~ 7m. Coloured squares represent 
stations sampled during JC150 (see Fig. 1 for station names).  570 
 
 

These zonal gradients in hydrography, nutrients, biological rates and picocyanobacteria create two 

contrasting regions – one in the west (west of 46°W or west of station 4) and one in the east (east of 46°W or east 

of station 4). Thus, quantitative comparisons of key characteristics can be drawn between Station 2 at 54°W and 575 

Station 7 at 31°E (Fig. 1a, Table 2). Compared to the east, conditions in the west were characterized by notably 
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higher dissolved Fe and ammonium concentrations (3 to 4-fold higher), APA (4-fold higher) and Synechococcus 

abundance (2-fold higher). In contrast, the east was characterized by relatively high phosphate, DOP, chlorophyll 580 
a, Prochlorococcus abundance, rates of N2 fixation, Trichodesmium and UCYN-A abundances (Table 2).  

 

Based on these biogeochemical parameters, the phosphate-binding protein PstS, which is expressed 

under P-limiting conditions, would be expected to be prevalent throughout the transect consistent with low 

phosphate concentrations across the entire transect. Protein biomarkers would also be expected to indicate higher 585 
alkaline phosphatase (AP) abundances in the west, corresponding with the observed trends in APA. In addition, 

PhoX would be expected to be prevalent in the Fe-rich west, with greater prevalence of Fe-stress biomarkers in 

the east.  

 
 590 

Properties higher in the west (-fold) Properties higher in the east (-fold) 
Iron (3) * 
Ammonium (4) * 
APA (4) * 
Vmax/Km (5) 1 
Synechococcus (2) * 
 
 
 
Prochlorococcus -Phosphate binding protein, PstS (2)1 
Prochlorococcus -alkaline phosphatase, PhoA (7) 1 
Synechococcus -alkaline phosphatase, PhoA (29) 1 
SAR11-alkaline phosphatase, PhoA (24) 1 
Total Synechococcus protein (1.3) 1 

Phosphate (4) * 
DOP (3) * 
Chlorophyll (2)* 
Prochlorococcus (6) * 
N2 fixation rates (3) ** 
Trichodesmium (2) 1 
UCYN-A (71) 1 

 
Prochlorococcus - Nitrogen regulatory protein, PII (1.3) 1 
Prochlorococcus - Ammonium transporter, AmtB (1.7) 1 
Prochlorococcus -Urea permease, UrtA (1.6) 1 
Prochlorococcus -Ferredoxin (9) 1 
Prochlorococcus -Zinc peptidase (1.3) 1 
Prochlorococcus -Zinc transporter (4) 1 
Prochlorococcus - Cobalamin synthetase (5) 1 
SAR11- alkaline phosphatase, PhoX (4) 11 
Total Prochlorococcus protein (1.6) 1 

 
Table 2. Summary of states, rates and protein biomarkers that are higher in the west (left hand column) or east 
(right hand column) of the transect. The numbers in brackets represent the approximate -fold difference between 
west and east. Properties not reported (e.g. dissolved zinc, Syn-UrtA) displayed no clear difference between west 
and east. We note if the differences in properties are statistically significant (*, p < 0.05) or not significant (**, p 595 
> 0.05). 1 indicates insufficient replication or measurements for statistical analysis.  
 
 
 
3.2 Zonal gradients in phosphorus acquisition proteins  600 
3.2.1. Prochlorococcus 

Zonal gradients in Procholorocuccus P proteins generally indicate more severe P stress in the west. 

Prochlorococcus (HLII) specific P proteins PstS and PhoA (Pro-PstS and Pro-PhoA, respectively) were almost 

2-fold and 7-fold higher in the west relative to the east (Fig. 4a, Table 2), whereas there was no clear zonal trend 

in PhoX (Pro-PhoX, Fig. 4a). Similar zonal trends for PstS (Fig. S2a), PhoA (Fig. S2b) and PhoX (Fig. S2c) 605 
were observed irrelevant of the strain or ecotype of Prochlorococcus, thus reflecting true biological regulation 

within the entire Prochlorococcus community, rather being contingent on variation in the abundance of one 

clade/strain across the transect. Moreover, the increase in total Prochlorococcus protein (Fig. 4d) alongside 

Prochlorococcus cell abundance (Fig. 3b) in the east suggests that trends in untargeted metaproteomics analysis 
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are representative of microbial community structure. Thus, assuming all observed Prochlorococcus cells possess 

both genes, the higher Pro-PstS and Pro-PhoA in the west, where Prochlorococcus abundance was lower, 

reflects a physiological response to low phosphorus availability.  640 
 

 

 
Figure 4. Zonal gradients in the spectral counts (SC) of biomarker proteins in Prochlorococcus (Pro-), 
Synechococcus (Syn-) and SAR11 for (a) Phosphorus biomarker proteins; PstS, PhoA and PhoX, (b) Iron, zinc 645 
and cobalt biomarker proteins; Ferredoxin (Fd) and Zinc peptidase (ZincPep), Zinc transporters (ZincTrans) and 
Cobalamin Synthetase (CobW) (c) Nitrogen biomarker proteins: PII, AmtB and UrtA and (d) total protein for 
Prochlorococcus, (e) Synechococcus and (f) SAR11, presenting an independent measure of biomass. See Table 1 
for details of the protein functions. nSC represents normalized spectral counts, which represents the spectral 
counts normalized to the maximum value of each protein across 6 stations.  Tot-SC represents the sum of all 650 
normalized spectral counts for Prochlorococcus, Synechococcus or SAR11 
 

Correlations between Prochlorococcus abundance and other measured parameters also indicate a physiological 

response to nutrient availability. Prochlorococcus cell abundance was negatively correlated with Pro-PstS (Fig. 

5a), Pro-PhoA (Fig. 5b) and APA (Fig. 5d). APA was also positively correlated with Pro-PstS and Pro-PhoA 655 
(Fig. 5f and g). Conversely, DOP concentration was positively correlated with Prochlorococcus cell abundance 

(Fig. 5c) but negatively correlated with Pro-PstS (Fig. 5e). Together these data suggest Prochlorococcus in the 

west were more P stressed than those in the east.  
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(c) 
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 670 
 

Figure 5. Relationship between (a) Prochlorococcus cell abundance (cells L-1) and Pro-PstS (total spectrum 
counts), (b) Prochlorococcus cell abundance (cells L-1) and Pro-PhoA (total spectrum counts), (c) 
Prochlorococcus cell abundance (cells L-1) and dissolved organic phosphorus (DOP, nM), (d) Prochlorococcus 
cell abundance (cells L-1) and rates of alkaline phosphatase (APA, nM d-1), (e) DOP and Pro-PstS, (f) Pro-PstS 675 
and APA and (g) Pro-PhoA and APA. Results are linear regression as reported as R2 value and p-value. 
Relationships shown in (a) to (f) are considered statistically significant as p < 0.05.  
 
The bioassay experiments shed further light on the nutrient status of these communities. At Station 2, mean 

chlorophyll a increased (from 0.075 to 0.120 µg L-1) after the addition of DOP alone, but with no increase in 680 

APA. Instead, DOP+Fe stimulated an increase in chlorophyll a (from 0.075 to 0.108 µg L-1) alongside an 

increase in mean APA (3.03 to 9.70 nM d-1, * denotes a 2-fold or greater increase relative to the control in Fig. 

6a, Table S5).  Pro-PhoX concentration more than doubled following DOP and, separately, DOP+Zn addition at 

Station 2 (Fig. 6a), however insufficient understanding of the controls on PhoX limits interpretation of this 

observation at this time. By comparison, no significant changes in chlorophyll a or APA were observed at Station 685 
3 (Fig. 6b, Table S5). 
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However, Prochlorococcus abundance was lower in the west 
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In the bioassays, DOP addition resulted in a decrease in the concentration of  Pro-PstS and Pro-PhoA after the 

(Fig. 6a and b), implying P acquisition proteins are repressed in the presence of elevated DOP. These 

observations corroborate in-situ observations as Pro-PstS and Pro-PhoA both decreased to the east (Fig. 4a) 

where DOP and phosphate were elevated in surface waters (Fig. 1c and e).  We interpret this DOP effect to be the 

result of DOP conversion to phosphate by alkaline phosphatase, and negative regulation of the Pho operon that 710 
controls both PstS and PhoA rather than DOP directly interacting with the regulatory system (Martiny et al., 

2006).  Alternatively, there may be another system that is directly regulated by DOP availability. For example, 

PtrA is an alternative phosphate-sensitive regulator identified in some Synechococcus and Prochlorococcus 

strains and that may be responsive to organic P (Ostrowski et al., 2010). However, flow cytometry-derived 

Prochlorococcus abundance declined in all experiments (Fig. 6a and b, Table S5), a common outcome for marine 715 
oligotrophs in bottle incubation experiments, and it is unclear whether the observed decline in Pro-PstS and Pro-

PhoA in the bioassays was due to a physiological response to elevated DOP or a decline in Prochlorococcus 

biomass, or a combination of the two.  

 
That said, knowledge of the dominant Prochlorococcus clades in the Atlantic Ocean (Johnson et al., 2006) 720 
alongside selection of protein markers to target specific clades allows us to interpret ecotype-level responses in 

experiments and in the biogeochemical transect (Saito et al., 2015). For example, Prochlorococcus HLII, the 

dominant clade in the oligotrophic subtropical ocean, can use ATP but no other organic P sources and minimally 

increases APA in response to P starvation as it lacks regulatory genes that respond to P-limitation (e.g. ptrA, 

(Moore et al., 2005). By contrast, HL1 (MED4), which possesses both regulatory genes involved in phosphorus 725 
metabolism, phoBR and ptrA (Martiny et al., 2006), can grow on a variety of organic P substrates and 

substantially increases AP activity when grown on organic P relative to phosphate (Moore et al., 2005), 

suggesting HL1 can upregulate AP in response to external organic P levels (Moore et al., 2005). In the global 

metaproteomes, a west to east increase in Prochlorococcus ecotypes HL1 (Fig. S3a) and HLII (Fig. S3b) was 

detected, which accompanied the increases in cell abundance and total Prochlorococcus protein. HLI (MED4) is 730 
more prevalent in the eastern Atlantic (Zinser et al., 2007) and in this study, we observed an increase in the 

contribution of HLI to total ecotype from 6 to 8% (Fig. S3c). The eastward increase in HL1 abundance alongside 

its increased plasticity to grow on a variety of organic P substrates may explain why Prochlorococcus abundance 

is higher where DOP is elevated in the eastern Atlantic.  
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Figure 6. Fractional (scale 0 to 1) change in states, rates and individual proteins in Prochlorococcus (Pro_) and 
Synechococcus (Syn-) after the addition of dissolved organic phosphorus (DOP), DOP and iron (DOP+Fe) and 
DOP and zinc (DOP+Zn) at Station 2 (a) and Station 3 (b) for chlorophyll a (chl), rates of alkaline phosphatase 765 
activity (APA), Prochlorococcus (Pro), Synechococcus (Syn) and protein biomarkers PstS, PhoA and PhoX. 
Coloured squares represent the mean of duplicate or triplicate samples and are normalised as the fraction of the 
maximum of that property in each experiment. See Table S4 for a description of the experiments and Table S5 
for raw data for all properties. * denotes a 2-fold or more change in the mean property relative to the control.  

 770 
 

3.2.2.  Synechococcus 

PhoA in Synechococcus (Syn-PhoA) was 29-fold higher in the west than the east (Fig. 4a, Table 2) and 

significantly negatively correlated with DOP  (Fig. 7a) and positively correlated with APA (Fig. 7b). Unlike 

Prochlorococcus, there was no correlation between cell abundance and proteins, DOP or AP (Fig. S4). The 775 
concentration of other Synechococcus P-related proteins (Syn-PstS and Syn-PhoX), were not detected in the 

sampled metaproteome but might have been present at concentrations below detection limits. In the west, 

Synechococcus abundance (Fig. 3c), APA (Fig. 1f), Syn-PhoA (Fig. 4a) and total Synechococcus protein count 

(Fig. 4e) were higher than in the east.  
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Figure 7. Relationship between (a) Synechococcus PhoA (total spectral counts) and concentrations of 825 
DOP (nM) and (b) Synechococcus PhoA (total spectral counts) and alkaline phosphatase activity (AP, 
nM d-1).  The R2

 value and p-values are reported. p<0.05 indicates that the relationship is statistically 
significant.  
 

In the bioassays at Station 2, the addition of DOP, DOP+Fe and DOP+Zn resulted in declines in Synechococcus 830 
abundance by 23 to 35% relative to the control (Fig. 6a, Table S5). However, associated biomarker proteins 

increased. Mean concentrations of Syn-PstS increased by 2.7-, 3.5- and 4.7-fold after the addition of DOP, 

DOP+Fe and DOP+Zn, respectively, relative to the control after 48-h bioassays (Fig. 6a, Table S5). Similarly, the 

mean concentration of Syn-PhoA increased by 3.6-, 4.3- and 6.4-fold after the addition of DOP, DOP+Fe and 

DOP+Zn, respectively (Fig. 6a, Table S5). It is unclear why production of both Syn-PstS and Syn-PhoA was 835 
more stimulated after the addition of DOP+Fe than DOP at Station 2, assuming PhoA contains Zn or Co, and not 

Fe as metal co-factors (Coleman, 1992). However, replication was low (n=2) and variability between replicates 

was high, limiting a statistically robust interpretation. 

 

At Station 3, Synechococcus abundance increased by 12% and 53% following DOP and DOP+Fe addition, 840 
respectively but decreased after DOP+Zn addition (Fig. 6b, Table S5). The change in protein concentration after 

nutrient additions was less pronounced at Station 3 than Station 2 (Table S5). DOP additions induced a 1.8-fold 

increase in Syn-PstS and a 30% decrease in Syn-PhoA. Addition of DOP+Fe induced a 90% decrease in Syn-PstS 

and a 1.7-fold increase in Syn-PhoA while addition of DOP+Zn induced a 2.1-fold increase in Syn-PstS and a 1.2-

fold increase in Syn-PhoA (Fig, 6b, Table S5). There was no consistent change in Syn-PhoX after the addition of 845 
DOP, DOP+Zn or DOP+Fe, with Syn-PhoX increasing or decreasing by 20 to 40% at both stations (Fig. 6b, 

Table S5).  

 

In-situ measurements and bioassays converge to imply that Synechococcus is reliant upon organic P accessed via 

APA. The zonal trends and bioassay results agree with culture experiments demonstrating that Syn-PstS and Syn-850 
PhoA are produced in the presence of DOP and Zn to increase P acquisition when phosphate is low (Cox and 

Saito 2013). Higher APA and prevalence of Syn-PhoA in the low DOP and phosphate west implies that 

Synechococcus was P stressed. Enzyme kinetic bioassays indicate higher AP enzyme efficiency in the west (Fig. 
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8a), with enzyme efficiency positively correlated with Syn-PhoA (p=0.017, Fig. 8b). Thus, Syn-PhoA potentially 

governs this trend of enzyme efficiency, suggesting DOP hydrolysis was more efficient in the west than the east.  900 
 

 

Figure 8. Enzyme efficiency for alkaline phosphatase was calculated as the ratio between Vmax and Km (h
-1

); (a) 
zonal gradient in enzyme efficiency, indicating higher enzyme efficiency in the western compared to the eastern 
subtropical Atlantic and (b) positive significant (p=0.017) relationship between Syn-PhoA and enzyme efficiency.  905 
 

A west-east gradient was also observed for PhoA in SAR11 (Fig. 4a), which is an abundant aerobic 

chemoheterotrophic alphaproteobacterial contributing to LNA bacterial counts (Fig. 3e). The abundance of both 

HNA and LNA (Fig. 3d and e, respectively) and total SAR11 protein (Fig. 4f) increased from west to east. 

However, SAR11-PhoA decreased 24-fold and SAR11-PhoX increased 4-fold (Fig. 4a, Table 2) despite 910 
dissolved Fe concentrations being higher in the west relative to the east. The mechanism for this discrepancy is 

unclear. However, PhoA is efficient at hydrolysing DOP under low P conditions and culture studies show that 

organic P is an important source of P for SAR11, representing up to 70% of its cellular P requirement when 

phosphate is non-limiting (Grant et al., 2019). Thus, we speculate that SAR11 might strategically use PhoA in the 

west with the zonal patters in SAR11-PhoA and PhoX likely reflecting the preferential acquisition of DOP over 915 
phosphate. This further supports the premise that PhoA is an indicator of DOP acquisition across marine 

microbial taxa (Steck et al., 2025; Ustick et al., 2021).  

 

The decline in Synechococcus abundance and Syn-PhoA, despite the increase in DOP in the east suggests other 

factors, such as resource availability or competition with other microorganisms including Prochlorococcus, 920 
inhibited growth of Synechococcus in the east.  Zinc concentrations decreased eastwards from ~ 0.35 nM to 0.15 

nM. Briefly, bioassays conducted during the same expedition indicated that Zn addition stimulated a 2- to 4-fold 

fold increase in Syn-PstS and Syn-PhoA after a 48-h incubation period (Held et al., 2025; companion manuscript), 

corroborating a role for zinc in PhoA metabolism. Cobalt also stimulated increases in Syn-PstS and Syn-PhoA, 

representing new field evidence for Co influencing AP (Held et al., 2025; companion manuscript). Co may 925 
effectively substitute Zn at the active site of PhoA within marine cyanobacteria, consistent with trends observed 

in accelerating Co stoichiometry and APase abundances in the North Atlantic Ocean (Saito et al., 2017).   
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3.3. Non-targeted metaproteomic indicators of nutrient status in picocyanobacteria 

Higher PstS and PhoA in the west compared to the east, alongside the positive relationship between Pro-PstS, 

Pro-PhoA and Syn-PhoA with AP activity and negative relationship with DOP corroborate that these protein 

biomarkers are P-stress biomarkers in both Prochlorococcus (Martiny et al., 2006; Moore et al., 2005; Reistetter 980 
et al., 2013) and Synechococcus (Scanlan et al., 1993; Tetu et al., 2009). However, DOP addition stimulated 

distinct biomarker responses in Prochlorococcus and Synechococcus (Fig. 6, Table S5). For Prochlorococcus, 

DOP addition reduced Pro-PstS and Pro-PhoA but increased PhoX after 48 h relative to the control (Fig. 6, Table 

S5). In contrast, for Synechococcus DOP addition increased Syn-PstS and Syn-PhoA, with no change in PhoX 

(Fig. 6, Table S5). We intuit that the protein biomarkers changed due to a physiological response rather than 985 
change in cell abundance because the per cell protein content (Fig. S5) showed the same pattern (with the caveat 

that the protein is clade specific yet likely targeted a major ecotype, whereas cell abundance represents all cells).  

DOP addition stimulated a decrease in Pro-PstS and Pro-PhoA per cell and increase Pro-PhoA per cell relative to 

the control (Fig. S5a), whereas DOP addition stimulated an increase in Syn-PstS, Syn-PhoA and Syn-PhoX per 

cell (Fig. S5b).  990 
 

Either the protein regulatory pathway differs between Prochlorococcus and Synechococcus, and/or the strain 

specific differences in quantified proteins is complicating our interpretation response of proteins across different 

strains. Here we describe evidence for the former hypothesis. In Prochlorococcus, the Pho regulon controls P-

acquisition genes such as pstS (phosphate transporter) and phoA and includes the two-component regulatory 995 
genes, phoB and phoR (Martiny et al., 2006). The Pro-phoX gene is controlled by the pho regulon as it sits 

within a genomic island with other P stress responsive (Kathuria and Martiny, 2011). In contrast,  Synechococcus 

(WH8102) has a two-tiered phosphate response system , where the PhoBR regulator controls pstS using a Pho 

box (Cox and Saito, 2013; Tetu et al., 2009) and second regulator, PtrA, controls one of the phoA phosphatase 

copies, Zn transport, and various other cellular processes (Ostrowski et al., 2010). The gene neighbourhood 1000 
containing phoA (SYNW2391) in Synechococcus is also located near efflux transporter and close to the ferric 

uptake regulator, Fur. To our knowledge, regulation of PhoX and its interaction with PhoA regulation in the 

marine picocyanobacteria is not well understood, but analysis of the gene neighbourhood in the model organism 

Prochlorococcus sp. NATL1A reveals that phoX is not within the phoA neighbourhood and is in the vicinity of a 

putative manganese transporter. For Synechococcus (WH8102), the position of phoX (SYN1799) is like 1005 
Prochlorococcus and is located directly next to the futAB iron ABC transport system, consistent with the iron 

requirement of this enzyme. The separation of phoA and phoX within the genome in both Prochlorococcus and 

Synechococcus (at least in the representative strains described above)  implies their regulation may be distinct in 

the different organisms. Consistent with prior observations (Browning et al., 2017; Mahaffey et al., 2014; Rouco 

et al., 2018), PhoA and PhoX may be regulated by both metals and phosphorus availability but the specific 1010 
regulatory system in picocyanobacteria is complex and still unknown.  

 

The alternative interpretation is that differences in strain specificity among the identified proteins explains the 

differences in the Prochlorococcus vs Synechococcus response patterns. Proteins concentrations are measured by 
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detecting peptides, and biological specificity (e.g. to strains or species) is determined by comparing the amino 

acid sequence of the peptide to isolate genomes or annotated MAGs. A least-common-ancestor (LCA) analysis 

can then be performed to assess the level of biological specificity that is represented by that peptide (Saunders et 

al., 2023) (Table S3, Supplement C). The targeted peptides were selected based on their abundance in a 

preliminary metaproteomics analysis, suggesting that these were the most abundant proteins within the microbial 1260 
community (see Held et al., 2025 for a more complete description of how targeted peptides were selected for this 

study region). Peptide sequences for up to 5 strains of Prochlorococcus were targeted with a focus on the HLII 

clade, particularly strain MIT9314, allowing comparison between proteins of the same strain. In contrast, protein 

sequences for Synechococcus were compared across clades because the peptide sequence for PhoA and PhoX 

targeted WH8102 (clade III) but the peptide sequence for PstS targeted RCC307 (clade X, Table S3). While co-1265 
occurring clades III and X are geographically positively correlated in warm oligotrophic waters (Sohm et al., 

2008), RCC307 possesses a different putative alkaline phosphatase gene compared to WH8102 (likely PhoA, see 

Tetu et al., 2009)). This mismatch in targeted strains and clades means that interpretation of the response of 

Synechococcus (and perhaps Prochlorococcus) to nutrient addition needs to be treated with some caution until 

the physiology and regulatory pathways of protein production are better understood. However, based on current 1270 
knowledge of phosphate acquisition genes in marine Synechococcus and Prochlorococcus, we do expect that the 

targeted proteins/strains are major players in our study region.    

 

3.4. Influence of trace metals on alkaline phosphatase and associated protein biomarkers  

Unlike other cyanobacteria, where the trace metal availability aligns well with the biogeography of PhoA and 1275 
PhoX (e.g. Trichodesmium, Rouco et al., 2018), there were no consistent trends between iron or zinc 

concentrations and proteins PhoX and PhoA respectively in this study. The distribution of Pro-PhoX from 

metaproteomes (Fig. 4a) did not reflect iron availability (Fig. 2a). Despite elevated iron in the west, Pro-PhoA 

concentrations were 2.7 to 4.7-fold higher than Pro-PhoX (reported fmol L-1, Table 3), with Pro-PhoX being 

greater than Pro-PhoA in the east where Fe was lowest (Fig. 2a). PhoX was not detected for Synechococcus in 1280 
metaproteome analysis but was detected quantitatively at the start of bioassay experiments (Table 3). Syn-PhoX 

concentrations also did not reflect iron availability (Table 3) and there was no consistent trend in the ratio 

between Syn-PhoA and Syn-PhoX (Table 3).  Zonal trends in quantitative versus metaproteome-derived Syn-

PhoA were different and likely driven by differences in depth horizons sampled (40m for experiments, 15 meters 

for metaproteome analysis) as well as the different Synechococcus populations captured using quantitative 1285 
peptide analysis (see Table S3, clade III and X) compared to metaproteomes.  

 

Table 3: Concentration of proteins (fmol L-1) PhoX and PhoA for Prochlorococcus and Synechococcus at the 
start of the nutrient bioassay experiments at stations 2, 3, 4 and 7 (see Fig. 1a for locations) to illustrate how the 
relative concentration and ratio of PhoA to PhoX differ between Prochlorococcus and Synechococcus and across 1290 
the zonal transect.  

Protein biomarker Prochlorococcus Synechococcus 

Protein conc.  

(fmol L-1)  

PhoX  
 

PhoA 
 

PhoA/PhoX PhoX 
 

PhoA PhoA/PhoX 

Station 2 control 17 ± 2 45 ± 14 2.7 21 ± 6 7 ± 1 0.3 
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Station 3 control 16 ± 11 48 ± 10 3.0 15 ± 2 22 ± 12 1.8 

Station 4 control 7 ± 0.1 31 ± 13 4.7 9 ± 5 8 ± 3 0.8 

Station 7 control 8 ± 2 3 ± 1 0.4 16 ± 2 28 ± 13 2.4 

 

The systems biology of the PhoX enzyme is poorly understood compared to that of PstS and PhoA, where the 

latter is known to be regulated by phosphate and zinc (Cox and Saito, 2013; Martiny et al., 2006; Ostrowski et al., 1345 
2010; Tetu et al., 2009). Despite the lack of correlation between trace metal availability, PhoA and PhoX in the 

surface ocean in this study, results from bioassays conducted during the same expedition (Held et al. 2025; 

companion manuscript) lends support to the potential for a direct metal control on APA (Browning et al., 2017; 

Jakuba et al., 2008; Mahaffey et al., 2014; Saito et al., 2017). In the west, Zn addition stimulated a 6-fold increase 

in Syn-PhoA relative to the control. Cobalt addition simulated a 7-fold increase in Syn-PhoA and 8-fold increase 1350 
in Pro-PhoX. Finally, iron addition stimulated a 2-fold increase in Pro-PhoX in the iron-deplete eastern Atlantic 

(Held et al., submitted).  

 

Proteins relating to iron, zinc and B12 metabolism in Prochlorococcus increased in the east alongside the 

increase in Prochlorococcus cell abundance. Ferredoxin and zinc transporters increased eastward by 3 to 9-fold 1355 
and protein annotated as CobW, a member of the COG0523 family implicated in metal chaperone functions 

(Edmonds et al., 2021) and Co chaperone for B12 synthesis (Young et al., 2021) also increased 3 to 10-fold (Fig. 

4c). The eastward increase in three independent proteins (up to 10-fold) was greater than the increase in total 

protein for Prochlorococcus (~ 1.6-fold) implying a regulated molecular increase in response to resource 

limitation or competition, rather than reflecting a change in biomass only. However, zinc protein annotations in 1360 
Prochlorococcus are putative and alignment-based transporter annotations are unable to discern cognate metal 

use. In addition, the role of zinc in Prochlorococcus physiology is uncertain.  Prochlorococcus does not have an 

obligate Zn requirement when phosphate is available (Saito et al., 2002), and Zn is highly toxic to a Pacific 

Ocean strain of Prochlorococcus  29/08/2025 10:57:00.  In addition, while CobW is an abundant protein among 

the ~20 genes involved in cobalamin biosynthesis, there are currently no known biomarkers for cobalt or zinc 1365 
metabolism in Prochlorococcus, with studies producing negative results (Hawco et al., 2020).  For 

Synechococcus, there were no clear trends in ferredoxin (Fig. 4c) and flavodoxin was infrequently detected. 

These findings highlight the difficulty of predict the direct metal requirement alongside metals controlling 

multiple APs in-situ, and makes a strong case for continued biochemical characterization of cyanobacterial trace 

metal physiology and enzymes.  1370 
 

3.5. Influence of nitrogen acquisition on the biogeography of Prochlorococcus and Synechococcus in the 

subtropical North Atlantic 

We used nontargeted metaproteomics to interpret the role of nitrogen acquisition on the biogeography of 

Prochlorococcus and Synechococcus.  Upwelling in the eastern Atlantic (Menna et al, 2015) alongside nitrogen 1375 
fixation (Fig. 3g, Cerdan-Garcia et al., 2022) and dust deposition (Kunde et al., 2019) deliver fixed nitrogen 

including, nitrate, ammonium and urea to the surface subtropical Atlantic (dust ref here). Nitrate and ammonium 

concentrations were low across the transect (Fig. 1e and f), with maximum ammonium concentration coinciding 
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with the highest N2 fixation rates (Fig. 3g). Prochlorococcus (and Synechococcus) are prime beneficiaries of N 

exuded from N2 fixers (Caffin et al., 2018). Prochlorococcus-AmtB and UrtA was lowest where N2 fixation and 

ammonium were highest (Figure 4b), reflecting alleviation of N stress as Prochlorococcus benefited from N 

exudates, as observed in the North Pacific gyre (Saito et al., 2014, 2015). Otherwise, eastward increases in 

protein biomarkers in Prochlorococcus, specifically P-II, ammonium transporter AmtB and urea transporter UrtA 1510 
(30-70%, Fig. 4b and Table 2) indicate increasing N stress towards the eastern Atlantic for Prochlorococcus.  

Synechococcus appeared to be N stressed throughout the transect as UrtA spectral counts were constant 

and more than 5 times higher than for Prochlorococcus (Fig. 4b). This is likely due to its larger cell size and less 

efficient surface-area to volume ratio for nutrient acquisition (Chisholm 1992). P-II and AmtB (or NtcA) was not 

detected in the metaproteome of Synechococcus, perhaps because Synechococcus was 5 to 10 times less abundant 1515 
in the metaproteomes compared to Prochlorococcus. The dominance of proteins for ammonium and urea 

acquisition of Synechococcus and Prochlorococcus are consistent with the premise that while marine 

Synechococcus and some Prochlorococcus strains have the genetic makeup to assimilate nitrate (Berube et al., 

2015; Domínguez-Martín et al., 2022; Martiny et al., 2009), it accounts for < 5% of their total N demand, and 

instead ammonium and urea are the dominant N sources (Berthelot et al., 2019; Casey et al., 2016; Painter et al., 1520 
2008) 

 

 

4.0. Conclusions 

 1525 
This study exploited natural gradients in nutrient resources created by upwelling in the east and dust deposition in 

the west. Combining biogeochemical states, enzyme rate measurements, and ‘omics approaches, in the spirit of 

the developing ‘BioGeoSCAPES program (Saito et al., 2024), we studied the nutrient acquisition strategies for 

Prochlorococcus and Synechococcus in-situ and using nutrient bioassays. Using protein biomarkers alongside 

biogeochemical signatures for nutrient stress, we concluded that Prochlorococcus and Synechococcus were P-1530 
stressed in the western Atlantic and Prochlorococcus was N-stressed in the eastern Atlantic, with Synechococcus 

showing signs of N-stress throughout the transect. Our findings are generally consistent with prior metagenomic 

observations on basin scale contrasts in N and P stress for Prochlorococcus in the Atlantic Ocean (at medium 

level, Ustick et al., 2021). There was evidence for trace metal control on alkaline phosphatase but the response of 

protein biomarkers to the addition of organic P, Zn and Fe differed between Prochlorococcus and Synechococcus 1535 
(also see Held et al., 2025, companion manuscript), highlighting that the functions and systems biology of 

alkaline phosphatase regulation differs across the organisms and for different environmental stimuli. This 

indicates that ongoing laboratory characterization of protein biomarkers and cyanobacterial physiology is needed 

defining the regulation and function not only at the species level, but also across strains within species.   

Under future climate scenarios, stratification, aerosol dynamics, N2 fixation and the bioavailability of 1540 
organic P are predicted to change (e.g. (Buchanan et al., 2021; Chien et al., 2016; White et al., 2012; Wrightson 

and Tagliabue, 2020), all with the potential to perturb the availability of already scarce nutrient resources in the 

oligotrophic gyres. To identify and quantify the future trajectory of Prochlorococcus and Synechococcus under 

future ocean scenarios, a holistic view that considers the species and strain specific strategies used to access 
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resources, alongside representation of large scale forcings are required. We have shown here that there is utility 

in combining biochemical assays with untargeted and targeted omics approaches to reveal these patterns, 

generate hypotheses that can be tested in controlled laboratory experiments, and improve predictions of marine 1710 
microbiology and biogeochemistry in a changing ocean.  
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