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Research Article

Short summary

Ocean primary production helps regulate climate through carbon cycling. The magnitude of this process is
governed by the availability of nutrients, such as nitrogen, phosphorus, iron and zinc. Here, we analyse zonal
gradients in microbial nutrient acquisition strategies and potential nutrient limitation in the surface subtropical
Atlantic Ocean to determine how changes in nutrient resources impact marine primary productivity. Nutrient and

trace metal availability. biological activity. and protein biomarker abundance are determined to infer phosphorus,

nitrogen and trace metal acquisition and metabolism in two dominant picocyanobacteria, Prochlorococcus and
Synechococcus. We find phosphorus stress prevails for both Prochlorococcus and Synechococcus in the western
Atlantic, but that Prochlorococcus becomes increasingly nitrogen, iron, zinc and cobalamin stressed in the east
with coincidently lower phosphorus biomarker proteins, indicating a switch in nutrient status,across the transect.

Our findings provide species and ecotype level insights into nutrient acquisition and metabolism in the ocean,
combining biogeochemical and biological rate measurements with discovery and targeted proteomics to,

understand how microbial metabolism will respond to a changing climate.

v

Abstract
Ocean productivity is maintained by key nutrients, including nitrogen, phosphorus and trace metals, The

magnitude and stoichiometry of nutrient fluxes to the ocean is changing. Here, we investigate how natural
assemblages of marine microbes in the subtropical North Atlantic respond to yariation in nutrient availability

along a natural zonal gradient. We measure dissolved nutrient concentrations, biological rates, and characterize
the microbial proteomes of the dominant picocyanobacteria, Prochlorococcus and Synechococcus. Moving west
to east, dissolved organic phosphorus (DOP) and phosphate concentrations increased. and dissolved iron
decreased. Prochlorococcus abundance increased eastwards, whereas Synechococcus abundance was highest in
the west. Zonal distributions of protein biomarkers representing phosphorus (PstS, PhoA, PhoX). nitrogen (P-II
UrtA, AmtB) and trace metal metabolism (related to iron, zinc and cobalt) from metaproteomes, together with
rates of alkaline phosphatase activity, indicate greater phosphorus stress the west than the east for both
picocyanobacteria. In the east, elevated levels of protein biomarkers for nitrogen, iron, zinc and cobalamin in
Prochlorococcus indicate a transition to nitrogen stress and greater influence of trace metal resources. Measured
responses of Prochlorococcus ecotypes and Synechococcus clades to DOP, iron and zinc additions in incubation
experiments further indicate divergent regulation of uptake and acquisition of phosphorus in these of
picocyanobacteria across transect, albeit with caveat on potential for differences in regulation within a genus and
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Deleted: Marine primary production supports marine ecosystems
and helps to regulate climate through carbon cycling. The magnitude
of productivity is underpinned by the availability of nutrient
resources, such as nitrogen, phosphorus, iron, zinc and cobalt.
Natural variation alongside anthropogenic activity has the potential to
alter both the absolute and relative amount of nutrients available to
marine microbes. To fully understand the impact of the evolving
nutrient resource environment on marine primary productivity, we
need to know how different marine microbes acquire nutrients, and
which nutrients have the potential to limit productivity. In this study,
we used zonal gradients in nutrients, trace metals, biological activity
and protein biomarkers representing phosphorus, nitrogen and trace
metal acquisition and metabolism to better understand how two
dominant picocyanobacteria, Prochlorococcus and Synechococcus,
acquire nutrient resources in the surface subtropical ocean. Our suite
of measurements agree on the occurrence of phosphorus stress for
both Prochlorococcus and Synechococcus in the western Atlantic, but
increases in proteins representing nitrogen, iron, zinc and cobalamin
metabolism in Prochlorococcus in the east where phosphorus
biomarker proteins are lower indicates a switch in the nutrient
resources controlling the growth of Prochlorococcus across the
transect. Our study highlights the power of a combined discovery and
targeted proteomics approach in providing species and even ecotype
level information on nutrient acquisition and metabolism, which
alongside measurements of states and rates, can be powerful tools in
enhancing understanding of microbe metabolism in a changing
climate. ¢
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between strains. Together our findings suggest a basin-scale transition from phosphorus stress in
picocyanobacteria in the west to nitrogen stress in the east.

1, Introduction

Marine phytoplankton have an important role in biogeochemical cycles, supporting ecosystems and regulating

climate. Global net primary productivity (NPP) is underpinned by availability of key nutrient resources, such as

nitrogen (N), phosphorus (P), iron (Fe) and zinc (Zn) and pthers. In the subtropical open ocean, surface putrient

concentrations,are chronically low and often limit NPP. Enhanced stratification, induced by ocean warming,

alongside changes to natural and anthropogenic supply of fixed N (Chien et al., 2016; Kim et al., 2014;
Wrightson and Tagliabue, 2020), P (Barkley et al., 2019) or Fe (Liu et al., 2022) to the global ocean are likely to
perturb the magnitude and ratio at which nutrients are supplied to phytoplankton (Pefiuelas et al., 2013),
potentially expanding or intensifying nutrient limited ocean regions (Bopp et al., 2013; Chien et al., 2016;
Lapointe et al., 2021). Detecting and understanding how nutrients regulate phytoplankton distribution, growth
and activity is key to estimating the magnitude and direction of contemporary and future NPP, reducing

uncertainty and assessing risks to ecosystem services (Tagliabue et al., 2021).

The nutrient fhat limits phytoplankton growth can be identified by adding single or multiple nutrients to seawater

and measuring phytoplankton growth or other properties over time (Browning and Moore, 2023; Mahaffey et al.,
2014; Mills et al., 2004; Moore et al., 2008). In addition, advances in ‘omics’ have enabled identification of

Deleted: Ocean warming alongside changes to the natural and
anthropogenic supply of key nutrient resources such as nitrogen,
phosphorus and trace metals is predicted to alter the magnitude and
stoichiometry of nutrients that are essential for maintaining ocean
productivity. To improve our ability to predict how marine microbes
will respond to a changing nutrient environment, we need to better
understand how natural assemblages of marine microbes acquire
nutrients. We combined observations of natural zonal gradients
across the North Atlantic subtropical gyre of the state of nutrient
resources and microbial proteomes with biological activity rates, to
investigate the factors influencing the distributions and nutrient
acquisition strategies of the dominant picocyanobacteria,
Prochlorococcus and Synechococcus. Dissolved organic phosphorus
decreased by more than a factor of two moving westward, while
phosphate increased eastward with eastern boundary upwelling and
dissolved iron increased westward with dust deposition.
Picocyanobacterial populations diverged across the zonal transect
with Prochlorococcus increasing in abundance westward, while
intaining numerical dc throughout, and while
Synechococcus increased in abundance in the westward basin,
implying a low phosphorus niche. We analysed the zonal distribution
of protein biomarkers representing phosphorus (PstS, PhoA, PhoX),
nitrogen (P-II, UrtA, AmtB) and trace metal metabolism (related to
iron, zinc and cobalt) alongside the response of phosphorus protein
biomarkers to the addition of dissolved organic phosphorus with iron
or zinc within incubation experiments. Rates of alkaline phosphatase
alongside phosphorus protein biomarkers concur on more intense
phosphorus stress in the western compared to the eastern subtropical
Atlantic for both picocyanobacteria. Protein biomarkers for nitrogen,
iron, zinc and cobalamin in Prochlorococcus increased to the east
where phosphorus protein biomarkers were lower, indicating a
transition to N stress and increasing role of trace metal resources in
controlling Prochlorococcus growth. We use the diverging zonal
patters in protein biomarkers, alongside the response of
Prochlorococcus and Synechococcus to nutrient addition, to pm
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strategies demonstrated by key marine phytoplankton (Duhamel et al., 2021; Martinez et al., 2012; Martiny et al., !

2006, 2009; Moore et al., 2005; Ostrowski et al., 2010; Scanlan et al., 1993; Tetu et al., 2009). In addition

phosphate limited phytoplankton can deploy an array of strategies to acquire alternative sources of P from

dissolved organic phosphorus (DOP) including esters (Sebastian and Ammerman, 2009; Tetu et al., 2009),
polyphosphate (Moore et al., 2005), phosphite (Martinez et al., 2012) and phosphonate (Ilikchyan et al., 2010) or
substituting P-rich lipids with P-free alternatives (Van Mooy et al., 2009). A hydrolytic metalloenzyme group,
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alkaline phosphatases, are responsible for cleaving P from esters (Hoppe, 2003). Enhanced activity of alkaline
phosphatase (AP) has been used an indicator of P limitation (Mahaffey et al., 2014; Su et al., 2023) although the
substrate specificity (Srivastava et al., 2021), cellular localisation (Luo et al., 2009), AP allocation between
ecotypes (Moore et al., 2005), uncertainty in the contribution of different phytoplankton groups to total enzyme

activity (Held et al., 2025; companion study to this manuscript)) and lack of knowledge on the efficiency of
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different AP enzymes raises uncertainties. Collectively, the flexibility in P acquisition strategies, as well as the
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perceived ability of Prochlorococcus to readily satisfy their P demands at ultra-low concentrations of phosphate
(Lomas et al., 2014) has led to the idea that Prochlorococcus evade nutrient stress, particularly by remodelling

their proteomes.

Comparing the physiological response of two ecologically important picocyanobacteria, Prochlorococcus and
Synechococcus, to P stress demonstrates the complexity of deciphering resource limitation in mixed populations,

between species, or even between strains of the same species. Synechococcus possess genes encoding a high

(oeited: )

affinity periplasmic phosphate binding protein (pstS) and transport system (pstABC), as well as genes encoding

proteins essential for accessing organic P via alkaline phosphatase (phoA) and phosphonatase (phnC, D, E,

(oeited: i )

(Moore et al., 2005; Scanlan et al., 1993; Tetu et al., 2009). When phosphate is scarce, Synechococcus has been
shown to upregulate pstS, pstABC and phoA (Moore et al., 2005; Tetu et al., 2009), the regulator gene ptrA

(Ostrowski et al., 2010) and the recent described high affinity AP gene psip!l (in clade III only, Torcello-Requena
et al., 2024), with a measurable increase in AP activity (Moore et al., 2005, Torcello-Requena et al., 2024),

implying that expression of these genes is indicative of P stress (Moore et al., 2005, Torcello-Requena et al.
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2024). However, clade specific variations in response to phosphate limitation have been observed in situ (Sohm

etal., 2016, Torcello-Requena et al. 2024) and in culture (Moore et al., 2005). While Prochlorococcus also

possesses pstS and pstABC and has been shown to upregulate these genes alongside phoA under phosphate
deplete conditions (Martiny et al., 2006), strain specific variations in its ability to access organic P also exist. For
example, while the two most prevalent high light (HL) clades, MED4 (HL1) and MIT9312 (HLII) can grow
solely on phosphate, MED4 grows on a wider range of organic P compounds, possess a high affinity AP (psipl

Torcello-Requena et al., 2024) and dramatically increases AP activity when P starved compared to MIT9312
(Moore et al., 2005).

In addition to species and clade specific responses across the microbial realm, AP enzymes are dependent+--._

on a metal co-factor, with Zn and/or cobalt (Co) required for the protein PhoA (Coleman, 1992) and Fe and

calcium for the proteins PhoX and PhoD (Rodriguez et al., 2014; Yong et al., 2014) and Psipl (Torcello-Requena

et al., 2024). Although 130 the active sites of PhoA and PhoX in marine microbes have yet to be biochemically

characterised, their metal requirements have been estimated assuming they are like the model organism

Escherichia coli and based on supporting evidence that the enzymes respond to the metals that they are expected
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annotation of enzymes is challenging and therefore the annotations herein should be considered putative. The

Jrace-metal content of these proteins creates the potential for trace metals to control P acquisition via regulation
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2025; Mahaffey et al., 2014). Observations of an accelerating stoichiometry of Co in the western North Atlantic

has led to hypotheses for the potential for Co use in oceanic alkaline phosphatases too (Held et al., 2025; Jakuba
et al., 2008; Saito et al., 2017). In culture studies, Prochlorococcus and Synechococcus have been shown to have
absolute requirements for Co but not Zn under replete P conditions (Hawco et al., 2020; Saito et al., 2002; Sunda

and Huntsman, 1995) but Synechococcus benefits from available Zn to produce AP under P scarcity (Cox and
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Saito, 2013). Thus, knowledge of the phytoplankton community structure, alongside their nutritional preferences
and enzyme characteristics is key in deciphering nutrient limitation in the ocean.

This study measures the biological response to nutrient transitions in the North

Atlantic Gyre. Here, the Western basin isheavily influenced by Saharan aeolian dust (Jickells, 1999), while the

(" leted: The North Atlantic Gyre is

eastern basin borders the upwelling system off northwest Africa (Menna et al., 2015). Both upwelling and dust
deliver scarce resources to the region, creating strong gradients in nutrients and trace metals (Gross et al., 2015;
Kunde et al., 2019; Reynolds et al., 2014; Sebastian et al., 2004) influencing productivity (Moore et al., 2008),
DOP dynamics (Liang et al., 2022) and marine dinitrogen (N2) fixation (Moore et al., 2009). Here, we exploit
these strong natural gradients in nutrient and trace metal resources and biological activity to investigate nutrient
acquisition strategies of natural assemblages of Prochlorococcus and Synechococcus.

Alongside measurements of biogeochemical states, specifically nutrients, dissolved iron, zinc, cobalt and

DOP and biological rates, including AP activity and N fixation, we investigated biological activity with non-

targeted metaproteomics and quantitative targeted proteomics of the high affinity phosphate binding protein

PstS, and two alkaline phosphatases, PhoA and PhoX in Prochlorococcus and Synechococcus (Table 1). From

the non-targeted metaproteomics analyses we specifically focus on proteins indicative of N acquisition (P-II,

Deleted: we used a metaproteomic approach and quantified three

UrtA, AmtB) and proteins involved in iron (ferredoxin), zinc (zinc peptidase and transporter) and B, (cobalamin

synthetase) metabolism (Table 1). This allowed us to firstly jnvestigate the potential for Prochlorococcus and

proteins representing the high affinity phosphate binding protein,
PstS, and two alkaline phosphatases, PhoA and PhoX in
Prochlorococcus and Synechococcus (Table 1). To support our
investigation into P acquisition, we also considered three

Synechococcus to be phosphorus-stressed in the subtropical Atlantic, challenging the view that avoidance of P

limitation and hypothesised zonal gradients in proteins would reflect nutrient stress. We also assessed the
potential for N, Fe and Zn to control the zonal distribution of Prochlorococcus and Synechococcus. Secondly, we
assessed the potential for P acquisition to be regulated by the availability of DOP, Fe and Zn or Co. We
hypothesised that the distribution of PhoA and PhoX would be reflected in rates of AP and alongside Fe and Zn,
the limiting trace metal. We augmented in-situ sampling with nutrient bioassays, complimentary to those reported

by Held et al., 2025 (companion manuscript), to further assess the potential for DOP substrate, alongside metals
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Fe and Zn to regulate AP activity and applied a quantitative proteomic approach targeting PstS, PhoA and PhoX
only. Finally, we critically assessed our different approaches to delineate nutrient controls of the distribution and

physiological strategies of Prochlorococcus and Synechococcus, highlighting the nuanced insights gained when
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bringing together biogeochemical measurements alongside ‘omics (Saito et al., 2024).

Table 1. Summary of the proteins targeted by metaproteome (all) and quantitative (*) protein analysis including
their function and known characteristics.

Protein name or Function and reported characteristics

family

PstS* Periplasmic phosphate-binding protein. Induced under P-limiting conditions

PhoA* Alkaline phosphatase: cleaves phosphorus from organic compounds. Zinc
metalloenzyme Induced under P-limiting conditions

PhoX* Alkaline phosphatase: cleaves phosphorus from organic compounds. Iron

metalloenzyme. Regulation unknown

P-1I Nitrogen regulatory protein. Indirectly controls the transcription of glutamine
synthetase gene glnA.

Ammonium transporter channel. Transmembrane

An ABC-type, high-affinity urea permease. Substrate binding protein

AmtB
UrtA

4
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Ferredoxin Iron metalloenzyme. Regulated by iron, more abundant under high iron

conditions.
Zinc peptidase Zinc metalloenzyme. Involved in proteolysis at the plasma membrane
Zinc transporter Zinc metalloenzyme. ABC transporter, ATP-binding protein

Cobalamin synthetase | Cobalt metalloenzyme. Synthesis of cobalamin (vitamin Bi»)

355 2 Materials and methods

2.1 Sample collection from surface waters

Samples were collected on a zonal transect between Guadeloupe and Tenerife at approx. ~22°N between 26 (Deleted: Sampling

June and 12" August 2017 onboard the RRS James Cook (JC150, Fig. 1a). Sea surface temperature (SST) was (Deleted: was performed )
= (Deleted: ) )

[Deleted: along a zonal transect between Guadeloupe and Tenerife

measured via the underway seawater system using Seabird sensors. Using a trace-metal clean towed FISH and a

360 Teflon diaphragm pump (Almatec A-15), seawater samples were collected every 2 h, at a resolution of ~ 25 km, at approx. ~22°N between 26" June and 12® August 2017 (

from ~ 3 m below the surface (Fig. 1a), with seawater flow terminating into a class-100 clean air-laboratory.

2.2 Biogeochemical states and rates
Using unfiltered seawater samples from the towed FISH, concentrations of nitrate plus nitrite (Brewer and Riley,

365 1965), phosphate (Kirkwood 1989) and ammonium (Jones, 1991) were analysed onboard according to GO-SHIP
nutrient protocols (Becker et al., 2020). Using filtered seawater from the towed FISH (Sartobran, Sartorius,
0.8/0.2 um polyethersulfone membrane), concentrations of dissolved iron (Kunde et al., 2019) were measured
onboard while concentrations of dissolved zinc (Nowicki et al., 1994) were determined at the University of
Southampton. Concentrations of DOP were determined at the University of Liverpool using a modified version

370 of (Lomas et al., 2010) as described by (Davis et al., 2019). Using unfiltered seawater from the towed FISH, rates
of alkaline phosphatase were determined onboard every 4 h or ~ 50 km; Davis et al., 2019). Prochlorococcus,
Synechococcus (or Parasynechococcus, (Coutinho et al., 2016) and high and low nucleic acid bacteria (HNA and
LNA, respectively) were enumerated every 2h at Plymouth Marine Laboratory using flow cytometry (Tarran et
al., 2006). Surface ocean concentrations of chlorophyll a (on GF/F) were determined on every sample

375 (Welschmeyer, 1994). Concentrations of dissolved cobalt were measured in separate samples collected from 40m
from 4 stations only using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS),
preceded by UV-digestion and off-line preconcentration into a chelating resin (WAKO) at the University of
Southampton (Lough et al., 2019; Rapp et al., 2017).

380 2.3 Global metaproteomic analysis
At 7 stations, McLane pumps were deployed to 15 m (see Table S1 for deployment details). Data from station 1
was omitted from this study due to significant riverine influence (Kunde et al., 2019). Pumps were fitted with a
trace metal clean mini-MULVS filter head. Between 17 and 359 L of seawater was filtered through a 51 pm
(Nitex), 3 pm (Versapor) and 0.2 um (Supor) filter stack. Filters were immediately frozen at -80°C, with

385 subsequent transportation and storage at -80°C. Protein biomarker analysis was conducted on the 0.2 um filter,
representing the 0.2 to 3 pum particle fraction. Briefly, upon return to the laboratory, the total microbial protein

was extracted using a detergent based method. The filter was unfolded and placed in an ethanol rinsed tube, then
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covered in 1 % SDS extraction buffer (1 % SDS, 0.1M Tris HCI pH 7.5, 10 mM EDTA), incubated at room
temperature for 10 mins, then at 95 °C for 10 mins, and then shaken at room temperature for 1 h. The extract was
decanted and clarified by centrifugation before being concentrated by 5 kD membrane centrifugation to a small
volume, washed in extraction buffer, and concentrated again. The total protein concentration was determined by
BCA assay (kit) at this time. The proteins were precipitated in cold 50 % methanol 50 % acetone 0.5 mM HCI at
20 °C for one week, collected by centrifugation at 4 °C, and dried by vacuum. Purified protein pellets were
resuspended in 1% SDS extraction buffer and redissolved for 1 h at room temperature. Total protein was again
quantified by BCA assay to assess recovery of the purification.

Extracted proteins were immobilized in a small volume polyacrylamide tube gel using a previously
published method (Lu and Zhu, 2005; Saito et al., 2014). LC-MS/MS grade reagents were used and all tubes
were ethanol rinsed. The gels were fixed in 50 % ethanol, 10 % acetic acid, then cut into 1mm cubes and washed
in 50:50 acetonitrile: 25 mM ammonium bicarbonate for 1 h at room temperature, then washed again in the same
solution overnight. Next, the gels were dehydrated by acetonitrile treatment before protein reduction by 10 mM
dithiothreitol treatment at 56 °C for 1 h with shaking. Gel pieces were rinsed in 50:50 acetonitrile: ammonium
bicarbonate solution, then proteins were alkylated by treatment with 55 mM iodacetamide at room temperature
for 1 h with shaking. Gels were again dehydrated by acetonitrile treatment and dried by vacuum. Finally, proteins

were digested by treatment with trypsin gold (Promega) prepared in 25 mM,ammonium bicarbonate at the ratio

(Deleted: m

of 1:20 pg trypsin: ug total protein overnight at 37 °C with shaking. The next morning, any supernatant was
decanted into a clean microfuge tube, and 50 pL protein extraction buffer (50 % acetonitrile, 5 % formic acid in
water) was added to the gels, incubated for 20 mins, centrifuged and collected. The extraction was repeated and
combined with the original supernatant. Peptides were concentrated to approximately 1 pg total protein per pL
solution by vacuum at room temperature. 10 uL or 10 pg were injected per analysis.

Global metaproteome analysis, which is conducted with no prior determined targets, was performed in
Data-Dependent-Acquisition (DDA) mode using Reverse Phase Liquid Chromatography — active modulation —
Reverse Phase Liquid Chromatography Mass Spectrometry (RPLC-am-RPLC-MS) (Mcllvin and Saito, 2021).
RPLC-am-RPLC-MS involves two orthogonal chromatography steps, which are performed in-line on a Thermo
Dionex Ultimate 3000 LC system equipped with two pumps. The first separation was on a PLRP-S column
(200 pm x 150 mm, 3 pm bead size, 300 A pore size, NanoLCMS Solutions) using an 8 h pH 10 gradient (10 mM
ammonium formate and 10 mM ammonium formate in 90% acetonitrile), with trapping and elution every 30
mins onto the second column. The second separation occurred in 30 min intervals on a C18 column
(100 m x 150 mm, 3 um particle size, 120 A pore size, C18 Reprosil-God, Maisch, packed in a New Objective
PicoFrit column) using 0.1% formic acid and a 0.1% formic acid in 99.9% acetonitrile. The eluent was analyzed
on a Thermo Orbitrap Fusion mass spectrometer with a Thermo Flex ion source. MS1 scans were monitored
between m/z 380 and 1,580, with an m/z 1.6 MS2 isolation window (CID mode), 50 ms maximum injection time
and 5 s dynamic exclusion time.

Resulting spectra were searched in Proteome Discoverer 2.2 with SequestHT using a custom DNA
sequence database consisting of over 30 genomes from cyanobacteria isolates and metagenomic data from the
Pacific and Atlantic oceans (including metagenomes from Metzyme and Geotraces cruise GA03). Annotations

were derived using BLASTp against the NCBI non-redundant protein database. The corresponding protein
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FASTA file is available with the raw mass spectra files (see Supplement A). SequestHT parameters were set to
+/1 10ppm for the parent ion, 0.6 Da for the fragment, with cysteine modification (+57.022) and variable

435 methionine (+16.0) and cysteine oxidation allowed. Protein identifications were made using Protein Prophet in
Scaffold (Proteome Software) at the 95 % peptide confidence level, resulting in <1 % protein and peptide FDRs.
Details of the peptides identified relative to protein name and organism can be found in Table S2 and the protein

report and analytical details can be found in Supplement B.

Global metaproteome protein abundances are reported in normalized spectral counts. The normalization <. (Formatted: Font: (Default) Times New Roman

Formatted: Indent: First line: 1.27 cm, Line spacing: 1.5 }
lines

A40

is performed by summing the total number of spectra in each sample, calculating the average number of spectra [

across all the samples, and then multiplying each spectrum count by the average count over the sample’s total

spectral count. This is done to control for small differences in the amount of sample injected into the mass

spectrometer.

445 2.4 Quantitative proteomics analysis
A small number of tryptic peptides were selected for absolute quantitative analysis in the samples from nutrient

addition experiments (see section 2.5 for details) and were analysed as described in detail by Held et al., 2025

(companion manuscript). The amino acid sequence for the protein biomarkers quantified in this study (PstS, (Deleted: (submitted )

PhoA, PhoX) for Prochlorococcus and Synechococcus are summarised in Table S3 and peptide report and

450 analytical details are found in Supplement C.

2.5 Nutrient bioassay experiments

Trace-metal clean sampling and incubation protocols used to setup onboard bioassays are described in detail in

the Supplement D. Aliquots of Fe, Zn and Co solutions were added to unfiltered seawater to investigate metal
455 limitation of alkaline phosphatase and results are reported in Held et al., (submitted). Alongside these

experiments, we added DOP alone or with Fe and Zn to investigate the potential for organic P availability to

influence AP activity at stations 2 and 3 only, where concentrations of DOP were low (< 80 nM, Fig. la and e,

Table S4), and the results are reported here. Trace-metal clean 20L carboys were triple rinsed with unfiltered

seawater collected from 40m (to avoid contamination from the ship) via the FISH and filled and amended

60 accordingly (Table S4). At the start and end of 48 hours. we measured phytoplankton biomass (chlorophyll a, (Deleted: w
(Deleted: the change in

abundance of Prochlorococcus, Synechococcus) and AP activity, After 48 hours, wg collected samples to

(Deleted: at the start of the incubations and after 48 h

NN A AN

quantify protein concentration (PstS, PhoA and PhoX) as described in section 2.4 (Table S3). Incubations were (,_ leted: W
conducted in triplicate. However, due to the biomass (therefore volume) required for protein analysis, we were U (Deleted: also
unable to collect samples from three incubation bottles for further analyses. Instead, all measurements were : (Deleted: quantified the concentration of proteins

465 collected from two incubation bottles, except aliquots for determination of AP, which was collected from three
incubation bottles. To compare the change in states or rates in treatments relative to the control, we considered a
significant change in a property to occur when the mean of the property in the amended incubation was 2-times
higher (or lower) than the mean control incubation. Incubations were conducted in a temperature controlled
container set to a temperature measured at 40m (between 25 and 27°C) and with 12:12h light:dark cycle

470 simulated by LED light panels (Part no: LED-PANEL-300-1200-DW and LED-PANEL-200-6-DW, Daylight
White, supplier Power Pax UK Limited).
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3. Results and Discussion

3.1. Zonal trends in nutrients, cell abundance and biological rates: P (l‘ leted: states )

Strong zonal gradients were evident in surface temperature and phosphorus concentrations. From west to east s (Formatted: Line spacing: 1.5 lines )

SST decreased by ~ 3 °C (Fig. 1b), phosphate increased by ~ 15 nM (Fig. 1¢) and DOP increased 3-fold (from ~

50 nM to ~ 150 nM, Fig. 1d). By comparison, there were no clear zonal trends in fixed nitrogen, with

concentrations of nitrate plus nitrate (N+N, herein nitrate) ranging from < 10 nM to ~ 40 nM (Fig. le) and

ammonium, which ranged from 3 to 21 nM, being highest at stations 5 and 6 (Fig. 1f).

Deleted: SST decreased from ~ 28 °C in the west to ~ 25 °C in the
east (Fig. 1b). In the upper 10 m, phosphate increased from ~ 5 nM

O '\,\F =] [m] H B = to 20 nM from west to east (Fig. 1c), whereas nitrate plus nitrate

}:, P, | (N+N, herein nitrate) ranged from < 10 nM to ~ 40 nM with no clear
24 '“s. zonal trend (Fig. 1d). Ammonium concentrations ranged from 3 to 21
g % \, = i | nM, with the highest concentrations observed between stations 5 and
3 v.\r..." i | 6 (Fig. 1f). From west to east, DOP increased 3-fold (from ~ 50 nM
F25 to ~ 150 nM, Fig. le) alongside a 4-fold decrease in chlorophyll

corrected AP activity (from > 2000 nmol P pg chl a d”' to < 500 nmol
P pg chl a d!, Fig. 1g). Concurrent zonal gradients of phosphate,
DOP and AP activity supports previous findings (Mahaffey et al.,
2014) of an increase in AP activity as phosphate decreases (Fig. Sla),
driving a decline in DOP (Fig. S1b). §

58 -54 50 46 -42 -38 34 -30 58 54 50 46 42 38 34 30
Longitude (*W) Longitude ("W)

® FISH Station number 2@ 3M 40 5M6 M7 @

Figure 1. (a) Locations sampled during JC150 from the trace metal clean towed FISH (black circles) and stations
(coloured squares) and surface ocean properties including (b) sea surface temperature (°C), (c) phosphate (nM),
(d)_dissolved organic phosphorus (DOP, nM), (e) nitrate+nitrite (N+N, nM), (f) ammonium (nM), Note that data (l‘ leted: nitrate+nitrite (N+N, nM),
from JC150 Station 1 (test station) has not been included in this manuscript due to the strong riverine influence
(Kunde et al., 2019). Map produced using Ocean Data View (ODV).
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Deleted: (g) chlorophyll a — corrected rates of alkaline phosphatase
(nmol P mg chl d"), (h) mean rates of dinitrogen (N2) fixation (nM N
d™") with error bars as standard deviation of triplicate incubations.

Jhere was a clear zonal trend in dissolved Fe concentrations, which decreased west to east by ~ 1.0 nM (Fig. 2a) «

owing to enhanced Saharan dust deposition in the western Atlantic Ocean (Kunde et al., 2019). In contrast, Zn

1 | Deleted: Dissolved Fe ions decreased from ~ 1.4 nM in
concentrations were variable throughout the transect (ranging from 0.04 to 0.8 nM, Fig. 2b) and cobalt was i the west to ~ 0.4 nM in the east (Fig. 2a), with higher Fe in the west
due to enhanced dust deposition from the Saharan dust source that is
constant (~ 11 pM to 14 pM. data not [ShOWIlh } transported to the western Atlantic Ocean (Kunde et al., 2019). Zn
Y = A Y i

was variable throughout the transect, ranging from 0.04 to 0.8 nM
(Fig. 2b). Cobalt was measured at 40 m and at 4 stations only and
ranged from 11 pM at stations 2 and 3 to 13-13.9 pM at stations 4 and

Microbial biomass, picocyanobacteria abundance and biological rates exhibited strong zonal gradients. From 1\ 7 (data not shown).
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west to east, there were increases in chlorophyll a concentration (Fig. 3a) and Prochlorococcus cell abundance

(Fig. 3b) whereas Synechococcus cell abundance decreased (Fig. 3¢). HNA and LNA bacterial abundance (Fig.

" | or is someone planning to write a paper about this?

L k[Commented [NH4]: could we drop this into a supplemental table]
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3d and e, respectively) also increased from east to west. There was also a 4-fold decrease in chlorophyll corrected

APA (from > 2000 nmol P ug chl ¢ d”' to < 500 nmol P pg chl a d”', Fig. 3f), likely in response to the observed

gradient in P/DOP availability (Mahaffey et al., 2014 , Fig. Sla, S1b).

In addition, the abundance of key diazotrophs Trichodesmium and UCYN-A increased from west to east (Cerdan-+

Garcia et al., 2022). Although rates of N> fixation in the east exceeded those in the west (3 to 10 nM d"' and <3

nM d', respectively). the highest rates were in the central transect between stations 4 and 5 (12 to 18 nM d', Fig.

3g).
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Figure 2. Zonal gradients in (a) dissolved iron concentrations (nM, from Kunde et al., 2019) and (b) dissolved
zinc concentrations (nM). Samples captured from the towed FISH at ~ 7m. Coloured square represent stations
sampled during JC150 (see Fig. 1 for station names).

Deleted: Chlorophyll a concentration increased from ~ 0.05 pug L™
to ~0.15 ug L from west to east (Fig. 3a). Prochlorococcus cell
abundance increased from ~ 5 x 10* cells mL™" in the west to 2.5 x
10° cells mL™" in the east (Fig. 3b), whereas Synechococcus cell
abundance decreased from ~ 8 x 10° cells mL™! in the west to 1 x 10°
cells mL™' (Fig. 3c). Both HNA and LNA bacterial abundance
increased ~ 2-fold from west to east (Fig. 3d and e, respectively).
Rates of N> fixation were highest between stations 4 and 5 (12 to 18
nM d') and were elevated in the east (3 to 10 nM d"') compared to
the west (< 3 nM d') (Fig. 1g). In addition, there was an increase in
the abundance of key diazotrophs Trichodesmium and UCYN-A in
the east relative to the west (Cerdan-Garcia et al., 2021). ¢
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565 Figure 3. Zonal gradients in (a) chlorophyll a concentrations (ug chl L™) and the abundance of (b)
Prochlorococcus (cells mL™), (c) Synechococcus (cells mL™), (d) high nucleic acid bacteria (HNA, cells mL™)

and (e) low nucleic acid bacteria (LNA, cells mL™"), (f) chlorophyll a — corrected rates of alkaline phosphatase @ CDeIeted: . )

(nmol P mg chl d") and (g) mean rates of dinitrogen (N>) fixation (nM N d™") with error bars as standard
deviation of triplicate incubations. Samples captured from the towed FISH at ~ 7m. Coloured squares represent
P70 stations sampled during JC150 (see Fig. 1 for station names).
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These zonal gradients in hydrography, nutrients, biological rates and picocyanobacteria create two - [Formatted: Indent: First line: 1.27 cm, Line spacing: 1.5 j
lines

contrasting regions — one in the west (west of 46°W or west of station 4) and one in the east (east of 46°W or east

575 of station 4). Thus, quantitative comparisons of key characteristics can be drawn between Station 2 at 54°W and

Station 7 at 31°E (Fig. 1a, Table 2). Compared to the east, conditions in the west were characterized by notably
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higher dissolved Fe and ammonium concentrations (3 to 4-fold higher), APA (4-fold higher) and Synechococcus

abundance (2-fold higher). In contrast, the east was characterized by relatively high phosphate, DOP, chlorophyll

a., Prochlorococcus abundance, rates of N, fixation, Trichodesmium and UCYN-A abundances (Table 2).

v

Deleted: The zonal gradients in the hydrography, nutrients,

Based on these biogeochemical parameters, the phosphate-binding protein PstS, which is expressed

under P-limiting conditions, would be expected to be prevalent throughout the transect consistent with low

phosphate concentrations across the entire transect. Protein biomarkers would also be expected to indicate higher

alkaline phosphatase (AP) abundances in the west, corresponding with the observed trends in APA. In addition.

PhoX would be expected to be prevalent in the Fe-rich west, with greater prevalence of Fe-stress biomarkers in

the east.
Properties higher in the west (-fold) Properties higher in the east (-fold)
Iron (3) * Phosphate (4) *
Ammonium (4) * DOP (3) *
APA (4) * Chlorophyll (2)*
Vinar/Km (5),1 Prochlorococcus (6) *

Synechococcus (2) * N; fixation rates (3) **

Trichodesmium (2),

UCYN-A (71)}

biological rates and cyanobacteria create two contrasting regions in
the west (west of 46°W or west of station 4) and east (east of 46°W
or east of station 4), allowing a quantitative comparison of key
characteristics between station 2 at 54°W and station 7 at 31°E (Fig.
1a, Table 2). In the west, concentrations of dissolved Fe and
ammonium, averaged over mixed layer, were 3 to 4-fold higher, APA
was 4-fold higher and Synechococcus abundance was 2-fold higher
compared to the east. In contrast in the east, phosphate, DOP and
chlorophyll @ were 2 to 4-fold higher, Prochlorococcus abundance
was 6-fold higher, rates of N2 fixation were 3-fold higher (excluding

abundances were 2 and 71-fold higher (Table 2).

maximum rates at stations 4 and 5) and Trichodesmium and UCYN-A

i :[Deleted: With low phosphate concentrations across the entire

transect,

)
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' Deleted: Against a background of low phosphate concentrations

along the entire transect, we would expect PstS to be prevalent
throughout the basin, indicating phosphate stress. At the same time,
we would expect a strong west-east gradient in protein biomarkers
indicative of higher AP in the west to match the observed trends in
rates of APA. We would expect prevalence of PhoX in this Fe-rich
basin and Fe-stress biomarkers to be more prevalent in the east where
dissolved Fe concentrations were lower.

1

Prochlorococcus -Phosphate binding protein, PstS (2)! | Prochlorococcus - Nitrogen regulatory protein, PII (1.3)"

Prochlorococcus - Ammonium transporter, AmtB (1.7)'
Prochlorococcus -Urea permease, UrtA (1.6) !
Prochlorococcus -Ferredoxin (9)!

Prochlorococcus -Zinc peptidase (1.3)!
Prochlorococcus -Zinc transporter (4)
Prochlorococcus - Cobalamin synthetase (5)*

SARI1- alkaline phosphatase, PhoX (4)

Total Prochlorococcus protein (1.6)"

Prochlorococcus -alkaline phosphatase, PhoA (7)
Synechococcus -alkaline phosphatase, PhoA (29)!
SARI I-alkaline phosphatase, PhoA (24)'

Total Synechococcus protein (1.3)*

Table 2. Summary of states, rates and protein biomarkers that are higher in the west (left hand column) or east
(right hand column) of the transect. The numbers in brackets represent the approximate -fold difference between
west and east, Properties not reported (e.g. dissolved zinc, Syn-UrtA) displayed no clear difference between west
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and east. We note if the differences in properties are statistically significant (*, p < 0.05) or not significant (**, p

> (0.05). ! indicates insufficient replication or measurements for statistical analysis.
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3.2 Zonal gradients in phosphorus acquisition proteins

3.2.1. Prochlorococcus

= (" leted: Phosphorus

= CFormatted: Superscript
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Zonal gradients in Procholorocuccus P proteins generally indicate more severe P stress in the west.

Prochlorococcus (HLII) specific P proteins PstS and PhoA (Pro-PstS and Pro-PhoA, respectively) were almost
2-fold and 7-fold higher in the west relative to the east (Fig. 4a, Table 2), whereas there was no clear zonal trend

in PhoX (Pro-PhoX, Fig. 4a). Similar zonal trends for PstS (Fig. S2a), PhoA (Fig. S2b) and PhoX (Fig. S2¢)

CFormatted: Line spacing: 1.5 lines

were observed irrelevant of the strain or ecotype of Prochlorococcus, thus reflecting true biological regulation

consistent across other clades of Prochlorococcus for PstS (Fig. S2a),

Deleted: For Pro-PstS and Pro-PhoA, the zonal trends were
PhoA (Fig. S2b) and PhoX (Fig. S2¢).

within the entire Prochlorococcus community, rather being contingent on variation in the abundance of one

clade/strain across the transect. Moreover, the increase in total Prochlorococcus protein (Fig. 4d) alongside

Prochlorococcus cell abundance (Fig.
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are representative of microbial community structure.,Thus, assuming all observed Prochlorococcus cells possess ~( Deleted: Note that total Prochlorococcus protein (reported as total

spectral counts, Fig. 4d) agreed with the zonal trend Prochlorococcus

both genes, the higher Pro-PstS and Pro-PhoA in the west, where Prochlorococcus abundance was lower, cell abundance (Fig. 3b) suggesting that untargeted metaproteomics
analysis can capture trends in microbial community structure. Thus,
40 reflects a physiological response to low phosphorus availability. higher Pro-PstS and Pro-PhoA in the west where there was lower

Prochlorococcus reflects a physiological response to the nutrient

environment rather than reflecting changes in biomass.
q
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Figure 4. Zonal gradients in the spectral counts (SC) of biomarker proteins in Prochlorococcus (Pro-),

645  Synechococcus (Syn-) and SAR11 for (a) Phosphorus biomarker proteins; PstS, PhoA and PhoX, (b) Iron, zinc
and cobalt biomarker proteins; Ferredoxin (Fd) and Zinc peptidase (ZincPep), Zinc transporters (ZincTrans) and
Cobalamin Synthetase (CobW) (c) Nitrogen biomarker proteins: PII, AmtB and UrtA and (d) total protein for
Prochlorococcus, (e) Synechococcus and (f) SAR11, presenting an independent measure of biomass. See Table 1
for details of the protein functions. nSC represents normalized spectral counts, which represents the spectral

650 counts normalized to the maximum value of each protein across 6 stations. Tot-SC represents the sum of all
normalized spectral counts for Prochlorococcus, Synechococcus or SAR11

Correlations between Prochlorococcus abundance and other measured parameters also indicate a physiological <« (Formatted: Line spacing: 1.5 lines

response to nutrient availability. Prochlorococcus cell abundance was negatively correlated with Pro-PstS (Fig.

655 35a), Pro-PhoA (Fig. 5b) and APA (Fig. 5d). APA was also positively correlated with Pro-PstS and Pro-PhoA

(Fig. 5fand g). Conversely, DOP concentration was positively correlated with Prochlorococcus cell abundance

(Fig. 5¢) but negatively correlated with Pro-PstS (Fig. Se). Together these data suggest Prochlorococcus in the

west were more P stressed than those in the east.
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Prochlorococcus protein) was negatively correlated with Pro-PstS
(p=0.03, Fig. 5a), Pro-PhoA (p=0.035, Fig. 5b) and APA (p=0.001,
Fig. 5d) and positively correlated with DOP (p=0.007, Fig. 5¢). Pro-
PstS was negatively correlated with DOP (p=0.03, Fig. 5¢) and both
Pro-PstS and Pro-PhoA were positively correlated with AP activity
(p=0.013 and p=0.057, respectively, Fig. 5f and g). In agreement
with biogeochemical signatures for P stress, proteins, Pro-PstS and
Pro-PhoA were more prevalent in the west (Fig. 4a, Table 2) and
significantly positively correlated to AP activity (Fig. 5f and g).
However, Prochlorococcus abundance was lower in the west
compared to the east (Fig. 3b), and negatively related to overall AP
activity, Pro-PstS and Pro-PhoA and positively related to DOP
concentrations. Together these data imply increased P stress of
Prochlorococcus in the west compared to the east. This was again
evident in greatly increased P-stress biomarkers in the west, despite
decreasing Prochlorococcus abundance, demonstrating the change in
biomarkers is not simply due to changing biomass.

Figure 5. Relationship between (a) Prochlorococcus cell abundance (cells L) and Pro-PstS (total spectrum
counts), (b) Prochlorococcus cell abundance (cells L) and Pro-PhoA (total spectrum counts), (c)
Prochlorococcus cell abundance (cells L™') and dissolved organic phosphorus (DOP, nM), (d) Prochlorococcus
cell abundance (cells L) and rates of alkaline phosphatase (APA, nM d™'), (¢) DOP and Pro-PstS, (f) Pro-PstS
and APA and (g) Pro-PhoA and APA. Results are linear regression as reported as R, value and p-value.
Relationships shown in (a) to (f) are considered statistically significant as p < 0.05.

The bioassay experiments shed further light on the nutrient status of these communities. At Station 2, mean
chlorophyll a increased (from 0.075 to 0.120 pug L") after the addition of DOP alone. but with no increase in

APA. Instead, DOP+Fe stimulated an increase in chlorophyll @ (from 0.075 to 0.108 pg L) alongside an - CFormatted: Font: Italic

increase in mean APA (3.03 to 9.70 nM d”', * denotes a 2-fold or greater increase relative to the control in Fig.

6a, Table S5). Pro-PhoX concentration more than doubled following DOP and, separately, DOP+Zn addition at

Station 2 (Fig. 6a). however insufficient understanding of the controls on PhoX limits interpretation of this

observation at this time. By comparison, no significant changes in chlorophyll a or APA were observed at Station

3 (Fig. 6b, Table S5).
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In the bioassays, DOP addition resulted in a decrease in the concentration of, Pro-PstS and Pro-PhoA after the - Deleted: Within the nutrient bioassays, there was evidence that

Yy DOP limited phytoplankton growth and activity at station 2,
(Fig. 6a and b), implying P acquisition proteins are repressed in the presence of elevated DOP. These E expressed as an increase in mean chlorophyll a (from 0.075 to 0.120
N ng L") and mean rates of APA (3.03 to 9.70 nM d™), especially after
the addition of DOP+Fe (* denotes a 2-fold or greater increase

iy relative to the control, Fig. 6a, see Table S5 for raw data). No

where DOP and phosphate were elevated in surface waters (Fig. 1c and e). \We interpret this, DOP effectfo bethe % signiﬁ%ant clillanges to growth or activity were observed at station 3

i | (Fig. 6b, Table S5).

observations corroborate jn-situ observations as Pro-PstS and Pro-PhoA both decreased to the east (Fig. 4a)

710 result of DOP conversion to phosphate by alkaline phosphatase. and negative regulation of the Pho operon that
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controls both PstS and PhoA rather than DOP directly interacting with the regulatory system (Martiny et al.,

was a decline in the concentration of
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trA is an alternative phosphate-sensitive regulator identified in some Synechococcus,and Prochlorococcus,

: (Deleted: This

strains and that may be responsive to organic P (Ostrowski et al., 2010). However, flow cytometry-derived (Deleted: experimental observation is supported by

715 Prochlorococcus abundance declined in all experiments (Fig. 6a and b, Table S5), a common outcome for marine (Deleted: This
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oligotrophs in bottle incubation experiments, and it is unclear whether the observed decline in Pro-PstS and Pro-
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PhoA in the bioassays was due to a physiological response to elevated DOP or a decline in Prochlorococcus
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Figure 6. Fractional (scale 0 to 1) change in states, rates and individual proteins in Prochlorococcus (Pro_) and
Synechococcus (Syn-) after the addition of dissolved organic phosphorus (DOP), DOP and iron (DOP+Fe) and
DOP and zinc (DOP+Zn) at Station 2 (a) and Station 3 (b) for chlorophyll a (chl), rates of alkaline phosphatase
activity (APA), Prochlorococcus (Pro), Synechococcus (Syn) and protein biomarkers PstS, PhoA and PhoX.
Coloured squares represent the mean of duplicate or triplicate samples and are normalised as the fraction of the
maximum of that property in each experiment. See Table S4 for a description of the experiments and Table S5
for raw data for all properties. * denotes a 2-fold or more change in the mean property relative to the control.
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At Sgation 3, Synechococcus abundance increased by 12% and 53% following DOP and DOP+Fe addition

respectively but decreased after DOP+Zn addition (Fig. 6b, Table S5). The change in protein concentration after

nutrient additions was less pronounced at Sgation 3 than Station 2 (Table S5). DOP additions induced a 1.8-fold
increase in Syn-PstS and a 30% decrease in Syn-PhoA. Addition of DOP+Fe induced a 90% decrease in Syn-PstS
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zonal gradient in enzyme efficiency, indicating higher enzyme efficiency in the western compared to the eastern
subtropical Atlantic and (b) positive significant (p=0.017) relationship between Syn-PhoA and enzyme efficiency.
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dissolved Fe concentrations being higher in the west relative to the east. The mechanism for this discrepancy is

unclear. However, PhoA is efficient at hydrolysing DOP under low P conditions and culture studies show that

organic P is an important source of P for SAR11, representing up to 70% of its cellular P requirement when

phosphate is non-limiting (Grant et al., 2019). Thus, we speculate that SAR11 might strategically use PhoA in the

west with the zonal patters in SAR11-PhoA and PhoX likely reflecting the preferential acquisition of DOP over

phosphate. This further supports the premise that PhoA is an indicator of DOP acquisition across marine

microbial taxa (Steck et al., 2025; Ustick et al., 2021).

The decline in Synechococcus abundance and Syn-PhoA., despite the increase in DOP in the east suggests other
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representing new field evidence for Co influencing AP (Held et al., 2025; companion manuscript). Co may

effectively substitute Zn at the active site of PhoA within marine cyanobacteria, consistent with trends observed

in accelerating Co stoichiometry and APase abundances in the North Atlantic Ocean (Saito et al., 2017).

17

it

increase from west to east

(Deleted: switch

AN A A NI AN A A N N

(Deleted: stunted

) (Deleted: B

; (Deleted: submitted

o (Deleted: submitted

N AN AN

Deleted: Results from bioassays would suggest that Syn-PhoA

/| should increase to the east as DOP concentration increase. Instead,

we observed an eastward decline in Synechococcus abundance and
Syn-PhoA alongside the increase in DOP, which suggests that other
factor(s) affected the P acquisition strategy and growth of
Synechococcus. Averaged over the upper 40m, the mean Zn
concentration declined from ~ 0.35 nM in the west to 0.15 nM in the
east and may have limited Syn-PhoA activity. The dependence of
PhoA on Zn in Synechococcus has been observed in culture with the
production of PstS and PhoA only occurring at low phosphate as well
as in the presence of Zn (Cox and Saito 2013). Held et al.,
(submitted) observed more than a 2- to 4-fold fold increase in Syn-
PstS and Syn-PhoA after the addition of Zn or Co relative to the
control, with the addition of Fe also stimulating an increase in Syn-
PstS. This finding represents new field evidence for Co influencing
AP (Held et al., (submitted), implying that Co may effectively
substitute Zn at the active site of PhoA within marine cyanobacteria,
consistent with trends observed in accelerating Co stoichiometry and
APase abundances in the North Atlantic Ocean (Saito et al., 2017).
Competition for P, trace metals and other resources with other
plankton, including Prochlorococcus and Nz fixers, may have stunted
growth of Synechococcus in the east relative to the western
subtropical Atlantic. ¢




80

D85

o0

95

1000

1p05

1p10

P (Deleted: 6

3.3, Non-targeted metaproteomic jndicators of nutrient status in picocyanobacteria /vj,/{r leted: P ic in biomarkers as
Higher PstS and PhoA in the west compared to the east, alongside the positive relationship between Pro-PstS, .- (Deleted: Increascd prevalence of protein biomarkers

:Sl
NSNS

CDeIeted: s

Deleted: support previous findings that ...hese protein biomarkers

Pro-PhoA and Syn-PhoA with AP activity and negative relationship with DOP corroborate that these protein

biomarkers are P-stress biomarkers jn both Prochlorococcus (Martiny et al., 2006; Moore et al., 2005; Reistetter are P-stress biomarkers indicators of P stress ...n both
Prochlorococcus (Martiny et al., 2006; Moore et al., 2005; Reistetter
et al., 2013) and Synechococcus (Scanlan et al., 1993; Tetu et al., 2009). However, DOP addition stimulated etal,, 2013) and Synechococcus (Scanlan et al., 1993; Tetu etal.,
2009). and challenges the view that growth of picocyanobacteria are
distinct biomarker responses in Prochlorococcus and Synechococcus (Fig. 6, Table S5). For Prochlorococcus, insensitive to nutrient availability. C..[8]
BN (Deleted: a different )

DOP addition yeduced Pro-PstS and Pro-PhoA but,jncreased PhoX after 48 h relative to the control (Fig. 6, Table

Deleted: the change in the concentration of these biomarkers after
S5). In contrast, for Synechococcus DOP addition jncreased Syn-PstS and Syn-PhoA, with no change in PhoX the addition of DOP in nutrient bioassays differed between

Prochlorococcus and Synechococcus (Fig. 6, Table S5). For
Prochlorococcus, DOP addition the addition of DOP ...educed the
concentration of ...ro-PstS and Pro-PhoA but , and (... [9]

change in cell abundance because the per cell protein content (Fig. S5) showed the same pattern,(with the caveat \ (r leted

(Fig. 6, Table S5). We intuit that the protein biomarkers changed due to a physiological response rather than

AN

that the protein is clade specific yet likely targeted a major ecotype, whereas cell abundance represents all cells)., \k‘[ne'em"‘j after the 48-h incubation period relative to the control. In
contrast, for

»(" leted: F...r Synech cus , ... [10
' (Deleted: the addition of DOP
’ (Deleted: P

Deleted: When the per cell protein content was calculated...(with
the caveat that the protein is clade specific yet likely targeted a major
ecotype, whereas cell abundance represents all cells). ,...DOP
addition stimulated a decrease in the same pattern is observed
indicating that the change in protein biomarkers was not driven
solely by the change in cell abundance but was rather being
regulated in response to environmental conditions (Fig. S5). For

‘| Pro-Prochlorococcus, the

DOP addition stimulated a decrease in ProPstS and Pro-PhoA per cell and increase Pro-PhoA per cell gelative to

the control (Fig. S5a), whereas DOP addition stimulated an increase in,Syn-PstS. ,Syn-PhoA and Syn-PhoX per
cell (Fig. S5b).

L/L/l

Either the protein yegulatory pathway differs between Prochlorococcus and Synechococcus, and/or the strain <y
specific differences in quantified proteins is complicating our interpretation response of proteins across different

strains. Here we describe evidence for the former hypothesis. Jn Prochlorococcus, fhe,Pho regulon controls P-

acquisition genes such as pstS (phosphate transporter) and phoA and includes the two-component regulatory

Deleted: increased 48-h after the addition of DOP, ...elative to the

' | Deleted: decreased and
Xcomrol (Fig. 85a), whereas DOP addition stimulated an incr(, ., [12

genes, phoB and phoR (Martiny et al., 2006). The Pro-phoX gene js controlled by the pho regulon as it sits

i (Formatted: Font: Italic
b \(Formatted: Font: Italic
~(" leted: For Synech cus, the ...stS, and .. [13
(Formatted: Font: Italic
(Formatted: Font: Italic

Deleted: increased 48-h after the addition of DOP relative to the
control, with an increase in PhoX

within a2 genomic island with other P stress responsive (Kathuria and Martiny, 2011). In contrast, Synechococcus

(WH8102) has a two-tiered phosphate response system,, where the PhoBR regulator controls pstS using a Pho

=

—

= = )
N\ /

box, (Cox and Saito, 2013; Tetu et al., 2009) and second regulator, PtrA, controls one of the phoA phosphatase

copies, Zn transport, and various other cellular processes (Ostrowski et al., 2010). The gene neighbourhood

A NN

containing phoA (SYNW2391) in Synechococcus is also located near efflux transporter and close to the ferric

Deleted: The divergence in response of the same protein
biomarkers to the same substrate implies that the ...egulatory
pathway for these proteins ...iffers between Prochlorococcus and
Synechococcus, and/or that .. .he strain specific differences in
quantified proteins is complicating our interpretation response of
proteins across different strains. Here we describe evidence for the
former hypothesis. Below, we discuss both possibilities.

Formatted: Adjust space between Latin and Asian text,
Adjust space between Asian text and numbers

(Deleted: 9

Deleted: The cellular regulation of P responsive proteins i [

uptake regulator, Fur. To our knowledge, regulation of PhoX and its interaction with PhoA regulation in the

marine picocyanobacteria, is not well understood, but analysis of the gene neighbourhood in the model organism

Prochlorococcus sp. NATL1A reveals that phoX is not within the phoA neighbourhood and is in the vicinity of a
putative manganese transporter. For Synechococcus,(WH8102), the position of phoX (SYN1799) is like

—

S

[}
—/

Prochlorococcus and,is located directly next to the futAB iron ABC transport system, consistent with the iron

requirement of this enzyme. The separation of phoA and phoX within the genome in both Prochlorococcus,and

= =
|
=] =

Synechococcus,(at least in the representative strains described above) implies their regulation may be distinct in

Deleted: in Prochlorococcus ...s controlled by the pho reg T17]
: (Formatted: Font: Italic
et al., 2018), PhoA and PhoX may be regulated by both metals and phosphorus availability but the specific - Y ~ { Formatted 18
(Deleted: q
\Cbeleted: For Synechococcus (WH8102), the position of ph(_. [19
Deleted: During the nutrient bioassays, ...p .. [21
] (Deleted: were
- (Deleted: quantified

\CFormatted . [20

the different organisms. Consistent with prior observations (Browning et al., 2017; Mahaffey et al., 2014; Rouco

regulatory system in picocyanobacteria js complex and still unknown. ,

The alternative interpretation is that differences in strain specificity among the identified proteins explains the

differences in the Prochlorococcus vs Synechococcus response patterns. Proteins concentrations are measured by

o) LBl Bl

18



—_
154
~
W

1290

detecting peptides, and biological specificity (e.g. to strains or species) is determined by comparing the amino
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3.4, Influence of trace metals on alkaline phosphatase and associated protein biomarkers

Unlike other cyanobacteria, where the trace metal availability aligns well with the biogeography of PhoA and

PhoX (e.g. Trichodesmium, Rouco et al., 2018), there were no consistent trends between iron or zinc

concentrations and proteins PhoX and PhoA respectively in this study. The distribution of Pro-PhoX from
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metaproteomes (Fig. 4a) did not reflect iron availability (Fig. 2a). Despite elevated iron in the west, Pro-PhoA

concentrations were 2.7 to 4.7-fold higher than Pro-PhoX (reported fmol L', Table 3), with Pro-PhoX being

greater than Pro-PhoA in the east where Fe was lowest (Fig. 2a). PhoX was not detected for Synechococcus in

metaproteome analysis but was detected quantitatively at the start of bioassay experiments (Table 3). Syn-PhoX

concentrations also did not reflect iron availability (Table 3) and there was no consistent trend in the yatio

between Syn-PhoA and Syn-PhoX (Table 3). Zonal trends in quantitative versus metaproteome-derived Syn-

PhoA were different and likely driven by differences in depth horizons sampled (40m for experiments, 15 meters

for metaproteome analysis) as well as the different Synechococcus populations captured using quantitative

peptide analysis (see Table S3, clade III and X) compared to metaproteomes.
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Table 3: Concentration of proteins (fmol L") PhoX and PhoA for Prochlorococcus and Synechococcus at the
start of the nutrient bioassay experiments at stations 2, 3, 4 and 7 (see Fig. la for locations) to illustrate how the
relative concentration and ratio of PhoA to PhoX differ between Prochlorococcus and Synechococcus and across
the zonal transect.

Protein biomarker Prochlorococcus Synechococcus
Protein conc. PhoX | PhoA [ PhoA/PhoX | PhoX | PhoA [ PhoA/PhoX
(fmol L)
Station 2 control | 17+2 | 45+ 14 2.7 21€6 | 7+1 0.3
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(Rouco et al., 2018), with PhoX being enriched in the subtropical
North Atlantic and PhoA being enriched in the subtropical North
Pacific oceans, consistent with the associated trace metal availability.
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surface ocean in this study, results from bioassays conducted during the same expedition (Held et al. 2025;
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Proteins relating to iron, zinc and B> metabolism in Prochlorococcus increased in the east alongside the

increase in Prochlorococcus gcell abundance. Ferredoxin and zinc transporters increased eastward by 3 to 9-fold

and protein annotated as CobW, a member of the COG0523 family implicated in metal chaperone functions

(Edmonds et al., 2021) and Co chaperone for B> synthesis (Young et al., 2021) also increased 3 to 10-fold (Fig.

4¢). The eastward increase in three independent proteins (up to 10-fold) was greater than the increase in total

protein for Prochlorococcus (~ 1.6-fold) implying a regulated molecular increase in response to resource

limitation or competition, rather than reflecting a change in biomass only. However, zinc protein annotations in

Prochlorococcus are putative and alignment-based transporter annotations are unable to discern cognate metal

use. In addition, the role of zinc in Prochlorococcus physiology is uncertain. Prochlorococcus does not have an

obligate Zn requirement when phosphate is available (Saito et al., 2002), and Zn is highly toxic to a Pacific

Ocean strain of Prochlorococcus 29/08/2025 10:57:00, In addition, while CobW is an abundant protein among

the ~20 genes involved in cobalamin biosynthesis, there are currently no known biomarkers for cobalt or zinc

metabolism in Prochlorococcus, with studies producing negative results (Hawco et al., 2020). For

Synechococcus, there were no clear trends in ferredoxin (Fig. 4¢) and flavodoxin was infrequently detected.

difficulty of predict the direct metal requirement alongside metals controllin:

multiple APs jn-situ, and makes a strong case for continued biochemical characterization of cyanobacterial trace

metal physiology and enzymes.

3.5, Influence of nitrogen acquisition on the biogeography of Prochlorococcus and Synechococcus in the

subtropical North Atlantic

We used nontargeted metaproteomics o interpret the role of nitrogen acquisition on the biogeography of
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in total protein for Prochlorococcus (1.6-fold) implying a regulated
molecular increase in response to resource limitation or competition,
rather than reflecting a change in biomass only. ¢

There was no consistent or significant increased phytoplankton
growth, increase in Prochlorococcus and Synechococcus, or AP
activity after the addition of Fe, Zn or Co alone (Held et al.,
submitted). However, at station 2 in the west, Syn-PhoA increased 6
and 7-fold after the addition of Zn (38 + 0.56 fmol L") and Co (47 +
6.8 fmol L") relative to the control (6.7 + 1.5 fmol L"), respectively.
At station 4 over the mid-Atlantic ridge, Pro-PhoX increased 8-fold
upon addition of Co relative to the control. At station 7 in the east,
Pro-PhoX also increased over 2-fold upon Fe addition (to 18 + 2.6
fmol L) relative to the control (8.2 + 2.4 fmol L', Held et al.,
submitted). Results from these bioassays illustrate the potential for a
direct metal control on AP, lending support to the hypothesis for
local, albeit patchy metal-phosphorus co-limitation in the subtropical
North Atlantic (Jakuba et al., 2008, Mahaffey et al., 2014, Saito et al.,
2017, Browning et al., 2017). ¢
Alongside metal control of AP, there were gradients in proteins
relating to iron, zinc and B2 metabolism in Prochlorococcus.
Ferredoxin increased from west (1 to 2 spectral counts) to the east (9
spectral counts) alongside zinc transporters (1 to 3 spectral counts in
the west, 9 in the east) although there was no clear zonal trend in zinc
peptidases (Fig. 4c, Table 2). We consider these zinc protein
annotations in Prochlorococcus as putative because this transporter
annotated in the Prochlorococcus genome has not been validated for
Zn transport, and alignment-based transporter annotations tend to
have difficulty in discerning cognate metal use. Moreover, under
phosphate-replete conditions, Prochlorococcus does not have an
obligate Zn requirement (Saito et al., 2002), and Zn is highly toxic to
a Pacific Ocean strain of Prochlorococcus (Hawco et al., 2018),
contributing to the uncertainty of the role of zinc in Prochlom

Prochlorococcus and Synechococcus. Upwelling in the eastern Atlantic (Menna et al, 2015)_ alongside nitrogen

fixation (Fig. 3g, Cerdan-Garcia et al., 2022) and dust deposition (Kunde et al., 2019) deliver fixed nitrogen

including, nitrate, ammonium and urea to the surface subtropical Atlantic (dust ref here). Nitrate and ammonium

concentrations were low across the transect (Fig. 1e and f), with maximum ammonium concentration coinciding
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NtcA) in the metaproteome of Synechococcus, perhaps because
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in the metaproteomes compared to Prochlorococcus. The dominance of proteins for ammonium and urea

acquisition of Synechococcus and Prochlorococcus are consistent with the premise that while marine

Synechococcus and some Prochlorococcus strains have the genetic makeup to assimilate nitrate (Berube et al.,

2015; Dominguez-Martin et al., 2022; Martiny et al., 2009), it accounts for < 5% of their total N demand, and

instead ammonium and urea are the dominant N sources (Berthelot et al., 2019; Casey et al., 2016; Painter et al.,

2008)

}

|

)4.0. Conclusions|

}

This study exploited natural gradients in nutrient resources created by upwelling in the east and dust deposition in

the west. Combining biogeochemical states, enzyme rate measurements, and ‘omics approaches, jn the spirit of

the developing ‘BioGeoSCAPES program (Saito et al., 2024), we studied the nutrient acquisition strategies for

hococcus was 5 to 10 times less abundant in the metaproteomes
compared to Prochlorococcus.”
DSurface ocean nitrate (< 40 nM, Fig. 1d) and ammonium (< 20 nM,
Fig. 1f) concentrations were low, with a 4-fold decrease in
ammonium from west to east, and a maximum ammonium
concentration coinciding with the highest rates of N» fixation (Fig.
1h). Corresponding with these chemical observations,
Prochlorococcus protein biomarkers P-II, ammonium transporter
AmtB and urea transporter UrtA increased eastward (30-70%, Fig. 4b
and Table 2). We postulate that the eastward increase in these
proteins, especially urea transporter UrtA (also consistent across
different clades, see Fig. S2d) was indicative of increasing N stress
towards the eastern Atlantic in contrast to increasing P stress in the
western AtlanticThe North Atlantic is a region of enhanced N>
fixation owing to the supply of iron-rich dust (Moore et al 2009) and
Prochlorococcus (and Synechococcus) are prime beneficiaries of N
exuded from N fixers (Caffin et al., 2018). Enhanced rates of N>
fixation and higher ammonium concentrations (Figures 1h and If,
respectively) were observed in the middle of the zonal transect (38 to
46°W, between stations 4 and 5). Prochlorococcus-AmtB and UrtA
were lowest at these stations (Figure 4b), likely reflecting alleviation
of N stress as Prochlorococcus benefited from N exudates, as
observed in the North Pacific gyre (Saito et al 2013, Saito et al 2015).
However, despite N> fixation rates being ~3-fold higher in the east
compared to the west (Table 2), the overall increase in
Prochlorococcus N stress biomarkers in the east indicates that this
species may not have been the main beneficiary of this process.

Prochlorococcus and Synechococcus in-situ and using nutrient bioassays. Using protein biomarkers alongside

(Moved up [3]: For Synechococcus, the urea transporter UrtA

biogeochemical signatures for nutrient stress, we concluded that Prochlorococcus and Synechococcus were P-
stressed in the western Atlantic and Prochlorococcus was N-stressed in the eastern Atlantic, with Synechococcus
showing signs of N-stress throughout the transect. Our findings are generally consistent with prior metagenomic
observations on basin scale contrasts in N and P stress for Prochlorococcus in the Atlantic Ocean (at medium
level, Ustick et al., 2021). There was evidence for trace metal control on alkaline phosphatase but the response of
protein biomarkers to the addition of organic P, Zn and Fe differed between Prochlorococcus and Synechococcus

(also see Held et al., 2025, companion manuscript), highlighting that the functions and systems biology of

| less abundant in the metaproteomes compared to Prochlorococcus.|

alkaline phosphatase regulation differs across the organisms and for different environmental stimuli. This

indicates that ongoing laboratory characterization of protein biomarkers and cyanobacterial physiology js needed

spectral counts were more than 5 times higher than for
Prochlorococcus and were constant across the transect, implying
Synechococcus was N stressed throughout the transect (Fig. 4b),
likely due to its larger cell size and less efficient surface-area to
volume ratio for nutrient acquisition (Chisholm 1992). We did not
detect P-IT and AmtB (or NtcA) in the metaproteome of
Synechococcus, perhaps because Synechococcus was 5 to 10 times

Deleted: In addition to N and P, where both Prochlorococcus and
Synechococcus had the potential to benefit from freshly fixed N and
the changes in P speciation and availability along the zonal transect,
we can consider the trace element controls that could have impacted
their biogeography. Upwelling in the eastern Atlantic may have
delivered Fe and other trace metals to surface waters, with lateral
transport potentially driving zonal gradients. However, dissolved Fe
was low in the east and trace metal proteins increased relativm

defining the regulation and function not only at the species level, but also across strains within species.

Under future climate scenarios, stratification, aerosol dynamics, N; fixation and the bioavailability of
organic P are predicted to change (e.g. (Buchanan et al., 2021; Chien et al., 2016; White et al., 2012; Wrightson
and Tagliabue, 2020), all with the potential to perturb the availability of already scarce nutrient resources in the
oligotrophic gyres. To identify and quantify the future trajectory of Prochlorococcus and Synechococcus under

future ocean scenarios, a holistic view that considers the species and strain specific strategies used to access
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resources, alongside representation of large scale forcings are required. We have shown here that there is utility
in combining biochemical assays with untargeted and targeted omics approaches to reveal these patterns,
generate hypotheses that can be tested in controlled laboratory experiments, and improve predictions of marine

microbiology and biogeochemistry in a changing ocean.
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